
COMMENTARY

Representing “stuff” in visual cortex
Corey M. Ziembaa and Jeremy Freemanb,1

aCenter for Neural Science, New York University, New York, NY 10003; and bJanelia Research
Campus, Howard Hughes Medical Institute, Ashburn, VA 20147

Despite decades of study, we do not under-
stand the fundamental processes by which
our brain encodes and represents incoming
visual information and uses it to guide per-
ception and action. A wealth of evidence sug-
gests that visual recognition is mediated by
a series of areas in primate cortex known as
the ventral stream, including V1 (primary
visual cortex), V2, and V4 (Fig. 1A) (1).
The earliest stages are to some extent un-
derstood; Hubel and Wiesel famously dis-
covered, for example, that neurons in V1
respond selectively to the orientation and di-
rection of a moving edge (2). However, a vast
gulf remains between coding for a simple
edge and representing the full richness of
our visual world. David Hubel himself ob-
served in 2012 that we still “have almost no
examples of neural structures in which we
know the difference between the informa-
tion coming in and what is going out—what
the structure is for. We have some idea of
the answer for the retina, the lateral genicu-
late body, and the primary visual cortex,
but that’s about it” (3). In PNAS, Okazawa
et al. (4) make significant headway in this
quest by uncovering and characteriz-
ing a unique form of neural selectivity
in area V4.

A central challenge in understanding how
neurons encode visual stimuli is knowing
what stimulus to show the neurons. We do
not know the “right” stimuli until we have
some idea of what neurons are selective for,
but we might not know what neurons are
selective for until we have shown them the
right stimuli. Near the top of the ventral
stream hierarchy, such as in the inferotem-
poral cortex, it has proven useful to probe
responses using highly complex stimuli such
as photographs of natural scenes and objects
(1, 5–7). However, the complexity of such
stimuli and the difficulty in experimentally
manipulating or controlling them can make
it hard to tell what any given neuron is
encoding, beyond the fact that it responds
more to one picture than another. In earlier
stages—the retina, lateral geniculate nucleus,
and V1—the use of simple stimuli, like noise
patterns, oriented edges, or sine-wave gratings,
has yielded a reasonable working understand-
ing of neural encoding (8), but such stimuli
are sufficient only because these neurons ex-
hibit simpler forms of encoding, at least to
a first approximation.
In the area studied by Okazawa et al., area

V4, most previous authors have characterized
neurons by assuming that they encode hard-

edged shapes and contours, using stimuli
stitched together from “V1-like” line seg-
ments into longer contours with parameter-
ized curvatures (9–11). This approach reflects
an intuitive understanding of the visual
world: that shapes and surfaces are defined
by their bounding contours and that the vi-
sual system must somehow represent these
features. However, as Okazawa et al. point
out, much of the visual world is characterized
not by contours, but by texture: the patterns
that make up the surfaces of objects and envi-
ronments. Ted Adelson described this as the
distinction between “things” (objects, ele-
ments of scenes) and “stuff” (materials, tex-
tures, etc.) (12).
Textures are notoriously difficult to work

with as visual stimuli; unlike the angle of
a line or the curvature of a contour, they do
not permit a simple parameterization. What
set of numbers could capture the difference
between wood bark and a patch of grass? To
solve this problem, Okazawa et al. drew on
existing work in the modeling and synthesis
of visual texture and extended it in novel
ways. They began with a texture model
developed by Portilla and Simoncelli (13).
The model has two components: a set of sta-
tistics, computed on an image, that implicitly
capture many of the higher-order properties
of visual textures (Fig. 1B), and an algorithm
for generating stimuli with those properties.
It was originally developed to capture the
perceptually relevant properties of visual tex-
ture (13, 14) and has been extended to ex-
plain how visual representations vary across
the visual field (15, 16) and, qualitatively,
across different ventral stream areas (6, 17).
The hundreds of parameters contained in

such image statistical models have prevented
their use in detailed neural characterization,
but Okazawa et al. are able to transform the
model into a suitable substrate for character-
izing neural selectivity. First, they took a large
ensemble of stimuli and used dimensionality
reduction to shrink the hundreds of model
parameters into a low-dimensional space.
Even in this simplified space, they could
not realistically show all possible parameter
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Fig. 1. (A) Lateral view of the macaque brain with early ventral stream areas V1, V2, and V4 highlighted. (B)
Schematic diagram of the parameters contained in the Portilla Simoncelli texture model. Spectral statistics reflect the
output of V1-like filters. Higher-order statistics reflect correlations of these filter outputs across orientations, spatial
frequencies, and local positions. Most V1 neurons are only sensitive to spectral statistics, and many V2 neurons are
sensitive to both spectral and higher-order statistics; Okazawa et al. show that some V4 neurons are tuned exclusively
for higher-order statistics. (C–E) In early ventral stream areas, physically different images can yield similar responses,
and different image transformations can reveal particular encoding properties. (C) Rotating an image changes the
power spectra but preserves some higher-order statistics. In V4, as reported by Okazawa et al., differently rotated
images can yield similar responses. (D) Spatially translating a texture changes the image pixel-by-pixel but preserves
the spectral and higher-order statistics. In V2, such images yield similar responses. (E) Randomizing the phase of an
image destroys higher-order statistics but preserves the power spectrum. In V1, images with similar spectral statistics
yield similar responses, with or without higher-order statistics.
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combinations to each neuron. Therefore,
drawing on existing work characterizing
shape selectivity (18), they used an adaptive
sampling technique to explore regions of
their low-dimensional space that evoked large
firing rates. Having measured responses from
each neuron to a sufficiently rich and response-
evoking ensemble of stimuli, they could then
model the response in terms of the low-
dimensional space.
Previous work has examined the responses

of V4 neurons to texture stimuli (6, 19), but
with their modeling technique, Okazawa
et al. were able to characterize in detail sev-
eral largely unknown forms of selectivity in
V4. First, they found that many V4 neurons
were well described by selectivity to higher-
order image statistics, and some were tuned
to particular subsets of higher-order sta-
tistics. These subsets have curious names
like “energy cross-orientation” and “linear
cross-position”; although not exactly intui-
tive, the authors make an effort to show, with
pictures, how selectivity to a particular statis-
tic relates to preferences for particular images.
Most remarkably, they use simple image
manipulations to show that some V4
neurons selectively encode these higher-
order statistics while remaining tolerant to
changes in the “power spectra,” a term that
describes the total amount of different orien-
tations and spatial frequencies in an image,
which is what V1 neurons are mostly tuned
for. For example, a V4 neuron might respond
well to a bark-like texture regardless of the
overall orientation of the pattern (Fig. 1
B and C). Finally, by examining how well
a population of V4 neurons could dis-
criminate among different texture patterns,
they were able to show that the representa-
tion of higher-order image statistics in V4
resembles the perceptual representation
derived from previous behavioral experi-
ments (17).
The modeling effort of Okazawa et al.

represents both a technical advance and a
conceptual counterweight to previous efforts
in V4. Many models of V4 have character-
ized selectivity to contours, using simple
parameterized feature spaces (10, 11). Rather
than consider neurons as performing compu-
tations on an actual visual input, these mod-

els operate in the space of abstract quantities,
like curvature, and as a result, the models
only apply to those kinds of stimuli. In con-
trast, the current approach can make predic-
tions about how neurons should respond to
any stimulus pattern (20). In future work, the

Okazawa et al. were
able to characterize in
detail several largely
unknown forms of
selectivity in V4.
authors could use this fact to reconcile their
findings with earlier results in V4. One ele-
gant possibility is that previously described
selectivity to curvature and contours is just
a special case of sensitivity to higher-order
image statistics. However, an alternative is
that Okazawa et al. focused only on a subset
of V4 cells specifically tuned to texture,
whereas previous efforts described a different
representation, possibly mediated by distinct
but interacting neuronal populations.
The current results are also interesting in

light of recent work in area V2. Whereas V1
neurons seem to encode almost exclusively

spectral properties like orientation and spatial
frequency content (Fig. 1 B and E), V2 neu-
rons additionally show selectivity for higher-
order image statistics (Fig. 1 B and D),
similar to those parameterized by Okazawa
et al. (17). It will thus be important in the
future to determine how much of the higher-
order statistical selectivity in V4 is inherited
from V2 or computed de novo from its
inputs. However, most V2 neurons retain sen-
sitivity to spectral properties, whereas at least
some neurons in V4 appear largely tolerant to
spectral changes. These findings may thus
suggest a transformation from V2 to V4 that
complements and extends the transformation
from V1 and V2. New techniques will be re-
quired, alongside modeling and stimulus de-
sign, to characterize in mechanistic detail the
computations that take place between these
cortical areas and across different layers and
cell types within an area (21). How exactly
these cortical transformations form a physio-
logical basis for vision remains a deeply in-
triguing puzzle, and approaches such as
that of Okazawa et al. will help pave the
way forward.
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