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The human visual system is able to recognize objects despite tremen-
dous variation in their appearance on the retina resulting from
variation in view, size, lighting, etc. This ability—known as ‘‘invari-
ant’’ object recognition—is central to visual perception, yet its
computational underpinnings are poorly understood. Traditionally,
nonhuman primates have been the animal model-of-choice for in-
vestigating the neuronal substrates of invariant recognition, because
their visual systems closely mirror our own. Meanwhile, simpler and
more accessible animal models such as rodents have been largely
overlooked as possible models of higher-level visual functions, be-
cause their brains are often assumed to lack advanced visual process-
ing machinery. As a result, little is known about rodents’ ability to
process complex visual stimuli in the face of real-world image varia-
tion. In the present work, we show that rats possess more advanced
visual abilities than previously appreciated. Specifically, we trained
pigmented rats to perform a visual task that required them to
recognize objects despite substantial variation in their appearance,
due to changes in size, view, and lighting. Critically, rats were able to
spontaneously generalize to previously unseen transformations of
learned objects. These results provide the first systematic evidence for
invariant object recognition in rats and argue for an increased focus
on rodents as models for studying high-level visual processing.

invariance � vision � rat � behavior

We recognize visual objects with such ease, it is natural to
overlook what an impressive computational feat this repre-

sents. Any given object can cast an infinite number of different
images onto the retina, depending on the object’s position relative
to the viewer, the configuration of light sources, and the presence
of other objects. Despite this tremendous variation, we are able to
rapidly recognize thousands of distinct object classes without ap-
parent effort. At present, we know little about how the brain
achieves robust, ‘‘invariant’’ object recognition, and reproducing
this ability remains a major challenge in the construction of artificial
vision systems (1).

Animal models provide a critical tool in the investigation of
invariant object recognition by allowing the direct study of the
neuronal substrates of invariance. Currently, nonhuman primates
are the model-of-choice in the study of the mechanisms underlying
object vision, because their visual systems closely mirror our own
(2). However, while nonhuman primates have many advantages as
a model system, there are many disadvantages as well. Experiments
are slow and labor-intensive, typically involving small numbers of
subjects, and genetic, molecular, and highly invasive manipulations
are often not practical.

In contrast, rodent models have long been valued for their
superior experimental accessibility, with a wide range of powerful
techniques in widespread use (see Discussion). However, the vision
science community has largely overlooked rodents as a model,
because their brains are often assumed to lack advanced visual
processing machinery. Such assumptions are based, in part, on the
observations that rodents have lower visual acuity than primates
(e.g., approximately one cycle/degree in pigmented rats) (3–7) and

make extensive use of their whiskers (8, 9) and sense of smell (10,
11) when exploring their environment.

At the same time, rodent vision, as a whole, has not been
completely ignored; there is substantial literature concerning vision
in the pigmented rat, starting in the first half of the last century (7,
12) and extending to more modern investigations of visual devel-
opment (13–16) and memory using the visual modality (17–27).
However, while contributing to our understanding of neuronal
plasticity in low-level visual areas and the anatomical substrates of
learning and memory, this literature has paid less attention to mid-
to high-level processing of visual objects.

The one study that has specifically looked at invariant recognition
in rats (24) concluded that rats lack robust, general invariant
recognition abilities, reinforcing the idea that rodents are not
suitable visual models for complex visual phenomena, except
perhaps as a means to some other end (e.g., memory). In the
present work, we challenge the notion that rats are incapable of
invariant recognition, training rats to recognize visual objects
despite substantial variation in their appearance. Critically, we show
that rats were able to generalize to novel object appearances,
including generalization to types of image changes the animals were
never previously exposed to in an experimental context. Our results
suggest that the rat visual system contains relatively advanced visual
processing machinery that allows invariant representation of visual
objects. Given the growing demand for simpler and more experi-
mentally accessible model systems, we argue for an increased focus
on the rat and other rodents as models for object recognition
research.

Results
The goal of our study was to test whether rats are capable of
transform-invariant object recognition, i.e., whether they are able to
recognize visual objects despite ‘‘identity-preserving’’ changes in
their appearance, such as variation in size, orientation, lighting, etc.
We tested 6 pigmented rats in an object discrimination task (see Fig.
1) that consisted of 4 phases. During the initial phase, the animals
were trained to discriminate between the default (fixed) views of 2
visual objects (shown in Fig. 1A). During the second phase, the rats
were trained to perform the task in the face of some amount of
variation in each object’s appearance. Finally, during the third and
fourth phases, we tested the rats’ capability to spontaneously
generalize their recognition to a large collection of novel identity-
preserving transformations of the target objects.
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Learning an Invariant Object Recognition Task. Rats were trained to
discriminate between 2 three-dimensional synthetic objects (Fig.
1A) presented on an LCD monitor. Animals initiated each behav-
ioral trial by inserting their heads through a narrow hole in one of
the walls of the training box and touching their tongues to a centrally
aligned touch sensor (Fig. 1B). This arrangement allowed a rea-
sonably reproducible positioning of the animals’ heads during
stimulus presentation and good control over the viewing distance.

During phase I of our study, each object was presented in the
center of the monitor at a fixed, default size (40° visual angle) and
viewpoint (0° in-depth orientation), with a single, consistent light
source (in front of the object; see Fig. 1A). Phase I typically lasted
25 sessions, during which the animals learned a fixed mapping
between object identity (object 1/object 2) and reward port (left/
right; see Fig. 1B). Phase I was completed when the animals
achieved �70% correct object discrimination.

During phase II, rats were required to perform the same object
discrimination task, but while the size of the target objects and their
azimuth rotation (i.e., in-depth rotation about the objects’ vertical
axis) were separately varied (i.e., the object sometimes appeared
smaller, or rotated, but never appeared smaller and rotated).
Variation in object appearance along each dimension was intro-
duced and gradually increased using an adaptive staircase proce-
dure that updated the range of object variation that animals were
required to tolerate (for details see Materials and Methods and Fig.
S1). Consequently, at the end of phase II, subjects were required to
discriminate between the objects, in interleaved trials, despite more
than an octave of variation in size (i.e., between 40° and 15° visual
angle) and �60° of variation in object azimuth rotation (Fig. S2).
Animals rapidly acquired this task, achieving (in 25–30 training
sessions) at least 70% correct discrimination performance across a
broad set of object appearances (light blue frames in Fig. 2A).

Generalization to a Large Set of Novel Object Transformations. Phase
II of our study (see Fig. S2) already demonstrates that rats are able
to recognize objects despite a large range of image variation, at least
for images for which they have received training. However, a still
more critical feature of invariant recognition is the ability to

generalize to previously unseen transformations of known visual
objects. To test rats’ generalization abilities, in phase III, we
constructed a large set of novel transformations of each target
object (Fig. 2A; see Materials and Methods for details). This image
set consisted of novel combinations of objects’ size and azimuth
rotation (Fig. 2A, outside the light blue frames). We then asked
whether rats were still able to correctly identify the target objects,
despite being presented across this substantially new range of
variation in appearance (Fig. S3), in interleaved trials with previ-
ously trained appearances.

While generalization performance would ideally be measured in
the absence of feedback, in practice, animals will not perform large
numbers of unrewarded trials. Thus, to overcome potential training
effects over the course of probing generalization performance, we
designed phase III with 3 critical features. First, a large number of
new transformations were used (80 unique appearances for each
target object; Fig. 2A) making it unlikely that the rats could
memorize the association between each of them and the corre-
sponding response. Second, we withheld feedback (i.e., the animal
did not receive any reward or feedback tone) for a fraction of the
new transformations. Third, we measured the rats’ overall perfor-
mance on the very first presentation of each of the novel transfor-
mation conditions, allowing performance to be assessed before any
additional training.

Group mean performances across the full set of object transfor-
mations tested during phase III are shown in Fig. 2B (Left), along
with each individual animal’s performance across all stimulus
conditions (Fig. 2B, Right). Note that because our experimental rig
allowed for the collection of hundreds of trials per day, we were able
to collect 70–90 trials per stimulus condition, per animal, allowing
us to assess significance without resorting to pooling of animals or
stimulus conditions. As Fig. 2B shows, both the group mean
performance (Left; one-tailed t test) and each individual rat’s
performance (Right; one-tailed Binomial test) was highly signifi-
cantly above chance (P � 0.001) for nearly all of the previously
unseen transformations (stimulus conditions outside the light blue
frames) and, crucially, also for the fraction of transformations for
which feedback was withheld (stimulus conditions inside the black
frames in Fig. 2B, Right). As expected due to the animal’s relatively
low visual acuity, performance was impaired only at small object
sizes.

A summary group mean performance over the no-feedback
conditions is shown in Fig. 3A. Animals’ performance was not
significantly different for stimulus conditions where they did not
receive feedback (second bar), versus those (size-matched) condi-
tions for which they did (third bar), and, in both cases, was high and
not significantly different from the performance over the stimulus
conditions that had been trained during phase II (first bar; one-way
ANOVA, P � 0.51). This indicates that receiving feedback during
training was not critical for achieving high generalization perfor-
mance. Performance was similarly high for the special case stimulus
conditions (white bar in Fig. 3A) that were never fewer than 2
‘‘squares’’ away from the nearest rewarded condition (i.e., 25%
difference in size, 30° difference in azimuth rotation; see diagram
in Fig. 3A).

To further explore the degree of automaticity in generalization,
the animals’ group mean performance was plotted (Fig. 3B) as a
function of presentation number (e.g., first presentation, second,
third, etc.) of all of the novel transformations (i.e., outside the
trained axes; see diagram in Fig. 3B), with or without feedback, that
were tested in phase III. Performance was high and significantly
above chance (one-tailed t test, P � 0.002), even for the very first
presentation of each novel stimulus, and remained stable over the
course of the experiment, with no significant variation as a function
of presentation number (one-way ANOVA, P � 0.87). This was
true also for the performance of each individual subject (one-tailed
Binomial test, P � 0.05). This high initial performance level and
stability across time indicates that generalization of rat recognition
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Fig. 1. Visual stimuli and behavioral task. (A) Default views (0° in-depth
rotation) of the target objects that rats were trained to discriminate during phase
Iof thestudy(eachobject’sdefault sizewas40°visualangle). (B)Ratsweretrained
inanoperantboxthatwasequippedwithanLCDmonitor,acentral touchsensor,
and 2 flanking feeding tubes (also functioning as touch sensors). Following
initiation of a behavioral trial (triggered by the rat licking the central sensor), 1 of
the 2 target objects was presented on the monitor, and the animal had to lick
either the left or the right feeding tube (depending on the object identity) to
receive reward.
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behavior was spontaneous and cannot be explained by learning
taking place during phase III. Indeed, it appears that animals
immediately achieved their maximal performance and did not
significantly improve thereafter.

Generalization to a Novel Type of Image Variation. To test rats’
generalization ability further, in phase IVa of our experiment, we
created 15 additional stimulus conditions for each target object by
varying the position of the virtual light source for 15 arbitrary
size-azimuth conjunctions from the previous phase (see Fig. 4A and
Fig. S4A). In most cases, this manipulation produced large changes
in the pixel-level appearance of the objects, changing the mean
luminance level and contrast, and in many cases inverting the
relationships of which portions of the objects were light or dark (see
examples at the bottom of Fig. 4A). We interleaved these new
lighting conditions trials with the full ‘‘matrix’’ of size-azimuth
transformations from phase III. Importantly, these novel lighting
condition stimuli were never rewarded (nor was any feedback
given), and rats received no training with any stimuli under lighting
aside from the ‘‘default’’ lighting condition (e.g., as in phases I–III).
Performance was high overall (approximately 75%) and signifi-
cantly above chance for 14 out of 15 of the novel lighting conditions
(Fig. 4C; one-tailed t test, see legend for significance levels) and was
roughly comparable to performance with the default lighting. These
results indicate that the animals were still able to recognize the
objects despite the large pixel-wise disruption of images induced by
the novel lighting conditions.

While performance was robust overall, we observed some dec-
rement in performance between the matched ‘‘default’’ lighting and
novel lighting conditions (Fig. 4C). It is not clear whether this
decrement was due to incomplete generalization or simply the fact
that the novel lighting condition images were overall substantially
darker and lower contrast than their ‘‘default’’ lighting counter-
parts. Indeed, the one lighting condition for which the rats did not
perform above chance (black circle, Fig. 4C) was by far the darkest
and lowest-contrast image (Fig. S4A and B). More generally, the
decrement between performance in the novel lighting conditions
and their ‘‘default’’ lighting counterparts was strongly predicted by
the contrast of each novel lighting condition image (r � 0.88, P �
10�4, two-tailed t test; see Fig. S4B). Given the known properties of
the rat’s contrast sensitivity function (3, 4, 6), it is likely that the
novel lighting conditions were somewhat more difficult simply
because they were somewhat harder to see.

As a final test of rats’ generalization abilities, in phase IVb of our
experiment, we created 15 novel stimulus conditions by varying the
elevation rotation of each target object (i.e., in-depth rotation about
the horizontal axis) by �10° or �20° and then combining these new
transformations with 15 arbitrary size-azimuth conjunctions from
phase III (see Fig. 4B and Fig. S5). Despite the fact that these
transformations resulted in substantial changes of the objects’
bounding contour and were novel to the animals, performance was
significantly above chance for all new elevation conditions and was
close to their performance with the default (0°) elevation conditions
(Fig. 4D). Taken together, these results indicate that rats were able

Fig. 2. Rats’ group mean and individual performances across the range of object transformations tested during phase III of the study. (A) The set of object
transformations used in phase III, consisting of all possible combinations of 6 sizes and 9 in-depth azimuth rotations of both target objects. Green frames show the
default object views trained during phase I. Light blue frames show the subset of transformations (14) for each object during phases II. All of the remaining
transformations (40 for each object) were novel to the animals. (B) Left plot shows the animals’ group mean performance (n � 6) for each of the tested object
transformationsdepicted inA—thepercentageofcorrect trials isbothcolor-codedandreportedasanumericvalue, togetherwith its significanceaccordingtoa1-tailed
t test (see key for significance levels). The right plots show the performance of each individual subject for each object condition, and its significance according to a
one-tailed Binomial test (see key for significance levels). Black frames show the quadrants of adjacent transformations for which feedback was not provided to the
subjects, to better assess generalization (counterbalanced across animals).
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to generalize across a wide range of previously unseen object
transformations, including novel combinations of size and in-depth
rotations of the learned objects (phase III), new lighting/shading
patterns over the objects’ surface (phase VIa), and also substantial
variation in object silhouette (phase IVb).

Discussion
Our study provides systematic evidence that rats are capable of
invariant visual object recognition, an advanced visual ability that
has only been ascribed to a select few species. While the ‘‘front end’’
of rat vision is clearly of lower acuity than primates, rats nonetheless
possess at least some sophisticated ‘‘back end’’ processing that
enables the recognition of complex form in the face of real-world
image variation. This finding opens up largely unexplored experi-
mental avenues for probing the mechanisms of invariant visual
object recognition.

Limitations and Implications of Our Findings and Comparison with
Previous Studies. Our findings contradict the one report that pre-
viously looked at invariant object recognition in rats (24), which
concluded that rats rely on low-level image cues (e.g., luminance in
the lower half of the stimulus display) rather than on more
advanced, invariant shape processing. In addition to numerous
methodological differences, a crucial difference between our study
and that of Minini and Jeffrey (24) is the fact that our animals were
extensively trained in a task that required them to discriminate the
target objects despite variation in their size and viewpoint (phase
II). Although our subjects were ultimately tested with novel object
appearances (phase III and IV), an extended period of familiar-
ization with a transformation-invariant task was likely a key factor
in inducing them to adopt an object-invariant or, at least, feature-
invariant strategy. On the contrary, in the task used by Minini and
Jeffrey (24), computation of lower hemifield luminance was a
perfectly ‘‘valid’’ solution to the task at hand (i.e., it was one of many
possible strategies for maximizing reward within the context of the
experiment). Thus, within a highly limited experimental context, it
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Fig. 3. Generalization of recognition performance. (A) Mean performances
obtained by pooling across different subsets of object conditions tested during
phase III (error bars indicate SEM). The first grouping of bars (in gray) shows
performance with previously trained object transformations (first bar), with the
set of novel transformations for which feedback was withheld (second bar), and
with a size-matched (i.e., acuity-matched) subset of novel transformations for
which feedback was provided (third bar). Diagrams below each bar show which
conditions were included in each subset according to the convention set forth in
Fig. 2. Performances over these 3 groups of conditions were all significantly
higher than chance (one-tailed t test; ***, P � 0.001) but not significantly
different from each other. The white (fourth) bar shows the performance over
the special case ‘‘no-feedback’’ condition that was always separated from the
nearest ‘‘feedback’’ condition by at least 10° in size and 30° in azimuth. Such a
condition existed only within the top-left and the top-right no-feedback quad-
rants (see diagram) and was tested for rats R2, R5, R3, and R6 (see Fig. 2B, Right).
(B) Group mean performance (n � 6; black line) over the full set of novel object
transformations testedduringphase III, computedfor thefirst, second, third,etc.,
presentation of each object in the set (shaded area shows the SEM). All perfor-
mances along the curve were significantly above chance (one-tailed t test, P �
0.005) and were not significantly different from each other.

Fig. 4. Generalization to novel lighting and elevation conditions. (A) Examples
of lighting conditions tested during phase IVa of our study, with the first column
showing default lighting conditions (i.e., same as during phase I–III) and the
second column showing novel lighting conditions. The bottom examples show
howmanipulating lightingoftenproducedareversal in therelative luminanceof
different areas over the surface of an object. Under default lighting, the blue-
framed image region was brighter than the red-framed region (top), but this
relationship was reversed under the novel lighting condition (bottom). (B) Ex-
amples of elevation conditions tested during phase IVb of our study, with the first
column showing default (0°) elevation conditions (i.e., same as during phase
I–IVa) and the second column showing novel (�10° and �20°) elevation condi-
tions. Note the variation in the objects’ silhouette produced by changing the
elevation. (C) Rats’ mean performance with the novel lighting conditions (ordi-
nate) is plotted against performance with the matching ‘‘default’’ lighting con-
ditions (abscissa). Performance on the novel lighting conditions was high overall,
and in all but one condition was significantly above chance (one-tailed t test; see
key for significance levels). The black arrow indicates the performance over the
bottom example conditions shown in C. (D) Rats’ mean performance with
the novel elevation conditions (ordinate) is plotted against performance with the
matching ‘‘default’’ elevation conditions (abscissa). Color convention as in C. In
both C and D, error bars indicate standard errors of the means.
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may be difficult to distinguish between an inability to perform
invariant recognition, and an effective but less general choice of
strategy. Interestingly, even monkeys (which are widely assumed to
possess advanced visual abilities) sometimes default to a simpler,
‘‘lower-level’’ strategy if it is effective for solving a given task. For
instance, in the work of Nielsen and Logothetis (28), monkeys chose
to rely on small, diagnostic patches of a phase-scrambled noise
background, rather than focus on a foreground object, as humans
did when performing the same task. It has also been repeatedly
demonstrated that monkeys do not spontaneously generalize to
significant rotations in-plane or in-depth without exposure to
multiple views along the axis of rotation (29–31). Adoption of a
simpler strategy in an experimental task does not imply that an
animal is incapable of adopting more complex strategies as needed.

More generally, our results extend the existing literature con-
cerning rats’ visual abilities (3, 4, 6, 22, 24) and memory processes
(17–27, 32). While these studies have not looked at invariant
recognition specifically, they nonetheless show that rats are adept
at using vision to solve a variety of tasks involving complex shapes.
However, because these previous studies primarily used two-
dimensional shape stimuli, without any variation in individual
object appearance, it is difficult to rule out ‘‘low-level’’ accounts of
the animals’ performance, such as those offered by Minini and
Jeffrey (e.g., luminance confounds). With only a small number of
target stimuli, it is impossible to simultaneously control for all such
low-level confounds, since equalizing one low-level property (e.g.,
lower-field luminance) invariably produces a difference in another
(e.g., upper-field luminance). In our study, we required rats to
recognize objects in the face of substantial variation in object view
(both azimuth and elevation), size, and lighting. Variation along
these axes produced large and complex changes in the pixel-level
appearance of the objects, disrupting low-level confounds, and
resulting in a situation where the pixel-wise image differences
within the different appearances (sizes, views, and lightings) of the
same object were much greater than the image differences between
the 2 objects when matched for size, view, and lighting (Fig. S3;
notably, this was true also when the within- and the between-object
image differences were computed over the responses of a popula-
tion of simulated V1-like simple cells, see Fig. S6).

More generally, while our results cannot speak to whether rats
employ similar neuronal hardware as humans or monkeys do, their
abilities nonetheless meet a reasonable operational definition of
‘‘invariant object recognition.’’ It is important to note that this need
not imply that the rat visual system builds complex three-
dimensional geometric representations of whole objects. Indeed, it
is possible, and even likely, that rats achieve invariant object
recognition through the use of the invariant representation of
subfeatures that are smaller or less complex than the entire object.
That is, rats could use feature detectors that respond to only a
subportion of the object, or are sensitive to key two-dimensional,
rather than three-dimensional, features. Critically, however, what-
ever feature is used, it must be tolerant to the wide range of
image-level variation in position, scale, orientation, lighting, etc.,
found in our stimulus set. The potential use of such invariant
subfeatures in no way diminishes the sophistication of the rat visual
system—such invariant subfeature detectors are not found in the
early visual system, and many leading computational models of how
invariant recognition is achieved in primates explicitly rely on such
subfeatures (33–36).

Given the above results, the rat seems an attractive model system
for the study of object recognition, complementing work done in
primate species. In particular, rat studies allow the application of a
powerful array of techniques that are currently very difficult or
impossible to apply in nonhuman primates, including molecular (37,
38) and histological (27) approaches, two-photon imaging (39),
large-scale recordings from multiple brain areas (40), and in vivo
patch clamp in awake animals (41, 42). In addition, our findings
raise the possibility that other rodent species, with higher accessi-

bility to genetic approaches (mice) or more developed visual
systems (e.g., squirrels) (43), might also be valuable models for
higher-level vision.

The brains of rats are clearly less advanced as compared to
nonhuman primates; however, this is potentially an asset. Indeed,
when attempting to understand a particular phenomenon, it is often
wise to seek out the simplest system that demonstrates the prop-
erties of interest. While we would not suggest that the rat should or
could replace ‘‘higher’’ organisms such as monkeys in the study of
object recognition, the availability of a simpler system that possesses
many of the same fundamental features provides an important
additional window onto the computational problem of object
recognition.

Materials and Methods
Subjects. Six adult male Long-Evans rats (Charles River Laboratories) were used
for behavioral testing. Animals weighed approximately 250 g at the onset of
training and grew to over 500 g. Rats were water-restricted throughout the
experiments,witheachanimaltypically receivingseveralmillilitersofwater (4–10
mLdependingontheweight)asarewardduringeachtraining/testingsession(ad
libitum water was additionally available for 1 hour after each session). All animal
procedures were performed in accord with the National Institute of Health
guidelines, theMassachusetts InstituteofTechnologyCommitteeonAnimalCare
and the Harvard Institutional Animal Care and Use Committee.

Behavioral Rig and Task. The training/testing apparatus consisted of an operant
box that was equipped with a 19� LCD monitor for presentation of visual stimuli,
as well as automated fluid dispensers for liquid reward delivery (‘‘reward ports’’),
and capacitive contact sensors for initiation of behavioral trials and collection of
responses (see the schematic in Fig. 1B). One wall of the box contained a 3-cm
diameterhole (27) thatallowedtheanimal toextend itsheadoutsidetheboxand
frontally face the monitor, approximately 250 mm in front of the rat’s eyes. An
array of 3 contact sensors was also placed at 3 cm from the opening (the sensors
were approximately 10 mm apart from each other). The terminal part of each
sensor was made out of hypodermic tubing and could deliver a flavored milk
reward via computer-controlled syringe pumps (New Era Pump Systems).

Rats were trained in a visual object recognition task that required them to
discriminate between 2 target objects (Fig. 1A). Animals were trained to trigger
the onset of a behavioral trial by licking the central contact sensor. This prompted
1 of the 2 target objects to be displayed on the monitor (see Fig. 1B), and the rat
was required to correctly identify which object was presented (i.e., object 1 or
object 2; Fig. 1B), by licking either the left or the right contact sensor (depending
on object identity). For each animal, the mapping from object identity to contact
sensor was kept fixed across experimental sessions. Reward was delivered from
the corresponding reward port in case of correct identification, and a positive
reinforcementsoundwasplayed.Anincorrectchoiceyieldednorewardanda1–3
s time out (during which a failure tone sounded and the monitor flickered from
black to middle gray at a rate of 5 Hz). Further details are provided in the SI.

Visual Stimuli. Each subject was required to discriminate between a pair of
3-lobed visual objects. These objects were renderings of three-dimensional mod-
els that were built using the ray tracer POV-Ray (http://www.povray.org/). Fig. 1A
shows the default (‘‘frontal’’) object views used during phase I. Both objects were
illuminated from the same light source location and, when rendered at the same
in-depth rotation, their views were approximately equal in height, width and
area (Fig. 2A). Objects were rendered against a black background. Two rats were
trained with vertically flipped versions of these same stimuli.

Each object’s default (initial) size was 40° of visual angle, and their default
positionwas thecenterof themonitor (horizontallyalignedwiththepositionthe
rats’head). StimuliwerepresentedonaSamsungSyncMaster940BXLCDmonitor
(1280 � 1024 pixels resolution; 60 Hz refresh rate; 5 ms response time; 300 cd/m2

maximal brightness; 1000:1 contrast ratio).

Experimental Design. Phase I. Initially, rats were trained to discriminate between
the default views of the 2 target objects shown in Fig. 1B. During this stage of
training, thetargetobjectswerenotsubject toany imagevariation, i.e., their size,
in-depth rotation, and lighting were kept constant.

Phase II. Oncearatachieved�70%correctdiscrimination inphase I,wegradually
introduced variations in the appearance of the target objects and required the
animal to make the discrimination despite such variations. Each animal was first
trained to tolerate an increasing amount of size variation using an adaptive
staircase procedure (Fig. S1) that, based on the animal performance, updated the

Zoccolan et al. PNAS Early Edition � 5 of 6

N
EU

RO
SC

IE
N

CE

http://www.pnas.org/cgi/data/0811583106/DCSupplemental/Supplemental_PDF#nameddest=SF3
http://www.pnas.org/cgi/data/0811583106/DCSupplemental/Supplemental_PDF#nameddest=SF6
http://www.pnas.org/cgi/data/0811583106/DCSupplemental/Supplemental_PDF#nameddest=SF1


lower bound of the range from which the object size was sampled (the upper
bound was 40° visual angle). Object size was randomly sampled within the range
defined by the lower and upper bound, so as to force the animals to learn a truly
size-invariant recognition task (see Fig. S1). While an animal was trained with the
size staircase, the objects’ in-depth rotation was held fixed at its default 0° value.
Once the sizes’ lower bound reached a stable (asymptotic) value across consec-
utive training sessions (typically 10–15 sessions; Fig. S2A), a similar staircase
procedure was used to train the rats to tolerate azimuth rotations of the target
objects (i.e., in-depth rotations about objects’ vertical axis), while object size was
fixed at 30° visual angle (Fig. S2B). After completion of the staircase training
sessions, each animal’s overall performance across the trained axes of variations
(i.e., size and azimuth) was assessed by uniformly sampling object conditions
along these axes (light blue frames, Fig. 2A) over the course of 2–5 additional
sessions.

Phase III. In this phase, we tested the rats’ ability to recognize the target objects
across a large range of novel object appearances. This was possible because,
during phase II, while a rat was trained to tolerate variation along one transfor-
mation axis (e.g., size), the other object properties (e.g., in-depth rotation and
lighting) were kept fixed. Therefore, it was possible to build many combinations
of the object transformations that had not been previously seen. We combined
6 sizes and 9 azimuths to yield a total of 54 unique transformations of each target
object (shown in Fig. 2A), 40 of which were novel (objects outside the light blue
frames in Fig. 2A). The average pixel-level difference between the appearances
of the same object (i.e., within object identity) was almost 2 times larger than the
average image difference between the 2 objects, when matched for size and
azimuth (i.e., between object identities; see Fig. S3). Importantly, for a fraction of
transformations (approximately 11%, covering a contiguous quadrant of the
size-view matrix, see Fig. 2B, Right), the animal was not rewarded, and no
reinforcement sounds were played (after the animal made any response, the

stimulus was removed, the trial ended, and the animal was allowed to immedi-
ately trigger the next trial). Interestingly, rats were not disturbed by this fraction
of not-rewarded trials, as evidenced by the high recognition performance
achieved for these no-feedback transformations (see black frames in Fig. 2B,
Right and Fig. 3A).

Phase IVa. We further tested rats’ generalization abilities by creating 15 new
appearances of each target object by varying the position of the virtual light
source for 15 arbitrary size-azimuth conjunctions from the previous phase (see
Fig. 4A and Fig. S4A). New lighting conditions were divided in 3 subsets of 5, and
each subset was presented, interleaved with 45 default lighting conditions from
the previous phase (i.e., the full matrix of size-azimuth conjunctions shown in Fig.
2A, with the exception of the 15° size), for 5–10 sessions. For all of the new
lighting conditions, no feedback on the correctness of response was provided to
the animals.

Phase IVb. Similarly to Phase IVa, we built 15 novel appearances of each target
objectbyvarying itselevation (i.e., the in-depthrotationabout itshorizontalaxis)
by either �10° or �20°, and then combining this new in-depth rotation with 15
arbitrary size-azimuth conjunctions from phase III (see Fig. 4B and Fig. S5). The
presentation protocol was identical to that used in phase IVa. Five rats partici-
pated to phases IVa and IVb.

For further information, see SI Text.
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SI Methods
Timing of Stimulus Presentation. Rats initiated behavioral trials
and reported the stimulus (object) identity as described in
Materials and Methods (see Behavioral Rig and Task). Once
presentation of a visual stimulus was prompted by the animal
licking the central touch sensor, its duration depended on the
animal’s response. The default presentation time (in the event
that the animal made no response after initiating a trial) was 3 s.
However, if the animal responded correctly before these 3 s
expired, the stimulus remained on the monitor for an additional
4 s from the time of the response (e.g., if the animal responded
correctly after 500 ms from the stimulus onset, the stimulus was
displayed on the monitor for a total of 4.5 s). In the event of an
incorrect response, the stimulus was removed immediately and
the time-out sequence started. If the animal did not make any
response during the default presentation time of 3 s, it still had
1 s, after the offset of the stimulus presentation and before the
end of the trial, to make a response.

To prevent rats from making very quick (presumably random)
responses, a trial was aborted if the animal’s reaction time was
lower than 350 ms. In such a case, the animal’s response was not
evaluated (neither reward or time-out was administered), the
stimulus was immediately turned off, and a brief tone was played.

Pseudorandom Stimulus Presentation. In each trial, each of the 2
target objects (shown in Fig. 1 A) had a 50% chance to be
randomly selected for presentation, but the same object (e.g.,
object 1) was allowed to be presented in a sequence of no more
than n consecutive trials (n was set equal to 3 or 4, depending on
the training session and the animal). Therefore, every time such
a sequence occurred by chance, the other object (e.g., object 2)
was forced to be presented in the next (the n � 1) trial. This
pseudorandom presentation strategy was adopted to prevent the
rats from developing a bias for a particular reward port based on

the occurrence of a long sequence of consecutive trials with
objects having the same identity. All results presented in this
study were appreciably the same even if these ‘‘predictable’’ trials
were removed (see below Data Analysis).

Data Analysis. Our behavioral rig allowed the collection of
hundreds of behavioral trials per session (between 200 and 600).
As a result, over the course of 5–20 sessions, we were able to
collect the response to 50–90 presentations of each object
appearance that was tested during phases III and IV of our study.
This allowed assessing the significance of the recognition per-
formance of each individual subject for any tested object con-
dition, without the need to pool across animals and/or conditions
(1-tailed Binomial test, under the null hypothesis that each
animal response is a Bernoulli trial with 0.5 probability of being
correct; see Fig. 2B, Right). To provide a more compact descrip-
tion of the data, we also assessed the significance of the animals’
group mean performance over individual (Figs. 2B, left, and 4C
and D) or pooled (Fig. 3) object conditions (1-tailed t test).

As explained above, target objects were presented in a pseu-
dorandom order. As a consequence, in a fraction of trials, the
identity of the presented objects could theoretically be predicted
from the number of previous occurrences of consecutive trials
with the same object identity. Although this fraction of predict-
able trials was small (12%), and although it seems very unlikely
that rats could exploit them to boost their performance (they
would need to constantly count the number of consecutive trials
with the same object that happen during a session), we verified
that the performances obtained by taking into account only the
predictable trials were not significantly different from the per-
formances obtained after removal of the predictable trials
(combined �2 test; P � 0.05). Therefore, the rats’ performances
over the tested object transformation could be safely computed
by taking into account all of the collected trials (as was done in
Figs. 2–4).
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Fig. S1. Illustration of the staircase procedure used to update the range of object sizes that were presented to a subject during a training session in phase II
of our study. At any given time during the session, sizes were sampled from a range (gray area) defined by a fixed upper bound of 40° (dashed line; this is the
default object size used during phase I of the study) and a lower bound (solid line and symbols) that was determined by the staircase according to the animal’s
performance. Symbols (squares and triangles) show the identity of the object presented in a given trial (see key in the top of the figure) and the animal’s response
(filled symbols mean correct identification, while empty symbols mean failure). Note that, for clarity, only trials in which the target objects were presented at
the current lower bound of the size range are shown in the figure (e.g., when the sizes’ lower bound was 35°, objects were presented with size of 40°, 37.5°,
and 35°, but only trials in which the object size was 35° are shown here). The arrows show how the sizes’ lower bound was updated (in steps of 2.5°) according
to the animal performance over the last 10 presentations of objects with size at the lower bound. The lower bound was decreased if the animal performance
was equal or higher than 70% correct (green arrows), while was increased if the performance was equal or lower than 50% correct (red arrow). A similar staircase
procedures was used to train the rats to tolerate variation along the other dimension tested in this study (i.e., in-depth azimuth rotation).
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Fig. S2. Increasingly larger variation in objects’ size and azimuth rotation that one of our subjects learned to tolerate during phase II of our study. Each plot
on the left shows the range of image variation (colored areas) produced by one of the object transformations to which the animal was exposed across consecutive,
staircase-controlled (see Fig. S1 and Materials and Methods) training sessions of the recognition task. The solid lines (and circles) show the minimal/maximal
amount of image variation of the target objects over which the rat was able to maintain a performance equal or higher than 70% correct for at least 10 object
presentations. That is, a solid line represents the minimal (maximal) lower (upper) bound reached by a staircase over the course (typically at the end) of a training
session. The figure shows how, over the course of 10–15 days of training, the rat learned to recognize the target objects across sizes ranging from 40° to 10° (A)
and azimuth rotations spanning �60° (B). The dashed lines show the default values of the object properties (i.e., size and azimuth rotation) used during phase
I. Right Insets show the rat’s performance over the range of transformations that were tested during one of the training sessions (n is the total number of trials
presented during the session).
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Fig. S3. Comparison of the within-object with the between-object image differences, for the object conditions used in phases III, IVa, and IVb of our study.
(A) This conceptual diagram helps understanding the rationale of our analysis. Our goal was to measure how much image variation was produced by either
changing the appearance (e.g., size and azimuth rotation) of a given object (blue lines), or, instead, the identity of the object, while maintaining size and azimuth
fixed (red lines). (B) This operational diagram shows how the within-object and the between-object image differences were computed for the object conditions
used in phase III. Given an object (object 1, in the example) in a particular appearance (i.e., a size-azimuth conjunction; 40° size and -60° azimuth, in the example),
we computed the following metrics: (i) the within-object image distance, i.e., the average of the pixel-wise Euclidean distances between this object appearance
(image) and all other appearances of the same object that were presented to the subjects during phase III (blue lines); and (ii) the between-object image distance,
i.e., the pixel-wise Euclidean distance between this object appearance and the appearance of the other object (object 2, in the example), when presented at the
same size and azimuth (red line). Both metrics were computed for every object appearance used in phase III, so to obtain 2 sets of values that could be compared
pair-wise. A similar procedure was used to compute the within-object and the between-object image differences for the novel lighting conditions used in phase
IVa and the novel elevation conditions used in phase IVb. (C) The histograms show that, for the sets of object conditions used in phases III (left), IVa (center), and
IVb (right), the average within-object distance is larger than the between-object image distance. For each set, this difference was highly significant according
to a 2-tailed, paired t test.
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Fig. S4. The novel lighting conditions used during phase IVa of our study. (A) The full set of 15 arbitrary size-azimuth conjunctions of the target objects that,
during phase IVa of our study, were presented to the rats both under novel lighting conditions and under default lighting conditions (i.e., the same used during
phases I–III). As explained in Materials and Methods, these 15 novel lighting conditions were divided in 3 subsets of 5 (as shown in the figure), and each subset
was presented, interleaved with the default lighting conditions from the previous phase, for 5–10 sessions. Note the large pixel-level image variation produced
by the lighting manipulation and how the novel lighting condition images were overall substantially darker and lower contrast than their default lighting
counterparts (the lowest-contrast condition for the 2 objects is indicated by the green frames). (B) The difference between performance over the novel lighting
conditions and performance over their default counterparts (ordinate) is plotted against the contrast of the novel lighting conditions (abscissa). The contrast
of an image was quantified by the ratio between the standard deviation of its pixel intensity values and the maximum of the pixel intensity scale (this ratio was
multiplied by 100 to obtain a percentage value). For each novel lighting condition, the contrast of the resulting images of objects 1 and 2 was computed and
then averaged (this is the value reported on the abscissa of the scatter plot). The performance difference and the contrast of the novel lighting conditions were
strongly correlated (r � 0.88, P � 10-4, 2-tailed t test). The black circle refers to the lowest-contrast novel lighting condition (see green frames in A), that is the
only novel lighting condition for which the animals’ performance was not significantly above change (corresponding to the black circle in Fig. 4C).
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Fig. S5. The novel elevation conditions used during phase IVb of our study. As explained in Materials and Methods, 15 novel appearances of each target object
were built by varying its elevation (i.e., the in-depth rotation about its horizontal axis) by either �10° or �20° and then combining this new in-depth rotation
with 15 arbitrary size-azimuth conjunctions from phase III. All these new elevation conditions for both objects are shown in the figure, together with their default
elevation counterparts. The 15 novel elevation conditions were divided in 3 subsets of 5 (as shown in the figure), and each subset was presented, interleaved
with 45 default elevation conditions from phase III (i.e., the full matrix of size-azimuth conjunctions shown in Fig. 2A, with the exception of the 15° size), for
5–10 sessions. Note the substantial variation in the objects’ silhouette produced by manipulating the objects’ elevation.
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Fig. S6. Within- and between-object image differences computed over the responses of a population of simulated V1-like simple cells to our image set. (A)
This diagram shows how the simulated V1 population was constructed. The V1 simple cells were simulated using a bank of Gabor filters with orientations, spatial
frequencies, and receptive field (RF) sizes matching those reported for rat primary visual cortex [Girman et al. (1999) J Neurophysiol 82:301–311] and RF centers
tiling the visual field. More precisely, we built an array of Gabor filters resulting from all possible combinations of: 3 RF sizes (10°, 20°, and 30°; shown, respectively,
in green, red, and cyan in Left); 11 orientations (evenly spaced around the clock; see Right); 2 phases (0 and �; shown, respectively, as the left and right sets of
filters in Right); 10 spatial frequencies, ranging from 1 to 10 cycles per RF size and resulting in a 0.03–1 cycles per degree range (see examples in Right). This array
of Gabor filters was replicated every 5° in both the vertical and horizontal direction over the 60° � 40° span of visual field occupied by our image stimuli (for
sake of simplicity, only filters at one particular visual filed location are shown in the figure). The response of a Gabor filter to a given image was computed as
the dot product of the filter and the image patch with the same visual field location and size. To simulate the nonlinear response properties of V1 simple cells
(i.e., saturation, luminance and contrast normalization, and non-negative firing rates), both the filter and the image patch were normalized to 1 before
computing their dot product and negative responses were clipped to 0. (B) For each image in our stimulus set, we computed its representation in the space of
the simulated V1 population, and we obtained the within-object and the between-object image differences in this space, using the same rationale described
in Fig. S3. As shown by the histograms, for the sets of object conditions used in phases III (Left), IVa (Center), and IVb (Right), the average within-object distance
was larger than the between-object image distance, and this difference was highly significant according to a 2-tailed, paired t test.
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