CNBC logo

CNBC

CNBC's 20th Anniversary Celebration

October 17–18, 2014

REGISTRATION IS NOW OPEN.

 

cnbc20_header_lg2-graphiconly.gif

 

Exhibition October 10 – 26, 2014

NEURONS AND OTHER MEMORIES -

work in and around the brain

Curated by Patricia Maurides in collaboration with the Center for the Neural Basis of Cognition

 

synaptogenesis.jpg

 

Featuring investigations, translations and reflections by artists and neuroscientists.

Connect with the CNBC

linkedin icon

Facebook icon

Current Students

The CNBC Graduate Training Program consists of 4 required areas: Core Courses, Brain Bags, Ethics Education, and the CNBC Retreat.

  • Core Courses

    Students are required to complete core courses in Cognitive Neuroscience, Neurophysiology, Systems Neuroscience and Computational Neuroscience. The minimum passing grade for a core course is "B". Students are expected to complete all of the core courses by the end of their third year. Students are encouraged to take advantage of elective courses when they are offered.

  • Brain Bags

    Students are required to give a Brain Bag presentation at some point during their time at the CNBC. Ideally this presentation is given during the 2nd or 3rd year. In order to remain in good standing with the CNBC and be eligible for funding students must present by the end of their 3rd year and also attend 2 Brain Bags per semester.

  • Ethics Education

    Ethics education has become an essential component of scientific training programs. Many of our students are involved in experimental work with animals or human subjects, and need to learn about the regulations governing these activities and the moral obligations of scientists toward their subjects. In addition, all scientists must deal with professional issues such as authorship disputes, questions of scientific integrity, and ownership of intellectual property.

    Students are expected to meet their ethics training obligation early in their graduate career, normally in the first or second year. There are several options for completing the requirement. Although there is no formal obligation for recurrent training, the CNBC encourages both students and faculty to continue to participate in Ethics Roundtable activities in order to hear new perspectives and keep abreast of recent developments.

  • CNBC Retreat
    The CNBC Retreat happens in the Fall semester every year. The goal of our retreat is to foster scientific and social interactions among faculty, post-docs, and students affiliated with the CNBC. The program includes a full agenda of scientific presentations and discussions, as well as other informational, social, and recreational events. Retreat attendance is a required part of the CNBC program, and the CNBC Education Committee has adopted a policy that students must participate in the retreat each year to remain in good standing. However, we realize that sometimes a scheduling conflict makes attendance difficult, and therefore, each student will receive one "opt-out". That is, a CNBC student may pick one year when they do not attend the retreat. We encourage you to save this for when you really need it, as additional opt-outs will not be available. Students who are not in good standing will not be eligible for funding.

Core and Elective Courses

There is a separate schedule of classes available for CNBC-related courses for the current academic year.

Core Courses

  1. Cognitive Neuroscience: this requirement is satisfied by CMU Psych 85-765 / Pitt NROSCI 2005: Cognitive Neuroscience. The course focuses on human sensory and cognitive processing from the perspective of modern neuroscience. Topics include sensation, perception, attention, memory, language and decision making in normal and pathological conditions. Various psychiatric and neurologic disorders (e.g., autism, schizophrenia and stroke) are discussed in terms of their effects on cognitive function. Research methodologies including evoked potentials, depth electrodes, imaging (PET, MRI), neural behavioral assessment and modeling are examined. An important focus is the relationship between neurophysiological data and information processing models of cognition. This course is usually offered every fall. Please check current course schedule for availability. Syllabus available.
  2. Neurophysiology: an introduction to the biophysics of excitable membranes and basic cellular neurophysiology, including resting and action potentials, the electrophysiology of synaptic transmission and integration of synaptic inputs. This requirement can be satisfied by any of:
    • 03-762: Advanced Cellular Neuroscience. This course is a graduate version of 03-362. Students will attend the same lectures as the students in 03-362, plus an additional once weekly meeting. In this meeting topics covered in the lectures are addressed in greater depth, often through discussions of papers from the primary literature. Students will read and be expected to have an in depth understanding of several classic papers from the literature including work by Hodgkin and Huxley on action potentials and by Katz and Eccles on synaptic transmission. Generation and use of genetically modified animals also will be discussed. Performance in this portion of the class will be assessed by supplemental exam questions. Prerequisites: 03-121 This course is usually offered every fall. Please check current course schedule for availability.
    • NROSCI/MSNBIO 2100: Cellular and Molecular Neurobiology (required for students in the Program in Neuroscience.) This course is usually offered every fall. Please check current course schedule for availability. Syllabus available.

    • INTBP 2000/2005: Foundations of Biomedical Science (for MD/PhD students)
  3. Systems Neuroscience:This requirement can be satisfied by either of the following courses. For MD/PhD students, the systems neuroscience requirement is satisfied by taking an equivalent course offered by the medical school.
    • 03-763: Systems Neuroscience. This course is a graduate version of 03-363. Students will attend the same lectures as the students in 03-363, plus an additional once weekly meeting. In this meeting, topics covered in the lectures will be addressed in greater depth, often through discussions of papers from the primary literature. Students will read and be expected to have an in depth understanding of several classic papers from the literature as well as current papers that illustrate cutting edge approaches to systems neuroscience or important new concepts. Use of animals as research model systems will also be discussed. Performance in this portion of the class will be assessed by supplemental exam questions as well as by additional homework assignments. This course is usually offered every spring. Please check current course schedule for availability.
    • NROSCI 2102/2103: Systems Neurobiology. The course focuses on the integrative functioning of the nervous system. It includes a neuroanatomy laboratory section using wet specimens, slides and atlases of human and animal brains. Topics include somatosensory, auditory, vestibular, visual and motor systems, sleep and arousal, and learning and memory. During some of the systems sections, students read and discuss selected journal articles. Several CNBC faculty members are instructors for this course. This course is usually offered every spring. Please check current course schedule for availability.
  4. Computational Neuroscience.Any of four courses will satisfy the computational neuroscience core requirement. Students may take whichever one best meets their needs.
    • Psych 85-719: Introduction to Parallel Distributed Processing. This course explores connectionist (or artificial neural network) models of cognitive and linguistic behavior. Students use PDP simulator software to experiment with various models. This course is usually offered every spring. Please check current course schedule for availability.
    • CS 15-883: Computational Models of Neural Systems. This course examines models of information processing in brain areas such as the hippocampus, cerebellum, basal ganglia, thalamus, and visual cortex. The course also looks briefly at synaptic learning rules and models of invertebrate learning. Students will have the opportunity to experiment with Matlab implementations of some of the models discussed in class. This course is usually offered every fall. Please check current course schedule for availability.
    • MATH 3375 / PSY 2480: Introduction to Computational Neuroscience. This course begins with mathematical models of excitable membranes, including the Hodgkin-Huxley model and simplifications such as the Morris-Lecar and FitzHugh-Nagumo models. The course explores the use of differential equations and numerical simulation and graphical techniques for modeling neural systems. Topics include simulations of electrical properties of membrane channels, single cells and neuronal networks. The course includes a hands-on laboratory component and completion of a small modeling project of the student's choosing. This course is usually offered every fall. Please check current course schedule for availability.
    • 36-759: Statistical Models of the Brain.This course should be of interest to anyone wishing to see the way statistical ideas play out within the brain sciences, and it will provide a series of case studies on the role of stochastic models in scientific investigation. Statistical ideas have been part of neurophysiology and the brainsciences since the first stochastic description of spike trains, and the quantal hypothesis of neurotransmitter release, more than 50 years ago. Many contemporary theories of neural system behavior are built with statistical models. For example, integrate-and-fire neurons are usually assumed to be driven in part by stochastic noise; the role of spike timing involves the distinction between Poisson and non-Poisson neurons; and oscillations are characterized by decomposing variation into frequency-based components. In the visual system, V1 simple cells are often described using linear-nonlinear Poisson models; in the motor system, neural response may involve direction tuning; and CA1 hippocampal receptive field plasticity has been characterized using dynamic place models. It has also been proposed that perceptions, decisions, and actions result from optimal (Bayesian) combination of sensory input with previously-learned regularities; and some investigators report new insights from viewing whole-brain pattern responses as analogous to statistical classifiers. Throughout the field of statistics, models incorporating random "noise" components are used as an effective vehicle for data analysis. In neuroscience, however, the models also help form a conceptual framework for understanding neural function. This course will examine some of the most important methods and claims that have come from applying statistical thinking. This course is usually offered every other spring (odd years). Please check current course schedule for availability.

Back

Potential Elective Courses

CNBC students are encouraged to take advantage of a wide range of additional courses offered in affiliated departments across the two universities, ranging from molecular biology to judgment and decision making, and encompassing a wide range of methods and approaches. In consultation with their advisors, students choose courses appropriate to their scientific interests. Many of these courses are taught by CNBC faculty, and in some cases the syllabus has been tailored specifically to the CNBC program.

The CNBC publishes a list of available electives prior to the start of each semester. Listed below are some of the courses that may be taken as electives, by department.

  • Biological Sciences (Carnegie Mellon): NMR in Biomedical Sciences; Molecular Biology of Eukaryotes; The Biology of the Brain.

  • Computer Science (Carnegie Mellon): Introduction to Artificial Neural Networks; Machine Learning; graduate core course in Artificial Intelligence.

  • Electrical and Computer Engineering / Biomedical Engineering (Carnegie Mellon): Neural signal processing.

  • Mathematics (Pitt): Mathematical Neurophysiology; Neural Modeling Seminar; Dynamical Systems in the Plane.

  • Neurobiology (Pitt): Sensory/Motor Functions of the Cerebral Cortex; Reaching and Grasping; Developmental Neurobiology; Molecular Physiology of Synapses; Issues in Cortical Physiology.

  • Neuroscience (Pitt): Neurochemistry and Neurotransmission; Biological Bases of Psychiatric Disorders; Biochemistry and Signal Transduction; Seminar in Biophysics. The following undergraduate courses may also be useful for some students: Biological Basis of Memory and Learning; Neurophysiology; Neurochemisty; Developmental Neuroscience; Functional Neuroanatomy; Synaptic Transmission.

  • Psychology (Carnegie Mellon): Biological Foundations of Behavior; Cognitive Processes and Problem Solving; Cognitive Development; Cognitive Neuropsychology; Psychology of Reading; Perception and Perceptual Development; Language and Thought; Visual Cognition; Functional Neural Circuits; Cognitive Modeling.

  • Psychology (Pitt): Research Methods in Cognition; Learning and Memory; Perception and Attention; Research Methods in Biophsychology; Psychophysiology; Language and Cognition; Human Cognition: Research Methods; Human Cognition: Language; Human Cognition: Learning and Memory; Cognition and the Brain.

  • Robotics (Carnegie Mellon): Computer Vision; Advanced Perception; Fundamentals of AI in Robotics and Engineering.

  • Statistics (Carnegie Mellon): Quantitative Methods in Neuroscience; Statistics for Laboratory Sciences; Experimental Design for Behavioral and Social Sciences; Statistical Methods for Behavioral and Social Scientists; Computational Analysis.


Back

Ethics Education

Students in the CNBC program are required to get some type of ethics training as part of their scientific education. There are several ways to satisfy this requirement:

  • Participation in Survival Skills & Ethics Program run by the University of Pittsburgh. This program is open to Carnegie Mellon students as well.
  • Participation in another ethics training program that is accepted by the student's doctoral program or home department.
  • Participation in all three of the Brain Bags in the CNBC's Ethics Roundtable program, described below.

CNBC Ethics Roundtable

The CNBC Ethics Roundtable is a series of three special "brain bags" (dinner seminars) held over the course of each academic year. The focus of the seminars is:

  1. The use of animals in research.
  2. Research on human subjects including protocol approval, informed consent, and privacy obligations.
  3. Selected professional issues, such as authorship, ownership of intellectual property, scientific integrity, and so forth. The topic varies each year.

Each roundtable begins with a presentation by a faculty member with expertise in that area and proceeds to a spirited discussion among the participants. All members of the CNBC community are encouraged to attend these events.