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A recurrent connectionist network was trained to output semantic feature vectors when presented 
with letter strings. When damaged, the network exhibited characteristics that resembled several of 
the phenomena found in deep dyslexia and semantic-access dyslexia. Damaged networks some- 
times settled to the semantic vectors for semantically similar but visually dissimilar words. With 
severe damage, a forced-choice decision between categories was possible even when the choice of 
the particular semantic vector within the category was not possible. The damaged networks typi- 
cally exhibited many mixed visual and semantic errors in which the output corresponded to a word 
that was both visually and semantically similar. Surprisingly, damage near the output sometimes 
caused pure visual errors. Indeed, the characteristic error pattern of deep dyslexia occurred with 
damage to virtually any part of the network. 

A connectionist network consists of  a large number of  rela- 
tively simple neuronlike processing elements that interact in 
parallel by means of  weighted connections. The connection 
weights encode the long-term knowledge of  the network. Some 
networks are organized into layers, with no feedback connec- 
tions from later layers to earlier ones, but other networks are 
more complex. They have feedback connections and can ex- 
hibit resonant or attractor states: Under the influence of  an 
external input vector, the network settles into a stable state that 
represents an interpretation of  that input. 

Connectionist  models are becoming increasingly popular  
within psychology for various reasons. Early models showed 
that a set of  simple pairwise associations between patterns of  
activity could be stored by modifying the weights. Each weight 
is involved in storing many associations, and each association is 
stored by many weight changes (Anderson, Silverstein, Ritz, & 
Jones, 1977; Kohonen, 1977; Willshaw, Buneman, & Longuet- 
Higgins, 1969). Later, it was shown that structured proposi- 
tional information could be represented as distributed patterns 
of  activity, and these patterns could be made into stable attrac- 
tor states by suitable weight modifications (Hinton, 1981 ). 

Newer learning procedures are now capable, in principle, of 
learning appropriate  distr ibuted representations. These new 
learning procedures operate in networks that contain internal, 
hidden units that are not part of  the input or output (Ackley, 
Hinton, & Sejnowski, 1985; Rumelhart,  Hinton, & Williams, 
1986). The networks construct their own internal representa- 
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tions in the hidden units, and this enables them to solve tasks 
that are too difficult for networks that lack hidden units. These 
networks can discover implicit  semantic features (Hinton,  
1986); solve computat ional ly  difficult problems, such as 
correctly pronouncing English text (Seidenberg & McClelland, 
1989; Sejnowski & Rosenberg, 1986); and perform many other 
tasks. 

One of  the main arguments in favor ofconnectionist  models 
is that the most effective ways of  performing computations in 
these networks are likely to resemble the most effective ways of  
performing computations in the brain because the hardware is 
similar. One piece of  evidence that is often offered for the broad 
similarity between brains and connectionist models is that, like 
brains, connectionist networks frequently degrade gracefully 
when they are damaged.  This crude, quantitative argument 
would be far more compelling if specific qualitative effects of  
damaging a connectionist network could be shown to resemble 
specific qualitative effects of  brain damage. Our aim in this 
article is to demonstrate that some specific neuropsychological 
phenomena that are intuitively surprising when viewed within a 
conventional information-processing framework become natu- 
ral and unsurprising when viewed within a connectionist frame- 
work. 

The effects with which we are concerned occur in forms of  
acquired dyslexia in which the patient cannot obtain the pho- 
nological representation of  a written word without first access- 
ing a semantic representation. Thus, in so-called deep dyslexia 
(Coltheart ,  Patterson, & Marshall ,  1980; Marshall  & New- 
combe, 1966), a patient who is shown the word peach printed 
on a card and asked to read it can say "apricot: '  In the input or 
central forms of  deep dyslexia, this effect cannot be reduced to 
a problem in selecting the incorrect name (Newcombe & Mar- 
shall, 1980a; Shallice & Warrington, 1980); the patient misun- 
derstands the word that has been presented. This is a puzzle for 
any straightforward information-processing model that postu- 
lates a lexicon containing discrete entries that can be accessed 
from the visual form of  the word. The entry for peach must still 
be present because it is required for mapping from the visual 
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form of peach to the meaning, and the error clearly depends on 
the meaning of  the word peach. 

How would a connectionist model account for this phenome- 
non? It would be straightforward if  the space of  semantic repre- 
sentations was completely filled by regions corresponding to 
the meanings of  individual words. Then any excessive noise, at 
least at the later stages of  processing, would be liable to give rise 
to semantic errors. However, it seems implausible that the 
meanings of  individual words are represented in such a fashion. 
An entity halfway, conceptually, between a prototypic rhinoc- 
eros and a prototypic unicorn is not likely to be within the 
domain of  any word in the lexicon. If not all conceivable se- 
mantic representations are equally acceptable as nameable enti- 
ties, it is useful to build attractors corresponding to each famil- 
iar, nameable concept. Then, even if the input to the semantic 
system is noisy, the state of  the network will be more likely to 
move toward one of  its learned representations; it will automati- 
cally clean up its input. Normally, the representation toward 
which it will move will be that corresponding to the input, but 
if the system is damaged, it can easily move to a nearby attrac- 
tor, which will presumably correspond to the meaning of  a 
related word. This provides a simple explanation of  the peach-  
apricot phenomenon. 

Another puzzling aspect of  the reading of  all deep-dyslexic 
patients so far described is that the errors they make are not 
only semantic; there is also a visual component to the errors. In 
its most obvious form, there is a simple co-occurrence of  the 
so-called visual errors (e.g., mat --~ "rat") with the semantic 
errors, which has virtually always been observed in dyslexic 
patients who produce some semantic errors (Coltheart, Patter- 
son, & Marshall, 1987). In the few patients in whom it has been 
investigated, there has also been a higher rate of  mixed errors 
such as cat ~ "rat"  which are similar both in visual form and in 
meaning, than would be expected from the rate of  the two types 
of  errors in isolation (ShaUice & Coughlan, 1980; Shallice & 
McGill,  1978). Intuitively, there seems to be no reason why 
damage to later parts of  the system should cause the error cor- 
pus to have a visual component,  so it is surprising that this 
should occur for virtually all the relevant patients. In fact, our 
simulations show a similar phenomenon: Damage to later, se- 
mantic parts of  our connectionist network leads not only to 
semantic errors but also to visual and to mixed errors. No extra 
mechanism or tuning was required to produce this effect, and it 
took us some time to understand why it was occurring. 

To understand the effect, it is necessary to escape from the 
view that the visual form of  a word acts as a purely arbitrary 
pointer to the meaning. In a connectionist network, similar 
inputs tend to cause similar outputs, and generally a lot of  train- 
ing and large weights are required to make very similar inputs 
give very different outputs. Now, if  each meaning has a large 
basin of  attraction, the network is free to make the visual form 
of  the word point to any location within this basin, so the net- 
work will, if it can, choose to make visually similar words point 
to nearby points in semantic space (Figure 1). t Damage that 
moves the boundaries of  the basins of  attraction in semantic 
space will then have a tendency to cause mixed errors or even 
purely visual ones. This would be a fairly minor effect in the 
two-dimensional semantic space shown in Figure 1 if  there are 
many targets because each basin of  attraction must be a continu- 
ous region. If, however, the meanings are patterns of  activity 
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Figure 1. A two-dimensional representation of high-dimensional ba- 
sins of attraction illustrating how visually similar words can point to 
nearby parts of semantic space even though the meanings of the words 
are far apart in semantic space. (The bottom-up orthographic input 
does not need to point exactly to the meanings because the attractors 
can clean up the effect of the bottom-up input. By choosing appropri- 
ately shaped basins of attraction, the network can allow visually simi- 
lar words such as I and II to point to nearby parts of semantic space, 
even though their meanings are far apart. Thus, small changes in the 
basins of attraction in semantic space can cause the network to errone- 
ously settle on the meaning of a visually similar word.) 

over a large number of  units (68 in our simulation), the effect 
becomes much more pronounced (see Appendix A). 

M o d e l i n g  I m p a i r e d  R e a d i n g  to  M e a n i n g  

The Neuropsychological Domain: Impairments  in 
Reading to Meaning 

The empir ical  phenomena descr ibed in the introduction 
come from the acquired dyslexias, a group of  disorders that 
have been intensively studied by the single-case method in re- 
cent years. For certain patients having an acquired dyslexia 
with an impairment at a more central locus, reading aloud ap- 
pears not to involve semantic mediation (Bub, Cancelliere, & 
Kertesz, 1985; McCarthy & Warrington, 1986; Schwartz, Saf- 
fran, & Marin, 1980; Shallice, Warrington, & McCarthy, 1983). 

In complementary patients, such as the deep dyslexics men- 
tioned in the introduction, however, the accessing of  semantic 
information does not seem to involve the attaining of  any phon- 
ological representations. The patients make semantic errors in 
reading aloud (Marshall & Newcombe, 1966). They are poor at 
reading pronouceable nonwords aloud and carrying out rhyme 
judgements  on written words (Patterson & Marcel,  1977). 
Also, the probabil i ty  of  a word's being read is stro~agly in- 
fluenced by semantic variables, such as imageability, but not by 
the regularity of  its spelLing-to-sound mapping  (Patterson, 
1981). 

t The idea that the visual form points to a particular point in seman- 
tic space is a simplification. It would be more accurate to think of each 
visual input as contributing a different potential function that is added 
to the semantic potential function, the minima of which are the word 
meanings. 
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A standard way to explain the existence of  this contrasting 
pattern of  disorders is by assuming a functional architecture in 
which there are two (or more) reading routes, and one (or more) 
is impaired in each set of  disorders (Marshall & Newcombe, 
1973). Recently, the suggestion has been made on the basis of  
experiments using word-to-category matching that the differ- 
ent types of  transformation of  the orthographic input should 
not be conceived of  as independently operating processes, as in 
horse-race models, but instead should be considered as a global 
connectionist mechanism reflecting the covariance between 
orthographic and all other linguistic features (syntactic, seman- 
tic, and phonological) in its associative weights (Van Orden, 
1987). Although we are sympathetic to this as a possible even- 
tual way of  modeling the reading system, any physical separa- 
tion of  the material underpinning of, say, phonological and 
semantic processing would make it appropriate to model each 
of  the two classes o f  disorder in terms of  separate complemen- 
tary transformations of  the orthographic representations. In 
any case, this approach seems an appropriate starting point for 
the development of  any more complex overall model of  dis- 
orders of  the reading process. The use of  the term rou te  is in- 
tended to refer to these abstractions from a potentially more 
complex total process. 

In recent articles, Sejnowski and Rosenberg (1986) and Sei- 
denberg and McClelland (1989) have attempted to provide a 
connectionist model for spelling-to-sound translation, and Pat- 
terson, Seidenberg, and McClelland (1989) have interpreted 
neuropsychological evidence about the first group of  disorders 
in terms of  one of  the models. In this article, we are concerned 
with the modeling of  the complementary process, by which a 
semantic representation is accessed from an orthographic one 
without phonological mediation, and with how that process 
might break down if lesioned. Certain aspects of  the perfor- 
mance of  the second set of  patients flow directly from assuming 
that the two types of  process are carried out by separate proce- 
dures and that one - - the  phonological t ransformation--does 
not operate in these patients. The inability to carry out rhyme 
judgments  on the writ ten word and to read pronounceable 
nonwords are t ransparent  phenomena of  this type. Other 
aspects of  the behavior of  the patients require a more detailed 
account of  how the semantic transformation might be operat- 
ing. These phenomena are addressed by the present model. 

In the preceding paragraphs, we refer to p a t i e n t s  in a loose 
fashion and imply that many patients have a set of  characteris- 
tics in common and that this pattern occurs consistently when 
one or two individual characteristics occur. This is the strong- 
syndrome approach, which has been criticized as a general theo- 
retical approach within neuropsychology (Caramazza, 1984; 
Schwartz, 1984), part icular ly for deep dyslexia (Shall ice & 
Warrington, 1980). On the other hand, the starkly contrasting 
unique-case approach (Caramazza, 1986) is also controversial 
(Shallice, 1988). As a compromise,  we use the strong-syn- 
drome approach in the introduction, but in the Discussion sec- 
tion, we refer specifically to patients whose behavior does not 
fit the claimed general pattern. Moreover, phenomena investi- 
gated in only a small subset of  patients are labeled by pa t i en t .  

We adopt this procedure for three reasons. First, relevant 
evidence is available on a large number of  patients. For alphabe- 
tic languages alone, 16 cases were reviewed by Coltheart  
(1980a), 2 of  which were rejected by Shallice (1988) as insuffi- 

ciently detailed; 8 more were reviewed by Kremin (1982); and 
another 10 are referred to in a recent review by Coltheart et al. 
(1987). In what is essentially a modeling project, it would be 
inappropriate to review the empirical information on such a 
large set of  patients. Second, in this domain, recent reviewers, 
even when rejecting the strong-syndrome approach at the me- 
tatheoretical level, have commented on how close an approxi- 
mation the approach provides to the empirical situation for 
certain aspects of  the behavior of  the group of  patients they 
considered, namely patients who made semantic errors in read- 
ing aloud (Coltheart et al., 1987). Third, our theoretical model 
makes the prediction that qualitative similarities should occur 
in the behavior of  patients even with quite wide differences in 
the functional location of  the lesion. We must therefore refer to 
behavior in a wider sample than the individual patient. 

The most basic effect we are considering is the semantic 
error. Researchers now generally accept that for such errors to 
occur, the semantic route must be damaged in some way. 2 Sev- 
eral accounts have been given of  what that damage might con- 
sist of, such as those provided by Caramazza and Hillis (1990), 
Coltheart (1980b), Howard (1985), and Marshall and New- 
combe (1966). The issue is complicated by the way that there 
appear to be different loci across patients for the impairment to 
the semantic route (see Shallice, 1988, for review). For some 
patients, such as those described by Caramazza  and Hil l is  
(1990) and Patterson (1979), the primary impairment to the 
semantic route is held to lie in the accessing of  output phono- 
logy from a semantic representation. In most patients, though, 
in whom semantic errors in reading have been observed, the 
problem must lie at an earlier stage of  the process because 
matching the written word to one of  a set of  pictures produces 
similar semantic errors to reading aloud (e.g., Coslett, Rothi, & 
Heilman,  1985; Fr iedman & Perlman, 1982; Newcombe & 
Marshall, 1980a). Some of  this group of  patients, moreover, 
have a difficulty in accessing semantics, which is much more 
severe for visual than for auditory input (e.g., Sartori, Bruno, 
Serena, & Bardin, 1984; Shallice & Coughlan, 1980; Shallice & 
Warrington, 1980), which suggests that their problem lies on 
the input side of  the overall process. In this article, we are con- 
cerned only with reading impairments up to the level of  seman- 
tic representations, so patients whose semantic errors arise 
from damage to some level of  the speech production process 
would be excluded. 

Despite the differences in pat tern of  performance across 
reading tasks, almost all the patients we refer to earlier as being 
in the second group had a qualitatively similar error pattern. 
They made semantic errors (e.g., cat  --~ "mice"); visual errors 
(e.g., p a t e n t  --~ "patient"); mixed visual and semantic errors 
(e.g., l a s t  --~ "late");  and derivational errors (e.g., b a k e  --~ 

"baker"; e.g., see Coltheart et al., 1980). 3 
Why should visual errors co-occur with semantic ones? The 

straightforward explanation is that the visual errors arise from 
an additional impairment to a visual lexicon, logogen, or word- 

2 See Newcombe and Marshall (1980b) for a contrary view and Mor- 
ton and Patterson (1980), Nolan and Caramazza (1982), and Shall ice 
(1988) for criticisms. 

3 Exceptions are considered in the Discussion section. 
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form system (Gordon,  Goodman-Schulman,  & Caramazza,  
1987; Patterson, 1978). The strongest argument for this posi- 
tion concerns the consistency with which particular types of  
errors occur for particular words, if words are presented again 
on another occasion. It was argued by Gordon et al. that if an 
error arose from the lack of  an orthographic entry, then any 
future error on that word would also be likely to be visual, and 
for similar but not identical reasons, a future error on a word 
giving rise to a semantic error would be likely to be semantic. 
Gordon et al. found such an effect in Patient FM. This argu- 
ment is considered in the Discussion section. However, on the 
two-impairment position, it would be natural to expect that the 
variables that determine on which words visual errors occur 
should relate to visual aspects of  words and not to semantic 
ones. In fact, it is words in those semantic and syntactic classes 
which patients find most difficult to read that produce the 
highest rate of  visual errors (Patient GR in Barry & Richard- 
son, 1990; Patient PD in Coltheart, 1980c; Patient FM in Gor- 
don et al., 1987; Patients K F  and PS in Shallice & Warrington, 
1980). The type of  explanation that has been offered for this 
finding is that candidate lexical outputs of  orthographic analy- 
sis are passed to higher systems in parallel (Gordon et al., 1987; 
Shallice & Warrington, 1980). However, no formal model of  
such a way of  generating visual errors has been put forward, 
and therefore, whether two separate impairments would be re- 
quired on such a model is unclear. 

A second difficulty for explaining visual and semantic errors 
as stemming from impairments at two separate stages of  the 
reading process concerns mixed visual and semantic errors. If 
the visual errors and the semantic errors arise independently, 
then one can estimate the upper bound for the number of  errors 
that are similar on both dimensions (see Shallice & McGill,  
1978). In the two patients in whom it has been investigated, the 
number of  mixed errors exceeds the upper bound (Patient K F  
in Shallice & McGill,  1978; Patient PS in Shallice & Coughlan, 
1980). The approach of  having candidate orthographic outputs 
in parallel would seem to be able to give an account of  this 
phenomenon too. This account is, however, on the purely ver- 
bal level. The model we put forward is one way of  making the 
proposal formal. 4 

A final, nontransparent problem in this domain that we want 
to address is posed by certain phenomena observed in two 
patients (Patient JE in Rapp & Caramazza, 1989; Patient AR in 
Warrington & Shallice, 1979). The patients were unable to read 
or identify many words for which they were able to perform at a 
very-much-above-chance level in a forced-choice category or 
attribute judgment task. This effect could not be attributed to a 
mere problem of  producing the name when reading. For in- 
stance, Patient AR could not give an appropriate mime for a 
written word stimulus that he could not read aloud, although he 
could produce one if presented with a spoken word. 

Similar effects occur in what has been thought to be a sepa- 
rate group of  acquired-dyslexic patients in whom phonological 
mediation is not possible. These are certain patients who are 
not in general capable of  explicit identification of  words in 
reading except by most unusual procedures. This is the case in 
the original form of  dyslexia isolated by Dejerine ( 1 8 9 2 ) -  
variously called pure alexia, agnosic alexia, or word-form alexia 
- - i n  which patients are in general not aphasic and attempt to 
read by the so-called letter-by-letter procedure, laboriously re- 

constructing the word from the sounds of  its constituent letters. 
More recently, research has shown that when words are exposed 
for too brief an interval for the letter-by-letter strategy to be 
used, certain patients cannot name or identify more than a 
small proportion of  them but can perform, say, a categorical 
decision about them at well-above-chance levels (see Coslett & 
Saffran, 1989; Shallice & Saffran, 1986; see also Landis, Re- 
gard, & Serrat, 1980). 

Again, this is a phenomenon that is not transparently explic- 
able from the characterist ics of  the functional architecture. 
Various suggestions have been made for how to account for it 
(e.g., see Howard, 1985; Humphreys,  Riddoch,  & Quinlan,  
1988; Rapp & Caramazza,  1989; Shallice & Saffran, 1986; 
Warrington & Shallice, 1979).5 As yet, no explanation for this 
finding in these patients has been generally accepted. 

In this article, we consider three phenomena-- the  occur- 
rence of  semantic errors in patients whose impairments lie in 
accessing semantic representations, the co-occurrence of  such 
errors with visual errors, and the relative sparing of  categoriza- 
tion performance by contrast with explicit identification in an- 
other group of  patients who partly overlap the previous group. 
Our aim is not specifically to contrast the explanation for the 
phenomena that our approach provides with alternative expla- 
nations in the literature. It is to show that a connectionist model 
of  the domain produces as interrelated effects the three phe- 
nomena when other current approaches seem to require several 
independent assumptions to explain them. 

A Previous Connectionist Model of  Acquired Dyslexia 

One of  the earliest simulations of  the effects of  damage to a 
multilayer network, that of  Hinton and Sejnowski (1986), is the 
one most directly relevant to this article. This study was de- 
signed to show that an arbitrary mapping between two virtually 
independent domains could be learned with the use of  distrib- 
uted representations. The domains used were the orthographic 
and semantic ones. After the network had successfully learned 
the mapping, it was lesioned and showed behavior somewhat 
similar to that occurring in the acquired-dyslexic disorders con- 
sidered herein. The network they investigated consisted of  
three layers of  units. The grapheme group contained 30 units, 
which represented the letters in three-letter words. The sememe 
group, which also contained 30 units, represented the semantic 
features of  a word. There were no direct connections between 
the grapheme and sememe units. Instead, there was an inter- 
mediate layer of  20 units, each of  which was connected to all the 
units in both the grapheme and sememe groups. Unlike the 
network we describe later, all the connections were symmetri- 

4 Alternative suggestions with some similarities to the explanation 
offered in this article but that were not based on simulations were given 
by Morton and Patterson (1980) and Shallice and Warrington (1975 ). 

5 The least interesting possibility is that the categorization task 
narrows the range of possible words and allows the patient to guess the 
word from identifying one or two letters (see Rapp & Caramazza, 
1989). This is not a very plausible account for the patients studied by 
Coslett and Saffran (1989), who used stimuli to control for this possi- 
bility, or for Patient AR (Warrington & Shallice, 1979), who was very 
poor at identifying letters. The possibility was also explicitly tested and 
rejected by Shallice and Saffran (1986 ). 
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cal, and the units were stochastic binary processors. A binary 
input pattern was clamped on the grapheme units, and the 
network was allowed to settle for a while before a binary output 
pattern was read offfrom the sememe units. During the settling 
process, units that are not clamped compute the total input 
they are receiving from other active units and make repeated 
stochastic decisions about whether to be on or off. After  a 
while, the network reaches the equivalent of  thermal equilib- 
rium, which means that the probability of  finding it in any 
particular global state remains constant even though the units 
continue to change states. 

The Boltzmann machine learning procedure (Hinton & Sej- 
nowski, 1986) was used to train the network to associate 20 
patterns of  activity in the grapheme units (representing 20 short 
words) with 20 patterns of  activity in the sememe units (repre- 
senting the meanings of  words). The patterns used to represent 
meanings were chosen at random. After prolonged training 
(5,000 sweeps through the entire training set), the network was 
able to select the semantic representation, which was exactly 
correct more than 99.9% of  the time provided it was allowed to 
settle to equilibrium slowly. 

The network was then damaged either by adding noise to all 
the weights or by setting a percentage of  the weights to zero or 
by removing units in the intermediate layer. For example, when 
20% of  the weights were set to zero, the performance of  the 
network dropped to 64%. However, relearning was extremely 
rapid. Within three sweeps through the training set, it reached 
90%. By comparison, during the original learning when perfor- 
mance had reached roughly the same level of  64% correct, 30 
more sweeps increased it by less than 10%. It is noteworthy that 
neurological patients, too, often show rapid improvement in 
performance after a lesion occurs, although this is not always 
found. Why this improvement  occurs is not unders tood 
(Geschwind, 1985 ). Moreover, Coltheart and Byng (1989 ) have 
recently shown in an acquired-dyslexic patient that retraining 
reading on one group of  words benefited not only that group of  
words but also performance on a second, untrained set, which 
is an effect equivalent to that observed with the lesioned net- 
work. 

For our purpose the most directly relevant investigation that 
Hinton and Sejnowski (1986) carried out was an analysis of  the 
effects of  removing single units in the intermediate layer. The 
network error rate then increased from less than 0.1% to 1.4%, 
and 59% of  these errors were the precise meaning of  an alterna- 
tive word. An analysis of  the whole-word errors showed them to 
be both semantically and visually significantly more similar to 
the correct word than a word of  the set selected by chance. 
Clearly, lesioning only a single unit in a network and reducing its 
performance to 98.6% is not an adequate simulation of  the way 
a lesion causes a neurological syndrome. However, the way that 
visual and semantic errors co-occur when only a single layer of  
the network is lesioned suggested that a more detailed investi- 
gation of  the effects of  damage in such a network would be 
worthwhile. 

In this article, we describe a more systematic study of  the 
effect of  damage in a related network that uses nonstochastic 
units and a more efficient training procedure. Our aim in the 
investigation is not to produce a complete model of  the reading- 
to-meaning process. This would require the use of  a large set of  
words representative of  the full English language, both ortho- 

graphically and semantically, and a relatively complete represen- 
tation of  their underlying semantics. The first of  these require- 
ments would prove computationally very demanding, and the 
second is not possible with the present understanding of  se- 
mantics. 

Instead, our aim is more limited. It is to explore the behavior 
of  a network that maps from orthographic representations to 
semantic features when it is subject to different forms of  dam- 
age. If its properties are similar to those observed in acquired 
dyslexia, this will provide a hypothesis for the origin of  these 
characteristics in patients. 

The  Ne twork  

To simulate any empirical domain in a connectionist fash- 
ion, many design decisions have to be made about the network. 
This section describes the detailed specification of  the network 
and why we made the particular choices. In the Discussion 
section, we consider the more general issue of  what aspects of  
the design decisions were critical for the effects obtained. Most 
important, we claim, is that the network builds attractors. 

The Units 

Many different types of  units have been used in connection- 
ist models. These include l inear units, deterministic binary 
threshold units, stochastic binary threshold units, and units 
with output that is a real-valued, deterministic, nonlinear func- 
tion of  the total input received. The outputs of  units in this last 
class are often interpreted as approximations to the firing rates 
of  neurons. For the learning rule used, it is normal to use units 
of  this type with output y related to their total input x by the 
logistic function: 

l 
Y/= 1 + e ~j"  (1) 

The total input to a unit includes a threshold term and a 
weighted sum of  the activities of  other, connected units: 

xj = -Oj + ~ Y~%i, (2) 
i 

where )~ is the state of  the ith unit, %i is the weight on the 
connection from the ith to the j t h  unit, and 0j is the threshold 
of  the j t h  unit. The threshold term can be eliminated by giving 
every unit an extra input connection, the activity level of  which 
is fixed at 1. The weight on this special connection is the nega- 
tive of  the threshold. It is called the bias, and it can be learned 
in just the same way as the other weights. 

Representation of the Input 

The network maps from the visual form of  a word to its 
meaning. We assume that the primitive components are letters 
and that their positions are represented relative to a reference 
frame based on the word itself. Each input unit in the network 
therefore represents the conjunction of  a letter identity and a 
position within the word, so the input units of  our network 
correspond to the letter-level units used by McClelland and 
Rumelhart  (1981 ). Psychological evidence compatible with the 
existence of  such units in humans can be obtained from the 
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Table 1 
Words Used in the Model 

Indoor Body Outdoor 
objects Animals parts Foods objects 

Bed Bug Back Bun Bog 
Can Cat Bone Ham Dew 
Cot Cow Gut Hock Dune 
Cup Dog Hip Lime Log 
Gem Hawk Leg Nut Mud 
Mat Pig Lip Pop Park 
Mug Ram Pore Pork Rock 
Pan Rat Rib Rum Tor 

study of  migration errors in pattern masking (e.g., Mozer, 1983) 
and from the preservation of  word length in errors made by 
neglect-dyslexic patients (see Ellis, Flude, & Young, 1987). 
However, we do not see this design decision as critical to the 
effects obtained. To keep the network small, we restrict the 
input to three- or four-letter words that use only the letters {b, c, 
d, g, h, l, m, n, p, r, t} in the first position, {a, e, i, o, u} in the 
second position, {b, c, d, g, k, m, p, r, t, w} in the third position, 
and {e, k} in the fourth position. There are therefore 28 input 
units. These are called the grapheme units. 

Representation o f  the Meaning of  a Word 

The simplest way to represent the meaning of  a word in a 
connectionist network is to use binary or real-valued semantic 
features and to dedicate a single sememe unit to each semantic 
feature. The meaning of  the word is then a pattern of  activity 
across the sememe units. This way of  representing meaning 
appears to be very different from semantic networks (e.g., Col- 
lins & Loftus, 1975) or frames (Minsky, 1975), which encode 
relationships between entities, with special emphasis on the "IS- 
A" relationship between a class and its members. Fortunately, 
these more sophisticated representations can be implemented 
with sememe units provided that an individual unit is used to 
represent the conjunction o f  a role and some significant prop- 
erty of  its filler (Derthick, 1987; Hinton, 1981 ). For example, 
the representation of president might contain an active unit that 
represents the conjunction of  the role "has-job" and the filler 
"important." Notice that this is just another example of  the 
method we use for representing the input. Each active input 
unit represents a binding between a role (i.e., a spatial position 
within the word) and a filler (i.e., a letter identity). 

To reduce the computational load, we used a restricted set of  
40 words, all o f  three or four letters and falling into five con- 
crete categories: indoor  objects, animals,  parts of  the body, 
food, and outdoor objects (see Table l ). The complete set of  
features used for the words is shown in Appendix B. The use of  
several categories enabled us to mimic the category-selection 
tasks used in semantic-access dyslexia. 

We also assumed that identification of  a word did not require 
that all its features be fully activated. Instead, if the network 
settled to a semantic representation sufficiently close to the 
ideal, the word was considered to be accessed. This approach is 
related to that used in the probabilistic feature models of  se- 

mantic memory  in psychological theorizing (see Smith & 
Medin, 1981 ). 

Layers and Connections 

The simplest network for associating the input vectors with 
the desired output vectors would have direct connections from 
grapheme to sememe units. Unfortunately, there are strong limi- 
tations on the computational abilities of  such a simple network. 
It is not, in general, capable of  representing a set of  arbitrary 
associations between input and output vectors (Hinton, 1989). 
For example, in a network with two input units that are directly 
connected to one output unit, it is impossible to find any set of  
weights on the connections that represents the set of  four associ- 
ations {l I -~ l, l0 --~ 0, 01 --~ 0, 00 --~ 1}. In general, it is neces- 
sary to introduce one or more layers of  nonlinear hidden units 
between the input and output of  the network (Ackley et al., 
1985). These hidden units detect higher order combinations of  
activities among the units to which they are connected. We use a 
network that contains only one layer of  hidden units (called 
intermediate units) between the graphemes and sememes. 

Some of  the phenomena we describe in this article can be 
observed, to some degree, in a simple layered net in which the 
grapheme units completely determine the activities of  the inter- 
mediate units, and these in turn completely determine the activ- 
ities of  the sememe units. Our simulation, however, is based on 
the assumption that the semantic space contains attractors. 
There are many ways to realize that possibility. It is clearly more 
appropriate if the attractors are not handcrafted and the system 
builds them itself. The simplest way to enable that to happen is 
to introduce recurrent connections in a network model so that 
the process of  accessing a word's meaning corresponds to set- 
tling to a stable state. 

In determining the number of  hidden units and the pattern of  
connections, we were influenced by three considerations. First, 
the time it takes the network to learn, given the algorithm we 
used, increases rapidly with the number of  connections, so on 
the workstation we were using it was difficult to experiment 
with networks containing more than a few thousand connec- 
tions. 

Second, one needs a sufficient number of  connections to 
store all 40 associations of  word forms with word meanings. If  
we make the simplifying assumption that the sememes are inde- 
pendent variables, the information H in a single association is 
given by 

H = - ~  pilog2pi + (1 - p~-)log2(l - Pi), (3) 
i 

where Pi is the probability (measured over the whole set of  asso- 
ciations) of  an individual sememe's being active. Assuming that 
all of  the Pi are 0.22 (which is very approximately true for our 
simulations), the information in the whole set of  40 associa- 
tions is given by 

H = - 4 0  × 68(0.22 1og20.22 + 0.78 1og20.78) = 2,068. (4) 

A good rule of  thumb for the storage capacity of  a network 
that uses the backpropagation learning procedure is two bits 
per weight, so the network should contain at least 1,034 connec- 
tions. The network we used contained about 3,300 (including 
biases). 
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scconns 

o o o o o . . . o o o o o  

0 O000...000 O0 
(40 units) / ~  Intermediate 

Units 

giconns 

0 0 0 0 0 . . , 0  O 0  O 0  
(28 units) Grapheme 

Units 

Figure 2. The groups of units and their connectivity. (The connections 
between groups are named by using the first letters of each group name 
[scconns, csconns, isconns, giconns ]. In addition to the intergroup con- 
nections, there are direct connections between pairs of highly related 
sememe units. The highly related sets of sememes are defined in Ap- 
pendix B.) 

The third consideration is to encourage the network to build 
strong attractors. We achieved this by making the bottom-up 
inputs to the sememe units somewhat impoverished and pro- 
viding the potential for rich interactions to be developed be- 
tween the sememe units. The groups of units and their connec- 
tivity are shown in Figure 2. Connections between any two sets 
of units a and b are labeled abconns. We chose to use a probabil- 
ity of.25 for including each potential connection between a unit 
in one group and a unit in another connected group. The exis- 
tence of direct connections between the sememe units allows 
the network to develop lateral inhibitory interactions between 
the activation of rival sememe units. For our task, however, 
there are potentially 4,624 such connections. So, instead of al- 
lowing all possible direct connections between sememes, we 
restricted such connections to all those within small subsets of 
sememes that correspond to different values on a dimension 
(see Appendix B). For sememes within a subset, there are typi- 
cally strong negative correlations, and for those in different 
subsets, there is typically much less correlation. Significant in- 
teractions between sememes in different subsets can be imple- 
mented, if necessary, by the cleanup units, which can detect 
particular combinations of activity in the sememe units and 
"infer" that other sememe units should be active. Many such 
inferences potentially occur in parallel, and to avoid any impli- 
cation that they correspond to conscious, deliberate inference, 
we call them microinferences (Hinton, 1981 ). The weights on 
the connections to and from the cleanup units were learned in 
the same fashion as all the others in the network. 

Runn ing  the Network  

The network is run for seven iterations, while the input units 
are clamped to a state that represents the current input word. 
The remaining units start off with activity levels of 0.2. To 
further encourage the network to build robust attractors, the 

network is trained to produce the correct activity pattern over 
the sememe units for the last three iterations. Figure 3 shows the 
seven successive states of activity for all the units when an un- 
damaged network is presented with a word that it has learned. 

The  Learning  Procedure 

The network was trained using the iterative version of the 
backpropagation training procedure explained in Rumeihart et 
al. (1986). We do not believe that a literal implementation of 
this procedure is a good model for learning in the brain. The 
procedure is simply one of the many known ways of learning by 
gradient descent in a neural network. Other methods, such as 
"mean field learning" (Hinton, 1989), may be less unrealistic. 
For the research described herein, we simply wanted an effi- 
cient method of constructing networks that worked, and we are 
not concerned with the veridicality of the learning process. 

The heart of the backpropagation procedure is just an effi- 
cient method of computing, for a given graphemic input vector, 
how small changes in the weights would affect the errors in the 
final activities of each sememe unit. The aim is to change the 
weights in the direction that reduces these errors. In the batch 
version of backpropagation, we sweep through all 40 training 
cases, computing the total derivative with respect to each 
weight of the error E for all sememes in all training cases. We 
then change each weight by an amount proportional to its total 
error derivative: 

OE 
ml4~ji =--E ~Wji. (5) 

This learning procedure can be pictured by imagining a mul- 
tidimensional weight space that has an axis for each weight and 
one extra axis (called height) that corresponds to the total error 
measure. For each combination of weights, the network will 
have a certain error that can be represented by the height of a 
point in weight space. These points form a surface called the 
error surface. The learning procedure consists of moving the 
point that represents the weights down the error surface in the 
direction of steepest descent. This simple, gradient-descent 
procedure can be accelerated by adding to each weight change a 
fraction ~ of the previous weight change: 

Awji(t) = --~ ~ (t) + aAwjj(t -- 1 ), (6) 
OWji 

where t is incremented by 1 on each sweep through the 40 train- 
ing cases. This momentum method speeds up the gradient de- 
scent along the bottoms of ravines in the error surface without 
causing divergent oscillations across the ravines. 

Most simulations that use the backpropagation learning pro- 
cedure assume that the appropriate error measure is the 
squared distance between the desired output vector and the 
output vector actually produced by the network. However, 
when the output units can be interpreted as representing dis- 
crete binary decisions (as they can in our network), it is more 
appropriate to use a different error measure, called the cross- 
entropy ( Hinton, 1989). 

E = - ~ dj.clog2(yj~:) + (1 -- dix)log2(1 - Yjx), (7) 
j,c 

where djx is the desired probability of output unit j in case c and 
Yjx is its actual probability. 

This error measure can be understood as follows: We imag- 
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Figure 3. How the activations of all units in a network change as the network settles into a stable state with a 
fixed input. (The white blobs represent activation levels [with a small white dot representing zero ]. The top 
panel shows the initial state of the network, and the lowest three panels show the final three time slices 
during which all sememe units that are not in the correct state receive error signals. The sememe units that 
should be active are indicated by small black dots. The top two rows within each diagram show the 
activation levels of the 60 cleanup units, the next two rows show the 68 sememe units, the fifth row shows 
the 40 intermediate units, and the bottom row shows the 28 grapheme units divided into four sets corre- 
sponding to the four-letter positions. Throughout the settling, the grapheme units are clamped in a fixed, 
binary state representing the input word bed. The activations are for an undamaged network after learning 
is complete.) 
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ine that the real-valued output vector produced by the network 
is stochastically converted into a binary vector by treating the 
real values as the probabilities that individual components have 
value I and assuming independence between these stochastic 
choices. We then compute the log probability that this binary 
vector exactly matches the desired vector. The negative of this 
log probability is the error measure. 

Starting with small random weights and biases that are cho- 
sen from a uniform random distribution between -0 .3  and 0.3, 
the learning requires about 1,000 sweeps through the training 
set with ~ = 0.0005. For the first l0 sweeps, c~ is set at 0.5, and 
after this it is set at 0.95. 6 The network was considered to have 
learned when the output of all sememes for all words was 
within 0.1 of the desired value over the last three iterations. 

That the network develops attractors can be seen by inspec- 
tion of Figure 3. The input remains on constantly from Time 0. 
Its direct effect reaches the sememes by Time 2. If one then 
compares their state at Time 2 with their state at Times 5, 6, or 
7, one can see major differences for over l0 units for that word 
alone. The input from the intermediate units remains constant 
over the Period 2 to 7, as do the weights, so the change in the 
sememe activities must be caused by the interactions among 
them via direct connections and cleanup units. Indeed, the 
activation of the cleanup units themselves becomes much 
sharper between Times 1 or 2 and Times 5, 6, or 7. 

The input and output weights learned by some of the inter- 
mediate units are shown in Figure 4. Intermediate units are not 
dedicated to particular words. Instead, each intermediate unit 
is activated by many different words and influences the activa- 
tions of many different sememes. The third unit from the bot- 
tom, for example, is strongly activated by the letters g or n in the 
first position within a word and is strongly inhibited by d in the 
third position. So it is most active for the words gem, gut, and 
nut and least active for the words bed and mud. This interme- 
diate unit strongly activates Sememes 44 and 59 and strongly 
inhibits Sememe 25. Gem, gut, and nut each have one or both 
of Sememes 44 and 59 but not Sememe 25. Bed and mud both 
have Sememe 25 but not 44 or 59. Note, however, that it is 
sometimes misleading to interpret units in isolation, because 
each unit has learned to have the optimal marginal effect given 
the current behavior of all the other units. 

Network ,4 and Network B 

The network that we used for the main experiments on the 
effects of damage (Network A) was actually learned using a 
somewhat ad hoc procedure in which the parameter + was man- 
ually adjusted as learning proceeded. The values used were all 
close to 0.0005. This was done in a vain attempt to make the 
learning take less than 56 hr on a Symbolics lisp machine. How- 
ever, the subsequent simulation (Network B) using a different 
set of initial random weights maintained an epsilon value of 
0.0005 after the first l0 sweeps. The behavior of the second 
network when lesioned showed qualitatively the same type of 
behavior as the first, with one exception, to be discussed later. 

The  Effects o f  Lesions: Results 

Three alternative procedures were used to simulate the effect 
of a lesion on the network. First, each set of connections was 
taken in turn, and a specific proportion of their weights were 
set to 0. We use the notation disconnect(csconns, 0.3) to mean 
that a randomly chosen 30% of the connections from the 

cleanup units to the sememe units were set to 0. At each level of 
severity of the disconnection, the original, undamaged network 
was randomly damaged l0 different times so that we could see 
how much the effects of damage depended on which specific 
connections were removed. Second, for each set of connections, 
noise was added to the weight on each connection, with its 
value drawn independently from a uniform distribution be- 
tween - n  and n; several different values for n were used to 
mimic different degrees of unreliability of neural connections. 
Again, for each value of n, random noise was added l 0 different 
times to the original, undamaged network. We use the notation 
noise(csconns, 0.4) to mean that every csconns connection was 
given added noise uniformly distributed between -0 .4  and 0.4. 
Finally, for the two sets of hidden units, the intermediate and 
the cleanup, a specific number of units were removed. As be- 
fore, the number of units removed was varied, and for each 
value of the number, l0 randomly selected sets of units were 
eliminated. We use the notation ablate(intermediate, 7) to 
mean that 7 intermediate units were removed. 

When a network has been lesioned, the mean value of the 
activation of the sememes over the last three iterations for each 
input word will differ from the stored-meaning vector of the 
word (see Figure 5). As a summary statistic, we defined the 
proximity rwm of the actual-meaning vector, sw, obtained with 
input word w to the stored-meaning vector, sin, for each word m 
as the cosine of the angle between the actual and the stored- 
meaning vectors in the 68-dimensional space of the sememes: 7 

~w" Sm 
r+,. ll~++ll'lls,.ll " (8 )  

In keeping with the general principles ofprobabilistic feature 
models (Smith & Medin, 1981 ), we assumed that r for some 
target word does not have to be i for satisfactory semantic ac- 
cess to be achieved. What value should r then take for it to be 
accepted that access to the semantic representation of some 
target word has occurred? A plausible lower bound can be ob- 
tained from the median proximity between a word and its near- 
est neighbor in semantic space; this is 0.76. Given the geometri- 
cal properties of 68-dimensional spaces, the a priori probabil- 
ity of obtaining a proximity greater than r declines very rapidly 
as r moves toward I. For an initial comparison between the 
different conditions, we adopted a threshold value o f t  = 0.8. s 

6 A small alpha value was used for the initial phase because the error 
surface contains a big initial ravine. The error surface slopes down 
steeply until the weights have reached values that yield an optimal 
guessing strategy for the sememes (ignoring the graphemic input). The 
network then settles to the same activity pattern over the sememes 
regardless of the input vector. If an alpha value near I is used in this 
initial phase, the network may drive some of the weights to a very large 
positive or negative value and may take a very long time to recover 
from this. This behavior is often mistakenly diagnosed as indicating a 
local minimum. 

7 This proximity measure was chosen because a unit in a connection- 
ist net computes a total input that is a scalar product of incoming 
activities with weights. So, two incoming activity vectors that have a 
cosine near 1 will tend to have similar effects on any recipient unit. By 
comparison with a Euclidean distance measure, proximity is more 
sensitive to changes toward other possible stored-meaning vectors 
rather than ones that just generally reduce sensitivity. 

s The stored-meaning vectors correspond to particular vertices of a 
68-dimensional hypercube. Each of these vertices has between 12 and 
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Where a nonunitary value ofr  is used, the system needs to be 
capable of discriminating between the correct meaning and 
other meanings that also have high proximity to the actual vec- 
tor; otherwise, it would not be able to drive a plausible output 
system effectively. We therefore added an additional cri terion-- 
the gap criterion--that the proximity between the actual mean- 
ing vector and that of the closest meaning must be at least 0.05 
greater than the proximity of the actual vector and that of the 
next closest target. Later in this section, we consider to what 
extent our conclusions depend on the choice of these criteria. 

Overall Effects 

Using these criteria, we examined the absolute levels of per- 
formance of lesioned systems, the quantity and nature of errors, 
and their consistency over multiple trials. This was carried out 
for a wide range of lesions for Network A and a rather more 
restricted range for Network B. Tables 2 and 3 show how the 
probability of correct identification varies with lesion parame- 
ters when the threshold criteria of 0.8 and 0.05 are used. It is 
apparent that lesions affecting the input to the semantic system 
have greater effect than more distant lesions; because there are 
more isconns than giconns, this cannot be due to greater infor- 
mation carried per connection. In addition, disconnections in 
the cleanup circuit (those connections involving the cleanup 
system) have less effect than disconnections in the direct route, 
but the cleanup circuit is just as sensitive as the direct route to 
added noise. In other words, removing some of the cleanup 
effect is much less disruptive than adding erroneous cleanup. 
The effect of ablating intermediate units or cleanup units is 
equivalent to disconnecting the same proportion of their con- 
nections to the semantic system (isconns and csconns, respec- 
tively). 

The effects of lesions on the two networks are qualitatively 
very similar. There is, however, a quantitative difference, with 
Network B being absolutely about 0.05 to 0.15 the less impaired 
by a lesion, except for lesions to csconns, where the mean dif- 
ference is about 0.2. In general, the networks behave in a slightly 
different quantitative fashion but similar qualitative fashion. 
Therefore, the results for Network B are reported only where 
qualitative differences exist. 

21 positive coordinate values of 1, with the remaining coordinate val- 
ues being 0. The expected number of coordinates with a value of I is 
15.2. After mild or moderate lesions, the actual-meaning vectors re- 
main close to vertices of the hypercube (see Figure 5). A suitable ap- 
proximation to the a priori distribution of proximity values can there- 
fore be obtained by considering the proximities between vertices of the 
hypercube randomly selected to have a number of positive coordinates 
which lies within a certain range. To obtain an upper bound estimate 
of the a priori proximities for high values of r, consider the distribution 
of proximities between vertices that have the same number of positive 
coordinates 05). If two such vertices are selected by chance, then 
proximity depends on the number of positive coordinates in common; 
this is given by the hypergeometric distribution. The probability that 
there will be 11 positive dimensions in common (proximity = 0.73) is 
0.9 × l0 -6. The probability that they have 12 or more positive dimen- 
sions in common (proximity = 0.8) is 0.24 X 10-7, that is, less than 0.03 
of the former value. Thus, a small increase in proximity leads to a very 
large decrease in the probability of a value that high being obtained by 
chance. 

Errors 

Noncorrect responses were divided into omissions, where 
one or more of the criteria are not satisfied for the closest target, 
and errors, where the criteria are both satisfied but with respect 
to some other word meaning. Errors were in turn divided into 
four types: semantic (S) errors; words semantically similar to 
the target but not visually similar; visual (V) errors, words vi- 
sually similar to the target but not semantically similar; mixed 
(M) errors, words both semantically and visually similar to the 
target; and other (O) errors. 

For simplicity, only responses that were words in the same 
semantic category were treated as semantic errors, and words 
with at least one letter in common in the same position in the 
word were considered visual errors. The use of this criterion for 
semantic errors will on rare occasions exclude a response that is 
semantically fairly close to a target (e.g., mug--~ "pop") and so 
reduce the number of observed semantic errors. It will become 
clear that this is not a problem. 

The most obvious result of the error analysis is that all types 
of error occur with all types of lesion (see Table 4). 9 There is 
one except ion--disconnect ing the scconns--that produces 
very few errors. The likelihood of the observed error types' 
occurring by chance can be assessed by comparing the inci- 
dence rates with that of the other errors. In all cases, the inci- 
dence of a given type of error is a number of times greater than 
would be expected by chance. For lesion sites other than 
scconns, the ratio of semantic to other errors is at least 8 times 
the chance value; for the ratio of mixed to other errors, it is at 
least 36 times; and for the ratio of visual to other, at least 3 times 
the chance value. 

In addition, assuming independence, the expected rate of 
mixed errors M can be predicted from the rates V and S of the 
visual and the semantic errors. Shallice and McGill  (1978) 
showed that the following relation holds: 

S 1) 
M < ~ _ s V + ~ _ v S ,  (9) 

where v and s are the a priori probabilities that a randomly 
selected input-output pair would be considered to be visually 
and semantically similar, respectively. By this formula, the inci- 
dence of mixed visual and semantic errors is higher than would 
be expected if visual and semantic errors arose independently 
for almost all lesion sites) ° 

It is possible that the comparison among the effects of differ- 
ent sites for lesions might be complicated by an effect of lesion 
severity on type of error in certain cases, Even if this were so, 
the proportion of different types of error varies for different 
lesion sites. Consider networks that have disconnections in gi- 
conns or isconns. Their ratio of semantic errors to visual errors 
differs significantly (a) if one matches for degree of lesion size 

9 This does not apply for visual errors occurring with some lesions to 
the cleanup circuit in Network B. However, the high rates of mixed 
errors for cleanup circuit lesions in Network B--generally more than 
50%--indicate that for Network B, too, graphemic similarity is having 
an effect at the part of the system most distant from the graphemic 
input. 

Jo This does not apply to cleanup ablations in Network B, but too few 
lesions were made to obtain a sufficiently large corpus of errors. 
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Figure 4. The weights on the incoming and outgoing connections of the first 10 intermediate units. (The 
white blobs indicate positive weights, and the black blobs negative weights, with the area of the blob 
representing the magnitude of the weight. The bottom row of each of the 10 panels represents the weights 
on the incoming connections from the four groups of graphemic units. The top two rows of each panel 
represent the weights on the connections to the 68 sememe units. The large inhibitory weight near the right 
of the top row of the top panel has a magnitude of-5.38.  The bias of each unit is represented by the 
leftmost weight in the bottom row of each panel.) 

(combining 0.1,0.15, 0.2, and 0.25), x2(1, N =  61 ) = 10.71, p < 
.01, or  (b) i f  one matches for a rate o f  correct  responses: com- 
bining disconnect(giconns, 0.2, 0.25, and 0.3),  mean correct = 
43.7%, and disconnect(isconns, 0.1 and 0.15),  mean  correct = 
43%, X2(1, N = 52) = 13.7, p < .01. Similar  effects occurred 
when noise was added and also in Network B. Apparently le- 
sions occurr ing earlier in the pr imary  circuit are more prone to 
give visual rather than semantic errors when compared  with 
lesions later in that circuit. 

The Criteria 

The quantitative values given in Tables 2, 3, and 4 are all 
dependent  on the choice o f  criterion. The  effect o f  making  two 
part icular  lesions was therefore examined in detail  to assess 
how changing the criteria would affect the results. The  two 

chosen were disconnect(giconns, 0.3) and disconnect(isconns, 
0.15 ), in that they gave comparable  percentage correct results 
(35.3% and 36.5%) and were the pair o f  disconnections that 
produced the greatest contrast in error  type. 

Figure 6 shows for disconnect(giconns, 0.3) that there is a 
wide spread for the values o f  the proximity and gap when the 
correct word is the closest target. Proximity values range from 
about 0.5 to 0.99, and gaps range from 0 to about 0.4. The most  
cri t ical  point  is that  where an incorrec t  word is the closest  
s tored-meaning vector, there is a similar range in both vari- 
ables. Thus, the disconnect(giconns, 0.3) contains a visual error 
with proximi ty  o f  0.95 and gap o f  0.42, and the discon- 
nect(isconns, 0.15 ) contains a semantic error o f  proximity 0.96. 
That  the error candidate distributions have similar ranges to 
the correct candidate distr ibution means that whatever values, 
within reason, are chosen for the two criteria, errors o f  at least 
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Figure 5. The activation values of all units in the network for the critical last three time slices for the 
lesioned network disconnect (giconns, 0.3 ), where 30% of the connections between grapheme and interme- 
diate units were set to 0, with the input word cup. (The graphic conventions used are the same as for 
Figure 3.) 

these two types will be observed. Clearly, the number  o f  errors 
made  will change as the thresholds vary, but the actual exis- 
tence o f  errors o f  these two types will  not.I 

Below- ThreshoM Information 

A second consequence o f  the broad range o f  proximity and 
gap values attained when the correct word is the best candidate 
is that there will be many trials when the closest target is the 
correct  word but insufficient information is available to drive 
the response system. As pointed out earlier, the proximity crite- 
rion can hardly be placed below 0.76, which is the average 
proximity o f  a word to its nearest  neighbor. Yet, many of  the 
correct  best candidate  values achieved are below this level. 

To assess on what percentage o f  trials there is useful below- 
threshold  in fo rma t ion  available to the system, two types  o f  
tests were carr ied out for trials on which an explicit response 
would not be made. The  first was five-alternative, between- 
categories forced choice. The  proximities o f  the obtained value 
to the centroids in semantic space o f  each o f  the five categories 
were compared,  and the closest category was chosen. The  sec- 
ond was an eight-alternative, within-category forced choice. 
The closest o f  the eight category members  was selected. Unfor- 
tunately, dur ing  the  s imulat ion,  we only saved in fo rmat ion  
about the proximity o f  the output  to the six closest targets and 
to the centroids o f  the categories, and we only saved this infor- 
mat ion for targets with a proximity closer than 0.4. This means  
that occasionally, when all category members  were far from the 
obtained value, no information was available as to which was 
the closest in the within-category test. In this case, each possi- 
ble response was chosen on 12.5% of  occasions. 

Performance on these forced-choice tests was assessed for 
several types o f  disconnect ion for all trials on which the two 
criteria were not  achieved. Lesions to the cleanup circuit led to 
high levels o f  per formance  on both forced-choice measures. A 
complete  lesioning ofscconns, which depresses performance to 

40% correct on the standard criteria, gave 91.7% correct  for the 
five-choice between-categories test and 87.5% correct  for the 
eight-choice within-category measure for the 60% o f  words that 
p roduced  below-threshold  output .  A 0.4 d i connec t ion  o f  
csconns, which reduced explicit correct response to 24.5%, gave 
a performance on a between-categories test o f  73.8% and a 
performance on a within-category test o f  73.4% for the 75.5% 
of  below-threshold trials. 12 Lesions to the pr imary  pathways 
also showed the above-chance preservation o f  forced-choice re- 
spond ing  in below-threshold  si tuations.  Thus,  discon- 
nect(isconns, 0.15), with correct  explicit responding of  36.5%, 
gave a below-threshold performance o f  62.6% and 64.1% on the 
two forced-choice measures. The  effect was weaker for discon- 
nect (giconns, 0.3 ), which gave a roughly equivalent correct  ex- 
plicit  response  pe r fo rmance  (35.3%); the scores on the  two 
forced-choice measures for below-threshold trials were 48.3% 
and 49.0%. 

One  might argue that a lower setting o f  either o f  the two 
threshold criteria would result in the el iminat ion o f  the above- 
chance  pe r fo rmance  on below-threshold  trials on the  two 
forced-choice  measures.  However ,  for disconnect(giconns, 
0.3),  changing these criteria did not  el iminate the effect. For 
example, taking the highest below-threshold value o f  proximity 
to be 0.76 (the median  proximity between a s tored-meaning 

H Strictly, one needs to consider whether all types of  error have 
ranges similar to the correct responses for each lesion site. The lesion 
types considered in most detail for errors were disconnect(giconns, 
0.3) and disconnect(isconns, 0.2), for which 10 additional trials were 
run for each word. For the former, extended coverage included a se- 
mantic error with a proximity of 0.97 and a gap of0.11. For the latter, it 
included a visual error of proximity 0.92 and a gap of 0.29 to add to a 
semantic error with proximity 0.90 and gap 0.15 in the original 10 
trials. 

~2 In all cases, correct responses were also correct on the between-ca- 
tegories measure. 
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vector and its closest neighbor) and  setting the gap to 0 still gave 
below-threshold performance of  41.0% and 48.5% on the two 
forced-choice measures. Both these measures are significantly 
above chance (20% and 12.5%, respectively, ×2(1, N = 161 ) = 
44.3 and  x2(l, N = 112) = 274.6, respectively, p < .001 in both 
cases. All these effects also hold for Network B. 

The most  surprising aspect of  these results is that in all cases, 
the eight-alternative forced-choice within-category perfor- 
mance  is as high as the apparently much easier five-alternative 
between-categories performance. Except for scconns, this can- 
not  be explained by the correlation between the two measures 
of  per formance  across trials. Thus,  for disconnect(giconns, 
0.3), there is a positive contingency (C) between the measures, 
but  it is not that high ( C =  0.33). 

Category Effects 

It is possible to investigate how much the processing of  indi-  
vidual words is affected when lesions are made to different 
networks and to different sites within the same network. The 
effects obtained are complex and in general not o f  apparent 
theoretical interest. ~3 However, we obtained a very unexpected 
finding about the way in which individual categories of  words 
were affected by certain lesions. After csconns lesions, one cate- 
gory, foods, was selectively preserved in Network A (see Figure 
7), and this category difference was significant when words 
were treated as a r a n d o m  variable, Kruskal-Wallis  H(4)  = 
13.38, p < 0.1, for disconnect(csconns) lesions. This effect 
was highly specific. It d id  not ,  for instance,  occur  for dis- 
connect(giconns) lesions for Network A, nor  for discon- 
nect(csconns) lesions for Network B. 

D i s c u s s i o n  

A major attraction of  connect ionist  models is that they per- 
form computat ions by means of  processing units that behave 
on broadly similar principles to those used in the brain. Their  
appeal would be strengthened if it could be shown that analo- 
gous operations on the elements of  the two systems lead to 
similar consequences for the behavior of  the overall systems. 
An obvious candidate operation is the effect o f  lesions. In this 
article, we take a relatively simple connect ionis t  model and 
show that the lesioned model has properties that are similar to 
those already described in certain neurological patients. 

The d o m a i n  we c h o s e - - r e a d i n g - t o - m e a n i n g - - h a s  been  
much studied in single-case studies over the last 20 years. The 
network maps  letter-level information into semantic informa- 
tion. Three principal qualitative phonomena  are shown by the 
model: 

1. It produces both more semantic and more visual errors than 
would be expected by chance. It also produces more mixed 
errors than would be expected if semantic and visual errors 
were independent. In more abstract terms, the errors reflect 
the similarity metric of both the input and the output. 

~3 For further information on this issue, on the effect of lesion den- 
sity on error type, on the consistency of performance across trials, and 
on an attempt to simulate lexical decision, see Hinton and Shallice 
(1989). 
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Table 3 
Percentage Correct Performance With Standard Criteria for 
Ablating Units 

Units ablated % lesioned Network A Network B 

Intermediate 
3 7.5 56.5 71.8 
4 I0.0 49.3 59.0 1. 
5 12.5 32.0 36.8 
7 17.5 23.3 - -  

10 25.0 16.8 - -  
Cleanup 

10 16.7 71.0 81.8 
20 33.3 38.3 56.3 
30 50.0 18.8 - -  2. 
40 66.7 4.8 - -  

2. The same combination of error types occurs whatever set of 
connections or hidden units are lesioned and whichever of the 
two types oflesioning procedure is used (with the exception of 
one set of connections, involving the cleanup units). 

3. If sufficiently severe lesions are made so that an explicit re- 
sponse can no longer be produced, the network still performs 
above chance in forced-choice situations. 

Two key quest ions can be posed.  First, what aspects o f  the 
simulation are critical for these effects to occur? Second,  do 
they cor respond  to the behavior  shown in patients? 

Design o f  the Network 

To simulate the effects o f  damage,  it is necessary to use a 
part icular  network with part icular  groups o f  units, part icular  
pat terns  o f  connect ions,  and  par t icular  input  and output  en- 
codings.  These  requi rements  immedia te ly  raise the issue o f  
whether  the architecture and the input  and output  encodings  
are too simple or too complex to be plausible and whether  the 
qualitative results are sensitive to fine details o f  the architecture. 

It is impossible to try even a small  fraction o f  all possible archi- 
tectures, and given the slowness o f  the learning, we could not 
exper iment  with alternatives. We therefore chose a part icular  
architecture that  was relatively simple but conta ined  the major  
ingredients  that  we would expect  to be present  in the brain. Our  
design decisions and our reasons for t hem are as follows: 

The input representation is simple. Even though the brain may 
not contain neurons that represent the conjunction of a gra- 
pheme and its position within a word, it probably uses a repre- 
sentation in which similar strings of graphemes are encoded by 
similar vectors, and this is probably the only property of the 
input encoding that is crucial for the qualitative results. 

The output representation is also simple, and the same justifi- 
cation applies as for the input representation. 

There must be at least one layer of hidden units between the 
input and output. Given our input encoding (or any other en- 
coding of comparable size), we can encode any four-letter word 
as a pattern of activity over 4 × 26 input units. So if there are 
more than 104 four-letter words, it is impossible for the input 
vectors to be linearly independent, and it is therefore impossi- 
ble to associate arbitrary output vectors with them by a linear 
associator. With nonrandom words, the problem can be even 
more severe. With our input encoding, no linear associator 
could associate a semantic feature with the words GOAT and 
COAL and not associate that feature with the words GOAL and 
COAT. 

4. There must be recurrent connections between the output units 
or between them and other groups of units to create the attrac- 
tors that are a central postulate of our theory. It would be possi- 
ble to use only pairwise interactions among the output units, 
but this strongly limits the kinds of attractors that can be cre- 
ated. It would be possible to avoid this limitation by using recur- 
rent connections involving the hidden units, in which case 
there would be no architectural distinction between cleanup 
units and intermediate units. We felt that it was more plausible 
to separate units used for mapping from the graphemes to the 
sememes from units used for building complex attractors. 
Given that the cleanup units are modeling the rapid part of the 
effects of the whole of the rest of the brain on the sememe units, 

Table 4 
Error Rates in the Different Conditions 

Overall 
error rate Conditional probabilities 

Condition n Rate Semantic Visual & semantic Visual Other 

Disconnect (giconns) 4 4.8 13.2 44.7 34.2 7.9 
Noise (giconns) 4 3.9 20.6 27.0 46.0 6.3 
Ablate (intermediate) 3 3.1 24.3 45.9 24.3 5.4 
Disconnect (isconns) 2 3.4 55.6 29.6 11.1 3.7 
Noise (isconns) 3 2.4 20.7 48.3 24.1 6.9 
Disconnect (scconns) 2 0.23 - -  100 - -  - -  
Noise (scconns) 4 1.8 20.7 72.4 6.9 - -  
Ablate (cleanup) 2 3.4 25.9 63.0 7.4 3.7 
Disconnect (sconns) 3 3.4 34. I 31.7 34.1 - -  
Noise (csconns) 2 2.3 33.3 38.9 27.8 - -  
Chance 11.9 6.1 29.6 52.5 

Note. The results are amalgamated over runs that used values of the parameters that yielded an overall 
correct performance of between 25% and 75%. n = the number of sets of values from which the results are 
derived, giconns = connections between grapheme and intermediate units; isconns = connections between 
intermediate and sememe units; scconns = connections between sememe and cleanup units; csconns = 
connections between cleanup and sememe units. Dashes indicate conditions that were not tried. 
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Figure6. The values of proximity and gap from 400 trials with discon- 
nect(giconns, 0.3), where 30% of the connections between grapheme 
and intermediate units were set to 0. (All responses where either a 
semantic error or a visual error was the closest stored-meaning vector 
are shown together with a randomly selected 20% of trials where the 
correct word was the closest stored-meaning vector.) 

we view them as a gross simplification of much more complex 
interactions rather than as an unjustified elaboration• 

The  general  design o f  the  ne twork was not  guided by a desire 
to  p r o d u c e  the  p h e n o m e n a  o f  dyslexia.  T h e  n e t w o r k  f rom 
which the  present  one  was derived was actually des igned as an  
i l lus t ra t ion o f  how a neura l  net  could  etticiently represent  an  
a rb i t ra ry  m a p p i n g  f rom g r a p h e m e s  to s em em es  wi thou t  using 
a local uni t  for each word (H in ton ,  McCle l land ,  & R u m e l h a r t ,  
1986).  Only af ter  the  ne twork  was des igned and  analyzed d id  it 
occur  to us tha t  it would  give one  o f  the  p h e n o m e n a  o f  dyslexia 
( semant ic  errors) .  Even af ter  we had  r un  the  present  s imula-  
t ions,  we were surpr i sed  tha t  the  ne twork  also exhibi ted o ther  
p h e n o m e n a ,  such as the  s t rong t endency  to give mixed errors  
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Figure 7. The effects of two different types of lesion on the perfor- 
mance of Network A on the five categories of word• [The solid line is 
for disconnect(giconns, 0.4), and the dotted line is for discon- 
nect(csconns, 0.4), where 40% of the connections between the graph- 
eme and intermediate units and the cleanup and sememe units, respec- 
tively, were set to 0.] 

and  the  t endency  for damage  near  the  semant ic  representa t ion  
to lead to visual errors. 

The  network is not  in tended  to provide a precise s imulat ion 
o f  a par t i cu la r  class o f  dyslexic disorder.  For technica l  reasons,  
four types  o f  s implif icat ion were made,  mean ing  tha t  an  at- 
t e m p t  to p roduce  a quanti tat ive fit to empi r ica l  results would 
not  be  appropr ia te :  

I. The words used are not a representative subset of the English 
language; important variables, such as word length, word fre- 
quency, syntactic class, and word imageability known to affect 
performance in acquired dyslexia, have not been manipulated, 
and the treatment of the semantic level--in terms related to 
probabilistic feature models--can at best provide only a crude 
approximation to the complex semantic representations of 
concrete nouns. 

2. The selection of semantic features and of the quantitative val- 
ues of numbers of units and of connections was not based on 
any empirical evidence. There is, however, some evidence that 
the qualitative results do not depend on many of the quantita- 
tive details, because we obtained similar results for an earlier 
network that was topologically broadly similar but that dif- 
fered substantially in quantitative terms. 

3. The modeling of performance on specific tasks is based on 
generally unsupported additional assumptions; in the most crit- 
ical cases, we have, however, tried to provide secondary sup- 
port for our conclusions independent of our additional assump- 
tions. 

4. In the disconnection or ablation mode, our procedure was to 
sum over l0 random samples with different specific connec- 
tions or units of the same general type lesioned in each sample. 
This can only provide an approximation to the results of an 
individual patient for which a much larger set of words is sub- 
ject to the effect of a single specific set of connections or units 
lesioned. 

Fortunately, these  s implif icat ions are not  critical,  because  
our  a im is to demons t r a t e  qualitatively s imi la r  effects to those  
ob ta ined  with acquired-dyslexic patients.  G iven  the  assump-  
t ions  present  in connec t ion i s t  model ing,  there  are na tura l  ways 
to represent  the  effects o f  lesions wi th in  the  framework.  The  
plausibil i ty o f  the  app roach  is increased i f  in terest ing neuropsy-  
chological  p h e n o m e n a  are exhibi ted in analogue  by the  model  
and  is d i m i n i s h e d  i f  they are not  found.  

One  might  argue tha t  the  type  o f  mode l ing  we have car r ied  
out  o f  the  effects o f  neurological  damage  is uncons t r a ined  and  
tha t  the  model  can  be delicately man ipu la t ed  to produce  any 
p h e n o m e n o n .  In fact, however, the  present  invest igation was 
only the  second network o f  its type  we investigated. Its pa rame-  
ters were selected on  a priori  compu ta t iona l  grounds,  not  by a 
curve-fi t t ing exercise, and  the  first network showed generally 
s imi la r  behaviors.  

Mode l ing  has a c o m p l e m e n t a r y  funct ion  for neuropsychol-  
ogy. By lesioning a complex  network tha t  is plausible on  inde- 
p e n d e n t  grounds ,  one  ob ta ins  a r icher  account  of  the  relat ion 
be tween  the  funct ional  lesion and  observed behavior  t han  is 
available when  neuropsychological  theor iz ing  is based on  the  
funct ional  archi tec ture  alone.14 More  particularly, it shows how 

,4 We are not claiming that connectionism provides the only proce- 
dure for obtaining such an account. Any fully specified mechanism 
would be equivalent in this respect. However, theories o fneuropsycho- 
logical performance based on examining damage to fully specified 
mechanisms are very few. 
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the same qualitative pattern of errors can arise from function- 
ally different lesions and how phenomena can arise in a dam- 
aged system that are far from transparent (Gregory, 1961 ). 
Consider, for instance, the category effect. On a specific level, 
the investigation provides a potential explanation for two types 
of counterintuitive phenomena that have been observed in the 
study of the acquired dyslexias. 

Neuropsychological Correspondences 

The first set of phenomena for which the network suggests an 
explanation are those associated with the symptom-complex 
deep dyslexia. The simplest is the semantic error itself. The 
network was designed with semantic features for output so that 
the explanation it provides for these errors is a special case of 
the accounts of Howard (1985 ) and Hill is, Rapp, Romani, and 
Caramazza (1990) of inaccuracy in accessing or using such 
features. Their approach was in turn derived from explanations 
based on Katz and Fodor's (1963) semantic theory, such as 
those of Marshall and Newcombe (1966) and Coltheart 
(1980b). The additional element that our explanation offers is 
the presence of a mechanism-- in  essence, the existence of at- 
tractors--resulting in the accessing of clusters of features that 
correspond closely to the meanings of words related to the tar- 
get word and the demonstration that such inaccurate access can 
follow from both partial ablation and partial disconnection. 

More critically, the network suggests an explanation for the 
co-occurrence of different types of error in a wide range of 
patients who read by the semantic route, in particular the co- 
occurrence of both semantic errors and visual errors. Coltheart 
et al. (1987) in a recent review posed the question of why ac- 
quired-dyslexic patients who produce semantic errors have al- 
ways been found to produce visual errors, but the authors were 
unable to provide a compelling answer. Although more re- 
cently, 3 patients have been described for whom the generaliza- 
tion is not correct, more than 30 patients for whom it is valid 
have been described. A third effect is that where the relative 
incidence of mixed errors (e.g., can ~ "pan") has been exam- 
ined, a higher incidence than would be expected from the com- 
bined rates of visual errors and of semantic errors has indeed 
been found (e.g., Shallice & McGill, 1978). 15 

Our investigation offers a simple answer to the mix of differ- 
ent error types so frequently observed. In the network, the repre- 
sentation of words on levels between a letter level and the se- 
mantic level has both distributed and cascade properties; that 
both of these characteristics are appropriate is supported by 
evidence from normal subjects (e.g., Johnston & McClelland, 
1980; Rumelhart & McClelland, 1982). In the present concrete 
realization of such a model, lesions anywhere in the system-- 
except disconnect (scconns)--give rise to qualitatively the same 
error pattern. Thus, a straightforward explanation exists for 
why this error pattern is so widespread even though other 
aspects of the syndrome vary across patients. It reflects a break- 
down characteristic of a network containing attractors when 
lesioned in various places. Such a mixture of error types may be 
as much a sign of the operation of a layered connectionist sys- 
tem with attractors as dissociations are of modular systems. ~6 

Two objections may be made to this analysis. Certain pa- 
tients who make semantic errors in reading aloud but who 
make hardly any visual errors have been described recently 

(Caramazza & Hillis, 1990; Hillis et al., 1990). Caramazza and 
Hillis argued that for 2 of the patients, the locus of the impair- 
ment is the phonological output lexicon. This would place it 
outside the domain of this model, which deals only with the 
process of accessing semantic representations. However, 1 
patient, KE, produced qualitatively similar semantic errors re- 
gardless of the form in which the information was presented-- 
from written words to tactually presented objects--and regard- 
less of the verbal output procedure used (writing or speaking). 
He produced virtually no visual errors. Hillis and her col- 
leagues attributed the patient's semantic errors to the loss of 
certain semantic features required by whatever transformation 
was being carried out. Now, in our simulation, the effect of 
lesioning the sememes themselves could not be examined, be- 
cause the difference between their activation and the desired 
level provided the error measure. Such a lesion would, however, 
have two indirect effects. First, it would remove input to other 
sememes through the direct sememe-sememe connections. As 
a consequence of the generally winner-take-all character of 
these interactions, this would tend to release inhibition from 
competing sememes. This would be a powerful effect, and the 
consequence would tend to be semantic errors. The second 
effect would be to reduce the input to the cleanup units. The 
closest tested analog was the disconnection of scconns. This 
disconnection, though, leads to an order of magnitude less 
errors than the other types of disconnection (see Table 4). So, if 
the two effects combine in a reasonably linear fashion, then the 
effect of a lesion to the semantic units would be to produce 
semantic errors with few, if any, visual ones. This, however, 
remains a speculation until  simulated in a network, which 
would have to be more extensive then the present one. 

A second argument that needs to be considered is that put 
forward by Gordon et al. (1987). The position they adopted for 
their deep-dyslexic patient FM was that visual errors arise from 
damage to an orthographic lexicon and semantic errors arise 
from damage at the semantic stage (see also Patterson, 1978). 
They did not discuss mixed errors. They tested their account in 

~s Absolute numbers of mixed errors comparable with those of the 
visual errors and the semantic errors are not found in patients. How- 
ever, the relative proportions will depend on the proportions of re- 
sponse types that are counted as visual errors and semantic errors (see 
the discussion relating to Equation 9). For visual errors, this chance 
value is much higher in the case of the model than in the way responses 
are normally scored for patients. 

t6 The ratio of semantic to visual errors varies considerably across 
patients. For example, Patient GR ( Marshall & Newcombe, 1966) pro- 
duced more than twice as many semantic as visual errors, but Patient 
KF (Shailice & Warrington, 1975) produced 15 times as many visual 
errors as semantic errors. In the model, disconnections to the giconns 
produce a much higher ratio of visual to semantic errors than do more 
centrally located lesions. The factor o f l3 for this ratio (see Table 4) is 
not qualitatively much different from the changes that occur among 
patients. Patients have been described who make only visual errors. 
However, in certain cases in the literature, as for neglect dyslexia (Cos- 
tello & Warrington, 1987; Ellis, Flude, & Young, 1987), it is plausible 
that the impairment lies at or before the stage at which letters are 
categorized, and in others, as for phonological alexia (Derouesn6 & 
Beauvois, 1985), the phonological route or routes may be partially 
operative so that any putative semantic error will tend to be edited out 
(see Newcombe & Marshall, 1980b). 
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two main ways. One concerned how well words that were pro- 
duced as visual error responses and as semantic error responses 
were read. The empirical effects they obtained were small and 
not completely consistent with their theoretical predictions. 
Much stronger effects were obtained to support a second pre- 
diction they made from their theory that words that give rise to 
a particular class of errors do so consistently; if another error is 
made later on the same word, it will tend to be of the same type. 
If different types of error occur from independent loci, how- 
ever, this does not explain the phenomenon described in the 
introduction of visual errors occurring more frequently on 
words in semantic classes the patient has difficulty in process- 
ing. As Gordon et al. pointed out, to explain this phenomenon 
it seems necessary to assume the existence of a cascade type of 
process. Yet, as Appendix C explains, on our model, which has 
cascade-type characteristics, a single lesion to isconns can lead 
to a consistent pattern of errors having both visual and seman- 
tic aspects. Thus, the existence of a consistent pattern of errors 
containing both semantic and visual errors does not require one 
to assume the existence of two lesions in a patient that produces 
the pattern. Thus, an explanation based on the assumption that 
the co-occurrence of the two types can arise from a single le- 
sion cannot be excluded by the observation. 

Our model exhibits another type of phenomenon for which 
patients with other types of dyslexia are more relevant. These 
effects were originally described in a semantic-access dyslexic 
patient, AR, who was unable to read a word aloud or even 
identify it (e.g., by picture-word matching) but could make ei- 
ther between-categories or within-category judgments at well 
above chance level (Warrington & Shallice, 1979). When words 
could be read aloud or identified at only about 40% correct, 
five-choice between-categories performance for unidentified 
words was 69% correct. For an equivalent level of correct re- 
sponding, disconnect(giconns) and disconnect(isconns) gave 
five-choice between-categories performances of 64% and 48% 
on trials where the word was not identified, values that are 
clearly in the same range. 

The idea that the preserved aspects of reading in semantic- 
access dyslexia might arise from activation of a subset of the 
features of a word's semantic representation has been suggested 
by Howard (1985) and Rapp and Caramazza (1989). The 
model shows that a computational explanation of this general 
type can predict performance in the appropriate quantitative 
range. More critically, it provides a surprising finding that, on 
trials where no explicit response could be made, the eight- 
choice between-categories judgments tended to be performed 
at roughly the same level as the five-choice within-category 
ones, and both were well above chance. The model therefore 
makes the counterintuitive prediction that forced-choice 
within-category judgements are at least as good as selection 
between superordinate labels. Patient AR was not tested on this 
latter form of test directly. However, Rapp and Caramazza 
(1989) showed that in a patient showing the same general phe- 
nomenon, the semantic distance between the alternatives was 
not a significant factor in performance on two-alternative 
word-picture matching. 

Rather similar effects observed in the pure alexic patients of 
Shall ice and Saffran (1986) and Coslett and Saffran (1989) are 
also relevant. When a word is presented to these patients for too 
briefa time for the letter-by-letter procedure to be used, explicit 

word identification can only rarely be achieved, but between- 
categories discrimination can be carried out at a level that is 
well above chance. Again, on the few occasions when explicit 
responses are made, both semantic errors and visual errors oc- 
cur. One appears to have an extreme form of semantic-access 
dyslexia; it would fit with how the model behaves with a severe 
lesion to, say, giconns or to the intermediate units. Most strik- 
ingly, using a word-to-picture matching test, Coslett and Saf- 
fran have found performance as good in a within-category test 
as in a between-categories one--strikingly similar, although 
not identical to the phenomena generated by the model with, 
say, a severe lesion to giconns. 

There was an additional noteworthy result obtained from the 
simulation. One surprising failure to replicate an aspect of the 
lesioned system's behavior occurred with a seemingly noncriti- 
cal change in parameters. The network was trained again with a 
new set of initial weights to check that the effects obtained were 
independent of the small, random initial values chosen for the 
weights. 17 Qualitatively, the same overall pattern was obtained, 
with one exception. 

Network A exhibited category specificity in that one particu- 
lar category, foods, was much better preserved when one 
particular lesion, disconnect(csconns), was made. Category- 
specific effects have now been found in many neurological pa- 
tients and for a wide set of categories, most of the findings 
coming from individual case studies (see Shallice, 1988, for 
review). ~a Several different types of explanation have been put 
forward (e.g., see Humphreys et al., 1988; Warrington & 
McCarthy, 1983, 1987; Warrington & Shallice, 1984). To our 
surprise, our modeling of the category-specificity effect ob- 
tained in Network A was completely absent in Network B, 
which basically differed from Network A only in the initial 
starting weights. This finding implies that the overall structure 
of the trained network may depend initially not only on the 
environment but also on the small initial weights used. This has 
the further consequence that any characterization of the effect 
in terms of the pattern of st imulus-response contingencies 
alone cannot be correct; thus, the explanation for the present 
example of category specificity must inevitably be more com- 
plex than explanations offered concerning the neurological ex- 
amples of the phenomenon. Because the attempt to provide 
simple accounts of such phenomena in patients has encoun- 
tered internal difficulties (e.g., see Hart, Berndt, & Caramazza, 
1985; Warrington & McCarthy, 1987), the presence of a far- 
from-transparent example of category specificity in our simula- 

~7 These random values are necessary in most networks to break 
symmetries among the hidden units. Because backpropagation is a 
deterministic algorithm, identically connected hidden units with iden- 
tical initial weights can never become different. 

~s An example of category specificity relevant to the categories used 
in the simulation has been obtained with certain patients with herpes 
simplex encephalitis who have a much greater difficulty identifying, 
from verbal or visual presentation, living things and foods rather than 
artifacts (Sartori & Job, 1988; Silveri & Gainotti, 1988; Warrington & 
Shallice, 1984; see also McCarthy & Warrington, 1988). By contrast, 
certain global aphasic patients have exactly the opposite pattern of 
performance in picture-word matching (Warrington & McCarthy, 
1983, 1987). Relatively limited information only is available on the 
reading of these patients. 
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tion suggests that neurological examples of the phenomena 
should be interpreted with caution. 

Conclusions 

In the present simulation, the lesioning of a connectionist 
model that maps orthographic inputs onto semantic features 
produces several counterintuitive behaviors that are also shown 
by acquired-dyslexic patients. The two main ones concerned 
the range of error types exhibited and the below-threshold 
forced-choice performance. Because the effects occurred at 
rather different densities of lesion in the model, we have in 
general treated the effects as relevant for different patients, al- 
though the semantic-access patients studied have shown both 
effects. 

The simulations were intended to relate to only certain 
aspects of the reading of the dyslexic patients we considered.~9 
Whether extrapolations from the basic approach advocated 
here can provide an account of other aspects of the syndrome 
must await more elaborate and specific simulations. However, 
there seem to be certain obvious lines of development. Thus, 
the effect of the sheer density of semantic features that a word 
possesses is a potentially important variable for predicting how 
well a word can still be processed after lesions are made; it 
would seem likely that different types of word differ markedly 
with respect to this variable (e.g., see Jones, 1985). The diffi- 
culty with abstract words and parts of speech other than nouns 
found in many dyslexic patients who cannot read by spelling- 
to-sound translation might well be explicable in related terms if 
they were modeled in an appropriate fashion. 

The relatively preserved lexical decision performance found 
in some of the patients (Coslett & Saffran, 1989) may present 
more of a problem. Our initial attempt to simulate it was not 
successful. One possibility that needs to be considered is that 
the intermediate units may form attractors, so that the familiar- 
ity of a letter string can have an effect that does not just depend 
on the familiarity of the meaning. 

Overall, a similarity exists, in the present domain, between 
the effects of lesions in a connectionist model and in certain 
types of neurological patient. Because the relevant phenomena 
are counterintuitive, this similarity strengthens the plausibility 
that the connectionist approach is capturing a key aspect of 
human cognitive processing. A central aspect of the model that 
enables it to produce the error phenomena is that it builds 
attractors to represent the meanings of words. 

19 There is no necessary conflict between an explanation of deep 
dyslexia in terms of lesions at varying points in a connectionist net- 
work and one in terms of right-hemisphere reading. The two explana- 
tions are orthogonal. If some part of a set of units--at one or more 
levels--were located in the right hemisphere, then a right-hemisphere 
reading system would correspond to the network quantitatively re- 
duced in the appropriate fashion. 
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A p p e n d i x  A 

Consider two randomly chosen points A and C in a space of dimen- 
sion N. I fB is the midpoint between A and C, then for large Nthere is a 
high probability o fB being closer to A than to any member of a set of M 
points randomly chosen from the same distribution as A and C. If this 
is the case, then a hyperspherical attractor centered on target A will 
generally be able to come close to a hyperspherical attractor centered 
on target C without intersecting similar-sized attractors centered on 
the other targets in the set. 

We are concerned with the case when the chosen points are the 
vertices of a unit hypercube, where there is a fixed probability p of 
choosing a 1 on each dimension; this approximates the semantic vec- 
tors used in our study. 

The features (dimensions) can be divided into three subsets, the 
sizes of which are denoted by r, s, and t. For the r features where A and 
C disagree, B will have a value of 0.5 and will therefore contribute 
exactly the same amount to the squared distance from any vertex. For 
the s features where A and Care both 1, B will have a value of I and will 
therefore contribute nothing to the squared distance from A or C, but 
for randomly chosen other vertices, B will produce a contribution to 
the squared distance distributed according to a binomial with parame- 

ters s and 1 - p. Similarly, for the t features where A and Care  both 0, 
the contribution for a random vertex will be binomially distributed 
with parameters t and p. 

For large N, almost all the variance in the squared distance between 
B and a randomly chosen vertex is contributed by these binomials, and 
almost none of this variance comes from the variance in the sizes ofs  
and t because of the choices of A and C. So we can use the expected 
values for s and t. If we then approximate the binomials by gaussians, 
we get the following mean and standard deviation for the squared 
distance between B and a randomly chosen vertex: 

/~ = 0.52r + s(1 - p) + tp, a = Vsp(1 - p) + tp(l - p). 

For N = 68 and p = 0.22, the expected values o f s  and t are 3.3 and 
41.4, respectively. With these values for s and t, the expected squared 
distance of a random vertex from B is 17.5 with a standard deviation of 
2.8. For A or C, the expected squared distance is 5.82. 

The assumptions we made allow us to get a quantitative insight into 
the relatively large distances from B of  other, random vertices. In fact, 
no vertex can actually be closer to B than either A or C. 

(Appendixes continue on next page) 
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Table  B 1 
Semantic Features 

A p p e n d i x  B 

No. Feature No. Feature 

1 max-size-less-foot 
2 max-size-foot-to-two-yards 
3 max-size-greater-two-yards 

4 main-shape-2D 
5 main-shape-3D 

6 cross-section-rectangular 
7 cross-section-circular 

8 has-legs 

9 white 
10 brown 
11 green 
12 color-other-strong 
13 varied-colors 
14 transparent 
15 dark 

16 hard 
17 soft 

18 sweet 
19 tastes-strong 

20 moves 

21 indoors 
22 in-kitchen 
23 in-bedroom 
24 in-living-room 
25 on-ground 
26 on-surface 
27 otherwise-supported 
28 in-country 
29 found-woods 
30 found-near-sea 
31 found-near-streams 
32 found-mountains 
33 found-on-farms 

34 partof-limb 
35 surfaceof-body 
36 interiorof-body 
37 above-waist 

38 mammal 
39 wild 
40 fierce 
41 does-fly 
42 does-swim 
43 does-run 
44 living 
45 carnivore 

46 madeof-metal 
47 madeof-wood 
48 madeof-liquid 
49 madeof-other-nonliving 
50 gotfrom-plants 
51 gotfrom-animals 

52 pleasant 
53 unpleasant 

54 man-made 
55 container 
56 for-cooking 
57 for-eating-drinking 
58 for-other 
59 used-alone 
60 for-breakfast 
61 for-lunch-dinner 
62 for-snack 
63 for-drink 

64 particulady-assoc-child 
65 particularly-assoc-adult 

66 used-for-recreation 

67 human 

68 component 

Note. Directly interconnected sememes occur within the same section. 
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Table B2 
The Words and Their Positive Semantic Features 

95 

Word Features from Table B I 

Bed 2 4 6 8 13 17 21 23 25 47 50 52 54 58 
Can 1 5 7 13 16 21 22 26 46 54 55 56 57 59 61 62 63 
Cot 2 5 6 13 17 21 23 25 47 50 52 54 58 64 
Cup 1 5 7 9 16 21 22 24 27 49 54 55 56 57 60 62 63 
Gem 1 5 13 14 16 21 23 24 27 49 52 54 58 59 65 
Mat 2 4 6 10 15 17 21 22 24 25 26 49 54 57 58 
Mug 1 5 7 13 16 21 22 24 26 49 54 55 57 59 60 62 63 
Pan 2 5 7 9 16 21 22 26 46 54 55 56 61 65 
Bug 1 5 8 13 15 20 25 28 29 31 33 39 41 43 44 53 

Cat 2 5 7 8 13 15 17 20 21 22 24 25 28 33 38 40 43 44 
Cow 3 5 7 8 13 15 20 25 28 31 33 38 43 44 52 57 65 
Dog 2 5 7 8 10 20 21 22 24 25 28 33 38 40 42 43 44 45 
Hawk 2 5 8 10 15 20 27 28 29 32 39 40 41 44 45 66 
Pig 2 5 7 8 12 17 20 25 28 33 38 43 44 57 65 
Ram 2 5 7 8 9 20 25 28 31 32 33 38 40 43 44 65 
Rat 1 5 7 8 10 15 20 25 28 33 38 39 40 42 43 44 45 53 

Back 2 4 6 12 16 20 21 27 35 37 44 67 68 
Bone 1 5 7 9 16 21 27 34 36 37 44 67 68 
Gut 3 4 7 9 17 21 27 36 37 44 53 67 68 
Hip 1 4 12 16 20 21 27 36 44 67 68 
Leg 2 5 7 12 16 20 21 25 34 35 36 44 67 68 
Lip 1 4 6 12 17 20 21 27 35 37 44 67 68 
Pore 1 4 7 12 17 21 27 34 35 37 44 67 68 
Rib 1 4 16 21 22 23 24 27 36 37 44 67 68 

Bun 1 5 7 10 17 18 19 21 22 26 50 52 54 62 64 
Ham l 5 12 15 17 19 21 22 26 33 51 52 54 56 57 61 62 
Hock 2 5 7 14 19 21 22 26 48 50 52 54 57 59 61 63 65 
Lime 1 5 7 11 17 18 19 21 22 26 44 50 52 57 59 61 62 
Nut 1 5 7 10 15 16 19 21 22 24 26 28 29 44 50 52 57 59 
Pop 2 5 7 14 18 19 20 21 22 24 26 48 52 54 57 59 62 63 
Pork 1 5 9 17 19 21 22 26 33 51 52 56 57 61 
Rum 2 5 7 14 19 21 24 26 48 50 52 54 57 59 63 65 

Bog 3 4 11 17 20 25 28 31 32 39 48 49 53 
Dew 1 4 14 17 25 28 29 31 32 33 48 49 52 
Dune 3 5 10 17 25 28 30 39 49 52 66 
Log 2 5 7 10 15 16 25 28 29 33 47 50 58 
Mud 3 4 10 15 17 20 25 28 29 30 31 32 33 49 53 58 64 
Park 3 4 11 25 28 31 39 49 50 52 54 58 64 66 
Rock 3 5 10 15 16 25 28 30 31 32 39 49 58 66 
Tor 3 5 10 15 16 25 28 32 39 49 52 66 
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A p p e n d i x  C 

The consistency of error type can be examined for a particular lesion 
site that Barry (1985) and Gordon, Goodman-Schulman, and Cara- 
mazza (1987) have examined in deep dyslexia. Gordon et al. have ar- 
gued that it is a theoretically important variable for determining the 
locus of lesion sites responsible for the visual errors and for the seman- 
tic errors. In the model, some lesion sites produce inconsistent error 
types, but others produce consistent ones. Twenty trials per word were 
available for two lesions that produce a reasonable number of the three 
main types of error: disconnect (isconns, 0.2) and disconnect (giconns, 
0.3 ). The nature ofseconcl occurrence of an error on a particular word 
was compared with the first occurence of an error on that word. For 
the former lesion type, 10 of 13 words produced at least two or more 
errors that were consistent in their error type (3 semantic, 5 mixed, and 
2 visual; C = 0.71, significantly different from 0, p < .01 ). However, for 

the latter lesion type, only 5 of 14 were consistent, which is very close 
to the chance value (4.1 of 14). Repetition in the disconnection proce- 
dure in fact gives rise to different lesions, albeit qualitatively and quan- 
titatively equivalent ones. However, this does not affect the general 
point made in the Discussion section concerning inferences that one 
can make about location of lesion from consistency of error pattern. If 
different lesions at the same locus can give consistent performance 
across words as far as error type is concerned, then presumably so will 
the identical lesion. 
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