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Distributed Memory and the Representation 
of General and Specific Information 

J a m e s  L .  M c C l e l l a n d  a n d  D a v i d  E. R u m e l h a r t  
University of California, San Diego 

We describe a distributed model of information processing and memory and 
apply it to the representation of general and specific information. The model 
consists of a large number of simple processing elements which send excitatory 
and inhibitory signals to each other via modifiable connections. Information 
processing is thought of as the process whereby patterns of activation are formed 
over the units in the model through their excitatory and inhibitory interactions. 
The memory trace of a processing event is the change or increment to the 
strengths of the interconnections that results from the processing event. The 
traces of separate events are superimposed on each other in the values of the 
connection strengths that result from the entire set of traces stored in the memory. 
The model is applied to a number of findings related to the question of whether 
we store abstract representations or an enumeration of specific experiences in 
memory. The model simulates the results of a number of important experiments 
which have been taken as evidence for the enumeration of specific experiences. 
At the same time, it shows how the functional equivalent of abstract representa- 
t ions-prototypes ,  logogens, and even rules--can emerge from the superposition 
of traces of specific experiences, when the conditions are right for this to happen. 
In essence, the model captures the structure present in a set of input patterns; 
thus, it behaves as though it had learned prototypes or rules, to the extent that 
the structure of the environment it has learned about can be captured by 
describing it in terms of these abstractions. 

In  the  late 1960s and  early 1970s a n u m b e r  
o f  exper imenters ,  using a var ie ty  o f  different 
tasks, demons t r a t ed  tha t  subjects  could  learn 
th rough  exper ience  with exempla r s  o f  a cat- 
egory to respond  b e t t e r - - m o r e  accurately,  or  
more  r a p i d l y - - t o  the p ro to type  than  to  any 
o f  the pa r t i cu la r  exemplars .  The  seminal  
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demons t r a t i on  o f  this  basic po in t  comes  f rom 
the work o f  Posner  and  Keele  (1968, 1970). 
Us ing  a ca tegor iza t ion  task, they found  that  
there  were some condi t ions  in which  subjects  
ca tegor ized the p ro to type  o f  a ca tegory more  
accura te ly  than  the pa r t i cu la r  exempla r s  o f  
the  category tha t  they had  previously  seen. 
This  work, and  m a n y  other  re la ted experi-  
ments ,  suppor t ed  the deve lopment  o f  the 
view tha t  m e m o r y  by its basic na tu re  some-  
how abstracts  the centra l  t endency  o f  a set o f  
d isparate  experiences,  and  gives relatively little 
weight to the specific exper iences  tha t  gave 
rise to these abstract ions.  

Recently,  however, some have come to 
quest ion this "abs t rac t ive"  po in t  o f  view, for 
two reasons.  First ,  specific events and  expe-  
r iences clearly play a p r o m i n e n t  role in m e m -  
ory  and learning.  Expe r imen ta l  demons t ra -  
t ions o f  the i m p o r t a n c e  o f  specific s t imulus  
events even in tasks which have been  thought  
to involve abs t rac t ion  o f  a concept  or  rule  
are  now legion. Responses  in ca tegor iza t ion  
tasks (Brooks,  1978; M e d i n &  Shaffer, 1978), 
perceptual  identif ication tasks (Jacoby, 1983a, 
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1983b; Whittlesea, 1983), and pronunciation 
tasks (Glushko, 1979) all seem to be quite 
sensitive to the congruity between particular 
training stimuli and particular test stimuli, 
in ways which most abstraction models would 
not expect. 

At the same time, a number of  models 
have been proposed in which behavior which 
has often been characterized as rule-based or 
concept-based is attributed to a process that 
makes use of stored traces of specific events 
or specific exemplars of  the concepts or rules. 
According to this class of models, the appar- 
ently rule-based or concept-based behavior 
emerges from what might be called a con- 
spiracy of individual memory traces or from 
a sampling of one from the set of  such traces. 
Models of  this class include the Medin and 
Shaffer (1978) context model, Hintzman's 
(1983) multiple trace model, and Whittlesea's 
(1983) episode model. This trend is also 
exemplified by our interactive activation 
model of  word perception (McClelland & 
Rumelhart,  1981; Rumelhart & McClelland, 
1981, t982), and an extension of the inter- 
active activation model to generalization from 
exemplars (McClelland, 1981). 

One feature of some of these exemplar- 
based models troubles us. Many of them are 
internally inconsistent with respect to the 
issue of  abstraction. Thus, though our word 
perception model assumes that linguistic rules 
emerge from a conspiracy of partial activa- 
tions of  detectors for particular words, thereby 
eliminating the need for abstraction of  rules, 
the assumption that there is a single detector 
for each word implicitly assumes that there 
is an abstraction process that lumps each 
occurrence of  the same word into the same 
single detector unit. Thus, the model has its 
abstraction and creates it too, though at 
slightly different levels. 

One logically coherent response to this 
inconsistency is to simply say that each word 
or other representational object is itself a 
conspiracy of the entire ensemble of memory 
traces of  the different individual experiences 
we have had with that unit. We will call this 
view the enumeration of specific experiences 
view. It is exemplified most clearly by Jacoby 
( 1983a, 1983b), Hintzman (1983), and Whit- 
tlesea (1983). 

As the papers just mentioned demonstrate, 
enumeration of  specific experiences can work 
quite well as an account of  quite a number 
of empirical findings. However, there still 
seems to be one drawback. Such models seem 
to require an unlimited amount  of storage 
capacity, as well as mechanisms for searching 
an almost unlimited mass of  data. This is 
especially true when we consider that the 
primitives out of which we normally assume 
one experience is built are themselves ab- 
stractions. For example, a word is a sequence 
of  letters, or a sentence is a sequence of  
words. Are we to believe that all of  these 
abstractions are mere notational conveniences 
for the theorist, and that every event is stored 
as an extremely rich (obviously structured) 
representation of  the event, with no abstrac- 
tion? 

In this article, we consider an alternative 
conceptualization: a distributed, superposi- 
tional approach to memory. This view is 
similar to the separate enumeration of expe- 
riences view in some respects, but not in all. 
On both views, memory consists of  traces 
resulting from specific experiences; and on 
both views, generalizations emerge from the 
superposition of  these specific memory traces. 
Our model differs, though, from the enumer- 
ation of specific experiences in assuming that 
the superposition of  traces occurs at the time 
of storage. We do not keep each trace in a 
separate place, but rather we superimpose 
them so that what the memory contains is a 
composite. 

Our theme will be to show that distributed 
models provide a way to resolve the abstrac- 
tion-representation of specifics dilemma. 
With a distributed model, the superposition 
of  traces automatically results in abstraction 
though it can still preserve to some extent 
the idiosyncrasies of  specific events and ex- 
periences, or of  specific recurring subclasses 
of events and experiences. 

We will begin by introducing a specific 
version of  a distributed model of memory. 
We will show how it works and describe some 
of its basic properties. We will show how our 
model can account for several recent findings 
(Salasoo, Shiffrin, & Feustel, 1985; Whittlesea, 
1983), on the effects of  specific experiences 
on later performance, and the conditions 
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under which functional equivalents of abstract 
representations such as prototypes or logogens 
emerge. The discussion considers generaliza- 
tions of the approach to the semantic-episodic 
distinction and the acquisition of linguistic 
rule systems, and considers reasons for pre- 
ferring a distributed-superpositional memory 
over other models. 

Previous, related models. Before we get 
down to work, some important credits are in 
order. Our distributed model draws heavily 
from the work of  Anderson (e.g., 1977, 1983; 
Anderson, Silverstein, Ritz, & Jones, 1977; 
Knapp & Anderson, 1984) and Hinton 
(1981a). We have adopted and synthesized 
what we found to be the most useful aspects 
of  their distinct but related models, preserving 
(we hope) the basic spirit of  both. We view 
our model as an exemplar of  a class of  
existing models whose exploration Hinton, 
Anderson, Kohonen (e.g., Kohonen, 1977; 
Kohonen, Oja, & Lehtio, 1981), and others 
have pioneered. A useful review of  prior work 
in this area can be obtained from Anderson 
and Hinton (1981) and other articles in the 
volume edited by Hinton and Anderson 
(1981). Some points similar to some of these 
we will be making have recently been covered 
in the papers of  Murdock (1982) and Eich 
(1982), though the distributed representations 
we use are different in important ways from 
the representations used by these other au- 
thors. 

Our distributed model is not a complete 
theory of  human information processing and 
memory. It is a model of the internal structure 
of  some components of  information process- 
ing, in particular those concerned with the 
retrieval and use of  prior experience. The 
model does not specify in and of  itself how 
these acts of retrieval and use are planned, 
sequenced, and organized into coherent pat- 
terns of  behavior. 

A Distributed Model of  Memory 

General Properties 

Our model adheres to the following general 
assumptions, some of  which are shared with 
several other distributed models of  processing 
and memory. 

Simple, highly interconnected units. The 
processing system consists of a collection of 
simple processing units, each interconnected 
with many other units. The units take on 
activation values, and communicate with 
other units by sending signals modulated by 
weights associated with the connections be- 
tween the units. Sometimes, we may think of  
the units as corresponding to particular rep- 
resentational primitives, but they need not. 
For example, even what we might consider 
to be a primitive feature of  something, like 
having a particular color, might be a pattern 
of  activation over a collection of units. 

Modular structure. We assume that the 
units are organized into modules. Each mod- 
ule receives inputs from other modules, the 
units within the  module are richly intercon- 
nected with each other, and they send outputs 
to other modules. Figure 1 illustrates the 
internal structure of  a very simple module, 
and Figure 2 illustrates some hypothetical 
interconnections between a number of  mod- 
ules. Both figures grossly underrepresent our 
view of  the numbers of units per module and 
the number of  modules. We would imagine 
that there would be thousands to millions of 
units per module and many hundreds or 
perhaps many thousands of partially redun- 
dant modules in anything close to a complete 
memory system. 

The state of  each module represents a 
synthesis of the states of  all of  the modules 
it receives inputs from. Some of the inputs 
will be from relatively more sensory modules, 
closer to the sensory end-organs of one mo- 
dality or another. Others will come from 
relatively more abstract modules, which 
themselves receive inputs from and send out- 
puts to other modules placed at the abstract 
end of several different modalities. Thus, 
each module combines a number of  different 
sources of information. 

Mental state as pattern of activation. In a 
distributed memory system, a mental state is 
a pattern of  activation over the units in some 
subset of  the modules. The patterns in the 
different modules capture different aspects of 
the content of the mental states in a partially 
overlapping fashion. Alternative mental states 
are simply alternative patterns of activation 
over the modules. Information processing is 
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Figure 1. A simple information processing module, consisting of a small ensemble of eight processing 
units. [Each unit receives inputs from other modules (indicated by the single input impinging on the input 
line of the node from the left; this can stand for a number of converging input signals from several nodes 
outside the module) and sends outputs to other modules (indicated by the output line proceeding to the 
right from each unit). Each unit also has a modifiable connection to all the other units in the same 
module, as indicated by the branches of the output lines that loop back onto the input lines leading into 
each unit. All connections, which may be positive or negative, are represented by dots.] 

the  process  o f  evolut ion  in t ime  o f  menta l  
states. 

Units play specific roles within patterns. 
A pat te rn  o f  act ivat ion only counts  as the 
same as another  i f  the same units  are involved. 

Figure 2. An illustrative diagram showing several modules 
and interconnections among them. (Arrows between 
modules simply indicate that some of  the nodes in one 
module send inputs to some of  the nodes in the other. 
The exact number  and organization o f  modules is of  
course unknown; the figure is simply intended to be 
suggestive.) 

The  reason for this  is tha t  the knowledge 
bui l t  in to  th e system for recrea t ing  the pat-  
terns is bui l t  in to  the set o f  in te rconnec t ions  
among  the units,  as we will expla in  later. For  
a pa t te rn  to  access the r ight  knowledge it 
must  arise on the appropr i a t e  units.  In this  
sense, the uni ts  play specific roles in the  
patterns.  Obviously,  a system of  this  sort  is 
useless wi thout  sophis t ica ted  perceptua l  pro-  
cessing mechan i sms  at  the interface between 
m e m o r y  and the outside world, so that  s imilar  
inpu t  pa t te rns  ar is ing at different locat ions  
in the world can be m a p p e d  into  the same 
set o f  uni ts  internally.  Such mechan i sms  are 
outside the scope o f  this ar t ic le  (but  see 
Hin ton ,  1981b; McCle l land ,  1985). 

Memory traces as changes in the weights. 
Patterns  o f  act ivat ion come and go, leaving 
traces beh ind  when they have passed. W h a t  
are  the traces? They  are  changes in the 
strengths or  weights of  the connec t ions  be- 
tween the uni ts  in the modules .  

This  view of  the  na ture  o f  the  m e m o r y  
t race clearly sets these k inds  o f  mode l s  apa r t  
f rom t rad i t iona l  models  o f  m e m o r y  in which 
some copy o f  the "ac t ive"  pa t te rn  is general ly 
thought  o f  as being s tored directly. Ins tead  
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of  this, what is actually stored in our model 
is changes in the connection strengths. These 
changes are derived from the presented pat- 
tern, and are arranged in such a way that, 
when a part  of  a known pattern is presented 
for processing, the interconnection strengths 
cause the rest o f  the pattern to be reinstated. 
Thus, although the memory  trace is not a 
copy of  the learned pattern, it is something 
from which a replica of  that pattern can be 
recreated. As we already said, each memory  
trace is distributed over many  different con- 
nections, and each connection participates in 
many different memory  traces. The traces of  
different mental states are therefore super- 
imposed in the same set o f  weights. Surpris- 
ingly enough, as we will see in several ex- 
amples, the connections between the units in 
a single module can store the information 
needed to complete many  different familiar 
patterns. 

Retrieval as reinstatement of  prior pattern 
of  activation. Retrieval amounts  to partial 
reinstatement of  a mental state, using a cue 
which is a fragment of  the original state. For 
any given module, we can see the cues as 
originating from outside of  it. Some cues 
could arise ultimately from sensory input. 
Others would arise from the results of  pre- 
vious retrieval operations fed back to the 
memory  system under the control of  a search 
or retrieval plan. It would be premature to 
speculate on how such schemes would be 
implemented in this kind of  a model, but it 
is clear that they must exist. 

Detailed Assumptions 

In the rest of  our presentation, we will be 
focusing on operations that take place within 
a single module. This obviously oversimplifies 
the behavior of  a complete memory  system 
because the modules are assumed to be in 
continuous interaction. The simplification is 
justified, however, in that it allows us to focus 
on some of  the basic properties of  distributed 
memory  that are visible even without these 
interactions with other modules. 

Let us look, therefore, at the internal struc- 
ture of  one very simple module, as shown in 
Figure 1. Again, our image is that in a real 
system there would be much larger numbers 
of  units. We have restricted our analysis to 

small numbers simply to illustrate basic prin- 
ciples as clearly as possible; this also helps to 
keep the. running time of  simulations in 
bounds. 

Activation values. The units take on acti- 
vation values which range from - 1  to + 1. 
Zero represents in this case a neutral resting 
value, toward which the activations of  the 
units tend to decay. 

Inputs, outputs, and internal connections. 
Each unit receives input from other modules 
and sends output to other modules. For the 
present, we assume that the inputs from other 
modules occur at connections whose weights 
are fixed. In the simulations, we treat the 
input from outside the module as a fixed 
pattern, ignoring (for simplicity) the fact that 
the input pattern evolves in t ime and might 
be affected by feedback from the module 
under study. Although the input to each unit 
might arise from a combination of  sources 
in other modules, we can lump the external 
input to each unit into a single real valued 
number  representing the combined effects of  
all components of  the external input. In 
addition to extra-modular connections, each 
unit is connected to all other units in the 
module via a weighted connection. The 
weights on these connections are modifiable, 
as described later. The weights can take on 
any real values, positive, negative, or 0. There 
is no connection from a unit onto itself. 

The processing cycle. Processing within a 
module takes place as follows. Time is divided 
into discrete ticks. An input pattern is pre- 
sented at some point in t ime over some or 
all of  the input lines to the module and is 
then left on for several ticks, until the pattern 
of  activation it produces settles down and 
stops changing. 

Each tick is divided into two phases. In 
the first phase, each unit determines its net 
input, based on the external input to the unit 
and activations of  all of  the units at the end 
of the preceding tick modulated by the weight 
coefficients which determine the strength and 
direction of each unit 's effect on every other. 

For mathematical  precision, consider two 
units in our module, and call one of  them 
unit i, and the other unit j. The input to unit 
i from unit j ,  written i o is just 

iij = ajw~j, 
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where a t is the activation of unit j, and wij is 
the weight constant modulating the effect of  
unit j on unit i. The total input to unit i 
from all other units internal to the module, 
ii, is then just the sum of  all of  these separate 
inputs: 

ii = ~ iij. 
J 

Here, j ranges over all units in the module 
other than i. This sum is then added to the 
e x t e r n a l  input to the unit, arising from outside 
the module, to obtain the net input to unit 
i, hi: 

ni = ii + e~, 

where ei is just the lumped external input to 
unit i. 

In the second phase, the activations of the 
units are updated. If the net input is positive, 
the activation of the unit is incremented by 
an amount proportional to the distance left 
to the ceiling activation level of  + 1.0. If the 
net input is negative, the activation is decre- 
mented by an amount proportional to the 
distance left to the floor activation level of 
-1 .0 .  There is also a decay factor which 
tends to pull the activation of  the unit back 
toward the resting level of 0. 

Mathematically, we can express these as- 
sumptions as follows: For unit i, if  ni > 0, 

di = E n i ( 1  - ai) - D a i .  

If  ni ~ 0, 

di = E n i [ a i  - ( -  1)] - D a  i. 

In these equations, E and D are global pa- 
rameters which apply to all units, and set the 
rates of  excitation and decay, respectively. 
The term ag is the activation of unit i at the 
end of the previous cycle, and fii is the change 
in ai; that is, it is the amount  added to (or, 
if negative, subtracted from) the old value a i 
to determine its new value for the next cycle. 

Given a fixed set of  inputs to a particular 
unit, its activation level will be driven up or 
down in response until the activation reaches 
the point where the incremental effects of the 
input are balanced by the decay. In practice, 
of course, the situation is complicated by the 
fact that as each units' activation is changing 
it alters the input to the others. Thus, it is 
necessary to run the simulation to see how 

the system will behave for any given set of  
inputs and a n y  given set of  weights. In all 
the simulations reported here, the model is 
allowed to run for 50 cycles, which is consid- 
erably more than enough for it to achieve a 
stable pattern of activation over all the units. 

M e m o r y  traces.  The memory trace of  a 
particular pattern of activation is a set of  
changes in the entire set of weights in the 
module. We call the whole set of changes an 
i n c r e m e n t  to the weights. After a stable pattern 
of activation is achieved, weight adjustment 
takes place. This is thought of  as occurring 
simultaneously for all of  the connections in 
the module. 

T h e  D e l t a  rule. The rule that determines 
the size and direction (up or down) of the 
change at each connection is the crux of  the 
model. The idea is often difficult to grasp on 
first reading, but once it is understood it 
seems very simple, and it directly captures 
the goal of  facilitating the completion of the 
pattern, given some part of  the pattern as a 
retrieval or completion cue. 

To allow each part of a pattern to recon- 
struct the rest of  the pattern, we simply want 
to set up the internal connections among the 
units in the module so that when part of  the 
pattern is presented, activating some of  the 
units in the module, the internal connections 
will lead the active units to tend to reproduce 
the rest. To do this, we want to make the 
internal input to each unit have the same 
effect on the unit that the external input has 
on the unit. That is, given a particular pattern 
to be stored, we want to find a set of connec- 
tions such that the internal input to each 
unit from all of  the other units matches the 
external input to that unit. The connection 
change procedure we will describe has the 
effect of  moving the weights of all the con- 
nections in the direction of  achieving this 
goal. 

The first step in weight adjustment is to 
see how well the module is already doing. If 
the network is already matching the external 
input to each unit with the internal input 
from the other units, the weights do not need 
to be changed. To get an index of how well 
the network is already doing at matching its 
excitatory input, we assume that each unit i 
computes the difference Ai between its exter- 
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hal input and the net internal input to the 
unit from the other units in the module: 

Ai = e i -  ii. 

In determining the activation value of  the 
unit, we added the external input together 
with the internal input. Now, in adjusting the 
weights, we are taking the difference between 
these two terms. This implies that the unit 
must be able to aggregate all inputs for 
purposes of  determining its activation, but it 
must be able to distinguish between external 
and internal inputs for purposes of adjusting 
its weights. 

Let us consider the term Ai for a moment. 
If it is positive, the internal input is not 
activating the unit enough to match the ex- 
ternal input to the unit. If negative, it is 
activating the unit too much. If zero, every- 
thing is fine and we do not want to change 
anything. Thus, Ai determines the magnitude 
and direction of  the overall change that needs 
to be made in the internal input to unit i. 
To achieve this overall effect, the individual 
weights are then adjusted according to the 
following formula: 

wij = SA~aj. 

The1 parameter S is just a global strength 
parameter which regulates the overall mag- 
nitude of  the adjustments of the weights; ff,~ 
is the change in the weight to i from j. 

We call this weight modification rule the 
delta rule. It has all the intended conse- 
quences; that is, it tends to drive the weights 
in the direction of the right values to make 
the internal inputs to a unit match the exter- 
nal inputs. For example, consider the case in 
which Ai is positive and aj is positive. In this 
case, the value of A~ tells us that unit i is not 
receiving enough excitatory input, and the 
value of  aj tells us that unit j has positive 
activation. In this case, the delta rule will 
increase the weight from j to i. The result 
will be that the next time unit j has a positive 
activation, its excitatory effect on unit i will 
be increased, thereby reducing At. 

Similar reasoning applies to cases where 
Ai is negative, aj is negative, or both are 
negative. Of  course, when either A~ or aj is 0, 
w U is not changed. In the first case, there is 
no error to compensate for; in the second 

case, a change in the weight will have no 
effect the next time unit j has the same 
activation value. 

What  the delta rule can and cannot do. 
The delta rule is a continuous variant of  the 
perceptron convergence procedure (Rosen- 
blatt, 1962), and has been independently 
invented many times (see Sutton & Barto, 
1981, for a discussion). Its popularity is based 
on the fact that it is an error-correcting rule, 
unlike the Hebb rule used until recently by 
Anderson (1977; Anderson et al., 1977). A 
number of interesting theorems have been 
proven about this rule (Kohonen, 1977; Stone, 
1985). Basically, the important result is that, 
for a set of patterns which we present repeat- 
edly to a module, if there is a set of weights 
which will allow the system to reduce A to 0 
for each unit in each pattern, this rule will 
find it through repeated exposure to all of  
the members of the set of  patterns. 

It is important to note that the existence 
of  a set of  weights that will allow A to be 
reduced to 0 is not guaranteed, but depends 
on the structure inherent in the set of patterns 
which the model is given to learn. To be 
perfectly learnable by our model, the patterns 
must conform to the following linear predict- 
ability constraint: 

Over the entire set of  patterns, the external 
input to each unit must be predictable 
from a linear combination of the activations 
of  every other unit. 

This is an important constraint, for there are 
many sets of  patterns that violate it. However, 
it is necessary to distinguish between the 
patterns used inside the model, and the stim- 
ulus patterns to which human observers might 
be exposed in experiments, as described by 
psychologists. For our model to work, it is 
important for patterns to be assigned to 
stimuli in a way that will allow them to be 
learned. 

A crucial issue, then, is the exact manner 
in which the stimulus patterns are encoded. 
As a rule of thumb, an encoding which treats 
each dimension or aspect of a stimulus sep- 
arately is unlikely to be sufficient; what is 
required is a context sensitive encoding, such 
that the representation of  each aspect is col- 
ored by the other aspects. For a full discussion 
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Table 1 
Behavior of an 8-Unit Distributed Memory Module 

Case Input or response for each unit 

Pattern 1 
The Pattern: + - + - + + - - 

Response to Pattern before 
learning +.5 - . 5  +.5 - . 5  +.5 +.5 - . 5  - . 5  

Response to Pattern after 
10 learning trials +.7 - . 7  +.7 - . 7  +.7 +.7 - . 7  - . 7  

Test Input (Incomplete version 
of Pattern) + - + - 

Response +.6 -.6 +.6 -.6 +.4 +.4 -.4 -.4 
Test Input (Distortion of 

Pattern) + - + - + + - +* 
Response +.6 - . 6  +.6 - . 6  +.6 +.6 - . 6  +. 1 

Pattern 2 
The Pattern: + + - - - + - + 

Response to Pattern with 
weights learned for 
Pattern 1 +.5 +.5 - . 5  - . 5  - . 5  +.5 - . 5  +.5 

Response to Pattern after 
10 learning trials +.7 +.7 - . 7  - . 7  - . 7  +.7 - . 7  +.7 

Retest of response to 
Pattern 1 +.7 - . 7  +.7 - . 7  +.7 +.7 - . 7  - . 7  

o f  this issue, see Hinton, McClelland, and 
Rumelhar t  (in press). 

Decay in the increments to the weights. 
We assume that each trace or increment 
undergoes a decay process though the rate of  
decay of  the increments is assumed to be 
much slower than the rate of  decay of patterns 
of  activation. Following a number  of  theorists 
(e.g., Wickelgren, 1979), we imagine that 
traces at first decay rapidly, but then the 
remaining portion becomes more and more 
resistant to further decay. Whether it ever 
reaches a point where it is no longer decaying 
at all we do not know. The basic effect of  
this assumption is that individual inputs exert 
large short-term effects on the weights, but 
after they decay the residual effect is consid- 
erably smaller. The fact that each increment 
has its own temporal  history increases the 
complexity of  computer  simulations enor- 
mously. In all of  the particular cases to be 
examined, we will therefore specify simplified 
assumptions to keep the simulations tractable. 

Illustrative Examples 

In this section, we describe a few illustrative 
examples to give the reader a feel for how we 

use the model, and to illustrate key aspects 
of  its behavior. 

Storage and retrieval of several patterns in 
a single memory module. First, we consider 
the storage and retrieval of  two patterns in a 
single module of  8 units. Our basic airia is to 
show how several distinct patterns of  activa- 
tion can all be stored in the same set of  
weights, by what Lashley (1950) called a kind 
of  algebraic summation,  and not interfere 
with each other. 

Before the first presentation of  either pat- 
tern, we start out with all the weights set to 
0. The first pattern is given at the top of  
Table 1. It is an arrangement of  + 1 and - 1  
inputs to the eight units in the module. (In 
Table 1, the Is are suppressed in the inputs 
for clarity). When we present the first pattern 
to this module, the resulting activation values 
simply reflect the effects of  the inputs them- 
selves because none of  the units are yet 
influencing any of  the others. 

Then, we teach the module this pattern by 
presenting it to the module 10 times. Each 
time, after the pattern of  activation has had 
plenty of  t ime to settle down, we adjust the 
weights. The next t ime we present the com- 
plete pattern after the 10 learning trials, the 
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module 's  response is enhanced, compared 
with the earlier situation. That  is, the activa- 
tion values are increased in magnitude, owing 
to the combined effects of  the external and 
internal inputs to each of the units. I f  we 
present an incomplete part  of  the pattern, 
the module can complete it; if  we distort the 
pattern, the module tends to drive the acti- 
vation back  in the direction it thinks it ought 
to have. Of  course, the magnitudes of  these 
effects depend on parameters; but the basic 
nature of  the effects is independent of  these 
details. 

Figure 3 shows the weights our learning 
p rocedure  has assigned. Actual numerical 
values have been suppressed to emphasize 
the basic pattern of  excitatory and inhibitory 
influences. In this example, all the numerical 
values are identical. The pattern of  + and - 
signs simply gives the pattern of  pairwise 
correlations of  the elements. This is as it 
should be to allow pattern enhancement, 
completion, and noise elimination. Units 
which have the same activation in the pattern 
have positive weights, so that when one is 
activated it will tend to activate the other, 
and when one is inhibited it will tend to 
inhibit the other. Units which have different 
activations in the pattern have negative 
weights, so that when one is activated it will 
inhibit the other and vice versa. 

What  happens when we present a new 
pattern, dissimilar to the first? This is illus- 
trated in the lower portion of  Table 1. At 
first, the network responds to it just as though 
it knew nothing at all: The activations simply 
reflect the direct effects of  the input, as they 
would in a module with all 0 weights. The 
reason is simply that the effects of  the weights 
already in the network cancel each other out. 
This is a result of  the fact that the two 
patterns are maximally dissimilar from each 
other. If  the patterns had been more similar, 
there would not have been this complete 
cancellation of  effects. 

Now we learn the new pattern, presenting 
it 10 times and adjusting the weights each 
time. The resulting weights (Figure 3) repre- 
sent the sum of  the weights for Patterns 1 
and 2. The response to the new pattern is 
enhanced, as shown in Table 1. The response 
to the old, previously learned pattern is not 

Pattern 1 Pa t t e rn  2 

+ -  + - + + - -  + + - - -  + -  + 

We IG i ' l t s  f o r  Ps t t em  1 Weights for Pattern 2 Compos i l r e  WetgtltS 
tO t  BC4h Pa t t l cns  

1 2 3 4 5 6 7 8  1 2 3 4 5 6 7 6  1 2 3 4 5 8 7 8  

_ + _ + + _ _  + - - -  + -  + __  ++ - -++  
+ - -  + + + + + - 

3 + -  - + + . . . .  + + -  + -  - -  + +  - -  

4 - +  - - - + + - - + + - + . . . . .  + +  

5 + -  + - + . . . .  + + - + - + + - - + +  

+ -  + + - -  + + . . . .  + . . . .  

7 -+  - + - - + - - + + + . . . .  ++  ++  - -  

8 -+  + + + + - - -  + . . . .  

Figure 3. Weights acquired in learning Pattern 1 and 
Pattern 2 separately, and the composite weights resulting 
from learning both. (The weight in a given cell reflects 
the strength of the connection from the corresponding 
column unit to the corresponding row unit. Only the 
sign and relative magnitude of the weights are indicated. 
A blank indicates a weight of 0; + and - signify positive 
and negative, with a double symbol, ++ or - - ,  repre- 
senting a value twice as large as a single symbol + or - .  

affected. The module will now show enhance- 
ment, completion, and noise elimination for 
both patterns though these properties are not 
illustrated in Table 1. 

Thus, we see that more than one pattern 
can coexist in the same set of  weights. There 
is an effect of  storing multiple patterns, of  
course. When only one pattern is stored, the 
whole pattern (or at least, a pale copy of  it) 
can be retrieved by driving the activation of 
any single unit in the appropriate direction. 
As more patterns are stored, larger subpatterns 
are generally needed to specify the pattern to 
be retrieved uniquely. 

Learning a Prototype From Exemplars 

In the preceeding section, we considered 
the learning of particular patterns and showed 
that the delta rule was capable of  learning 
multiple patterns, in the same set of  connec- 
tions. In this section, we consider what hap- 
pens when distributed models using the delta 
rule are presented with an ensemble of  pat- 
terns that have some common structure. The 
examples described in this section illustrate 
how the delta rule can be used to extract the 
structure from an ensemble of  inputs, and 
throw away random variability. 

Let us consider the following hypothetical 
situation. A little boy sees many different 
dogs, each only once, and each with a different 
name. All the dogs are a little different from 
each other, but in general there is a pattern 
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which represents the typical dog: each one is 
just a different distortion of  this prototype. 
(We are not claiming that the dogs in the 
world have no more structure than this; we 
make this assumption for purposes of  illus- 
tration only.) For now we will assume that 
the names of the dogs are all completely 
different. Given this experience, we would 
expect that the boy would learn the prototype 
of  the category, even without ever seeing any 
particular dog which matches the prototype 
directly (Posner & Keele, 1968, 1970; Ander- 
son, 1977, applies an earlier version of  a 
distributed model to this case). That is, the 
prototype will seem as familiar as any of  the 
exemplars, and he will be able to complete 
the pattern corresponding to the prototype 
from any part  of  it. He will not, however, be 
very likely to remember  the names of  each 
of  the individual dogs though he may remem- 
ber the most  recent ones. 

We model this situation with a module 
consisting of  24 units. We assume that the 
presentation of a dog produces a visual pat- 
tern of  activation over 16 of the units in the 
hypothetical module (the 9th through 24th, 
counting from left to right). The name of the 
dog produces a pattern of  activation over the 
other 8 units (Units l to 8, counting from 
left to right). 

Each visual pattern, by assumption, is a 
distortion of a single prototype. The prototype 
used for the simulation simply had a random 
series of  + 1 and - l  values. Each distortion 
of  the prototype was made by probabilistically 
flipping the sign of  randomly selected ele- 
ments of  the prototype pattern. For each new 
distorted pattern, each element has an inde- 
pendent chance of  being flipped, with a prob- 
ability of  .2. Each name pattern was simply 
a random sequence of 4-Is and - I s  for the 
eight name units. Each encounter with a new 
dog is modeled as a presentation of a new 
name pattern with a new distortion of  the 
prototype visual pattern. Fifty different trials 
were run, each with a new name pat tern-  
visual pattern pair. 

For each presentation, the pattern of  acti- 
vation is allowed to stabilize, and then the 
weights are adjusted as before. The increment 
to the weights is then allowed to decay con- 
siderably before the next input is presented. 
For simplicity, we assume that before the 

next pattern is presented, the last increment 
decays to a fixed small proportion of  its initial 
value, and thereafter undergoes no further 
decay. 

What  does the module learn? The module 
acquires a set o f  weights which is continually 
buffeted about by the latest dog exemplar, 
but which captures the prototype dog quite 
well. Waiting for the last increment to decay 
to the fixed residual yields the weights shown 
in Figure 4. 

These weights capture the correlations 
among the values in the prototype dog pattern 
quite well. The lack of  exact uniformity is 
due to the more recent distortions presented, 
whose effects have not been corrected by 
subsequent distortions. This is one way in 
which the model gives priority to specific 
exemplars, especially recent ones. The effects 
of  recent exemplars are particularly strong, 
of  course, before they have had a chance to 
decay. The module can complete the proto- 
type quite well, and it will respond more 
strongly to the prototype than to any distor- 
tion of it. It has, however, learned no partic- 
ular relation between this prototype and any 
name pattern, because a totally different ran- 
dom association was presented on each trial. 
I f  the pattern of  activation on the name units 
had been the same in every case (say, each 
dog was just called dog), or even in just a 
reasonable fraction of  the cases, then the 
module would have been able to retrieve this 
shared name pattern from the prototype of  
the visual pattern and the prototype pattern 
from the name. 

Multiple, nonorthogonal prototypes. In the 
preceeding simulation we have seen how the 
distributed model acts as a sort of  signal 
averager, finding the central tendency of  a set 
of  related patterns. In and of  itself this is an 
important  property of  the model, but the 
importance of this property increases when 
we realize that the model can average several 
different patterns in the same composite 
memory  trace. Thus, several different proto- 
types can be stored in the same set of  weights. 
This is important,  because it means that the 
model does not fall into the trap of  needing 
to decide which category to put a pattern in 
before knowing which prototype to average 
it with. The acquisition of  the different pro- 
totypes proceeds without any sort of  explicit 
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P m t ~ H e r n :  

+ -  + + . . . .  + + + + + _ _  _ 

Weights acqulr~ afl~ I~ming: 

i i i i  - ;  . . . . .  - + +  . . . . .  
- - - + , , +  . + + +  

• + 

i i i i i • ~ -  

" i i i i i  

+ - -  . - - - -  + + + + + - - - - - -  
- - - -  - - + + + +  

+ + +  . . . .  
, - - +  , +  

- - - - + ,  + . . . .  
+ + +  

. + - - - -  -- + + +  
+ +  + + +  
. + - - - -  - - + +  + 

+ + - - .  - - + + +  
+ + - - - -  - - . + + +  

- - + + . +  

_ ÷ ' +  . . . .  

+ + + 
+ . + 
+ + + 
+ + + 

. + 
, + + 

Figure 4. Weights  acqu i red  in learn ing  f r o m  d is tor ted  e x e m p l a r s  o f  a prototype.  ( T h e  p ro to type  pat tern  

is shown above  the  we igh t  ma t r ix .  Blank  en t r ies  co r respond  to  weights  wi th  absolute  values  less than  .01; 
do ts  co r respond  to absolute  va lues  less than  .06; pluses  or  m i n u s e s  a re  used for  weights  wi th  larger  

absolute  values.)  

categorization. If the patterns are sufficiently 
dissimilar, there is no interference among 
them at all. Increasing similarity leads to 
increased confusability during learning, but 
eventually the delta rule finds a set of  con- 
nection strengths that minimizes the confuso 
ability of  similar patterns. 

To illustrate these points, we created a 
simulation analog of  the following hypothet- 
ical situation. Let us say that our little boy 
sees, in the course of  his daily experience, 
different dogs, different cats, and different 
bagels. First, let's consider the case in which 
each experience with a dog, a cat, or a bagel 
is accompanied by someone saying dog, cat, 
or bagel, as appropriate. 

The simulation analog of this situation 
involved forming three visual prototype pat- 
terns of  16 elements, two of  them (the one 
for dog and the one for cat) somewhat similar 
to each other (r = .5), and the third (for the 
bagel) orthogonal to both of  the other two. 
Paired with each visual pattern was a name 
pattern of  eight elements. Each name pattern 
was orthogonal to both of  the others. Thus, 
the prototype visual pattern for cat and the 

prototype visual pattern for dog were similar 
to each other, but their names were not 
related. 

Stimulus presentations involved presenta- 
tions of  distorted exemplars of  the name-  
visual pattern pairs to a module of  24 ele- 
ments like the one used in the previous 
simulation. This time, both the name pattern 
and the visual pattern were distorted, with 
each element having its sign flipped with an 
independent probability of .  1 on each presen- 
tation. Fifty different distortions of  each 
name-visual pattern pair were presented in 
groups of  three consisting of one distortion 
of  the dog pair, one distortion of  the cat pair, 
and one distortion of  the bagel pair. Weight 
adjustment occurred after each presentation, 
with decay to a fixed residual before each 
new presentation. 

At the end of  training, the module was 
tested by presenting each name pattern and 
observing the resulting pattern of activation 
over the visual nodes, and by presenting each 
visual pattern and observing the pattern of  
activation over the name nodes. The results 
are shown in Table 2. In each case, the model 
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Table 2 
Results of Tests After Learning the Dog, Cat, and Bagel Patterns 

I n p u t  or  r esponse  for  e ach  un i t  

Case  N a m e  un i t s  Visual  pa t t e rn  un i t s  

Pa t t e rn  for  d o g  + - + - + - + - + - + + + + + + + 
p r o t o t y p e  

Response  to  d o g  + 3  - 4  + 4  + 4  - 4  - 4  - 4  - 4  + 4  + 4  + 4  + 3  + 4  - 4  - 4  - 3  
n a m e  

Response  to  dog  
visual  pa t t e rn  

Pa t t e rn  for  ca t  
p r o t o t y p e  

Response to cat 
name 

Response to cat 
visual pattern 

Pattern for bagel 
prototype 

Response to bagal 
name 

Response  to  bagel  
visual  p a t t e r n  

+5 - 4  +4 - 5  +5 - 4  +4 - 4  

+ + + + 

+5 +4  - 4  - 5  +4  +4  - 4  - 4  

+ + + + 

+4 - 4  - 4  +4 +4 - 4  - 4  +4 

+ -- + + + - + - + + - + 

+ 4  - -3  + 4  + 4  - -4  - 3  - 3  - 4  + 4  - -4  + 4  - -4  + 4  + 4  - 4  + 4  

+ + - + - + + -- + + + + + - 

+3  +4 --4 +4 - 4  +4 +4  --4 +4 --4 - 4  +4 +3 +4 +4 --4 

Note. D e c i m a l  po in t s  have  been  suppressed  for  c lar i ty ;  thus ,  a n  e n t r y  o f  + 4  represen t s  a n  ac t iva t ion  value  o f  + .4 .  

reproduces the correct completion for the 
probe, and there is no apparent contamina- 
tion of the cat pattern ,by the dog pattern, 
even though the visual patterns are similar 
to each other. 

In general, pattern completion is a matter 
of degree. One useful measure of pattern 
completion is the dot product of the pattern 
of activation over the units with the pattern 
of  external inputs to the units. Because we 
treat the external inputs as + 1 s and - I s ,  and 
because the activation of each node can only 
range from + l to - 1 ,  the largest possible 
value the dot product can have is 1.0. We 
will use this measure explicitly later when 
considering some simulations of  experimental 
results. For getting an impression of  the degree 
of pattern reinstatement in the present cases, 
it is sufficient to note that when the sign of  
all of  the elements is correct, as it is in all of  
the completions in Table 2, the average mag- 
nitude of  the activations of  the units corre- 
sponds to the dot product. 

In a case like the present one, in which 
some of the patterns known to the model are 
correlated, the values of the connection 
strengths that the model produces do not 
necessarily have a simple interpretation. 
Though their sign always corresponds to the 

sign of the correlation between the 9ctivations 
of  the two units, their magnitud6 is not a 
simple reflection of the magnitude of their 
correlation, but is influenced by the degree 
to which the model is relying on this partic- 
ular correlation to predict the activation of  
one node from the others. Thus, in a case 
where two nodes (call them i and j )  are 
perfectly correlated, the strength of the con- 
nection from i to j will depend on the number 
of other nodes whose activations are corre- 
lated with j. If i is the only node correlated 
with j, it will have to do all the work of  
predicting j, so the weight will be very strong; 
on the other hand, if many nodes besides i 
are correlated with j, then the work of  pre- 
dicting j will be spread around, and the 
weight between i and j will be considerably 
smaller. The weight matrix acquired as a 
result of learning the dog, cat, and bagel 
patterns (Figure 5) reflects these effects. For 

• example, across the set of  three prototypes, 
Units 1 and 5 are perfectly correlated, as are 
Units 2 and 6. Yet the connection from 2 to 
5 is stronger than the connection from 1 to 
4 (these connections are *d in Figure 5). The 
reason for the difference is that 2 is one of 
only three units which correlate perfectly 
with 5, whereas Unit 1 is one of  seven units 
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which correlate perfectly with 4. (In Figure 
5, the weights do not reflect these contrasts 
perfectly in every case, because the noise 
introduced into the learning happens by 
chance to alter some of  the correlations pres- 
ent in the prototype patterns. Averaged over 
time, though, the weights will conform to 
their expected values.) 

Thus far we have seen that several proto- 
types, not necessarily orthogonal, can be 
stored in the same module without difficulty. 
It is true, though we do not illustrate it, that 
the model has more trouble with the cat 
and dog visual patterns earlier on in train- 
ing, before learning has essentially reached 
asymptotic levels as it has by the end of 50 
cycles through the full set of  patterns. And, 
of  course, even at the end of  learning, if we 

present as a probe a part of the visual pattern, 
if it does not differentiate between the dog 
and the cat, the model will produce a blended 
response. Both these aspects of  the model 
seem generally consistent with what we should 
expect from human subjects. 

Category learning without labels. An im- 
portant further fact about the model is that 
it can learn several different visual patterns, 
even without the benefit of  distinct identifying 
name patterns during learning. To demon- 
strate this we repeated the previous simula- 
tion, simply replacing the name patterns with 
0s. The model still learns about the internal 
structure bf the visual patterns, so that, after 
50 cycles through the stimuli, any unique 
subpart of  any one of the patterns is sufficient 
to reinstate to the rest of  the corresponding 

Prototypes: 

Dog: + - + - + - + - + - + 

Cat: + + - - + + - - + - + 

Bagel: + + + + + + - 

Weights: 

+ . . . .  + + + + + - - -  

+ . . . .  + - + - + + _ +  

+ - + + - + - - + + + + -  

- 1  - 1  + 2 " - 1  - 1  +3  

- 2  - 1  +4"  +1 - 1  

- 1  - 2  - 1  +5  +1 

- 1  - 1  - 1  +2  - 1  + 3 - 3  

+3  - 1  - 1  +1 - 1  

- 1  + 5 - 3  - 2  - 1  - I  

- 1  +3  - 1  - 1  - 2  +1 

- 1  - 1  - 1  +2  - 1  - 1  +3  - 2  - 1  

+5  - 2  - 1  - 3  +2  - 1  +2  - 1  

- I  - 1  +1 - 1  - 1  - 3  - 1  - 3  +3  

+1 -1  - 1  - 1  +4  +1 - 5  - 1  

+2 +3  - 1  - 2  - 1  +1 +3  

+3  - 3  - 2  +2  +1 +3  +1 - 1  - 1  

- 1  - 1  - 1  - 2  +1 - 5  - 1  +2  - 1  +5  

- 1  +1 +4  - 1  - 2  

+3  +3  - 1  - 1  - 3  +1 - 1  +3  +3  

+3  - 1  - 1  + 2 - 1  - 1  

- 1  - 1  - 1  +3  - 1  +3  

+1 +1 +1 - 3  - 2  

+2  - 1  - 1  - 1  +3  - 1  

- 2  +1 +1 - 2  +1 +1 +1 

- 1  +2  - 1  +2  

- 1  - 1  - 1  +2  - 1  - 1  +2  

- 2  +1 +1 +1 - 3  +1 +1 

+3  - 1  +2  - 1  

+5  - 1  - 1  - 1  +4  - 1  

+1 - 2  +1 + t  - 3  

+1 - 5  +2  +1 +1 - 5  +3  

+2  - 1  - 1  +3  - 1  

+3  - 4  +1 +3  - 4  +1 

+2  - I  - 1  

- 1  +3  - 2  - 1  - 1  +5  - 3  

+3  - 2  - 3  +2  +1 +3  +1 - 1  

- 3  - t  +3  +3  +1 - 1  - 2  - 2  +1 - 1  +2  

+1 - 3  - 1  - 3  - 3  +1 +3  - 1  - 1  - 2  +2  

+3  - 1  +1 - 2  - 1  - 2  +2  - 1  +2  +1 - 1  

- 3  - 3  +1 + 2 - 3  - 1  - 2 - 1  +1 

- t  +2  - 2  +1 +2  +1 - 1  - 3  - 1  +2  

+2  - 3  +3. +1 - 3  - 1  +3  

- 2  +1 - 1  - 3  +3  - 2  +1 - 1  - 1  - 3  - 1  +1 

+2  +3  - 3  - 3  - 1  +1 +3  +1 - 1  - 1  

+1 - 3  +1 +1 - 1  - 5  - 1  - 1  

+1 - 2  +2  +1 - 1  - 3  - 3  - 1  +1 - 2  - 3  +1 

- 2  +1 - 1  +1 +1 +1 - 2  +1 - 2  +1 - 3  

+2  +1 +2  - 2  - 3  +2  +1 

+1 -1  +1 +1 +1 - 5 - 1  - 3  +1 +2  

- 1  +2  - 3  +2  +2  - 1  - 3  +1 

- 1  +3  +1 - 1  - 1  +1 - 2  + 3 - 1  

Figure 5. Weights acquired in learning the three prototype patterns shown. (Blanks in the matrix of 
weights correspond to weights with absolute values less than or equal to .05. Otherwise the actual value 
of the weight is about .05 times the value shown; thus +5 stands for a weight of +.25. The gap in the 
horizontal and vertical dimensions is used to separate the name field from the visual pattern field.) 
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Table 3 
Results of Tests After Learning The Dog, Cat, and Bagel Patterns Without Names 

Case Input or response for each visual unit 

Dog visual 
pattern + - + + . . . .  + + + + + - - - 

P r o b e  + + + + 
Response +3 -3 +3 +3 -3 -4 -3 -3 +6 +5 +6 +5 +3 -2 -3 -2 

Cat visual 
pattern + - + + . . . .  + - + - + + - + 

Probe + - + - 
Response +3 -3 +3 +3 -3 -3 -3 -3 +6 -5 +6 -5 +3 +2 -3 +2 

Bagel visual 
pattern + + - + - + + - + - - + + + + - 

P r o b e  + - - + 
R e s p o n s e  + 2  + 3  - 4  + 3  - 3  + 3  + 3  - 3  + 6  - 6  - 6  + 6  + 3  + 3  + 3  - 3  

pattern correctly. This aspect of  the model 's  
behavior is illustrated in Table 3. Thus, we 
have a model that can, in effect, acquire 
a number  of  distinct categories, simply 
through a process of incrementing connection 
strengths in response to each new stimulus 
presentation. Noise, in the form of distortions 
in the patterns, is filtered out. The model 
does not require a name or other guide to 
distinguish the patterns belonging to different 
categories. 

Coexistence of the prototype and repeated 
exemplars. One aspect of  our discussion up 
to this point may have been slightly mislead- 
ing. We may have given the impression that 
the model is simply a prototype extraction 
device. It is more than this, however; it is a 
device that captures whatever structure is 
present in a set of  patterns. When the set of  
patterns has a prototype structure, the model 
will act as though it is extracting prototypes; 
but when it has a different structure, the 
model will do its best to accommodate  this 
as well. For example, the model permits the 
coexistence of representations of  prototypes 
with representations of  particular, repeated 
exemplars. 

Consider the following situation. Let us say 
that our little boy knows a dog next door 
named Rover and a dog at his grandma's  
house named Fido. And let's say that the 
little boy goes to the park from time to t ime 
and sees dogs, each of which his father tells 
him is a dog. 

The simulation-analog of  this involved 
three different eight-element name patterns, 
one for Rover, one for Fido, and one for Dog. 

The visual pattern for Rover was a particular 
randomly generated distortion of the dog 
prototype pattern, as was the visual pattern 
for Fido. For the dogs seen in the park, each 
one was simply a new random distortion of 
the prototype. The probability of  flipping the 
sign of each element was again .2. The learn- 
ing regime was otherwise the same as in the 
dog-cat-bagel  example. 

At the end of 50 learning cycles, the model 
was able to retrieve the visual pattern corre- 
sponding to either repeated exemplar (see 
Table 4) given the associated name as input. 
When given the Dog name pattern as input, 
it retrieves the prototype visual pattern for 
dog. It can also retrieve the appropriate name 
from each of the three visual patterns. This 
is true, even though the visual pattern for 
Rover differs from the visual pattern for dog 
by only a single element. Because of the 
special importance of this particular element, 
the weights from this element to the units 
that distinguish Rover's name pattern from 
the prototype name pattern are quite strong. 
Given part  of  a visual pattern, the model will 
complete it; if the part  corresponds to the 
prototype, then that is what is completed, 
but if it corresponds to one of the repeated 
exemplars, that exemplar is completed. The 
model, then, knows both the prototype and 
the repeated exemplars quite well. Several 
other sets o f  prototypes and their repeated 
exemplars could also be stored in the same 
module, as long as its capacity is not exceeded; 
given large numbers of  units per module, a 
lot of  different patterns can be stored. 

Let us summarize  the observations we 
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Table 4 
Results of Tests with Prototype and Specific Exemplar Patterns 

173 

Input or response for each unit 

Case Name units Visual pattern units 

Pattern for dog + - + - + - + - + - + + + + + + + 
prototype 

Response to +4 - 5  +3 +3 - 4  - 3  - 3  - 3  +3 +3 +4 +3 +4 - 3  - 4  - 4  
prototype name 

Response to 
prototype visual 
pattern 

Pattern for "Fido" 
exemplar 

Response to Fido 
name 

Response to Fido 
visual pattern 

Pattern for "Rover" 
exemplar 

Response to Rover 
name 

Response to Rover 
visual pattern 

+5 - 4  +4 - 4  +5 - 4  +4 - 4  

+ + 

+5 - 5  - 3  - 5  +4 - 5  - 3  - 5  

+ + + + -- + 

+4 - 4  - 2  +4 +4 +4 - 2  +4 

+ - ( - ) +  + + + + + ( + ) -  _ 

+4 -4 -4 +4 -4 -4 -4 -4  +4 +4 +4 +4 +4 +4 -4 -4 

+ (+) + + + + + + + 

+4 +5 +4 +4 -4 -4 -4 -4 +4 +4 +4 +4 +4 -4 -4 -4 

have made in these several illustrative simu- 
lations. First, our distributed model is capable 
of  storing not just one but a number  of  
different patterns. It can pull the central 
tendency of a number  of  different patterns 
out of  the noisy inputs; it can create the 
functional equivalent of  perceptual categories 
with or without the benefit of  labels; and it 
can allow representations of  repeated exem- 
plars to coexist with the representation of the 
prototype of  the categories they exemplify in 
the same composite memory  trace. The model 
is not simply a categorizer or a prototyping 
device; rather, it captures the structure inher- 
ent in a set of  patterns, whether it be char- 
acterizable by description in terms of  proto- 
types or not. 

The ability to retrieve accurate completions 
of  similar patterns is a property of  the model 
which depends on the use of  the delta learning 
rule. This allows both the storage of  different 
prototypes that are not completely orthogonal 
and the coexistence of prototype representa- 
tions and repeated exemplars. 

Simulations of  Experimental Results 

Up to this point, we have discussed our 
distributed model in general terms and have 
outlined how it can accommodate  both ab- 

straction and representation of  specific infor- 
mation in the same network. We will now 
consider, in the next two sections, how well 
the model does in accounting for some recent 
evidence about the details of  the influence of 
specific experiences on performance. 

Repetition and Familiarity Effects 

When we perceive an i t emmsay  a word, 
for example-- th is  experience has effects on 
our later performance. If  the word is presented 
again, within a reasonable interval of  time, 
the prior presentation makes it possible for 
us to recognize the word more quickly, or 
from a briefer presentation. 

Traditionally, this effect has been inter- 
preted in terms of  units that represent the 
presented items in memory.  In the case of  
word perception, these units are called word 
detectors or logogens, and a model of  repeti- 
tion effects for words has been constructed 
around the logogen concept (Morton, 1979). 
The idea is that the threshold for the logogen 
is reduced every t ime it fires (that is, every 
time the word is recognized), thereby making 
it easier to fire the logogen at a later time. 
There is supposed to be a decay of this 
priming effect, with time, so that eventually 
the effect of  the first presentation wears off. 
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This traditional interpretation has come 
under serious question of  late, for a number 
of reasons. Perhaps paramount among the 
reasons is the fact that the exact relation 
between the specific context in which the 
priming event occurs and the context in 
which the test event occurs makes a huge 
difference (Jacoby, 1983a, 1983b). Generally 
speaking, nearly any change in the stimulus-- 
from spoken to printed, from male speaker 
to female speaker, and so forth-- tends to 
reduce the magnitude of  the priming effect. 

These facts might easily be taken to support 
the enumeration of  specific experiences view, 
in which the logogen is replaced by the entire 
ensemble of experiences with the word, with 
each experience capturing aspects of  the spe- 
cific context in which it occurred. Such a 
view has been championed most strongly by 
Jacoby (1983a, 1983b). 

Our distributed model offers an alternative 
interpretation. We see the traces laid down 
by the processing of each input as contributing 
to the composite, superimposed memory rep- 
resentation. Each time a stimulus is processed, 
it gives rise to a slightly different memory 
trace: either because the item itself is different 
or because it occurs in a different context 
that conditions its representation. The logogen 
is replaced by the set of specific traces, but 
the traces are not kept separate. Each trace 
contributes to the composite, but the char- 
acteristics of particular experiences tend nev- 
ertheless to be preserved, at least until they 
are overridden by cancelling characteristics 
of  other traces. And the traces of one stimulus 
pattern can coexist with the traces of other 
stimuli, within the same composite memory 
trace. 

It should be noted that we are not faulting 
either the logogen model or models based on 
the enumeration of  specific experiences for 
their physiological implausibility here, because 
these models are generally not stated in phys- 
iological terms, and their authors might rea- 
sonably argue that nothing in their models 
precludes distributed storage at a physiological 
level. What we are suggesting is that a model 
which proposes explicitly distributed, super- 
positional storage can account for the kinds 
of  findings that logogen models have been 
proposed to account for, as well as other 
findings which strain the utility of the concept 

of  the logogen as a psychological construct. 
In the discussion section we will consider 
ways in which our distributed model differs 
from enumeration models as well. 

To illustrate the distributed model's ac- 
count of  repetition priming effects, we carried 
out the following simulation experiment. We 
made up a set of eight random vectors, each 
24 elements long, each one to be thought of 
as the prototype of  a different recurring stim- 
ulus pattern. Through a series of  l0 training 
cycles using the set of eight vectors, we con- 
structed a composite memory trace. During 
training, the model did not actually see the 
prototypes, however. On each training pre- 
sentation it saw a new random distortion of  
one of  the eight prototypes. In each of the 
distortions, each of  the 24 elements had its 
value flipped with a probability of .  1. Weights 
were adjusted after every presentation, and 
then allowed to decay to a fixed residual 
before the presentation of  the next pattern. 

The composite memory trace formed as a 
result of  the experience just described plays 
the same role in our model that the set of  
logogens or detectors play in a model like 
Morton's or, indeed, the interactive activation 
model of  word preception. That is, the trace 
contains information which allows the model 
to enhance perception of familiar patterns, 
relative to unfamiliar ones. We demonstrate 
this by comparing the activations resulting 
from the processing of subsequent presenta- 
tions of  new distortions of  our eight familiar 
patterns with other random patterns with 
which the model is not familiar. The pattern 
of  activation that is the model's response to 
the input is stronger, and grows to a particular 
level more quickly, if the stimulus is a new 
distortion of an old pattern than if it is a 
new pattern. We already observed this general 
enhanced response to exact repetitions of  
familiar patterns in our first example (see 
Table 1). Figure 6 illustrates that the effect 
also applies to new distortions of old patterns, 
as compared with new patterns, and illustrates 
how the activation process proceeds over 
successive time cycles of  processing. 

Pattern activation and response strength. 
The measure of activation shown in the Figure 
6 is the dot product of the pattern of activation 
over the units of the module times the stim- 
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Figure 6. Growth of the pattern of activation for new distortions of familiar and unfamiliar patterns. (The 
measure of the strength of the pattern of activation is the dot product of the response pattern with the 
input vector. See text for an explanation.) 

ulus pattern itself, normalized for the number 
n of  elements in the pattern: For the pattern 
j we call this expression aj. The expression 
aj represents the degree to which the actual 
pattern of  activation on the units captures 
the input pattern. It is an approximate analog 
to the activation of an individual unit in 
models which allocate a single unit to each 
whole pattern. 

To relate these pattern activations to re- 
sponse probabilities, we must assume that 
mechanisms exist for translating patterns of 
activation into overt responses measurable by 
an experimenter. We will assume that these 
mechanisms obey the principles stated by 
McClelland and Rumelhart  (1981) in the 
interactive activation model of  word percep- 
tion, simply replacing the activations of par- 
ticular units with the a measure of  pattern 
activation. 

In the interactive activation model, the 
probability of  choosing the response appro- 
priate to a particular unit was based on an 
exponential transform of  a time average of  
the activation of  the unit. This quantity, 
called the strength of  the particular response, 

was divided by the total strength of all alter- 
natives (including itself) to find the response 
probability (Luce, 1963). One complication 
arises because of  the fact that it is not in 
general possible to specify exactly what the 
set of  alternative responses might be for the 
denominator. For this reason, the strengths 
of other responses are represented by a con- 
stant C (which stands for the competition). 
Thus, the expression for probability of  choos- 
ing the response appropriate to pattern j is 
just p(rj) = ekaJ/(C + ek~J), where ~j represents 
the time average of  aj, and k is a scaling 
constant. 

These assumptions finesse an important 
issue, namely the mechanism by which a 
pattern of  activation give rise to a particular 
response. A detailed discussion of  this issue 
will appear in Rumelhart  and McClelland 
(in press). For now, we wish only to capture 
basic properties any actual response selection 
mechanism must have: It must be sensitive 
to the input pattern, and it must approximate 
other basic aspects of  response selection be- 
havior captured by the Luce (1963) choice 
model. 
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Figure 7. Simulated growth of response accuracy over the units in a 24-unit module, as a function of 
processing cycles, for new distortions of previously learned patterns compared with new distortions of 
patterns not previously learned. 

Effects of experimental variables on time- 
accuracy curves. Applying the assumptions 
just described, we can calculate probability 
of  correct response as a function of processing 
cycles for familiar and unfamiliar patterns. 
The result, for a particular choice of  scaling 
parameters, is shown in Figure 7. If we 
assume performance in a perceptual identi- 
fication task is based on the height of  the 
curve at the point where processing is cut off 
by masking (McClelland & Rumelhart, 1981), 
then familiarity would lead to greater accu- 
racy of  perceptual identification at a given 
exposure duration. In a reaction time task, if 
the response is emitted when its probability 
reaches a particular threshold activation value 
(McClelland, 1979), then familiarity would 
lead to speeded responses. Thus, the model 
is consistent with the ubiquitous influence of 
familiarity both on response accuracy and 
speed, in spite of  the fact that it has no 
detectors for familiar stimuli. 

But what about priming and the role of 
congruity between the prime event and the 
test event? To examine this issue, we carried 
out a second experiment. Following learning 

of  eight patterns as in the previous experi- 
ment, new distortions of  half of the random 
vectors previously learned by the model were 
presented as primes. For each of  these primes, 
the pattern of  activation was allowed to sta- 
bilize, and changes in the strengths of the 
connections in the model were then made. 
We then tested the model's response to (a) 
the same four distortions; (b) four new dis- 
tortions of  th~ same patterns; and (c) distor- 
tions of  the four previously learned patterns 
that had not been presented as primes. There 
was no decay in the weights over the course 
of  the priming experiment; if decay had been 
included, its main effect would have been to 
reduce the magnitude of  the priming effects. 

The results of the experiment are shown 
in Figure 8. The response of  the model is 
greatest for the patterns preceded by identical 
primes, intermediate for patterns preceded 
by similar primes, and weakest for patterns 
not preceded by any related prime. 

Our model, then, appears to provide an 
account, not only for the basic existence of  
priming effects, but also for the graded nature 
of  priming effects as a function of congruity 
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Figure 8. Response probability as a function of  exposure time for patterns preceded by identical primes, 
similar primes, or no related prime. 

between prime event and test event. It avoids 
the problem of  multiplication of  context- 
specific detectors which logogen theories fall 
prey to, while at the same time avoiding 
enumeration of specific experiences. Congru- 
ity effects are captured in the composite 
memory trace. 

The model also has another advantage over 
the logogen view. It accounts for repetition 
priming effects for unfamiliar as well as fa- 
miliar stimuli. When a pattern is presented 
for the first time, a trace is produced just as 
it would be for stimuli that had previously 
been presented. The result is that, on a 
second presentation of the same pattern, or 
a new distortion of  it, processing is facilitated. 
The functional equivalent of  a logogen begins 
to be established from the very first presen- 
tation. 

To illustrate the repetition priming of un- 
familiar patterns and to compare the results 
with the repetition priming we have already 
observed for familiar patterns, we carried out 
a third experiment. This time, after learning 
eight patterns as before, a priming session 
was run in which new distortions of  four of  
the familiar patterns and distortions of  four 

new patterns were presented. Then, in the 
test phase, 16 stimuli were presented: New 
distortions of  the primed, familiar patterns; 
new distortions of the unprimed, familiar 
patterns; new distortions of the primed, pre- 
viously unfamiliar patterns; and finally, new 
distortions of four patterns that were neither 
primed nor familiar. The results are shown 
in Figure 9. What we find is that long-term 
familiarity and recent priming have approx- 
imately additive effects on the asymptotes of 
the time-accuracy curves. The time to reach 
any given activation level shows a mild inter- 
action, with priming having slightly more of 
an effect for unfamiliar than for familiar 
stimuli. 

These results are consistent with the bulk 
of the findings concerning the effects of 
preexperimental familiarity and repetition in 
the recent series of  experiments by Feustel, 
Shiffrin, and Salasoo (1983) and Salasoo et 
al. (1985). They found that preexperimental 
familiarity of  an item (word vs. nonword) 
and prior exposure had this very kind of  
interactive effect on exposure time required 
for accurate identification of  all the letters of  
a string, at least when words and nonwords 
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were mixed together in the same lists of 
materials. 

A further aspect of  the results reported by 
Salasoo, Shiffrin, and Feustel is also consistent 
with our approach. In one of  their experi- 
ments, they examined threshold for accurate 
identification as a function of  number of  
prior presentations, for both words and pseu- 
dowords. Although thresholds were initially 
elevated for pseudowords, relative to words, 
there was a rather rapid convergence of the 
thresholds over repeated presentations, with 
the point of  convergence coming at about the 
same place on the curve for two different 
versions of their perceptual identification task. 
(Salasoo et al., 1985, Figure 7.) Our model, 
likewise, shows this kind of  convergence effect, 
as illustrated in Figure 10. 

The Feustel et al. (1983) and Salasoo et al. 
(1985) experiments provide very rich and 
detailed data that go beyond the points we 
have extracted from them here. We do not 
claim to have provided a detailed account of  
all aspects of  their data. However, we simply 
wish to note that the general form of their 
basic findings is consistent with a model of 
the distributed type. In particular, we see no 

reason to assume that the process by which 
unfamiliar patterns become familiar involves 
the formation of  an abstract, logogenlike unit 
separate from the episodic traces responsible 
for repetition priming effects. 

There is one finding by Salasoo et al. 
(1985) that appears to support the view that 
there is some special process of unit formation 
that is distinct from the priming of  old units. 
This is the fact that after a year between 
training and testing, performance with pseu- 
dowords used during training is indistin- 
guishable from performance with words, but 
performance with words used during training 
shows no residual benefit compared with 
words not previously used. The data certainly 
support the view that training experience 
made the pseudowords into lasting perceptual 
units, at the same time that is produced 
transitory priming of existing units. We have 
not attempted to account for this finding in 
detail, but we doubt that it is inconsistent 
with a distributed model. In support of  this, 
we offer one reason why repetition effects 
might seem to persist longer for pseudowords 
rather than for words in the Salasoo et at. 
experiment. For pseudowords, a strong asso- 
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ciation would be built up between the item 
and the learning context during initial train- 
ing. Such associations would be formed for 
words, but because these stimuli have been 
experienced many times before and have 
already been well learned, smaller increments 
in connection strength are formed for these 
stimuli during training, and thus the strength 
of  the association between the item and the 
learning Context would be less. If this view is 
correct, we would expect to see a disadvantage 
for pseudowords relative to words if the testing 
were carried out in a situation which did not 
reinstate the mental state associated with the 
original learning experience, because for these 
stimuli much of  what was learned would be 
tied to the specific learning context: such a 
prediction would appear to differentiate our 
account from any view which postulated the 
formation of an abstract, context-independent 
logogen as the basis for the absence of a 
pseudoword decrement effect. 

Representation of General and 
Specific Information 

In the previous section, we cast our distrib- 
uted model as an alternative to the view that 
familiar patterns are represented in memory 
either by separate detectors or by an enumer- 

ation of specific experiences. In this section, 
we show that the model provides alternatives 
to both abstraction and enumeration models 
of  learning from exemplars of prototypes. 

Abstraction models were originally moti- 
vated by the finding that subjects occasionally 
appeared to have learned better how to cat- 
egorize the prototype of  a set of  distorted 
exemplars than the specific exemplars they 
experienced during learning (Posner & Keele, 
1968). However, pure abstraction models have 
never fared very well, because there is nearly 
always evidence of  some superiority of  the 
particular training stimuli over other stimuli 
equally far removed from the prototype. A 
favored model, then, is one in which there is 
both abstraction and memory for particular 
training stimuli. 

Recently, proponents of models involving 
only enumeration of  specific experiences have 
noted that such models can account for the 
basic fact that abstraction models are pri- 
marily designed to account for--enhanced 
response to the prototype, relative to partic- 
ular previously seen exemplars, under some 
conditions--as well as failures to obtain such 
effects under other conditions (Hintzman, 
1983, M e d i n &  Shaffer, 1978). In evaluating 
distributed models, it is important to see if 
they can do as well. Anderson (1977) has 
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Table 5 
Schematic Description of Stimulus Sets Used in Simulations of Whittlesea's Experiments 

Stimulus set 

Prototype Ia Ib lla lib IIc III V 

PPPPP APPPP BPPPP ABPPP ACPPP APCPP ABCPP CCCCC 
PAPPP PBPPP PABPP PACPP PAPCP PABCP CBCBC 
PPAPP PPBPP PPABP PPACP PPAPC PPABC BCACB 
PPPAP PPPBP PPPAB PPPAC CPPAP CPPAB ABCBA 
PPPPA PPPPB BPPPA CPPPA PCPPA BCPPA CACAC 

Note. The actual stimuli used can be filled in by replacing P with + - + - ;  A with + + - - ;  B with + - - + ;  and C with 
++++. The model is not sensitive to the fact the same subpattern was used in each of the five slots. 

made important steps in this direction, and 
Knapp and Anderson (1984) have shown how 
their distributed model can account for many 
of  the details of  the Posner-Keele experi- 
ments. Recently, however, two sets of  findings 
have been put forward which appear to 
strongly favor the enumeration of specific 
experiences view, at least relative to pure 
abstraction models. It is important, therefore, 
to see how well our distributed model can do 
in accounting for these kinds of  effects. 

The first set of  findings comes from a set 
of studies by Whittlesea (1983). In a large 
number of  studies, Whittlesea demonstrated 
a role for specific exemplars in guiding per- 
formance on a perceptual identification task. 
We wanted to see whether our model would 
demonstrate a similar sensitivity to specific 
exemplars. We also wanted to see whether 
our model would account for the conditions 
under which such effects are not obtained. 

Whittlesea used letter strings as stimuli. 
The learning experiences subjects received 
involved simply looking at the stimuli one at 
a time on a visual display and writing down 
the sequence of letters presented. Subjects 
were subsequently tested for the effect of  this 
training on their ability to identify letter 
strings bearing various relations to the training 
stimuli and to the prototypes from which the 
training stimuli were derived. The test was a 
perceptual identification task; the subject was 
simply required to try to identify the letters 
from a brief flash. 

The stimuli Whittlesea used were all dis- 
tortions of  one of two prototype letter strings. 
Table 5 illustrates the essential properties of  
the sets of  training and test stimuli he used. 
The stimuli in Set Ia were each one step 

away from the PrOtotype. The Ib items were 
also one step from the prototype and one 
step from one of  the Ia distortions. The Set 
IIa stimuli were each two steps from the 
prototype, and one step from a particular Ia 
distortion. The Set IIb items were also two 
steps from the prototype, and each was one 
step from one of  the IIa distortions. The Set 
IIc distortions were two steps from the pro- 
totype also, and each was two steps from the 
closest IIa distortion. Over the set of  five IIc 
distortions, the A and B subpatterns each 
occurred once in each position, as they did 
in the case of  the IIa distortions. The distor- 
tions in Set III were three steps from the 
prototype, and one step from the closest 
member of  Set IIa. The distortions in Set V 
were each five steps from the prototype. 

Whittlesea ran seven experiments using 
different combinations of  training and test 
stimuli. We carried out simulation analogs of  
all of  these experiments, plus one additional 
experiment that Whittlesea did not run. The 
main difference between the simulation ex- 
periments and Whittlesea's actual experiments 
was that he used two different prototypes in 
each experiment, whereas we only used one. 

The simulation used a simple 20-unit 
module. The set of  20 units was divided into 
five submodules, one for each letter in Whit- 
tlesea's letter strings. The prototype pattern 
and the different distortions used can be 
derived from the information provided in 
Table 5. 

Each simulation experiment began with 
null connections between the units. The 
training phase involved presenting the set or 
sets of training stimuli analogous to those 
Whittlesea used, for the same number of  
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presentations. To avoid idiosyncratic effects 
of  particular orders of  training stimuli, each 
experiment was run six times, each with a 
different random order of  training stimuli. 
On each trial, activations were allowed to 
settle down through 50 processing cycles, and 
then connection strengths were adjusted. 
There was no decay of the increments to the 
weights over the course of  an experiment. 

In the test phase, the model was tested 
with the sets of  test items analogous to the 
sets Whittlesea used. As a precaution against 
effects of  prior test items on performance, we 
simply turned off the adjustment of  weights 
during the test phase. 

A summary  of  the training and test stimuli 
used in each of  the experiments, of  Whittle- 
sea's findings, and of  the simulation results 
are shown in Table 6. The numbers represent 
relative amounts  of  enhancement in perfor- 
mance as a result of  the training experience, 
relative to a pretest baseline. For Whittlesea's 
data, this is the per letter increase in letter 
identification probability between a pre- and 
posttest. For the simulation, it is the increase 
in the size of  the dot product for a pretest 
with null weights and a posttest after training. 
For comparability to the data, the dot product 
difference scores have been doubled. This is 
simply a scaling operation to facilitate quali- 
tative comparison of  experimental and sim- 
ulation results. 

A comparison of  the experimental and 
Simulation results shows that wherever there 
is a within-experiment difference in Whittle- 
sea's data, the simulation produced a differ- 
ence in the same direction. (Between experi- 
ment comparisons are not considered because 
of  subject and material differences which 
renders such differences unreliable.) The next 
several paragraphs review some of  the major 
findings in detail. 

Some of  the comparisons bring out the 
importance of  congruity between particular 
test and training experiences. Experiments 1, 
2, and 3 show that when distance of test 
stimuli from the prototype is controlled, sim- 
ilarity to particular training exemplars makes 
a difference both for the human  subject and 
in the model. In Experiment 1, the relevant 
contrast was between Ia and Ib items. In 
Experiment 2, it was between IIa and IIc 
items. Experiment 3 shows that the subjects 

and the model both show a gradient in per- 
formance with increasing distance of  the test 
items from the nearest old exemplar. 

Experiments 4, 4', and 5 examine the 
status of  the prototype and other test stimuli 
closer to the prototype than any stimuli ac- 
tually shown during training. In Experiment 
4, the training stimuli were fairly far away 
from the prototype, and there were only five 
different training stimuli (the members  of  the 
IIa set). In this case, controlling for distance 
from the nearest training stimuli, test stimuli 
closer to the prototype showed more en- 
hancement  than those farther away (Ia vs. III 
comparison). However, the actual training 
stimuli nevertheless had an advantage over 
both other sets of  test stimuli, including those 
that were closer to the prototype than the 
training stimuli themselves (IIa vs. Ia com- 
parison). 

In Experiment 4' (not run by Whittlesea) 
the same number  of  training stimuli were 
used as in Experiment 4, but these were 

Table 6 
Summary of Perceptual Identification 
Experiments With Experimental 
and Simulation Results 

Training Test Experi-  Simu- 
Whittlesea's stimulus stimulus mental  lation 
experiment set(s) sets results results 

1 la la .27 .24 
Ib .16 .15 
V .03 -.05 

2 Ila lla .30 .29 
IIc .15 .12 
V .03 -.08 

3 lla Ila .21 .29 
lib .16 .14 
llc .10 .12 

4 Ila P - -  .24 
la .19 .21 
Ila .23 .29 
Ili .15 .15 

4' Ia P - -  .28 
la - -  .24 
IIa - -  .12 

5 lla, b, c P - -  .25 
Ia .16 .21 
Ila .16 .18 
III .10 .09 

6 II1 Ia .16 .14 
lla .16 .19 
III .19 .30 

7 lla IIa .24 .29 
Ilc .13 .12 
III .17 .15 
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closer to the prototype. The result is that the 
simulation shows an advantage for the pro- 
totype over the old exemplars. The specific 
training stimuli used even in this experiment 
do influence performance, however, as Whit- 
tlesea's first experiment (which used the same 
training set) shows (Ia-Ib contrast). This effect 
holds both for the subjects and for the simu- 
lation. The pattern of  results is similar to the 
findings of Posner and Keele (1968), in the 
condition where subjects learned six exem- 
plars which were rather close to the prototype. 
In this condition, their subjects' categorization 
performance was most accurate for the pro- 
totype,  but more accurate for old than for 
new distortions, just as in this simulation 
experiment. 

In Experiment 5, Whittlesea demonstrated 
that a slight advantage for stimuli closer to 
the prototype than the training stimuli would 
emerge, even with high-level distortions, when 
a large number of different distortions were 
used once each in training, instead of  a 
smaller number of distortions presented three 
times each. The effect was rather small in 
Whittlesea's case (falling in the third decimal 
place in the per letter enhancement effect 
measure) but other experiments have pro- 
duced similar results, and so does the simu- 
lation. In fact, because the prototype was 
tested in the simulation, we were able to 
demonstrate a monotonic drop in perfor- 
mance with distance from the prototype in 
this experiment. 

Experiments 6 and 7 examine in different 
ways the relative influence of  similarity to 
the prototype and similarity to the set of  
training exemplars, using small numbers of  
training exemplars rather far from the pro- 
totype. Both in the data and in the model, 
similarity to particular training stimuli is 
more important than similarity to the pro- 
totype, given the sets of training stimuli used 
in these experiments. 

Taken together with other findings, Whit- 
tlesea's results show clearly that similarity of  
test items to particular stored exemplars is 
of paramount importance in predicting per- 
ceptual performance. Other experiments show 
the relevance of  these same factors in other 
tasks, such as recognition memory, classifi- 
cation learning, and so forth. It is interesting 
to note that performance does not honor the 
specific exemplars so strongly when the train- 

ing items are closer to the prototype. Under 
such conditions, performance is superior on 
the prototype or stimuli closer to the proto- 
type than the training stimuli. Even when the 
training stimuli are rather distant from the 
prototype, they produce a benefit for stimuli 
closer to the prototype, if there are a large 
number of distinct training stimuli each 
shown only once. Thus, the dominance of  
specific training experiences is honored only 
when the training experiences are few and 
far between. Otherwise, an apparent advan- 
tage for the prototype, though with some 
residual benefit for particular training stimuli, 
is the result. 

The congruity of  the results of these sim- 
ulations with experimental findings under- 
scores the applicability of distributed models 
to the question of the nature of the represen- 
tation of  general and specific information. In 
fact, we were somewhat surprised by the 
ability of  the model to account for Whittle- 
sea's results, given the fact that we did not 
rely on context-sensitive encoding of the letter 
string stimuli. That is, the distributed repre- 
sentation we assigned to each letter was in- 
dependent of the other letters in the string. 
However, a context sensitive encoding would 
prove necessary to capture a larger ensemble 
of  stimuli. 

Whether a context-sensitive encoding would 
produce the same or slightly different results 
depends on the exact encoding. The exact 
degree of overlap of  the patterns of activation 
produced by different distortions of  the same 
prototype determines the extent to which the 
model will tend to favor the prototype relative 
to particular old exemplars. The degree of 
overlap, in turn, depends on the specific 
assumptions made about the encoding of  the 
stimuli. However, the general form of  the 
results of the simulation would be unchanged: 
When all the distortions are close to the 
prototype, or when there is a very large 
number of  different distortions, the central 
tendency will produce the strongest response; 
but when the distortions are fewer, and farther 
from the prototype, the training exemplars 
themselves will produce the strongest activa- 
tions. What the encoding would effect is the 
similarity metric. 

In this regard, it is worth mentioning an- 
other finding that appears to challenge our 
distributed account of what is learned through 
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repeated experiences with exemplars. This is 
the finding of  Medin and Schwanenflugel 
(1981). Their experiment compared ease of  
learning of  two different sets of  stimuli in a 
categorization task. One set of  stimuli could 
be categorized by a linear combination of  
weights assigned to particular values on each 
of  four dimensions considered independently. 
The other set of  stimuli could not be cate- 
gorized in this way; and yet, the experiment 
clearly demonstrated that linear separability 
was not necessary for categorization learning. 
In one experiment, linearly separable stimuli 
were less easily learned than a set of  stimuli 
that were not linearly separable but had a 
higher degree of intraexemplar similiarity 
within categories. 

At first glance, it may seem that Medin 
and Schwanenflugel's experiment is devastat- 
ing to our distributed approach, because our 
distributed model can only learn linear com- 
binations of  weights. However, whether a 
linear combination of  weights can suffice in 
the Medin and Schwanenflugel experiments 
depends on how patterns of activation are 
assigned to stimuli. If each stimulus dimen- 
sion is encoded separately in the representa- 
tion of the stimulus, then the Medin and 
Schwanenflugel stimuli cannot be learned by 
our model. But if each stimulus dimension 
is encoded in a context sensitive way, then 
the patterns of  activation associated with the 
different stimuli become linearly separable 
again. 

One way of  achieving context sensitivity is 
via separate enumeration of traces. But it is 
well known that there are other ways as well. 
Several different kinds of  context-sensitive 
encodings which do not require separate enu- 
meration of  traces, or the allocation of  sepa- 
rate nodes to individual experiences are con- 
sidered in Hinton (1981a), Hinton, Mc- 
Clelland, and Rumelhart  (in press), and 
Rumelhart  and McClelland (in press). 

It should be noted that the motivation for 
context-sensitive encoding in the use of  dis- 
tributed representations is captured by but 
by no means limited to the kinds of obser- 
vations reported in the experiment by Medin 
and Schwanenflugel. The trouble is that the 
assignment of  particular context-sensitive en- 
codings to stimuli is at present rather ad hoc: 
There are too many different possible ways 
it can be done to know which way is right. 

What is needed is a principled way of  assign- 
ing distributed representations to patterns of 
activation. The problem is a severe one, but 
really it is no different from the problem that 
all models face, concerning the assignment 
of  representations to stimuli. What we can 
say for sure at this point is that context- 
sensitive encoding is necessary, for distributed 
models or for any other kind. 

Discussion 

Until very recently, the exploration of  dis- 
tributed models was restricted to a few work- 
ers, mostly coming from fields other than 
cognitive psychology. Although in some cases, 
particularly in the work of  Anderson (1977; 
Anderson et al., 1977; Knapp & Anderson, 
1984), some implications of these models for 
our understanding of  memory and learning 
have been pointed out, they have only begun 
to be applied by researchers primarily con- 
cerned with understanding cognitive processes 
per se. The present article, along with those 
of  Murdock (1982) and Eich (1982), repre- 
sents what we hope will be the beginning of 
a more serious examination of  these kinds of  
models by cognitive psychologists. For they 
provide, we believe, important alternatives to 
traditional conceptions of  representation and 
memory. 

We have tried to illustrate this point here 
by showing how the distributed approach 
circumvents the dilemma of specific trace 
models. Distributed memories abstract even 
while they preserve the details of  recent, or 
frequently repeated, experiences. Abstraction 
and preservation of information about specific 
stimuli are simply different reflections of  the 
operation of  the same basic learning mecha- 
nism. 

The basic points we have been making can 
of course be generalized in several different 
directions. Here we will mention two: The 
relation between episodic and semantic 
memory (Tulving, 1972) and the represen- 
tations underlying the use of language. 

With regard to episodic and semantic 
memory, our distributed model leads natu- 
rally to the suggestion that semantic memory 
may be just the residue of  the superposition 
of  episodic traces. Consider, for example, 
representation of  a proposition encountered 
in several different contexts, and assume for 
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the moment that the context and content are 
represented in separate parts of the same 
module. Over repeated experience with the 
same proposition in different contexts, the 
proposition will remain in the interconnec- 
tions of  the units in the proposition submod- 
ule, but the particular associations to partic- 
ular contexts will wash out. However, material 
that is only encountered in one particular 
context will tend to be somewhat contextually 
bound. So we may not be able to retrieve 
what we learn in one context when we need 
it in other situations. Other authors (e.g., 
Anderson & Ross, 1980) have recently argued 
against a distinction between episodic and 
semantic memory, pointing out interactions 
between traditionally episodic and semantic 
memory tasks. Such findings are generally 
consistent with the view we have taken here. 

Distributed models also influence our 
thinking about how human behavior might 
come to exhibit the kind of  regularity that 
often leads linguists to postulate systems of  
rules. We have recently developed a distrib- 
uted model of a system that can learn the 
past tense system of English, given as inputs 
pairs of patterns, corresponding to the pho- 
nological structure of the present and past 
tense forms of  actual English verbs (Rumel- 
hart & McClelland, in press). Given plausible 
assumptions about the learning experiences 
to which a child is exposed, the model pro- 
vides a fairly accurate account of  the time 
course of acquisition of the past tense (Brown, 
1973; Ervin, 1964; Kuczaj, 1977). 

In general distributed models appear to 
provide alternatives to a variety of different 
kinds of models that postulate abstract, sum- 
mary representations such as prototypes, lo- 
gogens, semantic memory representations, or 
even linguistic rules. 

Why Prefer a Distributed Model? 

The fact that distributed models provide 
alternatives to other sorts of accounts is im- 
portant, but the fact that they are sometimes 
linked rather closely to the physiology often 
makes them seem irrelevant to the basic 
enterprise of cognitive psychology. It may be 
conceded that distributed models describe 
the physiological substrate of memory better 
than other models, but why should we assume 

that they help us to characterize human 
information processing at a more abstract 
level of  description? There are two parts to 
the answer to this question. First, though 
distributed models may be approximated by 
other models, on close inspection they differ 
from them in ways that should have testable 
consequences. If tests of  these consequences 
turn out to favor distributed models--and 
there are indications that in certain cases 
they will--it  would seem plausible to argue 
that distributed models provide an impor- 
tantly different description of  cognition, even 
if it does take the phenomena somewhat 
closer to the physiological level of  analysis. 
Second, distributed models alter our thinking 
about a number of aspects of  cognition at 
the same time. They give us a whole new 
constellation of assumptions about the struc- 
ture of cognitive processes. They can change 
the way we think about the learning process, 
for example, and can even help shed some 
light on why and how human behavior comes 
to be as regular (as bound by rules and 
concepts) as it seems to be. In this section 
we consider these two points in turn. 

A different level, or a different description? 
Are distributed models at a different level of  
analysis than cognitive models, or do they 
provide a different description of cognition? 
We think the answer is some of  both. Here 
we focus primarily on underscoring the 
differences between distributed and other 
models. 

Consider, first, the class of  models which 
state that concepts are represented by proto- 
types. Distributed models approximate pro- 
totype models, and under some conditions 
their predictions converge, but under other 
conditions their predictions diverge. In par- 
ticular, distributed models account both for 
conditions under which the prototype domi- 
nates and conditions under which particular 
exemplars dominate performance. Thus, they 
clearly have an advantage over such models, 
and should be preferred as accounts of  em- 
pirical phenomena. 

Perhaps distributed models are to be pre- 
ferred over some cognitive level models, but 
one might argue that they are not to be 
preferred to the correct cognitive level model. 
For example, in most of  the simulations 
discussed in this article, the predictions of 
enumeration models are not different from 
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the predictions of  our distributed model. 
Perhaps we should see our distributed model 
as representing a physiologically plausible 
implementat ion of  enumeration models. 

Even here, there are differences, however. 
Though both models superimpose traces of  
different experiences, distributed models do 
so at the time of  storage, while enumeration 
models do so at the t ime of retrieval. But 
there is no evidence to support the separate 
storage assumption of  enumeration models. 
Indeed, most such models assume that per- 
formance is always based on a superimposi- 
tion of  the specific experiences. Now, our 
distributed model could be rejected if con- 
vincing evidence of  separate storage could be 
provided, for example, by some kind of ex- 
periment in which a way was found to sepa- 
rate the effects of  different memory  experi- 
ences. But the trend in a number  of  recent 
approaches to memory has been to emphasize 
the ubiquity of  interactions between memory  
traces. Distributed models are essentially 
constructed around the assumption that 
memory  traces interact by virtue of the nature 
of  the manner  in which they are stored, and 
they provide an explanation for these inter- 
actions. Enumeration models, on the other 
hand, simply assume interactions occur and 
postulate separate storage without providing 
any evidence that storage is in fact separate. 

There is another difference between our 
distributed model and the enumeration mod- 
els, at least existing ones. Our distributed 
model assumes that learning is an error-cor- 
recting process, whereas enumeration models 
do not. This difference leads to empirical 
consequences which put great strain on existing 
enumeration models. In existing enumeration 
models, what is stored in memory  is simply a 
copy of features of  the stimulus event, inde- 
pendent of  the prior knowledge already stored 
in the memory system. But there are a number 
of  indications that what is learned depends on 
the current state of  knowledge. For example, 
the fact that learning is better after distributed 
practice appears to suggest that more learning 
occurs on later learning trials, if subjects have 
had a chance to forget what they learned on 
the first trial. We would expect such effects to 
occur in an error-correcting model such as 
OUrs. 

The main point of  the foregoing discussion 
has been to emphasize that our distributed 

model is not simply a plausible physiological 
implementation of existing models of  cogni- 
tive processes. Rather, the model is an alter- 
native to most, if  not all, existing models, as 
we have tried to emphasize by pointing out 
differences between our distributed model 
and other models which have been proposed. 
Of  course this does not mean that our dis- 
tributed model will not turn out to be an 
exact notational variant of  some particular 
other model. What  it does mean is that our 
distributed model must be treated as an 
alternative to - - ra the r  than simply an imple- 
mentation of--exist ing models of  learning 
and memory. 

Interdependence of theoretical assumptions. 
There is another reason for taking distributed 
models seriously as psychological models. 
Even in cases where our distributed model 
may not be testably distinct from existing 
models, it does provide an entire constellation 
of assumptions which go together as a pack- 
age. In this regard, it is interesting to contrast 
a distributed model with a model such as 
John Anderson's ACT* model (J. R. Ander- 
son, 1983). One difference between the models 
is that in ACT* it is productions rather than 
connection strengths that serve as the basis 
of  learning and memory. This difference leads 
to other differences: in our model, learning 
occurs through connection strength modula- 
tion, whereas in ACT* learning occurs 
through the creation, differentiation, and gen- 
eralization of  productions. At a process level 
the models look very different, whether or 
not they make different empirical predictions. 
Learning in our distributed model is an au- 
tomatic consequence of  processing based on 
information locally available to each unit 
whose connections are changing; in ACT*, 
learning requires an overseer that detects 
cases in which a production has been mis- 
applied, or in which two productions with 
similar conditions both fit the same input, to 
trigger the differentiation and generalization 
processes as appropriate. 

Similar contrasts exist between our distrib- 
uted model and other models; in general, our 
model differs from most  abstractive models 
(that is, those that postulate the formation of  
abstract rules or other abstract representa- 
tions) in doing away with complex acquisition 
mechanisms in favor of  a very simple con- 
nection strength modulation scheme. Indeed, 
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to us, much of  the appeal of  distributed 
models is that they do not already have to 
be intelligent in order to learn, like some 
models do. Doubtless, sophisticated hypoth- 
esis testing models of  learning such as those 
which have grown out of the early concept 
identification work of  Bruner, Goodnow, and 
Austin (1956) or out of the artificial intelli- 
gence learning tradition established by Win- 
ston (1975) have their place, but for many 
phenomena, particularly those that do not 
seem to require explicit hypothesis formation 
and testing, the kind of learning mechanism 
incorporated in our distributed model may 
be more appropriate. 

Two final reasons for preferring a distrib- 
uted representation are that it leads us to 
understand some of the reasons why human 
behavior tends to exhibit such strong regular- 
ities. Some of  the regularity is due to the 
structure of  the world, of  course, but much 
of  it is a result of the way in which our 
cultures structure it; certainly the regularity 
of  languages is a fact about the way humans 
communicate that psychological theory can 
be asked to explain. Distributed models pro- 
vide some insight both into why it is beneficial 
for behavior to be regular, and how it comes 
to be that way. 

It is beneficial for behavior to be regular, 
because regularity allows us to economize on 
the size of  the networks that must be devoted 
to processing in a particular environment. If 
all experiences were completely random and 
unrelated to each other, a distributed model 
would buy us very litt le--in fact it would 
cost us a bit--relative to separate enumeration 
of experiences. An illuminating analysis of  
this situation is given by Willshaw (1981). 
Where a distributed model pays off, though, 
is in the fact that it can capture generalizations 
economically, given that there are generaliza- 
tions. Enumeration models lack this feature. 
There are of course limits on how much can 
be stored in a distributed memory system, 
but the fact that it can abstract extends those 
limits far beyond the capacity of any system 
relying on the separate enumeration of  ex- 
periences, whenever abstraction is warranted 
by the ensemble of  inputs. 

We have just explained how distributed 
models can help us understand why it is a 
good thing for behavior to exhibit regularity, 

but we have not yet indicated how they help 
us understand how it comes to be regular. 
But it is easy to see how distributed models 
tend to impose regularity. When a new pattern 
is presented, the model will impose regularity 
by dealing with it as it has learned to deal 
with similar patterns in the past; the model 
automatically generalizes. In our analysis of  
past tense learning (Rumelhart & McClelland, 
in press), it is just this property of distributed 
models which leads them to produce the 
kinds of  over-regularizations we see in lan- 
guage development; the same property, oper- 
ating in all of  the members of  a culture at 
the same time, will tend to produce regular- 
izations in the entire language. 

Conclusion 

The distributed approach is in its infancy, 
and we do not wish to convey the impression 
that we have solved all the problems of  
learning and memory simply by invoking it. 
Considerable effort is needed on several fronts. 
We will mention four that seem of  paramount 
importance: (a) Distributed models must be 
integrated with models of  the overall organi- 
zation of information processing, and their 
relation to models of  extended retrieval pro- 
cesses and other temporally extended mental 
activities must be made clear. (b) Models 
must be formulated which adequately capture 
the structural relations of  the components of 
complex stimuli. Existing models do not do 
this in a sufficiently flexible and open-ended 
way to capture arbitrarily complex proposi- 
tional structures. (c) Ways must be found to 
take the assignment of patterns of activation 
to stimuli out of  the hands of  the modeler, 
and place them in the structure of  the model 
itself. (d) Further analysis is required to de- 
termine which of  the assumptions of  our 
particular distributed model are essential and 
which are unimportant details. The second 
and third of  these problems are under inten- 
sive study. Some developments along these 
lines are reported in a number of recent 
papers (Ackley, Hinton, & Sejnowski, 1985; 
McClelland, 1985; Rumelhart  & Zipser, 
1985). 

Although much remains to be done, we 
hope we have demonstrated that distributed 
models provide distinct, conceptually attrac- 
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t ive a l t e rna t ives  to  m o d e l s  i n v o l v i n g  the  ex-  
pl ic i t  f o r m a t i o n  o f  abs t r ac t ions  o r  the  enu-  
m e r a t i o n  o f  specif ic  expe r i ences .  Jus t  h o w  far 
d i s t r i bu t ed  m o d e l s  can  t ake  us t o w a r d  an  
u n d e r s t a n d i n g  o f  l e a rn ing  and  m e m o r y  re-  
m a i n s  to  be  seen. 
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I m p r o v e d  R e p r o d u c t i o n  o f  P h o t o m i c r o g r a p h s  in  Behavioral  Neuroscience 

Behavioral  Neuroscience is p leased to a n n o u n c e  new  a n d  i m p r o v e d  p h o t o m i c r o g r a p h  
r e p r o d u c t i o n .  Previously,  p h o t o m i c r o g r a p h s  lacked the  high r e so lu t ion  needed  for 
de ta i led  study. B e g i n n i n g  in  1985, the  p h o t o m i c r o g r a p h  will  appea r  twice:  once  in  

the  text,  as usual ,  a n d  aga in  in  a special  added  s igna ture  o f  be t te r  qual i ty ,  coa ted  
pape r  s tock tha t  will yield subs tan t i a l ly  m o r e  detai l .  


