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Opinion
Glossary

Active inference: the combined mechanism by which perceptual and motor

systems conspire to reduce prediction error using the twin strategies of

altering predictions to fit the world and altering the world (including the body)

to fit the predictions.

Corollary discharge: often (incorrectly) used synonymously with ‘efference

copy’, this names the output of the forward model (the predictor mechanism),

which may be used to influence further processing.

Efference copy: a copy of the current motor command that may be given as

input to a forward model.

Forward model: a mechanism that predicts the future state of a system. In

standard control theory, this would be an internal loop whose input is a copy

(an efference copy) of a control signal such as a motor command and whose

output is a prediction about the next sensory state. In AFMs, an ‘inverse model’

computes the motor command, which is then copied to the forward model,

which issues predictions. In IFMs, proprioceptive predictions issued by the

forward model act directly as motor commands and there is no role for an

efference copy (Figures 1 and 2).

Generative model: a description that allows a system to self-generate data that

are similar to the observed data. Usually, that means a model that captures the

statistical structure of some set of observed inputs by tracking (in effect,

schematically recapitulating) the causal matrix responsible for that structure.

The dynamics of the units encoding such a model are used to predict inputs to

the system. A generative model thus generates consequences from causes in

the same way that a forward model maps from causes to consequences.

Forward models are thus examples of generative models.

Inverse–forward scheme: a scheme that posits two distinct models – an inverse

model (or optimal control model) that converts intentions into motor

commands and a forward model that converts motor commands into sensory

consequences (which are compared with actual outcomes for online error

correction and learning).

Inverse model: a mechanism that takes the intended position of the body as
The use of forward models (mechanisms that predict the
future state of a system) is well established in cognitive
and computational neuroscience. We compare and con-
trast two recent, but interestingly divergent, accounts of
the place of forward models in the human cognitive
architecture. On the Auxiliary Forward Model (AFM)
account, forward models are special-purpose prediction
mechanisms implemented by additional circuitry dis-
tinct from core mechanisms of perception and action.
On the Integral Forward Model (IFM) account, forward
models lie at the heart of all forms of perception and
action. We compare these neighbouring but importantly
different visions and consider their implications for the
cognitive sciences. We end by asking what kinds of
empirical research might offer evidence favouring one
or the other of these approaches.

Two roles for forward models
There is a great deal of evidence that people predict both
themselves and other people [1,2]. But how do they do it?
Recent proposals suggest that people use forward models
[3–5] to make predictions (see Glossary). However, there
are two different types of account of how they might be
used. The first account (Figure 1) assumes a dedicated
prediction mechanism implemented by additional circuitry
distinct from the core mechanisms of perception and ac-
tion. Those core mechanisms involve one or more distinct
inverse models, which compute motor commands from
desired effects. We call this complex the AFM account.
The second account (Figure 2) is more integrated and
posits a forward (generative) model as the core machinery
of perception and action. We call this the IFM account. In
the IFM, motor commands are replaced by the descending
web of sensory predictions issued by the forward model.
This removes any fundamental distinction between motor
and sensory processing and sidesteps the need for a dis-
tinct inverse model or for the learning and use of multiple
(paired) forward and inverse models. The two accounts
thus share a great deal, but the differences between them
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are important, making them ripe (we argue) for directly
contrastive research and experiment.

AFMs
When I plan an action, for instance moving my arm to a
target, I construct an action command, use that command
to perform the action, and experience the sensory (includ-
ing proprioceptive) consequences of that action. If I repeat-
edly perform the action, I can learn from my mistakes (e.g.,
changing the plan slightly if my arm just misses the
target). Over time, I can predict that if I instigate an action
command, I will subsequently experience a particular
result. In the same way, if I decide to name an object in
input and estimates the motor commands that would transform the current

position into the desired one.

Joint action: an action that involves appropriately timed and coordinated

contributions from two (or more) agents.

Predictive coding: a data-compression strategy in which only the discrepancies

between predicted and expected values (residual errors, or ‘prediction errors’)

are used to drive further processing (Box 2).

Proprioception: the ‘inner’ sense that informs us about the relative locations of

our bodily parts and the forces and efforts that are being applied.

Simulation: interpreting another’s actions by reproducing the processes that

one would use to perform that action.
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Figure 1. Auxiliary Forward Model (AFM) architecture. In this architecture, the output of the inverse model is a motor command, copied to the forward model, which is used

to estimate sensory feedback.
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Figure 2. Integral Forward Model (IFM) architecture. In this architecture, the predictions from the forward model act as action commands and there is no need for an

efference copy as such.
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a picture (e.g., in a psycholinguistic experiment), I can
predict what I will hear myself saying.

According to the AFM account (Figure 1), such predic-
tions involve dedicated machinery that may involve differ-
ent representations from those involved in generating the
action itself [6–8]. In arm movement, the action command
causes the action to be implemented using muscles, nerve
fibres, and so on (these can be equated with the ‘motor
plant’ in engineering). However, the action command also
sends a so-called efference copy that is used to drive
predictions that do not make use of the implementer.
Instead, the efference copy serves as input to a forward
model of the action that generates the projected sensory
consequences of those commands as output. This forward
model could simply involve a look-up table, but is more
likely to involve calculations (e.g., approximations to the
laws of mechanics), and the output is in general computed
2

before the action is performed. As a simple analogy, I turn
my radiator up from ‘off’ to half way. Well before the
radiator heats up, I predict (based on repeated experience
with my central heating) that it will take 5 min to heat by
108C (using very simple equations; e.g., increase of 28C/min
for each 308 turn). I can act on the prediction right away
(e.g., take my coat off) or compare the prediction with the
results and learn from any discrepancy via my inverse
model (e.g., and therefore turn the knob further).

Such accounts thus posit two distinct models – an
inverse model (or optimal control model) that converts
intentions into motor commands and a forward model that
converts motor commands into sensory consequences
(which are compared with actual outcomes for online error
correction and learning). Importantly, the forward model is
distinct from the plant (the central heating system). Simi-
larly, my forward model of arm movement is distinct from



Box 1. Predicting language by simulation

After hearing a boy say ‘I want to go and fly my. . .’, you might

predict that he will shortly utter ‘kite’ – a word that refers to a flyable

object, is a noun, and begins with the phoneme /k/. According to

prediction by simulation, you covertly imitate the boy’s utterance,

make contextual allowances for the differences between yourself

and him, and use this to derive the production (i.e., motor)

command that the boy would use to produce ‘kite’. You then use

the efference copy of this production command to derive forward

models of the meaning, grammar, and sound of the utterance and

can then act on these predictions; for example, comparing them

with the boy’s utterance when it occurs [28]. There is good evidence

for covert imitation [29] and for predictions at different linguistic

levels [30–32], some of which occur too quickly to be due to the

implementer (i.e., the plant) [33]. Other researchers had Italian

participants repeatedly hear a pseudoword (e.g., birro) and used

transcranial magnetic stimulation (TMS) to reveal immediate

appropriate articulatory activation (associated with rr) if they heard

the first part of the same word (bi coarticulated with rro) compared

with when they heard the first part of a different word (bi

coarticulated with ffo). This suggests that the covert imitation

facilitated speech recognition [34].

Box 2. Predictive coding, predictive processing, and active

inference

Predictive coding was first developed as a data-compression

strategy for commercial signal processing. Thus, consider a basic

task such as image transmission: in most images, the value of one

pixel regularly predicts the value of its nearest neighbours, with

differences marking important features such as the boundaries

between objects. That means that the code for a rich image can be

compressed (for a properly informed receiver) by encoding only the

‘unexpected’ variation – the cases where the actual value departs

from the predicted one. What needs to be transmitted is just the

‘news’ – the difference (also known as the prediction error) between

the actual current signal and the predicted one. Descendants of this

kind of compression technique are currently used in various forms

of audio compression and (most notably) in motion-compressed

encoding for video, where one assumes (‘predicts’) that the image

remains the same from one frame to the next, encoding only the

deviations due to motion, occlusion, and so on.

An emerging family of models of perception [10–15] deploy that

core strategy of efficient encoding and transmission in the special

context of a multilevel probabilistic generative model. If these

‘predictive processing’ [16] accounts are on track, perception is a

process in which we (or rather, various parts of our brain) try to

guess what is out there, using the incoming signal more as a means

of tuning and nuancing the guessing rather than as a rich (and

bandwidth-costly) encoding of the state of the world. Percepts here

take shape only when downward predictions match the incoming

sensory signal, at multiple levels of processing. Perception, if such

models are correct, is a matter of the brain using stored knowledge

to predict, in a progressively more refined manner, the patterns of

multilayer neuronal response elicited by the current sensory

stimulation.

Active inference (or ‘action-oriented predictive processing’)

extends this story to encompass the generation of motor response.

In these extensions [17,18] predictions of the proprioceptive

trajectories that would ensue if a certain action were to occur

generate prediction errors that are then eliminated by movement.

Descending predictions thus function as motor commands. They do

this by generating cascading prediction errors (because the

predicted trajectory is not yet actual) that are eventually quashed

by simple, low-level reflexes. Such a strategy avoids the need to

solve difficult (arguably intractable) optimality equations during

online processing while fluidly compensating for known signalling

delays, perturbations, and sensory noise [26].
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its muscular implementation. Additionally, my forward
model of picture naming is distinct from the mechanisms
of language production, although both ‘routes’ are cognitive
and (largely) instantiated in the brain [1].

I could predict your behaviour simply based on my
experiences as observer, just as I can predict events
(e.g., how an object will fall). However, AFMs and IFMs
(see below) both suggest that I predict your behaviour
using the same forward models that I use for predicting
my own behaviour – a process that Pickering and Garrod
[1] call prediction by simulation. In the AFM version, I see
your arm moving and covertly imitate your movements,
using the inverse model and accommodating to differences
between my own body and yours (i.e., the context) to
determine the action command that I would use to move
my own arm. I then take the efference copy of that com-
mand to predict your upcoming arm movement (e.g., to
punch me). I can similarly predict a predictable word in
your utterance. As when predicting my own behaviour, I
make use of a dedicated mechanism distinct from the
perceptual or language comprehension system (by ‘borrow-
ing’ a mechanism developed for limb movement or lan-
guage production). Importantly, this mechanism can be
multilevel, so that it can be used to deal with complex
hierarchical actions [9] or the meaning, grammar, and
sound involved in language (Box 1).

IFMs
The alternative IFM approach originates in work on the
role of prediction in perception [10–16]. In these accounts,
perception itself involves the use of a forward (generative)
model whose role is to construct the incoming sensory
signal ‘from the top down’. Mismatches between the pre-
dictions issued by the forward model and the sensory flow
result in ‘prediction error’ signals that refine and alter
the predictions, until the system settles into a coherent
multilevel state. ‘Predictive coding’ models of perception
(Box 2) deploy that strategy in the special context of
multilevel systems encoding probabilistic forward models.
In the multilevel (hierarchical) setting, each higher-level
neuronal population provides predictions and contextual
guidance to the level below.

Such accounts have recently been extended (under the
umbrella of ‘active inference’ [17,18]) to include the control
of action. This is accomplished (Box 2) by predicting the
flow of sensation that would occur were some target action
performed. The resulting cascade of prediction error is then
quashed – ultimately at the level of spinal reflexes [19] – by
moving the bodily plant to bring the action about. Action
thus results from our own predictions concerning the flow
of sensation – a version of the ‘ideomotor’ theory of James
[20] and Lotze [21] according to which the idea of moving,
when unimpeded by other factors, is what brings the
moving about.

Predicting the behaviour of other agents is then possible
by combining the two strategies (one for perception and one
for action) just described. In active inference we learn to
associate our own high-level plans and intentions with
their sensory consequences and actions flow from the
unpacking of those high-level states into predicted sensory
patterns. If I am observing another agent, and that agent
is, in relevant respects, like myself, the same forward
3



Box 3. Simulating others using IFMs

Imagine yourself observing another agent reaching, on a hot day,

for a glass of chilled cola. To perceive the scene is (the IFM story

suggests) to meet the incoming flow of sensory stimulations with an

apt set of top-down predictions. However, those predictions may

now be generated using the same forward model that would (were

the weighting of predicted proprioceptive elements high) result in

the agent herself, in a similar situation, reaching for the chilled cola.

Such a forward model might include, for example, a high-level

intention to quench one’s thirst while experiencing a certain

pleasant, bubbly sensation linked to a swathe of lower-level

expectations concerning some probable trajectory of reaching and

to a resulting flow of gross visible actions. We thus simultaneously

infer both the most likely shape of the unfolding action and the most

likely underlying intentions of the other agent. What ensues is thus

(as in the AFM case) a complex mental simulation, but this time

(unlike in the AFM approaches) that simulation reaches backwards,

uncovering also the intentions of the observed agent. For fuller

treatments of this scenario, in the context of a novel account of the

mirror neuron system, see [22,23].
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model used to predict the consequences of my own actions
(the forward model linking my own intentional states to
their visual and proprioceptive consequences) becomes
available as a resource to predict the (visual) consequences
of another’s actions – and thereby infer their intentions [22].

To enable this to occur, however, the system needs
somehow to differentiate between predicting our own
and others’ behaviour. This is achieved [23] by manipulat-
ing the weighting (the inverse variance or ‘precision’,
reflecting the estimated reliability of the signal) of select
aspects of the sensory (especially proprioceptive) predic-
tion error signal. When engaged in self-generated action,
the precision weighting of prediction errors on the pre-
dicted movement is set high, so that those proprioceptive
predictions (reflecting the desired but latent trajectory of
motion) are trusted and quashed by bodily motion. High
precision weighting for the predicted proprioceptive tra-
jectory allows the system to ignore sensory prediction
errors reporting the fact that that the trajectory has not
yet been enacted. This provides a fundamental reason (see
[24]) for the often-observed attenuation of sensory infor-
mation during self-produced movement.

When proprioceptive prediction error is highly weighted
yet suitably resolved by action, we move, and we may feel a
sense of agency or ownership regarding those actions.
When observing the actions of another agent, by contrast,
the weighting of proprioceptive prediction errors (associat-
ed with that specific action) is set low. Under those condi-
tions, our own forward model becomes available to predict
(and understand) the actions of others without engaging
our own motor plant (see Box 3 for an informal example). In
this scheme, variations in the precision weighting of pre-
diction error thus set the context (self versus other) for
perceptual inference about high-level intentions.

Comparisons between the accounts
AFMs and IFMs both implicate forward models in the
production of fluent motor action. Both invoke prediction
error-minimising schemes that are either identical with or
formally related to familiar schemes such as Kalman filter-
ing (see [25]; for a review and some formal comparison,
see [26]). The key difference between the accounts lies
4

in the need (or lack of it) to explicitly compute an inverse
model. According to the AFM account, the forward model is
distinct from the inverse model, because it involves appara-
tus that computes the motor commands used to drive online
action. Such a model is thus free to depart considerably in
form from whatever governs the true kinematics of the
agent. Furthermore (in AFMs) the outputs of the forward
model (i.e., the corollary discharge) do not cause movements
– they are just used to finesse and predict outcomes and in
learning. According to the IFM account, however, the for-
ward model drives our own online action by generating a
flow of descending predictions that constitute the set points
for our reflexes (e.g., if my reflexes were a thermostat,
I would simply need to predict that the temperature had
increased by 108C).

This might seem to imply that the IFM account has less
freedom of form (for example, less scope for simplifications)
because the model used to predict outcomes is the same
model that generates our own actions. However, it is now
reused (in ways modulated by precision weighting and
sensitive to contextual information, including any salient
information distinguishing the two agents) when predict-
ing the actions of others. The scope for contextualisation
and nuancing means, however, that we need deploy only
select aspects of our own forward (generative) model, so
there remains plenty of room for simplifications and mis-
takes (just as there is in AFMs). Moreover, to whatever
extent we have found it useful to use various shortcuts
(simplified or idealised models) to predict the sensory
consequences of our own behaviour, we may use those
same shortcuts to predict the unfolding behaviours of
others.

The core difference between IFMs and AFMs is thus that,
in IFMs, there is no distinct or dedicated mechanism used to
predict the outcomes of our own (or others’) actions. Instead,
this is achieved using the same mechanism that (by pre-
dicting sensory consequence) drives our own actions, subtly
contextualised both for self-made acts and for the under-
standing of others. What differs is thus the location of the
forward model as part of a larger architecture.

A well-known example of the AFM approach is the
Hierarchical Modular Selection and Identification for Con-
trol (HMOSAIC) account. The HMOSAIC account exploits
a hierarchical, prediction-driven multilevel model as a
means of supporting action imitation. In [27] (p. 599),
Wolpert et al. suggested that the HMOSAIC account might
likewise address issues concerning action understanding
and the ‘extraction of intentions’. The HMOSAIC account,
however, relies on a stack of predictor–controller (forward–
inverse model) pairs, whereas in IFMs there is no separate
inverse model or controller. An important upshot is that
IFM accounts dispense entirely with the need for efference
copies. In their place, there is simply the variegated,
context-sensitive web of descending predictions that un-
derwrite perception and drive action. Differences between
myself and another agent are now treated as just addition-
al context that is able to nuance the use of a common
forward (generative) model. Predicting how the visual
scene will unfold from where I stand and imagining myself
in your shoes (hence viewing the scene from elsewhere)
are thus accomplished using the same core machinery,



Box 4. Outstanding questions

� Can evidence concerning double dissociations help decide

between IFMs and AFMs?

� Can IFMs successfully accommodate cases of joint action of the

kind described in the text?

� What are the computational costs and benefits associated with

IFMs and AFMs?

� Are hybrid (IFM/AFM) solutions possible?

� The AFM formulation suggests that motor commands need not be

engaged during action observation. By contrast, the IFM approach

predicts that the same motor command units will be activated

during action and its observation. IFMs thus seem to predict that

motor units should display ‘mirror neuron’ characteristics (for

some evidence that they do, see [35]), whereas the AFM

formulation does not. Is this correct or can AFMs also account

for these results?

� Some theories propose that forward and inverse models are

represented in the cerebellum [36]. Can the data that are used to

motivate such accounts be interpreted in terms of IFM as well as

AFM theories? At issue here is the thorny question of what

(exactly) it is that the cerebellum learns and what kinds of

prediction it specialises in [37–41].

� How can we tell whether a descending neural signal is a sensory

prediction (as assumed by IFMs) or a traditional motor command

(as assumed by AFMs)?
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contextually modulated. IFMs and AFMs thus agree that a
single resource (the forward model) is used to deal with
self- and other prediction, but they disagree over whether
this resource (the shared forward model) is distinct from
the machinery that drives our own motor behaviours.

Because each of these strategies predicts self and other
using a shared forward model, AFMs and IFMs are both
hostage to the other agents being ‘similar enough’ to
ourselves. At some point, this balance tips and it becomes
better to treat the other as simply exotic: another part of
the world to be modelled and hence an object apt for what
might be thought of as ‘generic prediction’. Here, too, IFMs
and AFMs share a common structure, each allowing for
cases where we rely on similarity-based simulation and
others where we must fall back on the forms of prediction
that are used for non-agents (which Pickering and Garrod
[1] call ‘prediction by association’).

In summary, IFMs and AFMs agree that we often
predict other, similar agents by applying a forward model
geared to predicting sensory consequences. According to
the AFM account, however, that forward model inheres in
a distinct piece of circuitry that is geared to anticipating
our own movements (including our own speech) but is
different from the machinery that produces our move-
ments. IFMs, by contrast, invoke a single, complex forward
model geared both to predicting and bringing about the
consequences of intended acts. This is, in effect, a single
generative model of embodied exchange with the world.
That model is variously contextually nuanced to imagine
our own behaviours, to bring them about, and to predict,
imagine, and understand the behaviours of others. AFMs,
meanwhile, posit at least two kinds of resource here: one
for predicting ourselves and others and one (not prediction
based) for bringing our own actions about.

Testing grounds
The AFM account, we have seen, invokes two distinct
models: an inverse model that converts intentions into
motor commands and a separate forward model that con-
verts motor commands into sensory consequences. IFMs,
by contrast, automatically invert a single forward or gen-
erative model that converts intentions into sensory con-
sequences. At the most abstract level, AFMs thus depict
movements as driven by descending motor commands and
simulations as handled by a further (efference copy-driven)
resource, whereas IFMs depict both movement and simu-
lation as resulting directly from descending predictions
issued by the forward model. What kinds of evidence (see
also Box 4) might help tease these possibilities apart?

A promising strategy is to look for double dissociations.
IFMs predict that self-prediction and the prediction of
other agents will be simultaneously impaired whenever
action production is (nonsuperficially) impaired. In AFMs,
however, impaired action production need not immediately
impair simulation (either of oneself or others). Thus in
AFMs the distinction between forward and inverse models
makes room for double dissociations that IFMs seems to
exclude. If there are distinct forward and inverse models,
patients with lesions to the forward model should still be
able to execute skilled movements, even if they are unable
to perform online error correction or learn new movements.
By contrast, IFMs suggest that this scenario is impossible
and that lesions to the forward model will always preclude
skilled movements. Conversely, AFMs suggest that lesions
to the inverse model should prevent movement (motor
commands) but need not thereby affect action observation.
In IFMs, by contrast, loss of, or damage to, the integrated
forward model would affect both the enacting of intentions
and the recognition of those intentions in others.

Another promising conceptual testing ground for the
two approaches might be provided by studies of conversa-
tion and (more generally) joint action. Imagine that agent
A is trying to hold a conversation with agent B. IFMs claim
that agent A relies on predictions issued by her own
forward (generative) model to produce her speech, while
also using that same model to simulate and predict agent B
(who is busy simulating and predicting agent A). Both of
the key activities of agent A (simulating agent B and
producing speech) depend, if the IFM account is correct,
on a single forward model, elements of which are repur-
posed (by alterations in precision weighting) to predict and
understand agent B’s actions.

In cases of joint action, however, this requires a very
delicate use of that single resource. The same subelements
of a single integrated forward model may now be required
both to drive an action and to predict and understand that
kind of action when it is being performed by another agent.
To achieve this, it might seem that proprioceptive precision
needs to be set high (to drive the action) and low (to
simulate it) with respect to the same model elements at
the same time. According to AFMs, however, the resource
that handles the simulations is distinct from (although
based on and interacting with) the resource that produces
the agent’s own actions. This seems to provide additional
degrees of freedom that might be important for joint action.

We do not think it is impossible for an IFM account
to accommodate such cases (they are, essentially, the
special class of cases discussed at length, under the
AFM umbrella, in [1]). One possibility may be to think
5
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of cases of joint action as setting up special contexts that
recruit rapidly alternating, or very delicately interwoven,
sets of precision weightings. Addressing and modelling
such complex scenarios may help adjudicate between
these two powerful yet surprisingly divergent predic-
tion-based schemas.

Trading complexity
Despite their many similarities, the IFM and AFM
accounts represent fundamentally different views of the
shape and functioning of the human cognitive architecture.
In common is the core emphasis on the need to predict our
own upcoming sensory states. Such predictions can power
learning, help finesse time delays, and enable a suite of
potent capacities for motor imagination and simulation-
based reasoning. In common too is the resulting emphasis
on the learning and use of a forward (generative) model able
to anticipate the sensory consequences of our own actions.

However, IFMs differ from AFMs in several important
ways. In IFMs, motor commands are replaced by predic-
tions about proprioceptive consequences (that implicitly
minimise various energetic costs). The need for a distinct
inverse model/optimal control calculation disappears and
along with it the need for an efference copy of the motor
command. Instead, IFMs posit a more complex (distribut-
ed) forward model mapping prior beliefs about desired
trajectories to sensory consequences. The ‘heavy lifting’
that (in AFMs) required the use of an efference copy,
inverse models, and optimal controllers now shifts to the
acquisition and use of this more complex predictive (gen-
erative) model. Whether this is a worthwhile (or biologi-
cally realistic) trade-off remains to be seen.
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