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Reinforcement Learning
Andrew G. Barto

Introduction

The term reinforcement comes from studies of animal learning
in experimental psychology, where it refers to the occurrence of
an event, in the proper relation Lo a response, thal tends to
increase the probability thal the response will occur again in
the same situation. Although not used by psychologists, the
term reinforcement learning has been widely adopted by Lhe-
orists in engineering and artificial intelligence to refer to a class
of learning tasks and algotithms based on this principle of rein-
forcement. The simplest reinforcement learning methods are
based on the common-sense idea that if an action is followed
by 4 satisfactory state of affairs or an improvement in the state
of affairs, then the tendency to produce that action is strength-
ened, i.e., reinforced.

Reinforcement learning is usually formulated as an optimiza-
tion problem with the objective of finding an action or a strat-
egy for producing actions that is optimal, or best, in some
well-defined way. Although in practice it is more important
that a reinforcement learning system continue 1o improve than
it is for it to actually achieve optimal behavior, optimalily ob-
jectives provide a useful categorization of reinforcement learn-
ing into three basic types, in order of increasing complexity:
nonassociative, associative, and sequential. All these types of
reinforcement learning differ from the more commonly studied
paradigm of supervised learning, or “learning with a teacher,”
in significant ways that we discuss in the course of this article.
The article RenrForcemMentT Learming v Motor ConTrOL
contains additional information. For more detailed treatments,
the reader should consult Barto (1992} and Sutton (1992).

Nonassociative and Associative Reinforcement Learning

Figure | shows the basic components of both nonassociative
and associative reinforcement learning. The learning system's
actions influence the behavior of some process. A critic sends
the learning system a reinforcement signal whose value at any
time is a measure of the “goodness” of the current process
behavior. Using this information, the learning system updates
its action-generation rule, generates another action, and the
process repeats. [n nonassociative reinforcement learning, the
only inpul lo the learning system is the reinforcement signal,
whereas in the associative case, the learning system also re-
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Figare 1. Nonassociative and associative reinforcement learning, A
critic evaluates the actions' immediate consequences on the process and
sends the learning system a reinforcement signal, In the associalive
case, in contrast to the nonassociative case, stimulus patterns {(dashed
lines) are available to the learning system in addition to the reinforce-
ment signal,

ceives stimulus patterns that provide information about the
process and possibly other information as well (the dashed
lines in Figure 1). Thus, whereas the objective of nonassocia-
tive reinforcement learning is to find the optimal action, the
objective in the associative case is to learn an associative map-
ping that produces the optimal action on any trial as a function
of the stimulus pattern present on that trial.

An example of a nonassociative reinforcement learning
problem has been extensively studied by learning automata
theorists (Marendra and Thathachar, 1989). Suppose the learn-
ing system has m actions a,, &, . .., d,, and that the reinforce-
ment signal simply indicates “success™ or “failure.” Further,
assume that the influence of the learning system’s actions on
the reinforcement signal can be modeled a5 a collection of suc-
cess probabilities d,, dy, ..., d,, where d, is the probability of
success given that the learning system has generated a,. The d's
do not have to sum to one. With no initial knowledge of these
values, the learning system’s objective is to eventually maxi-
mize the probability of receiving *'success,” which is accom-
plished when it always performs the action g; such that 4, =
max{d|f=1,...,m}

One class of learning systems for this problem consists of
stochastic fearning automata (Narendra and Thathachar, 1989).
Suppose that on each trial, or time step, ¢, the learning system
selects an action a(y) from its set of m actions according to a
probability vector (p,{1),.. ., pal0), where p(f) = Pria(t) = a;}.
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A stochastic learning aulomaton implements & common-sense
notion of reinforcement learning: if action a, is chosen on trial
¢ and the critic’s feedback is “success,” then (1) is increased
and the probabilities of the other actions are decreased; where-
as il the critic indicates “failure,” then p(1) is decreased and the
probabilities of the other actions are appropriately adjusted.
Many methods for adjusting action probabilities have been
studied, and numerous theorems have been proven about how
they perform.

One can generalize this nonassociative problem to illustrate
an associative reinforcement learning problem. Suppose that
on trial ¢ the learning system senses stimulus pattern x{f} and
selects an action aff) = &, through a process that can depend on
x(f). After this action is executed, the critic signals success with
probability d(x(r)) and failure with probability | — d/{x(£)).
The objective of learning is to maximize success probability,
achieved when on each trial ¢ the learning system executes
the action a(f) = a,, where g is the action such that di(x(r)) =
max {d{x(H)i=1,...,m} ﬁnlikﬂ supervised learning, exam-
ples of optimal actions are not provided during training; they
have to be discovered through exploration by the learning
sytem. Learning tasks like this are related to instrumental, or
cued operant, tasks used by animal learning theorists, and the
stimulus patterns correspond to discriminative stimuli.

Following are key observations about both nonassociative
and associative reinforcement learning,

1. Uncertainty plays a key role in reinforcement learning. For
example, if the critic in the preceding example evaluated
actions deterministically (i.e., d, = L or 0 for each i), then
the problem would be a much simpler optimization prob-
lem.

2. The eritic is an abstract model of any process that evaluates
the learning system’s actions. [t need not have direct access
to the actions or have any knowledge about the interior
workings of the process influenced by those actions.

1, The reinforcement signal can be any signal evaluating the
learning system's actions, and not just the success/failure
signal described earlier. Often it takes on real values, and
the objective of learning is to maximize its expected value.
Moreover, the critic can use a variety of ctiteria in evalu-
ating actions, which it can combine in various ways to form
the reinforcement signal.

4, The critic’s signal does not directly tell the learning system
what action is best; it only evaluates the action taken. The
critic also does not directly tell the leaming system how to
change its actions. These are key features distinguishing re-
inforcement learning from supervised learning, and we will
discuss them further.

5. Reinforcement learning algorithms are selectional processes.
There must be variely in the action-generation process
so that the consequences of alternative actions can be
compared to select the best. Behavioral variety is called
exploration; it is often generated through randomness (as in
stochastic learning automata), but it need not be.

6. Reinforcement learning involves a conflict between exploita-
tion and exploration. In deciding which action 1o take, the
learning system has to balance two conflicting objectives: it
has to exploit what it has already learned to obtain high
evaluations, and it has to behave in new ways—explore—to
learn more. Because these needs ordinarily conflict, rein-
forcement learning systems have to somehow balance them.
In control engineering, this is known as the conflict between
control and identification (sec IDENTIFICATION AND CON-
TrROL). It is absent from supervised and unsupervised learn-
ing unless the learning system is also engaged in influencing

which training examples it sees (see EXPLORATION IN ACTIVE
LEARNING),

Associative Reinfu;'cemnt Learning Rules

Several associative reinforcement learning rules for neuron-like
units have been studied. Consider 4 neuron-like unil receiving
a slimulus pattern as input in addition to the critic’s reinforce-
ment signal. Let x{f), w(y). a{r), and r(r), respectively, denote
the stimulus vector, weight vector, action, and value of the
reinforcement signal at time ¢. Let 5(f) denote the weighted sum
of the stimulus components al time

s(n) = E; w1}
where w;{f) and x,(), respectively, are the ith components of
the weight and stimulus vectors.

Associative Search Unit

One simple associative reinforcement learning rule is an exten-
sion of the Hebbian correlation learning rule. This rule, called
the associative search rule, was motivated by Klopls (1982)
theory of the sell-interested neuron. To exhibit variety in its
behavior, the unit's output is a random variable depending on
the activation level:

n | with probability p{)
() =10 with probability 1 — p(1)

where p(f), which must be between 0 and 1, is an increasing
function (such as the logistic function)’ of s(¢). Thus, as the
weighted sum increases (decreases), the unit becomes more
{less) likely to fire (i.e., to produce an output of 1). If the critic
takes time 1 to evaluate an action, the weights are updated
according to the following rule:

awy= nritate = xe =0 ! 2
where (1) is + 1 (success) or —1 (failure), and n > 0 is the
learning rate parameter.

This is basically the Hebbian correlation rule with the rein-
forcement signal acting as an additional modulatory factor.
Thus, if the unit fires in the presence of an input x, possibly just
by chanee, and this action is followed by “'success,” the weights
change so that the unit will be more likely to fire in the presence
of x and inputs similar 1o x in the future. A failure signal makes
it less likely to fire under these conditions. This rule makes clear
the three factors minimally required for associative reinforce-
ment learning: a stimulus signal, x; the action produced in its
presence, &; and the consequent evaluation, r.

(h

Selective Bootsirap and Associative
Reward-Penalty Units

Widrow, Gupta, and Maitra (1973) extended the Widrow-
Hoff, or LMS (least-mean-square), learning rule so that it
could be used in associative reinforcement learning problems.
They called their extension of LMS the selective bootstrap rule.
A selective bootstrap unit’s output, a(f), is either 0 or 1, com-
puted as the deterministic threshold of the weighted sum, 5(1).

garfiifg, an LMS unit receives a training signal,

(E)

[n contrast, a selective bootstrap unit receives a reinforcement
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signal, r(f), and updates its weights according to this rule:

oL

= dalf) = s{1)]2 ._:- farlare

where it is understood that r(¢) evaluates a(s). Thus, if ali)
produces “success.” the LMS rule is applied with a(r) playing
the role of the desired action. Widrow et al. (1973) called this
positive bootstrap adaptation: weights are updated as if the out-
put actually produced was in fact the desired action. On the
other hand, if a(f) leads to “failure,” the desired action is
L — a(¥), i.e., the action that was not produced. This is regative
bootstrap adaptation. The reinforcement signal switches the
unit between positive and negative bootstrap adaptation, moti-
vating the term selective bootstrap adaptation.

A closely related unit is the associative reward-penally (Ag_p)
unit of Barto and Anandan (1985). It differs from the selective
bootstrap algorithm in two ways. First, the unit's output is a
random variable like that of the associative search unit {Equa-
tion 1). Second, its weight-update rule is an asymntelric version
of the selective bootstrap rule:

Awi) nlalf) = s(t)]x(1) if r{f) = success
¥ 1= a(t) — s())x(t) i r(t) = failure

where 0 < 4 < | and y = 0. This rule’s asymmetry is important
because its asymplotic performance improves as 4 approaches
zero, but 4 = 0 is, in general, not optimal.

We can see from the selective bootstrap and Ag-p units that
a reinforcement signal is less informative than a signal spec-
ifying a desired action. It is also less informative than the error
2(f) — alf) used by the LMS rule. Because this error is a signed
quantity, it tells the unit kow, i.e., in what direction, it should
change its action. A reinforcement signal— by itself—does not
convey this information. If the learner has only two actions, it
is easy to deduce, or estimale, the desired action from the rein-
forcement signal and the actual action, However, if there are
more than two actions, the situalion is more difficult becayse
the reinforcement signal does not provide information about
actions that were not taken. One way a neuron-like unit with
more than two actions can perform associative reinforcement
learning is illustrated by the Stockastic Real-Vaiued (SB.V) unit
ol Gullapalli described in REINFORCEMENT LEARNING TN MOTOR
ConTROL.

Weight Perturbation

For the units described in the preceding section (excepl the
selective bootstrap unit), behavioral variability is achieved by
including random variation in the unit's output, Another ap-
proach is to randomly vary the weights. Following Alspector et
al. (1993), let 5w be a vector of small perturbations, one for
each weight, which are independently selected from some prob-
ability distribution. Letting & denote the function evaluating
the system's behavior, the weights are updated as follows:

A _W[M:ﬁw} - f(w}] @

dw

where # >0 is a learning rate parameter, This is g gradient
descent learning rule that changes weights according to an esti-
mate of the gradient of & with respect to the weights. Alspector
et al. (1993) say that the method measures the gradient instead
of cafeulating it as the LMS and error backpropagation algo-
rithms do. This approach has been proposed by several re-
searchers for updating the weights of a unit, or of a network,
during supervised learning, where & gives the error over the
training examples. However, & can be any function evaluating

the unit’s behavior, including a reinforeement function {in
which case, the sign of the learning rule would be changed to
make it a gradient ascent rule),

Reinforcement Learning Networks

Networks of 4g.p units have been used successfully in both
supervised and associalive reinforcement learning tasks (Barto,
1985; Barto and Jordan, 1987), although only with feedforward
connection patterns. For supervised learning, the output units
learn just as they do in error backpropagtion, but the hidden
units learn according to the 4,_, rule, The reinforcement sig-
nal, which is defined to increase as the output error decreases,
is simply broadcast to all the hidden units, which learn simulta-
neously. If the network as a whole faces an associative rein-
forcement learning task, all the units are Ag_p units, to which
the reinforcement signal is uniformly broadcast (Barto, 19835),
Another way to use reinforcement learning units in networks
is to use them only as oulput units, with hidden units being
trained via backpropagation, Weight changes of the output
units determine the quantities that are backpropagated. An ex-
ample is provided by a network for robot peg-in-hole insertion
described in REINFORCEMENT LEARNING IN MoTor CoNTROL,

The error backpropagation algorithm can be used in another
way in associative reinforcement learning problems, It is possi-
ble to train a multilayer netwark to form a model of the process
by which the eritic evaluales actions. After this model is trained
sufficiently, it is possible to estimate the gradient of the rein-
forcement signal with respect Lo each component of the actian
vector by analytically differentiating the model's oulput with
respect (o its action inputs (which can be done efficiently by
backpropagation), This gradient estimate is then used 1o
update the parameters of an action-generation component.
Jordan and Jacobs (1990} illustrate this approach.

The weight perlurbation approach carries over directly to
networks by simply letling w in Equation 4 be the vector con-
sisting all the network’s weights, A number of researchers have
achieved success using this approach in supervised learning
problems. In these cases, one can think of each weight as facing
a reinforcement learning task (which is in fact nonassociative),
even though the network as a whole Faces a supervised learning
task. An advantage of this approach is that it applies lo net-
works with arbitrary connection patterns, not just to feedfor-
ward networks.

It should be clear from this discussion of reinforcement
learning networks that there are many different approaches to
solving reinforcement learning problems. Furthermore, al-
though reinforcement learning fasks can be clearly distin-
guished from supervised and unsupervised learning tasks, it is
more difficult to precisely define a class of reinforcement learn-

ing algorithms.

Sequential Reinforcement Learning

Sequential reinforcement requires improving the long-term
consequences of an action, or of a strategy for performing
actions, in addition to short-term consequences. In thess
problems, it can make sense to forgo short-term performance
in order to achieve better performance over the long term.
Tasks having these properties are examples of aptimal controf
problems, sometimes called sequential decision problems when
formulated in discrete time (see ADAPTIVE CONTROL: NEURAL
NETWORK APPLICATIONS).

Figure 1, which shows the components of an associative rein-
forcement learning system, also applies 1o sequential reinforce-
ment learning, where the box labeled “Process” is a system

ey AT
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being controlled. A sequential reinforcement learning system
tries to influence the behavior of the process in order to maxi-
mize a measure of the total amount of reinforcement that will
be received over time. In the simplest case, this measure is the
sum of the Mture reinforcement values, and the objective is Lo
learn an associative mapping that at each time step ¢ selects,

‘as a function of the stimulus pattern x(r), an action a{f} that

maximizes

li it + k)

where r{f + k) is the reinforcement signal at step 1 + k. Such an
associative mapping is called a policy.

Because this sum might be infinite in some problems, and
because the learning system usually has control only owver its
l:;l;p-ecm-.d value researchers often consider the fullumng'
iSminstead:

T D
(t+ 2+ ) E{.Z,DT rlt +H}
(5)

where E is the expectation over all possible future behavior
patlerns of the process. The discount factor y determines the
present value of future reinforcement: a reinforcement value
received k time steps in the future is worth ¥* times what it
would be worth if it were received now. If 0 < y < 1, this infi-
nite discounted sum is finite as long as the reinforcement values
are bounded. If v = 0, the robot is “myopic” in being only
concerned with maximizing immediate reinforcement; this is
the associative reinforcement learning problem discussed ear-
lier. As y approaches 1, the objective explicitly takes Future re-
inforcement into account; the robot becomes more farsighted.

An important special case of this problem occurs when there
is no immediate reinforcement unlil a goal state is reached.
This is a defaved reward problem in which the learning system
has to learn how to make the process enter a goal state. Some-
times the objective is to make it enter & goal state as quickly as
possible. A key difficulty in these problems has been called the
temporal credit-assignment problem: When a goal state is finally
reached, which of the decisions made earlier deserve credit for
the resulting reinforcement? (See also REWNFORCEMENT LEARN-
miG 1IN Motor ConTROL.) A widely studied a h to this
prablem is to learn anfiiiéR
informative than the evaluation function mplemtm by the
external critic. An gdaptive critic is a system that learns such an
internal evaluation function.

3 2

Samuel’s Checkers Player

Samuel's (1959) checkers-playing program has been a major
influence on adaptive critic methods. The checkers player uses
an evaluation function to assign a score to each board configu-
ration; and the system makes the move expected to lead to the
configuration with the highest score. Samuel used a method to
improve the evaluation function through a process that com-
pared the score of the current board position with the score of
a board position likely to arise later in the game. As a result of
this process of **backing up” board evaluations, the evaluation
function improved in its ability to evaluate the long-term con-
sequences of moves. If the evaluation function can be made to
score each board configuration according to its true promise of
eventually leading to a win, then the best strategy for playing is
to myopically select each move so that the next board configu-
ration is the most highly scored. If the evaluation function is
optimal in this sense, then it already takes into account all the

possible future courses of play. Methods such as Samuel's that
attempt to adjust the evaluation function toward this ideal
oplimal evaluation function are of greal utility.

Adapiive Critic Unit and Temporal Difference Methods

An adaptive critic unil i5 a neuron-like unit that implements
a method similar to Samuel's. The unil is 2 neuron-like unit
whose output at time step ¢ is P{f) = E}., wi{f)x,(f), so denoted
because il is a prediction of the discounted sum of future rein-
forcement defined by Equation 5. The adaptive critic learning
rule rests on noting that correct predictions must satisfy a con-
sistency condition relating predictions at adjacent time steps.
Suppose that the predictions at any two successive time steps,
say steps r and r + 1, are correct. This assumption means that

PO =Er)+pr{t + D+ yrlt +2) + -}
Pit+ 1) =E{r(t+ 1} +yrit + D+ 3 r(t + ) + -}
Mow notice that we can rewrite P{¢) as follows:
PO =E{riD+7rt + D+t + 2+ -1}
But this is exactly the same as
P{t)y= Elr()} +yP(1 + 1)
An estimate of the error by which any two adjacent predictions

fail to satisly this consistency condition is called the temporal
difference { TD ) error (Sutton, 1988):

r() + Pt + 1) = P(1) (6)

whe:n: rie) is uwd as an unbiased estimate of E{r()}. The term
ey Fericel comes from the fact that this error essen-
my depends on the difference between the critic's predictions
at successive time steps.

The adaptive critic unit adjusts its weights according to the
following kaming rule:

A subtlety here is that P[: + ]} shnuki be mmpuled using the
weight vector wif), not wi¢ + 1). This rule changes the weights
to decrease the magnitude of the TD error. Note that if y = 0,
it is equal to the LMS learning rule (Equation 3). By analogy
with the LMS rule, we can think of r{¢) + yP{r + 1} as the
prediction target: it is the quantity that each P{r) should match.
The adaptive critic is therefore trying to predict the next rein-
forcement, rir), plus its own next (discounted) prediction,
yP(r + 1}. It is similar to Samuel's learning method in adjusting
weights to make current predictions closer to later predictions.
Although this method is very simple computationally, it ac-
tually converges to the correct predictions of the expected dis-
counted sum of luture reinforcement if these correct predic-
tions can be computed by a linear unit. This finding is shown
by Sutton {1988), who discusses a more general class of meth-
ods, called TD methods, that include Equation 7 as a special
case, [t is also possible to learn nonlinear predictions using, for
example, multilayer networks trained by back propagating the
TD error. Using this approach, Tesauro (1992) produced &
system that learned how to play experi-level backgammon,

Aecror-Critic Architectures

[n an actor-critic architecture, the predictions formed by an
adaptive critic act as reinforcement for an associative rein-
forcement learning component, called the acior (Figure 2}.
To distinguish the adaptive critic’s signal from the reinforce-
ment signal supplied by the original, nonadaptive crilic, we
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call it the interna! reinforcement signal. The actor tries to
maximize the immediase internal reinforcement signal, while
the adaptive critic tries to predict total future reinforcement.
To the extent that the adaptive critic’s predictions of total fu-
ture reinforcement are correct given the actor’s current policy,
the actor actually learns to increase the total amount of future
reinforcement.

Barto, Sutton, and Anderson (1983) used this architecture
for learning to balance a simulated pole mounted on a cart.
The actor had two actions: application of a force of a fixed
magnitude to the cart in the plus or minus directions. The non-
adaptive critic only provided a signal of failure when the pole
fell past a certain angle or the cart hit the end of the track.
The stimulus patterns were vectors representing the state of
the cart-pole system. The actor was essentially an associative
search unit as described above whose weights were modulated
by the internal reinforcement signal.

Q- Learning

Another approach Lo sequential reinforcement learning com-
bines the actor and adaptive critic into a single component that
learns separate predictions for each action. At each time step
the action with the largest prediction is selected, except for an
exploration factor that causes other actions to be selected occa-
sionally. An algorithm for learning predictions of future rein-
forcement for each action, called the (-fearning algorithm, was
proposed by Watkins (1989), who proved that il converges to
the correct predictions under certain conditions. Although the
Q-learning convergence theorem requires lookup-table storage
(and therefore finite state and action sets), many researchers
have heuristically adapted Q-learning to more general forms of
storage, including multilayer neural networks trained by back-
propagating the Q-learning error.

Dynamic Programming

Sequential reinforcement learning problems (in fact, all rein-
forcement learning problems) are examples of stochastic opti-
mal control problems. Among the traditional methods for
solving these problems are dynamic programming (DP) algo-
rithms, As applied to optimal contrel, DP consists of methods
for successively approximating optimal evaluation functions
and optimal policies. Bertsekas (1987) provides a good treat-
ment of these methods. A basic operation in all DP algorithms
is ““backing up” evaluations in a manner similar to the opera-
tion used in Samuel's method and in the adaptive critic.

Recent reinforcement learning theory exploits connections
with DF algorithms while emphasizing important differences.
Following is a summary of key observations:

I. Because conventional DP algorithms require multiple ex-
haustive “sweeps™ of the process state set (or a discretized
approximation of it}, they are not practical for problems
with very large finite state sets or high-dimensional con-

Flgure 2. Actor-critic architecture. An adaptive critic provides an
internal reinforcement signal 1o an acfor which learns a policy for
controlling the process.

tinuous state spaces. Sequential reinforcement learning
algorithms approximate DP algorithms in ways designed to
reduce this computational complexity.

2. Instead of requiring exhaustive sweeps, sequential reinforce-
ment learning algorithms operate on states as they occur in
actual or simulated experiences in controlling the process. It
is appropriate to view them as Monte Carlo DP algorithms,

3. Whereas conventional DP algorithms require a complete
and accurate model of the process 1o be controlled, sequen-
tial reinforcement learning algorithms do not require such a
model, Instead of computing the required quantities (such
as state evaluations} from a model, they estimate these
quantities from experience, However, reinforcement learn-
ing methods can also take advantage of models to improve
their efficiency.

It is therefore accurale Lo view sequential reinforcement learn-
ing as a collection of heuristic methods providing computa-
tionally feasible approximations of DP solutions to stochastic
optimal control problems,

Discussion

The increasing interest in reinforcement learning is due to its
applicability to learning by autonomous robolic agents. Al-
though both supervised and unsupervised learning can play
essential roles in reinforcement learning systems, these para-
digms by themselves are not general enough for learning while
acting in a dynamic and uncertain environment. Among the
topics being addressed by current reinforcement learning re-
search are these: extending the theory of sequential reinforce-
ment learning to include generalizing function approximation
methods; understanding how exploratory behavior is best in-
troduced and controlled; sequential reinforcement learning
when the process state cannot be observed; how problem-
specific knowledge can be effectively incorporated into rein-
forcement learning systems; the design of modular and hier-
archical architectures; and the relationship to brain reward
mechanisms.

Road Map: Leaming in Artificial Meura] Metworks, Deterministic

Background: 1.3. Dynamics and Adaptation in Weural Networks

Related Reading: Planning, Connectionist; Problem Solving, Connec-
tiomist
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Reinforcement Learning in Motor Control

Andrew G. Barto

Introduction

How do we learn motor skills such as reaching, walking, swim-
ming, or riding a bicycle? Although there is a large literature on
motor skill acquisition which is full of controversies (for a re-
cent introduction to human motor control, see Rosenbaum,
1991), there is general agreement that motor learning requires
the learner, human or not, lo receive response-produced feed-
back through various senses providing information about per-
formance. Careful consideration of the nature of the feedback
used in learning is important for understanding the role of
reinforcement learning in motor control (see REINFORCEMENT
LearNING). One function of feedback is to guide the perfor-
mance of movements. This is the kind of feedback with which
 we are familiar from control theory, where it is the basis of
servomechanisms, although its role in guiding animal mowve-
ment is more complex. Another function of feedback is Lo pro-
vide information useful for improving subseguent movement,
Feadback having this function has been called learning feed-
back. Mote that this functional distinction between feedback
for control and for learning does not mean that the signals or
channels serving these funclions need to be different,

Learning Feedback

When motor skills are acquired without the help of an explicit
teacher or trainer, learning feedback must consist of informa-
tion automatically generaled by the movement and its conse-
quences on the environment. This has been called intrinsic feed-
back (Schonidt, 1982). The “feel” of a successfully completed
movement and the sight of a basketball going through the
hoop are examples of intrinsic learning feedback. A teacher or
trainer can augment intrinsic feedback by providing extrinsic
feedback (Schmidt, 1982) consisting of extra information added
for training purposes, such as a buzzer indicating that a move-
ment was on target, a word of praise or encouragement, or an
indication that a certain kind of error was made.

Most research in the field of artficial neural networks has
focused on the learning paradigm called supervised learning,
which emphasizes the role of training information in the form
of desired, or targe!, network responses for a set of training
inputs (s¢¢ PERCEPTRONS, ADALINES, AND BACKPROPAGATION).
The aspect of real training that corresponds most closely to the
supervised learning paradigm is the trainer's role in telling or
shawing the learner what to do, or explicitly guiding his or her
movements. These activities provide standards of correctness
that the learner can try to match as closely as possible by re-
ducing the error between its behavior and the standard. Super-
vised learning can also be relevant to motor learning when
there is no trainer because it can use intrinsic feedback to
construct various kinds of models that are useful for learning.
Barto (1990) and Jordan and Rumelhart {1992) discuss some of
the uses of models in learning control.

In contrast to supervised learning, reinforcement learning
emphasizes learning feedback that evaluates the learner’s per-
formance without providing standards of correctness in the
form of behavioral targets. Evaluative feedback tells the learn-
er whether, and possibly by how much, its behavior has im-
proved; or it provides a measure of the “goodness™ of the be-
havior; or it just provides an indication of success or failure.
Evaluative feedback does not directly tell the learner what it
should have done, and although it sometimes provides the mag-
nitude of an error, it does not include directiona! information
telling the learner how to change its behavior, as does the error
feedback of supervised learning. Although the most obvious
evaluative feedback is extrinsic feedback provided by a trainer,
most evaluative feedback is probably intrinsic, being derived
by the learner from sensations generated by a movement and
its consequences on the environment: the kinesthetic and tactile
feel of a successful grasp or the swish of a basketball through
the hoop. Instead of trying to maich a standard of correciness,
a reinforcement learning system tries lo maximize the goodness
of behavior as indicaled by evaluative feedback. To do this, it
has to actively try alternatives, compare the resulting evalua-
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tions, and use some kind of selection mechanism to guide
behavior toward the better alternatives. Although evaluative
feedback is often called reinforcement feedback, il need not
involve pleasure or pain.

Motor learning involves feedback carrying many different
kinds of information. Consequently, il is incorrect to view
motor learning strictly in terms of either supervised, rein-
forcement, or any other learning paradigms that have been
formulated for theoretical study. Aspects of all of these para-
digms play interlocking roles. However, reinforcement learning
may be an essential component of motor learning,

Learning from Consequences

The simplest reinforcement learning algorithms are based on
the commeonsense idea that if an action is followed by a satis-
factory state of affairs, or an improvement in the stale of af-
fairs, then the tendency to produce that action is strengthened,
i.e., reinforced. This basic idea follows Thorndike's classical
Law of Effect (Thorndike, 19113, Although this principle has
generated considerable controversy over the years, it remains
influential because its general idea is supported by many exper-
iments and it makes such good intuitive sense {e.g., Glazer,
1971).

Tao illustrate how this principle applies to motor learning, we
first discuss it within the general context of control. Then we
describe several special cases relaled to motor control. Figure
LA, is a variation of the classical control syslem diagram. A
controller provides contrel signals o a controlled system. The
behavior of the controlled system is influenced by disturbances,
and feedback from the controlled system to the controller pro-
vides information on which the control signals can depend.
Commands to the controller specify aspects of the control
task's objective.

In Figure |8, the control loop is augmented with another
feedback loop that provides learning feedback to the control-
ler. In accordance with common’ practice in reinforcement
learning, a critic is included that generates evaluative leaming
feedback on the basis of observing the control signals and their
consequences on the behavior of the controlled system. The
critic also needs to know the command to the controller be-

cause its evaluations must be different depending on what the
controller should be trying to do. The eritic is an abstraction of
whatever process supplies evaluative learning leedback, both
intrinsic and extrinsic, to the learning system. It is often said
that the critic provides a reinforcement sigral 1o the learning
system. In most artificial reinforcement learning systems, the
eritic’s outpul at any Llime is a number that scores the control-
ler’s behavior: the higher the number, the better the behavior.
Assume for the moment that the behavior being scored is the
immediately preceding behavior. We discuss more complex
temporal relationships in later sections. For this process to
work, there must be some variability in the controller's behav-
ior so that the critic can evaluate many alternatives. A learning
mechanism can then adjust the coniroller's behavior so that it
tends toward behavior thal is favored by the critic.

A learning rule particularly suited to reinforcement learning
control systems implemented as arlificial neural networks was
developed by Gullapalli {1990} in the form of what he called a
Stochastic Real-Walued (SRVY) unit. An SRY unit's output is
produced by adding a random number to the weighted sum of
the components of its input pattern. The random number is
drawn from a zero-mean Gaussian distribution. This random
component provides the unit with the variability necessary for
it to “explore” its activity space. When the reinforcement signal
indicates that something good happened just after the unit
emitted a particular output value in the presence of some input
pattern, the unit's weights are adjusted Lo move the activation
in the direction in which it was perturbed by the random num-
ber. This has the effect of increasing the probability that future
outputs generated for that input pattern (and similar input pat-
terns) will be closer to the output value just emitted. IF the
reinforcement signal indicates that something bad happened,
the weights are adjusted to move [uture output values away
from the value just emitted. Another part of the SRY learning
rule decreases the variance of the Gaussian distnbulion as
learning proceeds. This decreases the variability of the unit's
behavior, with the goal of making it eventually stick (i.e., be-
come deterministic) at the best output value for each input
pattern. Using this learning rule, an SEV unit leamns to pro-
duce the best output in response to each input pattern (given
appropriate assumptions). Unlike more familiar supervised

Figure 1. 4, A basic control loop. A controller provides con-
trol signals 1o a controlled system, whose behavior is influ-
enced by disturbances. Feedback from the controlled system
to the controller provides information on which the control

signals can depend. Commands to the controller specify as-
pects of the control task’s objective. B, A control system with
learning feedback. A eritic provides the controller with a rein-
forcement signal evaluating its success in achieving the control
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learning units, it is never given larget outputs; it has to discover
what outpuls are best through an active exploration process.

Owvercoming the Distal Error Problem

To see how reinforcement learning might work in motor learn-
ing, consider the problem of learning the control signals re-
quired to move the end of an arm from its initial position to a
desired final position. This problem combines aspecis of the
inverse kinematics and inverse dynamics problems in robotics,
where the end of the arm is called the end-effector. Many re-
searchers have used artificial neural networks for these prob-
lems, but relatively few have employed reinforcement learning.
Lipitkas et al. {1993} provide a simple example of a reinforce-
ment. learning approach. To avoid the complexity of trans-
forming each desired arm trajectory into corresponding joint
trajectories, and then computing the required time functions of
forces, they propose storing prototypical force time functions
in memory. The prototypes are modified on playback accord-
ing to the demands of each movement. Their controller is a
network receiving inputs coding the starting location of the
end-effector as well as command inputs giving the Cartesian
coordinates of the target end-effector position (Figure 2). The
six outpuls of the network provide parameters to a lorque
generator which generates time-varying signals for driving the
joint actuators of a dynamic arm model. The time-varying
signals are parameterized by six numbers determining charac-
teristics of their wavelike shapes (e.g., giving the magnitudes
and relative timing of the half-waves). During each movement,
the controller operates in open-loop mode, generating the
torque time functions without the aid of sensory feedback. The
learning problem for the network, then, is to learn a function
associating each pair of end-effector starting and target posi-
tions to the values of the six parameters that will accomplish
the movement.

A straightforward application of supervised learning is not
possible here because the required training examples are not
available: It is not known what parameters will work for any
pair of starting and target positions {except possibly the trivial
cases in which the starting position is already the target posi-
tion, bul these are not useful as training examples), This is an
instance of what has been called the distal error problem (Jor-
dan and Rumelhart, 1992) for supervised learning. This prob-
lem is present whenever the standard of correctness required
for supervised learning is available in a coordinate system that
is different from the one in which the learning system’s activity
must be specified or learning. In the case ol learning how lo
move an arm from a starting posilion Lo a target position, the
standard of correctness is the target position, but what must be
learned are the control signals to the joint actuators. The re-
sulting end-effector position error is distal to the outpul of the

Figure 2. Block diagram of a reinforcement learning
controller of an arm (after Figure | of Lipitkas et al.,
1993), Given inputs coding the starting and targel

positions of the end effector, the network controller Starting _ g

learns Lo provide correct paramelers 1o a torgue gén- Poattion

erator which generates, in open-loop mode, time- Torgel g

varying torque signals to the arm. The reinforcement Position

signal evaluates the success of each movement afler
its completion.

controller that is to be learned. Although a nonzero distal error
veclor indicates that the controller made an error, it does not
tell the controller how it should change its behavior to reduce
the error. :

The distal error problem can be solved by using a model
ol the controller's influence on the arm's movement {possibly
learned through supervised learning) to translate distal error
vectors into error vectors required for supervised learning (e.g.,
Jordan and Rumelhart, 1992). Another approach is to learn an
inverse model of the controller’s influence on the anm's move-
ment (also discussed by Jordan and Rumelhart, 1992). Rein-
forcement learning offers yet another way to overcome the
distal error problem because learning feedback in the form of
error vectors is not required. Continuing with the arm move-
ment example, Lipitkas et al. (1993) defined a reinforcement
signal that attains a maximum value of 1 if the arm reaches the
desired position and stops there. The signal decreases depend-
ing on the distance between the end-effector’s final posilion and
the target position and on its tangential velocity as it passes the
targel position. The reinforcement signal could include other
criteria of successful movements as well. With inputs coding
starting and target end-effector positions, the network employs
SRV units to generate six parameter values using its current
weights. The torque generator generates a movemenl using
these parameter values. When the movement is completed, it is
scored by the reinforcement signal, and the network's weights
are changed according to Gullapalli's SRV learning rule. After
a few thousand movements with different starting and target
end-effector positions, the system could move with reasonable
accuracy for new pairs of starting and target positions as well
as [or the pairs on which it was trained. This amount of prac-
tice is required because the system effectively has to search the
six-dimensional parameter space for each starting and target
position.

Gaining an understanding of the relative advantages and
disadvantages of reinforcement learning and model-based
approaches to the distal error problem is a topic of current
research. Tt is clear that reinforcement learning approaches are
much simpler, but reinforcement learning can be slower in
terms of the amount of experience required for learning. This is
true because reinforcement learning methods tend to extract
less information from each experience than do the model-based
approaches. However, in some problems, reinforcement learn-
ing can significantly outperform model-based approaches {e.g.,
Gullapalli, 1991; Markey and Mozer, 1992). This occurs when
it is easier to learn the right actions than it is to model their
effects on a complicated process. Hybrid learning architectures
using both approaches are promising alternatives.

Other examples have been developed in which reinforcement
learning is used to address the distal error problem. Gullapalli,
Barto, and Grupen (1994) devised a reinforcement learning
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network by which a real robot arm learns how to perform a
peg-in-hole insertion task. Although this task is important in
industrial robotics, it is also suggestive about animal skill
acquisition. Unlike the open-loop example of Lipitkas et al.
(1993) just described, the peg-in-hole network learns a closed-
loop control rule that guides the robol arm using sensory feed-
back during peg insertion. Learning occurs throughout each
peg-insertion atlempt, with the reinforcement signal derived
from assessments of the progress of the peg toward the desired
inserted position and of the forces generated at the robot's
wrist. The robot learns Lo perform insertion tasks even when
the clearance between the hole and the peg is many times
less than the amount of uncertainty in the robot's Sensory
feedback.

Another reinforcement learning system was developed by
Fagg and Arbib (1992) which models the role of the primate
premotor corlex in triggering movements on the basis of visual
stimuli. In contrast to the systems just mentioned, this model
learns to select from previously learned motor behaviors on the
basis of sensory cues. The reinforcement signal is + | when the
model selects the correct behavior for a given sensory cue, and
— 1 otherwise. Although the reinforcement value —1 indicates
that an error was made, it does not tel] the model which behav-
ior would have been correct or give a clue as to how the model
should change its behavior. (The minus sign is not really giving
directional information.) This model produces performance
curves that are qualitatively similar to those observed in animal
experiments,

Credit Assignment

Although reinforcement learning systems do not suffer from
the distal error problem, they do suffer from the related credir
assignment problem. A scalar evaluation of a complex mecha-
nism’s behavior does not indicate which of its many action
components, both internal and external, were responsible for
the evaluation. Thus, it is difficult 1o determine which of these
components deserve the credit (or the blame) for the evalua-
tion. One approach is 1o assign credit equally to alf the compo-
nents so that, through a process of averaging over marny varia-
tions of the behavior, the components that are key in pro-
ducing laudable behavior are most strongly reinforced, while
inappropriate components are weakened, This approach is
commonly taken in reinforcement learning systems, but learn-
ing by this process can be very slow in complex systems, such
as those involved in motor control. This problem is sometimes
referred o as the structural credit assignment problem: How is
credit assigned to the internal workings of a complex structure?
The backpropagation algorithm (e.g., Rumelhart, Hinton, and
Williams, 1986) addresses structural credit assignment for arti-
ficial neural networks by means of its backpropagation pro-
cess, and this technique can also be used by reinforcement
learning systems (e.g., Gullapalli et al., 1994). However, under-
standing structural credit assignment mechanisms that are
more plausible for biological systems is a frontier of current
research.

Reinforcement learning principles lead to a number of alter-
natives to the backpropagation method for structural assigning
credit in complex neural networks. In these methods (see also
REINFORCEMENT LEARMING), a single reinforcement signal is
uniformly broadcasi to all the sites of learning, either neurons
or individual synapses. Computational studies provide ample
evidence that any task that can be learned by error backpropa-
gation can also be learned using this approach, although possi-
bly more slowly. Moreover, these network learning methods
are consistent with anatomical and physiological evidence

showing the existence of diffusely projecting neural pathways
by which neuromodulators (see NEUROMODULATION [N [NVER-
TEBRATE NERVOUS SYSTEMS) can be widely and nonspecifically
distributed. Tt has been suggested that some of these pathways
may play a role in reward-mediated learning. A specific hy-
pothesis is that dopamine mediates synaptic enhancement in
the corticostriatal pathway in the manner of & broadeast rein-
forcement signal (Wickens, 1990 see BasaL {ANGLIA). Al
though hypotheses like this are far from being proven, they are
much more appealing Lo many neuroscientists than hypotheses
about how error backpropagation might be implemented in the
nervous syslem,

Another aspect of the credit assignment problem occurs
when the temporal relationship between a system's behavior
and evaluations of that behavior is not as simple as assumed in
the previous discussion. How can reinforcement learning work
when the learner’s behavior is temporally extended and evalua-
tions occur at varying and unpredictable times? Under these
more realistic conditions, it is not always clear what events are
being evaluated. This has been called the remporal credit as-
signment problem. It is especially relevant in motor control
because movements extend over time and evaluative feedback
may become available, for example, only after the end of a
movement. An approach to this problem that is receiving con-
siderable attention is the use of methods by which the critic
itself can learn to provide useful evaluative feedback immedi-
ately after the evaluated event. According to this approach,
reinforcement learning is not only the process of improving
behavior according 1o given evaluative feedback: it also in-
cludes learning how to improve the evaluative feedback itself.
These methods have been called adaptive eritic methods (see
REINFORCEMENT LEARNING and Barto, 1992),

Diiscussion

Motor learning is too complex to view strictly in terms of either
supervised learning or reinforcement learning. Feedback used
in motor learning ranges from specific standards of correctness
to nonspecific evaluative information, and many learning
mechanisms with differing characteristics probably interact to
produce the motor learning capabilities of animals. However,
reinforcement learning principles may be indispensable for mo-
tor learning because they scem necessary for improving motor
performance beyond the standards of correctness required by
supervised learning, .
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