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This article describes the Dual Route Cascaded (DRC) model, a computational model of visual word
recognition and reading aloud. The DRC is a computational realization of the dual-route theory of
reading, and is the only computational model of reading that can perform the 2 tasks most commonly
used fo study reading: lexical decision and reading aloud. For both tasks, the authors show that a wide
variety of variables that influence human latencies influence the DRC model’s latencies in exactly the
same way. The DRC model simulates a number of such effects that other computational models of
reading do not, but there appear to be no effects that any other current computational model of reading
can simulate but that the DRC model cannot. The authors conclude that the DRC model is the most
successful of the existing computational models of reading.

The psychology of reading has been revolutionized by the
development of computational models’ of visual word recognition
and reading aloud. Computational modeling has many advantages
over the alternative way of expressing theories about cognition,
which is to represent the theories as “verbal models” (Jacobs &
Grainger, 1994). First, an attempt to express any theory about
cognition as a computational model immediately reveals many
ways in which that theory is incomplete or underspecified, some of
which the theorist will not have suspected. A program will not run
unless it is fully specified, so a theory cannot yield an executable
program unless that theory is also fully specified. Second, once
this process has compelled the theorist to fill in the gaps in the
theory and an executable program has been created, the adequacy
of the theory can be rigorously assessed by simulation. Are all the
effects observed in the behavior of people when they are carrying
out the cognitive activity in question also seen in the behavior of
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the program—for example, in the time the program takes to
perform relevant tasks or in the accuracy with which it performs
such tasks? Mismatches between human behavior and the behavior
of the computational model reveal ways in which the theory from
which the model was generated is incorrect as a description of a
human information-processing system. Sometimes relatively mi-
nor reformulations of specific aspects of the theory can eliminate
such mismatches; here modeling has led to a better theory. Some-
times these mismatches are so fundamental that there is no way of
making such minor modifications of the theory; here modeling has
led to theory refutation.

Of course, even if a theory of cognition is expressible as a
computer program that actually runs, and even if all the effects
known to characterize human performance in the relevant cogni-
tive domain also characterize the model’s performance, it remains
possible that some other theory of the same cognitive activity may
also be expressible as a computer program that actually runs, and
it is also possible that the behavior of this second computational
model also captures all the effects known to characterize human
performance in the relevant cognitive domain. In other words,
even if turning the theory into a computational model has success-
fully shown the theory to be complete (in the sense that it contains
no unspecified processes) and to be sufficient (in the sense that it
can offer an account of all the relevant empirical phenomena), that
does not guarantee that it is correct.

Nothing ever guarantees, of course, that any theory in any
branch of science is correct. But if there is no other theory in the
field that has been demonstrated through computational modeling
to be both complete and sufficient, resting on laurels is a reason-
able thing to do until the emergence of such a competitor—that is,

! By the term “computational model,” we mean a computer program that
is capable of performing the cognitive task of interest and does so by using
exactly the same information-processing procedures as are specified in a
theory of how people carry out this cognitive activity.
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the emergence of a different theory that has also been shown to be
both complete and sufficient.

Here the computational modeling approach is yet again valu-
able, because it facilitates theory adjudication. If the competing
theories really are different theories, their computational models
will differ too, and analysis of these differences will pinpoint ways
in which the models make different predictions about the results of
experiments not yet conducted. Carrying out these new experi-
ments may therefore result in adjudication between the two theo-
ries, as well as result in new discoveries about the cognitive
domain in question.

Two Approaches to the Computational Modeling
of Cognition

An immensely popular approach to computational modeling
over the past decade has been to develop computational models
through a learning algorithm, generally some form of backpropa-
gation (Rumelhart, Durbin, Golden, & Chauvin, 1995; Rumelhart,
Hinton, & Williams, 1986). Here, the computational model is
typically based on a network with three layers (input units, hidden
units, output units) with weights initialized to small random val-
ues. A training set of stimulus-response pairs is chosen and sub-
mitted to the model for a large number of training epochs. As
training proceeds, the learning algorithm progressively adjusts the
network’s connection weights so that for each stimulus (represen-
tation across the input units) the response (representation across
the output units that is evoked by that input) more and more
closely approximates the correct response. Computational models
of reading aloud of English that have been developed using this
approach include those of Seidenberg and McClelland (1989),
hereafter referred to as the SM model; Plaut, McClelland, Seiden-
berg, and Patterson (1996), hereafter referred to as the PMSP
model; and Zorzi, Houghton, and Butterworth (1998), hereafter
referred to as the ZHB model.

Our approach has been a different one. Like McClelland and
Rumelhart (1981), Rumelhart and McClelland (1982), Jacobs and
Grainger (1992), and Grainger and Jacobs (1996), we (Coltheart,
Curtis, Atkins, & Haller, 1993, and the present article) have
specified the architecture of the model ourselves, rather than
relying on backpropagation to do this. Our computational model is
hand-wired rather than learmned. We believe that our approach has
a number of advantages, even though in the past decade it has been
adopted far less often than the learning algorithm approach.

One disadvantage of the learning algorithm approach is that the
range of possible model architectures that can be developed
through backpropagation is constrained, and the correct model
may not be within that range. For example, suppose it were true
that the human reading system used a local representation scheme
by which individual words were represented as individual process-
ing units. That might not be true, but it certainly could be true; it
is clearly logically possible. If it were true, the problem for any
approach that sought to develop a computational model of the
human reading system by using backpropagation is that this leamn-
ing algorithm develops distributed, rather than local, representa-
tions unless specifically prevented from doing so. Hence if it is the
case that representations of words in the human reading system are
local, then attempts at developing a correct computational model
of that system using backpropagation could not succeed.

Similarly, it is logically possible that the human reading system
contains more than two different representational levels. It might
contain, say, a letter level, an orthographic word level, a phono-
logical word level, and a phoneme level. This architecture with
four explicit representational levels could not arise from the use of
backpropagation with a neural network hardwired to have only two
explicit representational levels (input units and output units); yet it
is certainly logically possible that the human reading system has
such an architecture.

Occasionally those modelers who use the backpropagation ap-
proach have attempted to deal with this problem by seeking to
analyze the internal processing structure of a fully trained network.
For example, Plaut et al. (1996) raised the question of whether
their one-route model of reading aloud, an orthodox three-layer
network trained by backpropagation, was actually a two-route
model. Perhaps one part of the trained network was responsible for
the ability to use general knowledge about letter—sound relation-
ships, whereas another part of the network was responsible for
handling words that violated standard rules about such relation-
ships? They carried out various analyses of the trained network
and concluded that the network was not structured in this way.

There is an important distinction here between network archi-
tecture and functional architecture. It is easy to find out what the
network architecture is, because that is fully decided by the mod-
eler. In the case of the PMSP model, the network architecture
consists of three layers, with 105 input units fully connected to 100
hidden units that are, in turn, fully connected to 61 output units
(with reciprocal connections from output units to hidden units in
the case of the attractor version of the network). In contrast, it is
very difficult to discover the functional architecture of a trained
network for networks of realistic size—that is, to discover how the
trained network has been structured by the learning algorithm so as
to be able to perform the task it has learned. The majority of
modelers using the learning algorithm approach do not even try to
do this; they exhibit no interest in what the functional architecture
of the system is, which is why some might see their approach as a
kind of New Behaviorism. We are adherents of Old Cognitivism,
and so our main interest is in the internal structure—the functional
architecture—of human cognitive systems.

There is also a practical difficulty here for the learning algo-
rithm approach. Let us suppose it were actually possible for a
network trained to read aloud by backpropagation to develop a
functional architecture in which each exception word in the train-
ing set had one (or even more than one) hidden unit dedicated to
it, and that in addition to this set of dedicated hidden units there
were a set of hidden units connected in such a way as to encode
general information about letter-sound relationships (permitting
the network to read aloud nonwords even though it had never seen
these before).

The training set used by Seidenberg and McClelland (1989) and
by Plaut et al. (1996) contains about 750 exception words; but the
networks they used contained only 200 and 100 hidden units,
respectively. These practical facts about the network architecture
would prevent the development of this functional architecture by
backpropagation, even if that were the correct functional architec-
ture, and even if the backpropagation learning algorithm were
capable of developing such a functional architecture when pro-
vided with a large enough number of hidden units. The problem
cannot be avoided simply by giving the network a large enough
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number of hidden units, for two reasons: we have no way of
knowing how many is large enough, and even if we tried using,
say, 800 hidden units (one per exception word plus 50 to learn
general facts about spelling—sound correspondences), this would
greatly increase the number of connections in the network and
therefore greatly increase the computer time needed to train the
network; even with the existing PMSP network, training times
pose a practical problem (see Plaut, 1997, Footnote 5, for an
example of a desirable simulation that was not attempted because
it would have taken about 6 months of CPU time).

Our comments here about learning algorithms are meant only to
apply to cases where the functional architecture of the model is
determined by the algorithm. A quite different situation is one in
which that functional architecture is prespecified by the modeler,
and then some form of learning algorithm is used to set the
strengths of the connections between the prespecified modules of
the architecture. We are in sympathy with this particular way of
using learning algorithms and indeed could apply this method to
the model we describe in this article.

It is beyond the scope of this article to produce a definitive
assessment of the value of the learning algorithm approach to the
construction of computational models of cognition, and that has
not been our aim in pointing out what we see as some disadvan-
tages of this approach. We have simply wished to explain why we
prefer a different approach. Essentially, our view is that the past
quarter of a century of empirical and theoretical research on
reading has provided us with good reasons for proposing a partic-
ular architecture for the human reading system, and our preference
is to rely on this body of literature, rather than on backpropagation,
for ideas about what this architecture might be. We are thus
adopting the same view as Grainger and Jacobs (1998) who wrote,
“We therefore argue that in developing algorithmic models of
cognitive phenomena, the major source of constraint is currently
provided by human behavioral data” (p. 24).

We have relied considerably on an early computational model of
visual word recognition, the interactive activation and competition
(JAC) model of McClelland and Rumeihart (1981) and Rumelhart
and McClelland (1982), a generalization of which functions as a
front end of the model we have developed. The architecture of this
model was specified by its creators, rather than developed by a
learning algorithm. The model has three representational levels: a
visual feature level, a letter level, and an orthographic word level.
Its sufficiency was evaluated only against data from one particular
reading task, the Reicher~Wheeler forced-choice tachistoscopic
recognition task (Reicher, 1969; Wheeler, 1970) and the model’s
performance in this fask was shown to fit quantitatively rather well
the performance of human readers. However, Massaro (1989)
demonstrated that certain context effects seen in this task were
inconsistent with the model. In reply, McClelland (1991) demon-
strated that a relatively minor modification to the IAC model
(making its computations noisy rather than deterministic) caused
the model to show the context effects that human readers also
show.

Nested Modeling

The IAC model was the first computational model of reading,
and its achievements were impressive. Yet it was abandoned by its
creators, one of whom subsequently proposed a completely differ-

ent model of reading (Seidenberg & McClelland, 1989). Future
historians of the cognitive psychology of the last century will
wonder why this happened, because the IAC model had not been
refuted; on the contrary, the attempt at refutation of the model by
Massaro (1989) had met a stout defense from McClelland (1991).
Commenting on this, Jacobs and Grainger (1994) observed that,
“in other sciences it is standard practice that a new model accounts
for the crucial effects accounted for by the previous generation of
the same or competing models” (p. 1329). We agree wholeheart-
edly; it is not easy to see how a science can develop cumulatively
if previous work is abandoned in what might be seen as an
unmotivated way.

Cumulativeness in relation to modeling is referred to as “nested
modeling” by Jacobs and Grainger (1994):

The principle of nested modeling (i.e., a new model should be related
to or include, at least, its own, direct precursors and be tested against
the old data sets that motivated the construction of the old model
before testing it against new ones...a new model should either
include the old one as a special case by providing formal demonstra-
tions of the inclusion, or dismiss with it, after falsification of the core
assumptions of the old model. (pp. 1329-1330)

That is the practice that Coltheart et al. (1993) followed and that
we follow here; a generalization of the JAC model is part of the
computational model we have developed. A major advantage of
doing this is that it guarantees that our model will be able to give
a good account of anything of which the IAC model originally
gave a good account, data from the Reicher—Wheeler task, for
example. In contrast, although the SM model included a compo-
nent whose sole function would seem to have been to allow the
model to deal with that task (the feedback connections from hidden
units to orthographic input units), this component was not imple-
mented in a way that would allow simulation of the Reicher—
Wheeler task, and in any case this component is no longer present
in the successor to the SM model, the PMSP model.

A similar attempt at cumulativeness exists in the phonological
output side of our model, which can be seen as a (highly simpli-
fied) version of certain speech-production models such as that of
Dell (1986) and Levelt, Roelofs, and Meyer (1999). Those models
have enjoyed some success in explaining certain aspects of normal
and aphasic speech production, such as slips of the tongue and
types of aphasic speech errors. For our model also to be able to
simulate such phenomena, its phonological output side would have
to be much more elaborate, but the basic structure of these speech-
production models (a phonological lexicon activating a phoneme
system) is present, and so could be elaborated.

In the spirit of nested modeling, then, the model we describe in
this article has grown directly from previous models of visual word
recognition and of spoken word production. In fact, our work even
builds on modeling endeavors that are more than a century old.

A Little History

Nineteenth-Century Origins

The idea that the language-processing system includes an or-
thographic lexicon, as in the IAC model, and a phonological
lexicon, as in the speech-production models of Dell (1986) and
Levelt et al. (1999), and that reading aloud relies in part on these
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two lexicons, is more than a century old. Cognitive neuropsycholo-
gists of the 19th century held the view that the language-
processing system was highly modular in structure, and they also
held the view that an appropriate notation for describing hypoth-
esized architectures of such systems was the box-and-arrow nota-
tion. This is clear in, for example, the work of Lichtheim (1885);
he proposed an architecture for the phonological components of
the language-processing system and described it with the diagram
shown in Figure 1.

More than a century later, this modular modeling approach? and
the box-and-arrow diagram notation for defining such models,
remains popular—and indeed the specific model proposed by
Lichtheim (1885) is still popular. The model of language process-
ing proposed by Patterson and Shewell (1987) includes all the
modules of Lichtheim’s model (Figure 2 is the part of the
Patterson—Shewell model that corresponds to Lichtheim’s model);
models of language processing equivalent to the Patterson—
Shewell model can be found in other contemporary sources such as
Morton and Patterson (1980), Harris and Coltheart (1986), Ellis
and Young (1988), and Kay, Lesser, and Coltheart (1992).

Our model is a computational realization of that part of the
Morton, Harris—Coltheart, Patterson-Shewell, Ellis-Young, and
Kay-Lesser—Coltheart models that is specifically relevant to
reading.

Although this approach to modeling cognition, and this partic-
ular model of language processing, was popular toward the end of
the 19th century and remains popular in the 21st, there was a long
period during which both the modular modeling approach and the
box-and-arrow notation for expressing theories about cognition
had vanished from cognitive psychology—a period from perhaps
1900 to the mid-1950s. This happened for two reasons.

The first reason is that the 19th-century modelers such as
Lichtheim and Wernicke were neurologists and so were not con-
tent just to build models of the functional architecture of the
language-processing system. They also wanted to localize their
functional modules in specific brain regions, by carrying out
postmortem analyses of the brains of patients who bad suffered
some form of language impairment caused by stroke or other brain
insult. So, for example, they might seek to determine which region
of the brain houses a center for auditory word representations by
investigating which region of the brain was damaged in patients
whose aphasia was interpreted using the model as arising because

Where concepts
are elaborated

Center for Center for

motor word auditory word

representations representations
Spoken output Spoken input

Figure 1. 'The model of spoken-word processing from Lichtheim (1885)
(adapted from Shallice, 1988, Figure 1.1).

Cognitive
System

Auditory
Input
Lexicon

Phonological
Output
Lexicon

Spoken output Spoken input

Figure 2. The model of spoken-word processing from Patterson and
Shewell (1987).

of specific damage to this particular functional module. It turned
out that, in this work, correspondences between the lesions seen in
the brains of aphasic patients and the lesions hypothesized to have
occurred in the functional architecture of the language-processing
systems were so inconsistent that it was easy for neurologists of a
noncognitive and nonmodular persuasion—Marie (1906) and
Head (1926), for example—to ridicule and discredit the whole
modular/box-and-arrow approach. Even as late as 1964 such crit-
icisms were still being made:

The older neurologists, and even some today, thought that the differ-
ent varieties of aphasia produced by lesions in different situations
could be classified in psychological terms . .. but this presupposes
first that in the nervous system speech is organized in such a way that
anatomical centers correspond to psychological functions, and then
that destruction of such a center merely impairs a particular psycho-
logical element in speech. This view has largely been abandoned.
(Brain, 1964, p. 6)

This “largely abandoned” view returned with a vengeance just one
year later (Geschwind, 1965a, 1965b).

It is scarcely surprising that attempts made a century ago 1o
localize the modules of the language-processing system did not
succeed, because even today they have not succeeded. When brain
imaging is used instead of autopsy for neuroanatomical localiza-
tion, and late 20th-century models of the functional architecture of
the language-processing system are used for functional localiza-
tion, it has still not been possible to establish decisively any
mappings between regions of the brain and modules of the
language-processing system (Poeppel, 1996a, 1996b; Van Orden
& Paap, 1997).

At the beginning of this century, then, this was the fate of the
modular modeling approach as far as neurology and neuropsychol-
ogy was concerned. With respect to psychology itself, there was an
equally devastating turn of events—the onslaught of Behaviorism
from Watson (1913) onward. Explaining behavior in terms of
functional mental architectures whose elements are *“unobserv-
able” is of course anathema to Behaviorism. This was the second
reason for the disappearance of the modular modeling approach.

2 We use the term “module” to mean a domain-specific cognitive pro-
cessing system; see Coltheart (1999) for an elaboration and justification of
this usage.
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It was not until the 1960s and early 1970s that Wernicke—
Lichtheim-style cognitive neuropsychology began to rise again,
seminal papers being those of Marshall and Newcombe (1966,
1973) and Shallice and Warrington (1970). The renaissance of
cognitive psychology itself began a little earlier, in the late 1950s
and early 1960s, particularly with Broadbent (1958), and it is
significant that one feature of this renaissance was a resumption of
the use of box-and-arrow notation, which was used by Broadbent
to express his ideas about the functional architecture of the
selective-attention system (see, e.g., Figure 7 in Broadbent, 1958).

The Mental Lexicon

The concept of a mental lexicon seems to have been introduced
into psycholinguistics in Anne Treisman’s (1961) doctoral thesis:

In order to go much further in understanding the nature of the
monitoring carried out {(during selective attention tasks), it will be
necessary to investigate and make some hypotheses about the nature
of the word identification system that lies beyond the selective system
(pp- 116-117).

The hypotheses she made involved the postulation of a mental
lexicon (she used the term “dictionary” rather than “lexicon”) with
individual lexical entries (“dictionary units” for Treisman) in that
lexicon representing individual words: “There is a single channel
for recognising words, presumably comprising the matching of
signals with some kind of ‘dictionary’ . ..some of whose units
have their thresholds for activation permanently or temporarily
lowered” (p. 210). Figure 14 of Treisman’s thesis expressed these
ideas in box-and-arrow notatjon, as shown in Figure 3.

And, most interesting, Treisman (1961) discussed the relation-
ship between her theoretical ideas and 19th-century cognitive
neuropsychology:

There have . . . been cases reported in the literature of selective losses,
which are interesting from the point of view of the suggestions made
in this thesis. Wernicke (1874), for example, reported that patients
might lose either the “Wortschatz” or “word treasury” which might
correspond to the dictionary system, or the *Klangbild” or “sound
picture,” which might be analyzed before the selective system of
attention operated, in the model proposed here. Examples of receptive
or perceptual losses are given also by Ziegler (1952), who reports
cases of word deafness (sometimes with more general auditory agno-
sia) although the patients were not deaf to sounds, and by Hemphill
and Stengel (1940). These authors report one patient saying “Voice
come but no words. I can hear. Sound comes, but words don’t
separate.” Other patients may show marked difficulty in selecting
words to name objects. This would also involve the word store or
dictionary system, but would mean approaching it from another angle,
from the associations with objects rather than spoken sounds. The
availability of the word unit is much decreased. Similar difficulties
were induced in non-aphasic patients by Penfield’s brain stimulation
methods. Penfield postulates the existence of two different stores, one
for words and one for concepts. . . . Evidence for the existence of the
two stores comes from patients who seem to retain concepts, yet are
unable to find the appropriate names. They may describe the function,
calling a knife “something that cuts,” or they may try to find similar
words. (pp. 266-267)

Note the various distinct cognitive modules hinted at or speci-
fied in just this one paragraph from Treisman’s (1961) thesis:
1. A store of concepts (meanings). This is referred to as center

Response

o¥n name

"Dictionary” for
word Identification

Selective system

Discrimination of
frequency, localisation,
intensity, etc

Shadowed Rejected
ear ear

Figure 3. - A model of the mental lexicon. The thresholds of Words B and
C are lowered by their high transitional probability after Word A. Word C
is also activated by the “attenuated” signal from the rejected message and
is sometimes heard. From Attention and Speech, by A. N. Treisman, 1961,
p. 211. Unpublished doctoral thesis. Adapted with permission.

B in the model of Lichtheim (1885; see Figure 1), as the cognitive
system in the models of Morton and Patterson (1980) and Patter-
son and Shewell (1987), as the semantic/cognitive system in the
model of Harris and Coltheart (1986) and as the semantic system
in the models of Ellis and Young (1988) and of Kay et al. (1992)
and in the DRC model (Coltheart et al., 1993).

2. A store of “sound pictures” used to recognize spoken words.
This is distinct from the store of auditory representations of envi-
ronmental sounds, because some patients with word deafness can
recognize environmental sounds. This is center A in the model of
Lichtheim (1885), the auditory input logogen system in the model
of Morton and Patterson (1980), the auditory input lexicon in the
models of Patterson and Shewell (1987) and Ellis and Young
(1988), the auditory word recognition system in the model of
Harris and Coltheart (1986), and the phonological input lexicon in
the model of Kay et al. (1992).

3. A store of representations of spoken words that is used for
producing spoken words, rather than for recognizing them. This is
center M in the model of Lichtheim (1885), the output logogen
system in the model of Morton and Patterson (1980), the spoken
word production system in the model of Harris and Coltheart
(1986), the speech output lexicon in the model of Ellis and Young
(1988), and the phonological output lexicon in the models of
Patterson and Shewell (1987) and Kay et al. (1992).

4. A store of object representations used to recognize pictures
or seen objects. Lichtheim did not discuss vision, but in the same
era Lissauer (1890) did, and he drew a distinction between apper-
ceptive visual agnosia (a failure to access a store of object repre-
sentations from vision) and associative visual agnosia (a failure to
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access a store of concepts or meanings from the store of object
representations). This store of object representations is the picto-
gen system in the extension of the logogen model to picture
recognition by Seymour (1973) and is the system of object recog-
nition units in the model of Ellis and Young (1988).

The Logogen Model and its Evolution

Morton (1961) also based his theorizing on the concept of a
mental lexicon or, rather, on the concept of mental lexicons,
because he drew a sharp distinction, not explicitly drawn by
Treisman (1961), between a system of knowledge about word
meanings (which he referred to as the “cognitive system™) and a
system of knowledge about word forms (which he referred to as
the “logogen [word generation] system™). Morton’s distinction
between cognitive system and logogen system corresponds to the
above-mentioned distinction drawn by Wernicke (1874) between
the “wortschatz” or “word treasury” (cognitive system) and the
“klangbild” or “sound picture” (logogen system). Over the next
decade Morton’s logogen model evolved through several increas-
ingly complex forms. We briefly review the model’s evolutionary
history, for two reasons.

The first reason is that the model of reading we describe in this
article, although it is not a logogen model, evolved from the final
form of the logogen model.

The second reason is to show how the evolution of the logogen
model was entirely data-driven; complexity was added not for the
sake of complexity but as a consequence of hypotheses about the
explanations of empirical results that a previous model could not
explain. Hence the complex form of the dual-route cascaded
(DRC) model, which was inherited from the final version of the
logogen model, is motivated by a series of empirical findings. Any
simplification of the DRC model—that is, omission of any one of
its components or pathways—would leave it unable to offer an
explanation of one or more of these findings.

As will be seen from the discussion below of the evolution of
the logogen model, the logogen theorist’s response to data that
could not be explained by the existing model was to create a new
model by adding a new component or new pathway to the existing
model. But we do not consider that this is invariably an appropriate
response to new data. Specifically, we agree with Stone and Van
Orden (1993) that when such data involve evidence that people can
strategically vary the use they make of some cognitive processing
system, it is inappropriate to propose that this is done by altering
the functional architecture of the system; we do not believe that
new strategies create new architectures. Instead, we have always
(Coltheart, 1978; Coltheart & Rastle, 1994) explained strategy
effects as arising through people’s capacities, not to alter the
architecture of a processing model, but to vary parameters of the
model such as the strength with which one module activates
another, or rate at which activation rises, in response to task
requirements. This is also how Stone and Van Orden conceptual-
ized strategy effects: they refer to the process as one of “parametric
control.”

The initial version of the logogen model (Morton, 1968, 1969,
1970) was described by Morton, once again, in box-and-arrow
notation. It is shown in Figure 4(a).

The logogen system is a set of elements called logogens, one for
each of the words (or morphemes) in the model’s vocabulary.

Logogens are evidence-collecting devices with thresholds.? Evi-
dence is collected from visnal or auditory input, and when the
amount of evidence collected by a word’s logogen exceeds that
logogen’s threshold, information about that word in the cognitive
system {e.g., its meaning) is accessed, and the word also becomes
available as a response in the response buffer. The more frequent
a word, the less evidence need be collected from visual or auditory
input before threshold is reached, because each logogen has a
resting level of activation whose value is proportional to the
frequency of occurrence in the langnage of that logogen’s word.
One of the empirical phenomena that Morton (1969) interpreted
within the framework of this model was repetition priming, which
was attributed to the lowering of thresholds within the logogen
system. For example, when a visually presented word is read
aloud, its entry in the logogen system will reach threshold, which
will result in the threshold being set lower. Lowered thresholds
slowly drift back to their original values over time. If the word is
presented again before the return to the original threshold value is
complete, this lowering of the threshold will facilitate the reading
atoud of the word on this second occasion.*

However, some data from studies of priming refuted this first
version of the logogen model. In this first version of the model,
what is important for repetition priming is that the same re-
sponse is generated on the two occasions. Therefore, if on the
first occasion the task is picture naming and on the second
occasion the task is reading aloud, repetition priming should
still occur, because on both occasions the word’s logogen would
be activated. However, Winnick and Daniel (1970) and Clarke
and Morton (1983) found that there is no repetition priming
between pictures and words except with very short intertrial
intervals. This led Morton (1979) to propose a distinction
between an input logogen system (responsible for word recog-
nition) and an output logogen system (responsible for word
production). If the site of repetition priming were the input
logogen system, then picture naming (which does not activate
the input logogen system) would not facilitate subsequent rec-
ognition of the word that is the picture’s name. Thus a second
version of the logogen model (Morton, 1979) was developed in
response to evidence from repetition-priming experiments. This
second version of the model is shown in Figure 4(b).

This model predicts cross-modal repetition priming within the
domain of words, that is, hearing a spoken word should prime
subsequent recognition of its printed form, because on both occa-
sions the word’s input logogen will exceed threshold. However,
such priming does not occur except with very short intervals
between prime and target. From this it follows that, if the site of
repetition priming is the input logogen level, spoken word recog-
nition and written word recognition must use different logogen
systems, as proposed in the third version of the logogen model
(Morton, 1979), shown in Figure 4(c).

3 Thus McClelland and Rumelhart (1981, p. 388) were not really correct
in describing their IAC model as a logogen model. The word detectors in
the JAC model are not logogens, because they are not thresholded devices.

+ Morton (1969) here was not concerned with priming that occurs only
at very short intertrial intervals, but priming that lasts for minutes or even
days.
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Figure 4. Five versions of the logogen model.

Of course, the idea that spoken words and written words are
recognized by distinct word recognition systems is supported by a
great deal of cognitive-neuropsychological data, some of it from
the 19th century. In the condition known as word-meaning deaf-
ness (Bramwell, 1897, Howard & Franklin, 1988), printed words
can be understood but spoken words cannot, even though hearing
is adequate for the task of understanding speech (the patient can

repeat the words that she hears but cannot understand). The reverse
holds for pure alexia (Coltheart, 1998; Déjerine, 1892), a condition
in which spoken words can be recognized but printed words
cannot, even though vision is adequate for this task (printed letters
can be named).

This model, although capable of recognizing written and spoken
words and also capable of producing words, is incapable of doing
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anything with nonwords—for example, it can neither repeat non-
words nor read nonwords aloud. Because both tasks can be per-
formed by people, an account is needed of how this nonword
processing is done. Morton (1980) therefore embellished the logo-
gen model by adding grapheme—phoneme and acoustic—phonemic
routes, to produce a fourth version of the logogen model, shown in
Figure 4(d).

Perhaps the distinction here between visual input logogens and
auditory input logogens needs a parallel at the output level—that
is, there should there be two, not one, output logogen systems, one
for speaking and another for writing/spelling. This is the fifth and
fina] version of the logogen model (Morton, 1980), shown in
Figure 4(e).

The distinction between phonological and orthographic lexicons
is in any case strongly suggested by data from cognitive neuro-
psychology: Some people after suffering brain damage have an
impairment of the ability to produce spoken words with relatively
intact writing and spelling (Lhermitte & Derouesné, 1974), and
other people have an impairment of writing and spelling with
relatively intact ability to produce spoken words (Basso, Taborelli,
& Vignolo, 1978). This double dissociation would be difficult to
explain if the system for producing spoken words were the same as
the system for producing written words.

In relation to Figure 4(e), Morton (1980) dryly observed: “The
reader who does not like the notation of information processing
models will be at a grave disadvantage here” (p. 125). He then
went on to add that Figure 4(e) was if anything an oversimplifi-
cation of what the real system for processing spoken and written
language at the single-word level must be like. As our account of
evolution of the logogen model has shown, all the complexities of
the model shown in Figure 4(e) are motivated. If any box or any
arrow were deleted from it, the result would be a system that would
fail in at least one language-processing task at which humans
succeed.

Beyond Logogens

In the preceding sections we have traced the historical evolution
of the model of language processing shown in Figure 5, beginning
with models developed by 19th-century cognitive neuropsycholo-
gists through theoretical work by Treisman (1961) and Morton
(1961), which reintroduced the concept of the mental lexicon, to
the development of the logogen model by Morton, which led to the
architecture proposed in Figure 4(e).

The final step in this evolution was to generalize, by adopting
the architecture of the model of Figure 4(e) but avoiding one or
more specific theoretical commitments—for example, a commit-
ment to the idea that the system operates according to logogen
principles or a commitment to the idea that spelling-to-sound rules
used by the nonlexical route for reading aloud are solely
grapheme-phoneme correspondence rules.

This step was taken by Harris and Coltheart (1986), Patterson
and Shewell (1987), and Ellis and Young (1988), all of whom
proposed essentially the same model as the version of the logogen
model shown in Figure 4(e), except that their models were no
longer necessarily logogen models, even though the architecture of
these models derived directly from Morton’s theoretical work.
Figure 5 shows the model proposed by these authors.

Acoustic Orthographic
Analysis Analysis
Auditory Input Orthographic Input
Lexicon Lexicon
, N4 ,
Acoustic-to- Cognitive Sub-Word level Orthographic-to-
Phonological System Phonological
Conversion Conversjon
Phonological Orthographic
Output Cutput
Lexicon Lexicon
v - 4
Sub-Word level Phonological-to- :
Response Orthographi Graphemic
Buffer > Brapiic 1 Qutput Buffer
Conversion P

Figure 5. The model of language-processing proposed by Patterson and
Shewell (1987).

Logogens are information-gathering devices with thresholds. To
claim that the entries in, say, an orthographic input lexicon are
logogens is going one step beyond the claim that one module of the
language-processing system is an orthographic input lexicon
whose elements are lexical entries corresponding to words. That is
the sense in which the model of Figure 5 is a generalization of the
model of Figure 4(e).

This is made clear by Morton (1982). In discussing the possi-
bility that auditory word recognition may be done in a nonlogogen
way, as proposed in the cohort model of Marslen-Wilson and
Welch (1978), he noted,

If it turns out that the cohort model wins, then the consequences are
clear. The logogen system would have to be modified such that the
auditory input categorization system operates on cohort principles and
would thus be different from the visual system in this respect. Again,
the modularity of the approach prevents the consequences from being
more severe than this. (pp. 100-101)

In previous pages we have identified a variety of findings,
especially from the cognitive neuropsychology of language, that
support this proposed architecture. There are many other findings
from this domain of psychology that support the model; for a
review of this literature, see Ellis and Young (1988) and Shallice
(1988).

Certain theoretical questions were deliberately left unanswered
regarding the model shown in Figure 5, so as to preserve its
generality. However, as we indicated earlier, if one wants to turn
a verbal model (such as the model in Figure 5) into a computa-
tional model—and that is our aim— commitments to specific an-
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swers to such theoretical questions cannot be avoided. Hence we
now consider what these commitments might be.

Thresholded or Cascaded Processing?

It is true by definition for logogen models that the processing
going on in any module does not begin to affect subsequent
modules at an early point in processing; activation is only passed
on to the later modules after a threshold is reached in the earlier
module. This is thresholded processing, an alternative to which is
cascaded processing (McClelland, 1979). In systems that operate
by cascaded processing, there are no thresholds within modules; as
soon as there is even the slightest activation in an early module this
flows on to later modules.

1t is an open question whether the models of Harris and Colt-
heart (1986), Patterson and Shewell (1987), and Ellis and Young
(1988) should be thresholded or cascaded models. Relevant em-
pirical results are needed if this question is to be resolved.

Coltheart et al. (1993) drew attention to some such results in
relation specifically to reading. Suppose that in these models
processing is thresholded. If so, when a nonword is presented for
reading aloud, no entry in the orthographic lexicon will reach
threshold, so no information or activation will emerge from that
lexicon to affect subsequent phonological processing. That means
there will be no lexical influences on nonword reading aloud.
However, Glushko (1979), Kay and Marcel (1981), Rosson
(1983), and others have reported various ways in which reading a
nonword aloud appears to be affected by activity in the lexical
route. For example, Glushko (1979) found that nonwords that were
inconsistent with real words (e.g., heaf; cf. deaf) yielded longer
naming latencies than nonwords that were not inconsistent with
real words (e.g., hean). This suggests that at some point during the
processing of heaf, the phonology of deaf must have been acti-
vated, a conclusion that is inconsistent with a thresholded version
of the model.

Patterson and Morton (1985) proposed a way in which a thresh-
olded model may be reconciled with Glushko’s (1979) results: The
nonlexical rule system does not operate solely with grapheme—
phoneme rules but also has rules relating orthographic bodies such
as eaf or ean to their pronunciations. Because there are two
pronunciations for eaf (as in deaf and as in leaf), perhaps the eaf
rule is weaker or more ambiguous than the ean rule, and so the
nonlexical route is worse for heaf than for hean in a purely
thresholded system.

However, as Patterson and Morton (1985) acknowledged, this
way of accounting for Glushko’s (1979) results cannot explain the
results of Rosson (1983), who found in a nonword reading task that
the pronunciation of the vowel of the nonword louch was biased
toward the “couch” pronunciation when the preceding item was
sofa (semantically related to couch) and was biased toward the
“touch” pronunciation when the preceding item was feel (seman-
tically related to touch). This result seems to demand the conclu-
sion that, when the input is the nonword louch, the orthographic
lexical entries for couch and touch are not only activated them-
selves but also that this lexical orthographic activation then gen-
erates some activation of phonology. That is inconsistent with a
thresholded interpretation of the architecture of the model, which
is why Coltheart et al. (1993) adopted the view that the system
operates in a cascaded fashion (hence the “C” in DRC).

Further and strong evidence for such cascaded processing by the
lexical route was subsequently provided by Peereman and Content
(1995) and Job, Peressotti, and Cusinato (1998), because both sets
of authors interpreted their results as showing that the orthographic
neighbors of a visually presented letter-string nonword are suifi-
ciently activated during reading aloud to influence the computation
of the phonology of the to-be-read-aloud nonword.

In a recent and invaluable review of effects of phonology on
visual word recognition and reading aloud, Frost (1998) concluded
that during reading “phonology is always partly assembled and
always partly lexical. It is always activated but not necessarily
fully specified” (p. 95). Frost explicitly stated that there is nothing
in his review that is inconsistent with the dual-route view: In
response to his general conclusion, he says, dual-route theorists
could “keep the dual-route view but would reconsider the descrip-
tion of phonological processing within the model” (p. 95). That is
what we did by introducing cascaded processing into the dual-
route view. As we show below, when the DRC model is reading
aloud or performing the lexical decision or Stroop tasks, phonol-
ogy is always partly assembled and always partly lexical, and
always activated but not necessarily fully specified—exactly as
prescribed by Frost.

Toward a Computational Model

The model in Figure 5 is meant to offer an account of how all
language-processing tasks at the single word and nonword level
are performed. This article is specifically concerned, however,
with only a subset of such tasks, those involving visual word
recognition and reading aloud. Hence the architecture with which
the present article is specifically concerned is a subset of the
architecture of the model of Figure 5. This architecture for visual
word recognition and reading aloud is shown in Figure 6.

Our task is to take this verbal model of visual word recog-
nition and reading aloud, which as we have indicated is well
supported by a variety of forms of data, and to turn it into a
computational model. We discussed the motivation for doing
this in the first part of this article. Initial work along these lines
was reported by Coltheart et al. (1993) and Coltheart and Rastle
(1994), and Rastle and Coltheart (1998, 1999a, 1999b) have
described various results of experiments with human readers
and the simulations of these results that have led to the current
version of the DRC model.

As we have said, the exercise of deriving a computational model
from a verbal model always compels the modeler to make many
specific theoretical choices. Our adoption of the IAC model as our
starting point committed us to local rather than distributed repre-
sentations; Grainger and Jacobs (1998) and Page (in press) provide
much detailed justification for this choice in relation to cognitive
modeling. A second theoretical choice we have already discussed
is our use of cascaded rather than thresholded processing. Another
such choice made by Coltheart et al. (1993; see also Coltheart,
1978, 1985) was that the spelling-to-sound rules that characterize
the nonlexical reading route operate at only one level of phonol-
ogy, the phoneme. Thus these rules are grapheme—phoneme cor-
respondence (GPC) rules, whereby the term “grapheme” we mean
a letter or letter sequence that corresponds to a single phoneme,
such as the { in pig, the ng in ping, and the igh in high.
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Figure 6. Basic architecture of the dual-route cascaded mode! of visual
word recognition and reading aloud.

McCleliand (1993) proposed a set of principles to which
computational models should adhere, the GRAIN principles.
The A in his acronym stands for “adaptive,” and refers to
models whose structure is learned under some learning algo-
rithm. We have explained why we prefer not to use learning
algorithms to develop architectures of computational models.
However, we do adhere to the other four principles advocated
by McClelland (1993), and so we are guided by the GRIN
principles: Activation in our model is graded (rather than all-
or-none), it is random (activation update calculations can be
noisy rather then deterministic, though in fact we have made
little use so far of this feature of the model), it is interactive
(activation flows between adjacent modules in both direc-
tions),” and it is nonlinear (this is a property of the equations by
which unit activations are computed from unit inputs).

DRC: A Dual Route Cascaded Model of Visual Word
Recognition and Reading Aloud

As discussed above, a part of the DRC model® is a generaliza-
tion of the TAC model, and one reason for making this choice was
the success enjoyed by the IAC model in accounting for human

data in Reicher~Wheeler experiments. Another reason for the
choice was that the IAC is a cascaded model, and, as also dis-
cussed above, the results of Glushko (1979), Kay and Marcel
(1981), Rosson (1983), and others favor such a model over thresh-
olded models.

The IAC model applied only to four-letter words; its DRC
version applies to words from one to eight letters in length, and
that is the sense in which the IAC model has been generalized.

General Features of the DRC Model

The overall architecture of the DRC model is illustrated in
Figure 7.

The model consists of three routes, the lexical semantic route,
the lexical nonsemantic route, and the GPC route. Each of these
routes is described individually below. Each route is composed of
a number of interacting layers. These layers contain sets of units.
The units represent the smallest individual symbolic parts of the
model, such as words in the orthographic lexicon or letters in the
letter unit layer.

There are two ways in which the units of different layers
interact. One is through inhibition, where the activation of a unit
makes it more difficult for the activation of other units to rise. The
other is through excitation, where the activation of a unit contrib-
utes to the activation of other units. Units may also interact on the
same level through lateral inhibition. In Figure 7, excitatory links
between units are represented by arrows, and inhibitory links
between units are represented by circles. Adjacent layers of the
model communicate fully in both directions in both excitatory and
inhibitory ways. Exceptions are the following:

(a) Communication between the orthographic lexicon units and
phonological lexicon units are only excitatory and only one-
to-one, except in relation to homophones and homographs, as
discussed below.

(b) Communication between the feature and letter layers is in one
direction only (from features to letters), as in the IAC model.

Layers that have position-specific coding (feature layer, letter
layer, phoneme layer) are made up of different subsets of units,
one subset for each position in the input string or output string.
Here lateral inhibition occurs only within but not between the
position-specific subsets of units.

The visual feature units consist of eight different subsets repre-
senting the eight possible input positions. The feature sets are
based on the 16-feature font of Rumelhart and Siple (1974), where
the set consists of individual features that are set to on or off (1 or
0) if they correspond to the properties of the letter that is input.
When an input position does not contain a letter at a particular
position, that is, contains the null character, all feature units within
the subset of feature units for that position are turned off.

5 One departure from this principle is that nonlexical activation between
the letter and phoneme levels occurs in only one direction in the model we
describe here: There is currently no nonlexical activation from phonemes
to letters. In the section of this article dealing with spelling we describe
how this violation of the GRIN principles is being remedied in current
work.

% An executable version of this model is availabie for download at
http://maccs.mq.edu.aw/~max/DRC/.
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Figure 7. The dual-route cascaded model of visual word recognition and reading aloud.

The letter level also uses eight different subsets, with a structure
similar to the feature set. Instead of each subset containing indi-
vidual features that can be turned on or off, however, each subset
contains units for the entire set of letters that can occur, that is, a
unit for each of the 26 letters plus one for the blank letter. Lateral
inhibition occurs at this level, within but not between each of the
eight subsets.

The phoneme units are similar in organization to the letter units,
except that each of the eight subsets contains units for the 43
phonemes plus a unit for the blank phoneme.

Units within the orthographic lexicon are not position-specific
and each unit inhibits all others. The same is true for units within
the phonological lexicon.

The orthographic lexicon contains 7,981 units, one for each
of the monosyllabic words in the CELEX database (Baayen,
Piepenbrock, & van Rijn, 1993), except for a few rare and
foreign words that have been discarded.” For each of these
orthographic lexical units there is a corresponding phonological

lexical unit in the phonological lexicon. Heterographic homo-
phones such as SO and SEW have separate units in the ortho-
graphic lexicon but a common unit in the phonological lexicon.
Homographic heterophones such as LEAD have a single unit in
the orthographic lexicon but a separate unit in the phonelogical
lexicon for each of their pronunciations. The phonological
lexicon contains 7,131 units (fewer than the orthographic lex-
icon because there are more heterographic homophones than
there are homographic heterophones).

7 Plaut et al. (1996) excluded most but not all polymorphemic words
from the set of monosyllabic words on which they trained their model, and
Zorzi et al. (1998) followed suit. Thus for both of these models fewer
than 3,000 of the approximately 8,000 monosyllabic words of English can
be used in simulations; the remaining 5,000 or so words are effectively
nonwords for these models.
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Activation Dynamics

Although each layer of the model uses a different set of units,
corresponding to the different representation of each layer, each
unit individually is governed by the same general activation dy-
namics. These activation dynamics were originally specified in
McClelland and Rumelhart (1981), although, as can be seen below,
they have been altered slightly.

There are three factors used when calculating how the activation
of a unit changes over a time step. These are the unit’s previous
activation, how quickly this activation decays, and what the net
input of activation into the unit from other units is. This can be
represented by the following formula, similar to that of McClel-
land and Rumelhart (1981):

a{t + At) = a(1) — 0{a()) + (e{t) X activation rate) (1)

In the formula, a, represents the unit’s current activation, 6, is a
parameter that controls the level of decay, and e(f) represents the
net activation input into the unit after being scaled to a value
between 1 and 0. The decay parameter 6, is set between O and 1.
It reduces the new activation by a proportion of the old activation.
The activation rate is a parameter used to scale the speed at which
the activation of the unit changes with respect to the difference
between its current activation value and the scaled net input. Small
values cause the activation level to change more slowly; high
values cause the activation level to change more quickly.

The formula departs from that used for the IAC model in two
ways. First, an additional activation rate scaling parameter is
available (though in practice we have not made any use of this
parameter). Second, in the IAC model a baseline activation level is
associated with each unit; for the DRC model, this baseline acti-
vation level was moved to the formula modifying the net input
(Equation 6).

Unit activations remain between 0 and 1. This is achieved by the
following formula:

1 ifa(r)>1
af1) = {ai(t) if0=g(n=1 2)
0 ifa(n<o0

The amount of net input into the unit at a given time, nJz), is a
function of the inhibitory and excitatory inputs, as in McClelland
and Rumelhart (1981):

n{r) = 2 agelt) — 2 Yid(£). 3

The first half of the equation specifies the excitatory component of
the total net input. In this half, e(#) represents the activation
produced by an excitatory umit j, and ¢;; is a weight constant
associated with the link from unit 7 to unit j. This excitatory
communication is represented by lines terminated by arrowheads
in Figure 7. The second half of the equation specifies the inhibitory
component of the net input. In this part i, represents the activation
from an inhibitory unit, and y,, is a weight constant associated with
the link from unit i to unit k. This inhibitory communication is
represented by lines terminated by circles in Figure 7. The constant
weights o and v, associated with the communications between
two units, are always the same for all connected units between any
two communications between units in two adjacent layers. For

example, the «,; values for all communications between the j units
in the orthographic lexicon and the i units in the phonological
lexicon were always set to 0.2 in the reported simulations.

Once the net input has been calculated, it is squashed such that
unit activations can fall only within the range 0 to 1. The two
equations that perform this function (Grossberg, 1978) are

g() = n()(1 — a(1)) (CO)
when the net input, n,, is above or equal to 0, and
e{t) = n{#)(a(r)) 3)

when the net input, n,, is below 0.

The Three Routes
Lexical Nonsemantic Route

The lexical nonsemantic route of the DRC model generates the
pronunciation of a word through a sequence of processes: The
features of the word’s letters activate the word’s letter units (in
parallel across all letter positions), these letters then activate the
word’s entry in the orthographic lexicon, this word entry in the
orthographic lexicon then activates the corresponding word entry
in a phonological lexicon, and that word entry in the phonological
lexicon then activates the word’s phonemes (in parallel across all
phoneme position).

As mentioned earlier, the lexical orthographic part of the model
(the feature and letter levels and the orthographic lexicon) is a
generalization of the IAC model (Grainger & Jacobs, 1996; Mc-
Clelland & Rumelhart, 1981). The IAC model operates only for
words of a fixed length; the DRC model operates with words of
any length up to and including eight letters. The model achieves
this by adding to each set of 26 letter detectors a blank-letter
detector that is activated when there is no letter in that particular
position in the letter string. For all eight possible input positions,
there is a set of 14 feature-present units (the font used has 14
possible features) and a set of 14 feature-absent units, as in the JAC
model—that is, there is a complement-coded representational
scheme (Carpenter, Grossberg, Markuzon, Reynolds, & Rosen,
1992). Suppose the model is given a string of, say, five letters as
input. For Position 1, the features present in that letter turn on the
appropriate feature-present units, and the feature-absent units cor-
responding to those features not present in the Position 1 letter are
also turned on. The same happens with respect to the next four
positions. For Positions 68, which are not occupied by letters,
all 16 feature-present units will be off, and all 16 feature-absent
units will be on; that will have the effect of activating the blank-
letter detector within the three sets of letter-detectors for those
three positions.

Whether a letter causes excitation or inhibition of a unit in the
orthographic lexicon is determined as follows: A letter in the Nth
set of letter units excites all units in the orthographic lexicon for
every word that contains that letter in the Nth letter position of the
word and inhibits all other units in the orthographic lexicon.

Units in the orthographic lexicon are frequency-sensitive; if all
other factors are held constant, the activation of high-frequency
words rises more quickly than the activation of low-frequency
words. To achieve this effect, a constant value is associated with
each unit in the lexicon, as was done in the IAC model. This value
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is calculated by taking the log, frequency of the word, dividing by
the log,, frequency of the highest frequency word and subtract-
ing 1 to get a standardized log,, frequency value scaled between
—1 (corresponding to the lowest frequency word) and O {(corre-
sponding to the highest frequency word). This value is multiplied
by a frequency scaling parameter that takes on a value between 0
and 1. This parameter controls the dominance of the frequency
effect. Whenever activation is calculated for each unit in the
orthographic lexicon, this constant is added to the net input, n,.
This means that Equation 3, which was used for calculating the net
input into a unit, needs to be modified to incorporate this differ-
ence. The net input to unit i in the orthographic lexicon becomes

n() = > ayeft) = O, vair(f) + CFS, (6)

k
where CFS, is a constant frequency scaling variable that equals

lo frequency;
CFS, = giol frequency,) )_1)
logo(max frequency in lexicon)

X frequency scaling. (7)

Activation of a unit in the orthographic lexicon is transmitted to
the corresponding unit in the phonological lexicon. At present, a
unit’s CFS, value in the phonological lexicon is set to the same
value as its corresponding orthographic frequency. A possibility
for future implementations of the DRC model would be to change
this to spoken word frequency.

Finally, there is activation of a word’s phoneme units by its
activated entry in the phonological lexicon. For example, the unit
for /bi:t/ activates the phoneme unit for /b/ in the first phoneme set
and inhibits all other phoneme units in that set; it activates /i/ in
the second phoneme set and /t/ in the third phoneme set, and
inhibits all other phonemes in these sets. As at the letter level, each
set of phoneme units also contains a blank phoneme unit; if a word
has six phonemes, then it excites the blank phoneme unit in the
seventh and eighth phoneme sets and inhibits all the other units in
the seventh and eighth phoneme sets.

GPC Route

Derivation and nature of the rules. In earlier work (Coltheart
et al., 1993), we developed a rule-discovery algorithm that learned
a set of GPC rules from exposure to the database of about 3,000
word spellings and their pronunciations compiled by Seidenberg
and McClelland (1989). Qur primary aim in developing that algo-
rithm was not to obtain a set of GPC rules, but to show that there
was enough information in that database for a procedure to be
learned that would then be very accurate at reading nonwords, as
was the case with the learned set of GPC rules. From this it follows
that the poor nonword reading of the SM model could not be
attributed to impoverishment of the database on which that model
was trained. Having established that, we did no more work on
computational learning of GPC rules, for the reason we gave
earlier that unless the learning procedure itself is known to be
psychologically real, it may not be able to learn what people learn.
We have no reason to believe that the rule-discovery algorithm we
used for GPC learning is any closer to the way children learn than
is backpropagation (see also Rastle & Coltheart, 1999b).

The GPC route converts a letter string into a phoneme string by
using grapheme-phoneme correspondence rules. The route is re-
stricted to using rules where a set of letters map onto a single
phoneme, with one exception. The exception is that the letter x is
converted into the two-phoneme sequence /ks/. The GPC rules
used by the model are those listed in Appendix B of Rastle and
Coltheart (1999b).

Rastle and Coltheart (1999b) selected these GPC rules on purely
statistical grounds. For any grapheme, the phoneme assigned to it
was the phoneme most commonly associated with that grapheme
in the set of English monosyllables that contain that grapheme,
taking position in the word into account if necessary. As it hap-
pens, almost all of the GPC rules selected in this way were ones
that the original GPC learning algorithm had yielded. We think of
this set of rules as a set of hypotheses about what GPC rules people
know.

Some of the GPC rules are context-sensitive—for example, ¢ is
translated to /s/ when the following letter is e, i, or y, and is
otherwise translated to /k/. Some of the GPC rules are position-
sensitive—for example, there are three rules for the grapheme y. In
initial position, it is given the phoneme /j/, in medial position it is
given the phoneme /1/, in final position it is given the phoneme /ai/.
Another category of GPC rules is what we have called “output
rules.” Some of these are phonotactic rules; the remainder are
morphophonemic rules. Some phonemic sequences generated by
the rules are phonotactically illegal; for example, the rules translate
the letter-string enk as /enk/. This is corrected by an output rule
that converts the phoneme /n/ to the phoneme /n/ whenever the
following phoneme is /k/. However, purely phonotactic rules are
not enough here; they fail to capture a regularity associated with
the phoneme /s/ in final position. When this is spelled s, and so is,
or could be, the plural morpheme, the phoneme must be converted
to /2/ when preceded by any of the phonemes /a: ei ai 2: 0i ou 19
auea s 0 gbdglmnu v/, even though this is not always
required by phonotactic considerations (see e.g., Pinker & Prince,
1988, p. 103). For example /ns/ is phonotactically legal, as in
dense, so /dens/ is a phonotactically legal translation for dens, but
the morphophonemic rule controlled by the fact that the last letter
here is s disallows this phoneme sequence (when it is spelled this
way). .

Operation of the GPC route. Visual features and correspond-
ing letter units are activated just as with the lexical nonsemantic
route because the feature and letter levels are common to the two
routes. Then the GPC route operates in the following manner.
First, a set number of cycles (10 cycles in the simulations reported
in this article) passes before the GPC route begins to operate on the
first letter of the input. The set of rules is searched until an
appropriate ntle is found to convert that letter to a phoneme, and
that phoneme’s unit in the phoneme system then receives some
activation (which adds to the activation it receives from the lexical
route). On each subsequent processing cycle, activation is contrib-
uted to that phoneme unit in the same way. A constant number of
cycles later (17 cycles in the simulations reported here), the next
letter becomes available to the GPC route, so that it is now
translating the first two letters in the input string. The GPC route
uses its rules to translate this two-letter string int6 a phoneme or
phonemes. If this string is a grapheme, such as ph, it will be
translated into just one phoneme by the rules; if it is not a
grapheme, such as pr, it will be translated into a sequence of two
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phonemes. This process continues, with one letter being added
every 17 cycles, until either the letter string is named or the final
position in the letter units is reached. Thus the GPC route assem-
bles the letters into phonology serially, letter by letter.

In making the assumption that the nonlexical route operates
serially and from left to right, rather than right to left, or in parallel,
we followed Forster and Davis (1991). They showed that a briefly
presented masked prime facilitated reading aloud of a subsequent
target word when mask and prime shared just one letter or pho-
neme, but only when this was the leftmost letter or phoneme in the
prime. Their explanation was that “construction of the nonlexical
response to the prime operates in a strict left-to-right manner (see
Meyer, 1988), so that by the time the target is presented, the
articulation of just the onset of the prime has been planned” (p.
19). Subsequently we have obtained further evidence from other
paradigms for this left-to-right operation of the nonlexical route:
the positional sensitivity of the regularity effect (Rastle & Coit-
heart, 1999b), the effect of position of irregularity in filler stimuli
on strategy effects in reading aloud (Rastle & Coltheart, 1999b),
and the positional sensitivity of the phonological Stroop effect
(Coltheart, Woollams, Kinoshita, & Perry, 1999).

Rule selection by the GPC route. An important part of the
assembly process is the way the rules are matched to information
available to the GPC route. The GPC route works by trying to find
a rule whose letters match the leftmost letters available to the
route. When it does find a match, the letters that matched are
removed from the letter string, and the route tries to find another
rule that matches the leftmost letters that remain. Once all of the
letters are matched, the phonology generated is subjected to the
phonological output rules. On completion of this process, the
phonology generated adds activation to the positionally corre-
sponding phonemes in the phoneme unit layer (a layer common to
the nonlexical [GPC] and lexical routes) as described above.

The way in which the rules are picked when translating a letter
string is not simply by making a random choice from those that
could conceivably match. The rules are picked based on the serial
order of the rule list. This is done by dividing the rule list into a set
of smalier sublists. The order of these sublists is based on the
number of letters from which the grapheme is formed and whether
the letters are context sensitive. Rules with larger graphemes are
tested before rules using smaller graphemes. The specific order of
testing is multirules (rules with more than two-letter graphemes),
then context-sensitive rules, then two-letter grapheme rules, then
the one letter to multiple phonology rule (the letter x) and finally
single-letter rules.?

How the GPC route activates phonemes. The amount each
phoneme is activated is a function of two factors. One is a GPC
activation parameter, set between O and 1. This parameter controls
the overall strength of the route. The second is the activation of the
letters that the rule matched. In this case, the activation of each
assembled phoneme is the average of the activations of the letters
from which it was generated. For example, if the system had
generated the /6/ phoneme from the letters 7 and A, the amount of
activation of this phoneme would be the activation of the letters ¢
and h, divided by two. If a match occurs using a rule that uses
context-sensitive letters, the context-sensitive letters are not en-
tered into the averaging process. The overall activation added to
the net input of the phoneme units is then the product of the two
factors. It is important to note that this process occurs for both

letters and orthographic word terminators. When orthographic
word terminators are encountered, they are assembled into phone-
mic word terminators. The assembly of these end terminators
fundamentally alters the properties of the model because they
boost the activation level of the phonemic word terminators at the
phoneme level. As is discussed later, these are used to determine
when word read-out occurs.

Lexical Semantic Route

As yet, the semantic part of the model has not been implemented
(though see Coltheart et al., 1999, for a small partial implementa-
tion). There are a number of possibilities that could be pursued,
however. One that seems particularly promising is to use a seman-
tic system similar to that of Dell, Schwartz, Martin, Saffran, and
Gagnon (1997), who showed how an interactive activation model
of phonology, very similar to the phonological half of the lexical
route of the DRC model, could be combined with a system of
semantic representations. They then showed that such a model
could produce a good fit to a number of behavioral results obtained
from aphasic and nonaphasic people. Another approach (Watters
& Patel, 1998) has used WordNet (Miller, 1985) as a source for
extracting semantic representations and has interfaced a semantic
system based on such representations with the DRC model as
described in this article.

How the Whole Model Operates

On Cycle 1, the visual feature units are clamped with the-
features corresponding to the input letter string. This clamping
means that on Cycle 2, activation from the feature level will reach
the letter level. On Cycle 3 activation will reach the orthographic
lexicon and will also be fed back to the letter level, and so on. This
process of cascaded activation eventually leads to a build-up of
activation in the phonemic layer, and of course to activation
feeding back from the phoneme layer to the letter layer. At the
same time, as parameters allow, the GPC system will be contrib-
uting activation to the phoneme layer. In the present version of the
model, the nonlexical route is only feed-forward, but a version of
the model in which that route operates bidirectionally is being
developed (see the section on Spelling at the end of this article).

How Does a Letter String Get Named?

The model is considered to have determined the pronunciation
of a monosyllabic letter string when it has activated (to some
criterion of satisfaction) all of the phonemes of that letter string.
The processing cycle on which that criterion is achieved is the
model’s naming latency for that letter string.

The procedure that the DRC model uses to decide whether a
pronunciation has been determined is a left-to-right scan across the

8 This method of accessing the rules prevents the GPC route from translat-
ing a three-letter grapheme such as IGH into three phonemes, because it
encounters the GPC rule for IGH before the GPC rles for I, G, and H. There
are various other ways in which this problem could be solved, and we are not
committed to the method we adopted, which is a mere implementational detail;
all that we are committed to is that in the model phonemes are correctly
generated from letter strings by the application of GPC rules.
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sets of phoneme units. This procedure is carried out at the end of

every processing cycle. Each set of phonemes, starting from the

first set, is sequentially examined, and the phoneme in the set that

is maximally active is identified.

If

(a) a phoneme set is reached in which the phoneme with the
highest activation in that set is the phonemic word terminator
(blank phoneme),

and if also

(b) the level of activation of the blank phoneme in that set is above
the minimum naming threshold (the value of which is 0.43 in
the simulations reported here),

then

(c) the model assesses whether the maximally activated phoneme
in each of the preceding phoneme sets has an activation above
the minimum naming threshold (we used a value of 0.43 here).
If this is not so, then pronunciation is considered not yet to be
known, and the next cycle of processing begins. If, on the other
hand, the maximally activated phoneme in all of the preceding
phoneme sets is greater than the minimum naming threshold,
then pronunciation of the letter string is considered to be
known. The actual pronunciation consists of the maximally
activated phoneme in each of the phoneme sets. That will be
the DRC model’s pronunciation of the letter string, and the
model’s naming latency will be the number of the cycle at
which this event occurred.

Note that this left-to-right scanning process occurs between
processing cycles and so does not contribute to DRC’s naming
latencies. Thus this scanning process does not, for example, cause
any effect of string length in DRC’s naming latency.

How Simulations are Executed With the DRC Model

Table 1 lists the various parameters of the DRC model. Any of
the parameters can be given a value by typing it into the appro-
priate place in a parameter window that is part of the model’s
interface. Then the model can be run to perform the naming task
or the lexical decision task on a particular set of letter strings under
this particular parameter set. Subsequently the model’s naming or
lexical decision latencies can be analyzed to see whether they
correspond to the data from experiments with human readers.
Suppose, for example, we were seeking to discover whether in
reading words aloud the DRC model shows the interaction be-
tween frequency and regularity that is shown in the human data
(Paap & Noel, 1991). This would be done by submitting to the
DRC model the actual high- and low-frequency regular and irreg-
ular words that were used in the human experiment, and carrying
out a 2 X 2 analysis of variance {ANOVA) on the resulting DRC
naming latencies. The specific values of the parameters listed in
Table 1 are essentially those developed by Rastle and Coltheart
(1999b) and used in all of the simulations described later.

Searching Parameter Space

Of course, even if there existed a set of parameters under which
DRC would behave in exactly this way, there will be very many
sets of parameters under which it will not. If, with the first set of
parameters we use, the DRC latencies do not show this effect,
where do we go next?

Table 1
Parameters Used in the DRC Simulations of Reading Aloud
Parameter Value
General Parameters
Activation rate 2
Frequency scale .05
Reading-aloud criterion 43
Feature Level
Feature to letter excitation 005
Feature to letter inhibition -.15
Noise 00
Letter Level
Letter to orthographic excitation 07
Letter to orthographic inhibition —.435
Letter to letter inhibition .00
Noise .00
Decay .00
Orthographic Lexicon
Orthographic to phonological excitation .20
Orthographic to letter excitation 30
Orthographic to letter inhibition .00
Orthographic to orthographic inhibition —.06
Noise .00
Decay .00
Phonological Lexicon
Phonological to phoneme excitation .14
Phonological to phoneme inhibition 00
Phonological to orthographic excitation 20
Phonological to phonological inhibition -.07
Noise .00
Decay 00
Phoneme Level
Phoneme to phonological excitation .04
Phoneme to phonological inhibition —.16
Phoneme to phoneme inhibition ~.15
Noise .00
Decay 00
GPC Route
GPC to phoneme excitation 055
Cycles before route begins 10
Cycles before next letter accessed 17

One in-principle approach is the following. There are 31 param-
eters in the model, so there is a 31-dimensional parameter space.
Each point in this space will generate a set of latencies in which the
Frequency X Regularity interaction has a certain value. We could
define as a target a simulation in which DRC’s high-frequency
latencies showed no regularity effect, whereas the low-frequency
latencies show a significant regularity advantage. We could then
start at some random point in this 31-dimensional parameter space,
and use some kind of gradient descent algorithm to trace a path
through this space toward a point representing a set of parameters
that yield the desired interaction—if such a set exists.

We have not adopted this method, for two reasons. First, the
parameter space is so large that it would take an impossibly long
time to derive parameters to simulate just one set of human data.
Second, we would in any case not be interested in an approach in
which each set of human data is simulated with a different set of
DRC parameters. Our aim instead (with some exceptions noted
later) has been to find just one set of parameters that, unchanged,
simulate a wide variety of sets of human data.

Hence we adopted a different method for seeking a parameter
set under which the DRC model successfully simulates data from
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experiments with human readers. The most delicate issue with the
DRC model is to try to set an appropriate balance between the two
routes of the model. For very many of the possible parameter sets,
the model will read all of the words in its vocabulary perfectly, but
will make many errors with nonwords (typically lexicalization
errors). Here the lexical route is too strong. For many other
possible parameter sets, the model will read nonwords (and regular
words) perfectly, but will make many errors with exception words
(typically regularization errors). Here the lexical route is too weak.

What is needed is a set of parameters under which DRC reads all
exception words and all nonwords correctly. Of course, there is
absolutely no guarantee that such a parameter set even exists for
the DRC model. That is one of the senses in which the model is
falsifiable.

So a sensible course was to use exception words and non-
words when seeking the desired parameter set. One can do
better than that. For reasons discussed below (and see Rastle &
Coltheart, 1999b), the reading aloud of exception words by the
model is harder when these are low in frequency, and hardest of
all when the exception words are not only low in frequency but
also have an irregular grapheme-to-phoneme correspondence at
the initial phoneme. So a word like chef~—a low-frequency
first-position irregular word—is a particularly difficult one for
the model.

As for nonwords, there is also a class of these that is particularly
hard for the model to read. These are nonwords that have a number
of orthographic neighbors all of which differ from the nonword at
the last letter position. One example is starn, whose neighbors
include start, stars, and stark. As discussed above, a nonword
excites its neighbors in the orthographic lexicon; these words will
excite their phonological forms in the phonological lexicon and,
hence, their phonemes at the phoneme level. As also discussed
above, the letter n of starn will not begin to be processed until the
(10 + 4 X 17) = 78th processing cycle. During those 78 process-
ing cycles, the word neighbors start, stars, and stark will build up
the activations of the incorrect phonemes /t/, /z/, and /k/ in the
fourth phoneme set, and these already-activated phonemes will
inhibit the activation of the correct phoneme /n/ when the nonlexi-
cal route begins to deliver it to the phoneme level.

To overcome this hostile reception, the nonlexical route will
have to be able to deliver strong activation to the phoneme level.
But strong nonlexical activation will be very dangerous for the
exception word chef, because such activation will begin relatively
early (on Cycle 10) and so will activate an erroneous phoneme
before a great deal of lexical activation of the correct phoneme has
been generated.

Hence if we just consider the two items chef and starn, the
problem is clear: to get starn right, the nonlexical route must
deliver activation above a certain level; to get chef right, the
nonlexical route must deliver activation below a certain level; and
there is no guarantee that a level of nonlexical activation exists that
is compatible with both of these requirements. Exactly the same
point applies to lexical activation.

Our odyssey through parameter space thus consisted of running
exception word-nonword pairs such as this one—indeed, often
exactly this one—seeking a point in parameter space at which the
DRC model reads both members of the pair correctly. This took a
very long time indeed, even though the voyage was by no means
a blind one, because analysis of the model’s behavior often gave

guidance as to which of its parameters was particularly poorly set
and hence should be reset. Table 1 shows the values of the
parameters eventually arrived at in this way in the work of Rastle
and Coltheart (1998, 1999a, 1999b) and used in the various sim-
ulations of reading aloud reported later.

Evaluations of the Model

When all 7,981 words in DRC’s orthographic lexicon were
presented to the model for reading aloud using this parameter
set, 7,898 words were read correctly: the mean naming latency for
these items was 79.694 cycles (SD = 6.244 cycles; range =
59-116 cycles).

Of the 83 incorrectly read words, 56 were heterophonic homo-
graphs such as BOW. In every case, DRC’s reading was the
pronunciation of the more frequent member of the homophone
pair. Hence these responses were not actually errors. The remain-
ing 27 word errors were regularization errors for irregular words;
26 of these were irregular in the first position (e.g., isle, heirs)
and 1 (baths) was irregular in the second position.9

There is an important point here. DRC made these 27 regular-
ization errors because it was run as a simulation of speeded reading
aloud: the critical activation level for phonemes was set low (0.43)
so as to produce rapid reading aloud. When this value is set at a
higher value (any vaiue over 0.70), 26 of these 27 irregular words
are read correctly by the model; this is simulation of reading aloud
at leisure. Human readers behave the same way; the regularization
errors they make in naming-latency experiments are not seen when
they are reading these irregular words aloud at their leisure. The
DRC model is thus capable of simulating both of these two
different modes of human reading aloud, the speeded mode and the
at-leisure mode. Other computational models of reading aloud
have no natural way of simulating these two modes.

Thus there is only a single word in DRC’s 7,981-word vocab-
ulary that the model is incapable of reading aloud at its leisure,
given the standard parameters. This is the word czars. A combi-
nation of factors conspires against the model here. First, this word
is irregular in the first phoneme position, and we have explained
above why this is relevant. Second, the correct pronunciation /zaz/
has a high frequency phonological neighbor, namely /kaz/, that is,
cars. Third, this competitor gets support from the fact that the first
letter of czars translates to /k/, which is the first phoneme of cars.
The joint effect of these three factors is that czars is read as /kaz/
by the model, no matter how high the criterion for pronunciation
is set. Perhaps a parameter set that gave a little more weight to the
lexical route might permit correct reading of this word, but we
were satisfied with a word-reading accuracy of 99.987%.

Word reading by the DRC model is thus almost perfectly
accurate. What of nonword reading? We tested this by taking a
random sample of 7,000 three- to seven-letter monosyllabic non-
words from the ARC Nonword Database (Rastle, Harrington,
Coltheart, & Thomas, 2000) and having the model read these aloud
using the standard parameter set. The error rate here was 1.07%,

° BATHS is regular in American English but not in British English or
Australian English, where BATS and BATHS have different vowels (short
vs. long); the rule-based pronunciation for the grapheme A is as the vowel
in BATS, not the vowel in BATHS. Thus, in British English and in
Australian English, BATS is regular, and BATHS is irregular.
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or 75 errors in 7,000 nonwords. Almost all of these 75 errors
(84%) were lexical captures: a nonword was given the pronunci-
ation of an orthographically and/or phonologically similar word.
These captures only occurred when the difference between the
captive and the capturer was toward the end of the nonword (see
the discussion of stzarn above). At least some of the captures were
clearly due to the presence of a phonological rather than an
orthographic neighbor. For example, the nonword phliked, which
should have been read (given the set of GPC rules used by DRC)
as /flaikt/, thyming with spiked, was read as /flikt/, or flicked. Now,
phliked and flicked are not orthographic neighbors; they have only
three of their seven letters in common, taking position into ac-
count. But they are phonological neighbors, differing only in a
single phoneme, and that is the cause of the lexical capture of
phliked.

It might be possible to make further changes in the parameter set
of Table 1 that would reduce the nonword error rate and/or cause
the model to read czars correctly. However, the number of such
errors was so small that we elected to adopt this parameter set for
our various simulations. In the rest of this article, these were the
parameters we used in all simulations, except where otherwise
noted.

This initial evaluation of the model’s ability to translate words
and nonwords from orthography to phonology having yielded
satisfactory results, we went on to carry out various more detailed
simulations. These simulations used two tasks, reading aloud and
lexical decision, and were intended to deal with the standard
effects obtained in studies of human readers as they perform these
tasks. Here we follow the recommendation of Jacobs and Grainger
(1994) that computational models should be multitask models; in
particular, these authors argued that a computational model of
reading should be able to perform the lexical decision task, the
reading-aloud task, and the perceptual identification task. The
DRC model can perform all three of these tasks and is the only
computational model of reading that can do so. Other computa-
tional models can simulate reading-aloud latencies but not lexical
decision latencies (such as the PMSP and ZHB models) or lexical
decision latencies but not reading-aloud latencies (such as the
model of Grainger & Jacobs, 1996).

Simulation of Reading Aloud

What is There to Simulate in Reading Aloud?

We have identified and listed below certain basic phenomena
obtained in experiments on reading aloud using adult skilled
readers that we consider as benchmark results that any computa-
tional model of reading should be able to simulate if it has claims
to adequacy.

We should perhaps say something here about how we chose this
particular set of phenomena. Several criteria were relevant. First,
we chose every effect that had been simulated by either Plaut et al.
(1996) or by Zorzi et al. (1998) so that we would be able to
discover whether there were any effects that either of these models
could simulate but which the DRC model could not (in the event,
there were none). Then we added to this list more recently dis-
covered effects such as the position of irregularity effect (Rastle &
Coltheart, 1999b; see also Coltheart & Rastle, 1994) and the
homophone and pseudohomophone (PSH) priming effects on read-
ing aloud reported by Rastle and Coltheart (1999a); these effects

are particularly relevant because they arose in e'xperiments specif-
ically attempting to adjudicate between existing computational
models of reading. Finally, we added pseudohomophony and N
(the orthographic neighborhood size of a letter string—i.e., the
number of words that differ from that letter string by exactly one
letter) to our list of variables to explore, because the effects of
these variables on reading aloud have been very widely studied,
yet not simulated with other computational models of reading
aloud.

We could not consider any effects involving semantics (e.g., the
Imageability X Frequency X Regularity interaction reported by
Strain, Patterson, & Seidenberg, 1995), because the DRC model at
present has no semantic system; because it also at present has no
system for nonlexical spelling (though see below for how this will
be developed), we could not consider any effects on reading to
which a nonlexical spelling system is likely to contribute, such as
the feedback-consistency effect (also discussed below).

In this way we arrived at the following list of phenomena to
simulate:

(a) Reading aloud is faster for high-frequency words than for
low-frequency words (Forster & Chambers, 1973).

(b) Reading aloud is faster for regular words than for nonwords
(McCann & Besner, 1987; Rastle & Coltheart, 1999b).

(c) Reading aloud is faster for regular words than for irregular
words when these are low in frequency; when they are high in
frequency, the regularity effect is smaller or absent (Paap,
Chen, & Noel, 1987; Paap & Noel, 1991; Seidenberg, Waters,
Barnes, & Tanenhaus, 1984; Taraban & McClelland, 1987).

(d) The size of the regularity advantage declines as a function of
the position in irregular words of their exceptional grapheme—
phoneme correspondence (Rastle & Coltheart, 199%b).

(e) Pseudohomophonic nonwords are read aloud faster than non-
pseudohomophonic nonwords (McCann & Besner, 1987; Sei-
denberg, Petersen, MacDonald, & Plaut, 1996; Taft & Russell,
1992).

(f) Nonwords with many orthographic neighbors are read aloud
faster than nonwords with few or no such neighbors; this is
also true for words (for a review of numerous studies, see
Andrews, 1997).

(2) Priming of reading aloud: In unmasked priming, where both
prime and target are clearly visible, reading aloud is faster
when prime and subsequently presented target are phono-
logically identical, but, at least with long stimulus onset
asynchronies (SOAs), this effect interacts with lexicality
such that it requires that at least one of the prime and target
items is a word (Rastle & Coltheart, 19992a). In masked
priming, where the briefly presented prime is not visible to
the reader, target naming is faster when target and prime
share their initial letter or phoneme than when there is no
shared letter or phoneme; this effect does not occur when
the shared letter or phoneme is in some position other than
the initial position (Forster & Davis, 1991). In repetition
priming, a word that has previously been presented in the
experiment is read aloud with shorter latency than a word
that has not been previously presented.

Our practice in DRC simulations is to use the actual stimuli that
were used in the relevant experiments with human readers.
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The Effects of Frequency and Lexicality
on Reading-Aloud Latencies

Human readers show shorter naming latencies for high-
frequency words than for low-frequency words (e.g., Andrews,
1989; Forster & Chambers, 1973). For the 7,898 words in DRC’s
vocabulary that the model read correctly using the standard pa-
rameters, the correlation between DRC naming latency and log
printed word frequency was —.46 (p < .0001); this value is
remarkably similar to the correlation of —.42 between human
word-naming latency and log printed word frequency reported by
McCann and Besner (1987).1¢

The effect of lexicality on DRC’s naming latencies was assessed
by using a set of 160 words and a set of 80 nonpseudohomophonic
nonwords matched on number of letters, number of neighbors,
number of body neighbors, number of body friends, number of
body enemies, summed frequency of neighbors, summed fre-
quency of body friends, positional bigram frequency, and posi-
tional trigram frequency (Coltheart & Coltheart, 2000). The mean
naming latencies were 77.51 cycles (range 68—-101) for the words
and 156.86 cycles (range 119-234) for the matched nonwords,
f228] > 50, p < .0001); 10 of the nonwords were misread.

At first sight one might regard these results as showing that the
lexicality effect is much bigger for the model than for human
readers. In the human data of McCann and Besner (1987), for
example, the difference between nonword and word latencies was
173 ms, and the nonword mean was 38% greater than the word
mean. This seems much smaller than the 79.35-cycles difference
between nonwords and words and the 102% lexicality effect seen
in the DRC model’s behavior. However, there is a flaw in this
* reasoning. One cannot reason that if a word is named by humans
in 568 ms and by the model in 71 cycles, that 1 ms of human
processing corresponds to 568/71 = 8 cycles of DRC processing.
This reasoning fails because there are processes outside the scope
of the DRC model (e.g., early visual processing and articulatory
execution) that contribute to human naming latencies but not to
DRC naming latencies. Hence absolute comparison between the
two types of latency cannot be made. This point is discussed
further by Rastle and Coltheart (1999a) and by Spieler and Balota
(1997), who estimated that 29.9% of the variance of word-reading
latencies was due to influence of the initial phoneme of the word
on the time at which the voice key is triggered by acoustic energy,
a factor outside the scope of the DRC model.

We selected 80 five-letter pseudohomophonic nonwords
matched to the nonpseudohomophonic nonwords on number of
letters, number of neighbors, number of body neighbors, number
of body friends, number of body enemies, summed frequency of
neighbors, summed frequency of body friends, positional bigram
frequency, and positional trigram frequency. DRC read these PSHs
significantly more quickly than the nonpseudohomophonic non-
words (142.60 cycles vs. 156.86 cycles), #148) = 5.109, p < .0001.

When the lexical route was disabled (by setting to zero strengths
of the excitatory and inhibitory communications between letter
level and orthographic lexicon and between phonological lexicon
and phoneme level), the PSH advantage disappeared. The mean
naming latency for nonpseudohomophonic nonwords increased
from 156.86 to 167.99, F(1, 69) = 62.43, p = <.0001. This
indicates that in the DRC model there are lexical influences on
nonword reading even for nonpseudohomophonic nonwords and
that the net effect of these is beneficial.

However, that does not mean that the lexical route is capable of
reading nonwords correctly. We investigated this by disabling the
nonlexical route (by setting the parameter GPC activation to zero)
and submitting the 80 nonpseudohomophonic nonwords to the
model. Here all reading is purely via the lexical route, and 0% of
these nonwords were read correctly. All the errors were lexical
captures—that is, reading the nonword as an orthographically or
phonologically similar real word.

The Effect of Regularity on Reading Aloud

Seidenberg et al. (1984) reported that irregular words yield longer
naming latencies than regular words, but only when the words are low
in frequency; for high-frequency words there is no significant cost of
irregularity. This regularity effect and its interaction with frequency
was subsequently confirmed by Taraban and McClelland (1987),
Paap, Chen, and Noel (1987), and Paap and Noel (1991).

These results have an obvious explanation in the context of the
DRC model. Irregular words suffer a latency cost because there is
competition at the phoneme level for the pronunciation of the
phoneme that has an exceptional grapheme—phoneme correspon-
dence. So, for example, for the word comb in the second-position
phoneme set, the lexical route is activating the phoneme /ow/, and
the nonlexical route is activating the phoneme /o/. Because within
each set of phoneme units each phoneme inhibits all others, the rise
of activation of the correct phoneme /ouw/ will be slowed by
inhibition from the regularization phoneme /o/. Such inhibition
will not occur with regular words. And because lexically derived
activation of phonemes will rise more rapidly for high-frequency
words than for low-frequency words, this nonlexically derived
inhibitory effect will be smaller or absent for high-frequency words.

What consequences this inhibition will have for DRC model
naming latencies will be parameter dependent. If parameters are
set such that lexical activation of the phoneme level is very strong,
then the inhibition caused by the nonlexical route will be so weak
that there will be no regularity effect, even for low-frequency
words. If on the other hand parameters are set such that nonlexical
activation of the phoneme level is very strong, then irregular words.
will be regularized, rather than being correctly pronounced but
with a Jatency cost. It is possible—but there is no guarantee of
this—that between these two extremes there is a parameter set that
will produce correct responses to irregular words, a cost of irreg-
ularity for low-frequency words, and no cost of irregularity for
high-frequency words, which is what is seen in human data.

To investigate this, we submitted the high- and low-frequency
irregular and regular words'' from Paap and Noel (1991) to the
DRC model. The mean DRC latencies for each condition are
shown in Table 2.

An ANOVA of the DRC naming latencies revealed significant
effects of log word frequency, F(1, 66) = 60.041, p < .0001; and
of regularity, F(1, 66) = 73.790, p < .0001; and a significant

°In calculating this correlation, McCann and Besner (1987) used a
transformation of frequency: 40 + 10xlog(freq +1). We used the same
transformation in the DRC data analysis.

1L A few of these items had to be omitted from this simulation: BURY and
WILY are disyllabic, and the DRC model applies only to monosyllables.
LURE, LUTE, POUR, BEEN, and DOOR are not irregular words for the DRC
model, because they are correctly read by the DRC GPC rules. BOOK and
WALL are irregular by these GPC rules. SANS is not in DRC’s vocabulary.
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Table 2
DRC'’s Word-Naming Latencies for the Stimuli of Paap and
Noel (1991), as a Function of Frequency and Regularity

Frequency level Regular words Irregular words

79.944
88.786

High 72.389
Low 78.100

interaction, F(1, 66) = 4.234, p = .044, indicating that the regu-
larity effect was significantly larger for low-frequency words than
for high-frequency words. All of these are the effects seen with
human readers. The only difference between human and DRC
results is that the smaller regularity effect with high-frequency
words is significant in the DRC latencies but not in the human
data; however, in all of the human studies using the standard
reading-aloud task, the mean latencies with high-frequency words
were longer for irregular words than for regular words.

The Position-of-Irregularity Effect

Irregular words have longer DRC latencies because of conflict
at the phoneme level between activation from the lexical route and
activation from the nonlexical route. Because the lexical route
activates phonemes in parallel, whereas the nonlexical route acti-
vates phonemes sequentially from left to right, the magnitude of
this conflict will depend on the left-to-right position, in the irreg-
ular word, of its irregular grapheme-phoneme correspondence.
The earlier the conflicting phoneme is in the word, the less the
correct phoneme will have been lexically activated at the point
where it begins to receive inhibition from the incorrect phoneme
that is activated by the nonlexical route. Rastle and Coltheart
(1999b) confirmed this prediction regarding the DRC model by
showing that the size of the DRC latency disadvantage incurred by
irregular words declines monotonically as a function of the left-
to-right position, in the irregular word, of its irregular grapheme-
phoneme correspondence. Using the same regular and irregular
words as stimuli, they showed that human readers show exactly the
same effect. Confirmation of this new prediction provides strong
support for the DRC model, and because the result seems most
naturally interpreted as evidence that there is a left-to-right process
involved in reading aloud, it poses a particular challenge for purely
parallel models such as that of Plaut et al. (1996) and Zorzi et al.
(1998)."*

Other Effects of DRC’s Serial Component
in Reading Aloud

Position-sensitivity of the Stroop effect. 'When the task is nam-
ing the color in which a word is printed, naming latency is affected
not only by semantic relationships between word and color
(Stroop, 1935) but also by phonological relationships between
word and color name (Dalrymple-Alford, 1972). Coltheart et al.
(1999) confirmed this by showing that color naming is faster when
the word has a phoneme in common with the color name, in the
same position, than when it has no phonemes in commeon with the
color name. Thus there is automatic activation of phonology from
print in this situation, even though the phonology of the printed
word is irrelevant to the task required. Coltheart et al. (1999)

reasoned that if there is a left-to-right component in the system that
activates phonology from print, as in the DRC model, a phoneme
from the word that is consistent with a phoneme in the color name
will facilitate color naming more when it is the first phoneme in
the color name and word than when it is the last phoneme in the
color name and word. In their experiment, human color-naming
latencies showed exactly this position sensitivity.

So did DRC’s color-naming latencies. In order to simulate
Stroop color naming with the DRC model, Coltheart et al. (1999)
added to the DRC model a2 miniature semantic system containing
just three semantic entries, one for RED, one for GREEN, and one
for BLUE. This semantic system was linked interactively to the
phonological output lexicon of the DRC model. When a word is
presented and simultaneously the semantic entry for the desired
color name is also activated, this extended model has dual inputs.
Hence there will be activation of two entries in the phonological
output lexicon, one for the word and one for the color name, and
at the phoneme level the phonemes of the color name will be
activated from the phonological output lexicon, whereas the pho-
nemes of the word will be activated (in parallel) from the phono-
logical output lexicon and also activated (left to right) from the
nonlexical route. This extended DRC model can produce the color
name or read the word aloud, just as people can. The instruction to
people, “Name the color, don’t read the word,” was simulated in
the DRC model by setting to zero the strength of the communica-
tion from the letter level to the orthographic lexicon. Under these
conditions, the correct color name was almost always produced by
the model. What is more, the model’s color-naming latencies were
faster when the color name shared a phoneme with the word than
when it did not; the size of this effect was larger when the shared
phoneme was the first than when it was the last, exactly as shown
by the human color-naming latencies.

Strategic effects. In the Stroop study just described, it was
proposed that readers can alter the strength of a relevant pathway
of communication in their reading systems in response to task
instructions. Rastle and Coltheart (1999b) made the same proposal
with respect to strategic effects in reading.

Coltheart (1978) reported a small experiment in which readers
read aloud a list of items consisting of pronounceable nonwords
except for the last item, which was the highly irregular word wolf.
Numerous readers regularized this word, pronouncing it to rhyme
with golf; many did not even notice that the Jast item in the list was
a word. Coltheart (1978) suggested an explanation: As more and
more nonwords are encountered, the readers turn down the lexical
route (because it is never providing a correct response) or turn up
the nonlexical route (because it is always providing the correct
response), or both. Either or both of these strategic resettings of the
dual-route reading system, if extreme enough, will generate a
regularization error to wolf.

This kind of strategic effect on reading aloud, however, is not
always found. For example, Coltheart and Rastle (1994) measured
the size of the regularity effect under two conditions: (a) deem-
phasizing the nonlexical route (filler items were all exception
words) and (b) deemphasizing the lexical route (filler items were
all nonwords). Because it is the nonlexical route that generates the

12 For further discussion as to the correct interpretation of these data, see
Zorzi (2000) and the rejoinder by Rastle and Coltheart (2000b).
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regularity effect, they expected the regularity effect to be larger in
condition (b). But that was not found; the regularity effect did not
differ between conditions.

Rastle and Coltheart (1999b) offered an explanation. According
to their results, the nonlexical route is maximally problematic for
exception words with first-position irregularities; with irregulari-
ties at the third or later phoneme positions there is little or no
regularity effect. Very many of the exception-word fillers used by
Coltheart and Rastle (1994) had late irregularities, so their condi-
tion (a) did not really require readers to deemphasize the nonlexi-
cal route and so reduce the size of the regularity effect. To really
stress the system with exception-word fillers, reasoned Rastle and
Coltheart (1999b), all the filler exception words need to be first-
position irregular. Third-position irregulars will not be disturbed
by the operation of the nonlexical route.

Hence they devised a strategy experiment using a first-position
irregular filler condition and a third-position irregular filler con-
dition. Now a strategy effect on human naming latencies was
observed: naming of target regular words or nonwords was slowed
(as would occur if the nonlexical route were being deemphasized)
when first-position irregular fillers were present, compared with
target naming when third-position irregular fillers were present.
This result was successfully simulated with the DRC model by
slowing the activity of the nonlexical route: the parameter control-
ling how many cycles elapse before the nonlexical route processes
the next letter was increased from 17 cycles to 22 cycles.

These results are of consequence for two reasons. First, they
provide further evidence for the existence of a left-to-right pro-
cessing component of the reading system. If no such component
existed, why should regular word and nonword reading be slowed
by the presence of first-position irregular words in comparison
with the presence of third-position irregular words? Second, it is
unclear how computational models that only have a single fully
implemented reading route, such as the models of Plaut et al.
(1996) and Zorzi et al. (1998), could simulate these strategy
effects. Furthermore, even if the unimplemented semantic routes
of these models were implemented, it is unclear how the models
might be able to simulate the influence of position of regularity,
because that influence suggests a contribution of serial processing,
whereas there is no serial processing of any kind in either of these
models.

The Nonlexical Route as a Nonserial Process

In two recent lines of work, it has.been argued that the nonlexi-
cal route activates phonemes in parallel, rather than serially left to
right as occurs in the DRC model. Parallel processing is a feature
of the two-cycles model of Berent and Perfetti (1995) and also of
the model proposed by Kawamoto, Kello, Jones, and Bame (1998).

The two-cycles model. In the two-cycles model of Berent and
Perfetti (1995), there are two processes involved in the assembly of
phonology from print, both processes being parallel processes.
There is a fast process that is applied in parallel to all of the
consonants in the input string, and a slower process that is applied
in parallel to all the vowels. This conception of how the assembly
process operates is completely at variance with the DRC concep-
tion that the nonlexical route operates serially. Evidence for the
latter conception has already been described: the effect of position
of irregularity on the regularity effect in reading aloud, the effect

of position of irregularity in filler stimuli on strategy effects in
reading aloud, and the effect of position of phoneme overlap on
Stroop color naming. All of these findings are inconsistent with the
two-cycles model.

A direct adjudication between the two conceptions is possible
using the Stroop data of Coltheart et al. (1999), who showed that
color naming was significantly faster when printed word and color
name shared their last phoneme than when there was no phoneme
overlap. In two types of stimuli (when the color was red or green)
this last phoneme was a consonant; in the third type (when the
color was blue) it was a vowel. If the assembly of phonology from
print is slower when the phoneme is a vowel than when it is a
consonant, then whether the last phoneme overlaps with the color
name will have less effect when that phoneme is a vowel than
when it is a consonant. No such effect was observed by Coltheart
et al. (1999); color did not interact with the size of this effect,
which was in fact (nonsignificantly) larger when the color was
blue than when it was red or green. ,

What reasons, then, did Berent and Perfetti (1995) have for
proposing such a model? They did so on the basis of a backward
masking experiment in which a target word was briefly presented
and was followed by a brief backward mask. The mask was either
a PSH of the target (rake-RAIK), had the same vowels as the
target but one different consonant (rake—-RAIB), had the same
consonants as the target but one different vowel (rake-RIKK), or
was completely different (rake-BLIN). At the shortest target du-
rations, accuracy of target report was higher with the consonant-
preserving mask than with the vowel-preserving mask, which
Berent and Perfetti took as evidence for the two-cycles model.

However, in the stimuli used by Berent and Perfetti (1995),
there is an almost perfect confounding between mask type and
position of phoneme at which mask and target differed. In almost
every vowel-preserving mask, mask and target differed only at the
third phoneme; in almost every consonant-preserving mask, mask
and target differed only at the second phoneme. Now, according to
the serial theory of assembly of phonology, at the offset of the
briefly presented target, the left-to-right assembly process will
have dealt only with the first one or two letters in the target. So,
although all of the phonemes of the target will have received a
little activation through the lexical route, the first one or two
phonemes will also have received some additional activation from
the nonlexical route. When a backward mask is presented that
shares all but one of the phonemes of the target, and therefore
boosts their activations, it is plausible to argue that the more
weakly activated phonemes would benefit more from this boost
(this argument is due to Perry, 1997, p. 73). Because the third
phoneme of the target will have been more weakly active at target
offset than the second, a mask that contains that third phoneme (the
consonant-preserving mask) will be more beneficial than a mask
that contains the second phoneme (the vowel-preserving mask).

Thus, because of the confounding between mask type and po-
sition of phoneme mismatch in these materials, it is possible to
give a plausible account of their results in terms of an assembly
process that is a single serial left-to-right process, rather than a pair
of parallel processes (i.e., the two-cycles model). Because the
serial account is also consistent with various other findings con-
cerning the regularity effect, the Stroop effect, and the onset effect,
whereas the two-cycles model is not, it seems clear that we should
favor the serial model over the two-cycles model.
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The Kawamoto et al. (1998) model. Kawamoto et al. (1998)
have proposed that as phonology is being computed from orthog-
raphy, activations rise in parallel across all phonemes, although the
rate of activation varies from phoneme to phoneme because this
rate is influenced by the consistency of the grapheme-phoneme
relationships. On their model, articulation can be initiated as soon
as the initial phoneme reaches a critical activation level, even if
this is before subsequent phonemes reach a critical activation level.
That claim, however, conflicts with a great deal of evidence on
coarticulation effects in speech production; in many speech-
production situations, it has been shown that the way in which an
initial consonant is articulated is influenced by the nature of the
following vowel. In any situation where this happens, the utterer
cannot have been producing the initial consonant before knowing
the identity of the following vowel.

Kawamoto et al. (1998) acknowledged that coarticulation ef-
fects are evident in many speech-production situations, but
claimed that their initial-phoneme hypothesis was tenable because
coarticulation effects do not occur in speeded word-reading exper-
iments. This claim was directly tested by Rastle, Harrington,
Coltheart, & Palethorpe (2000), who studied coarticulatory effects
during a speeded word-reading experiment using acoustic, kine-
matic, and electropalatographic measurements that allowed them
to observe horizontal and vertical movement of the lips and the
contact of the tongue with the palate during the period between the
presentation of the target word and the initiation of the naming
response. They found that for words beginning with plosive or
with nonplosive consonants, the nature of the second phoneme

And we did not use the three-letter nonwords because there were
only 23 of them.

The correlation between N and DRC naming latency was neg-
ative (—.154), and regression analysis showed that it was signifi-
cant, F(1, 242) = 5.853, p = .016. Thus the more neighbors a
nonword has the faster it is named by the model, as is the case with
human readers.

In the DRC model, naming for word stimuli from large neigh-
borhoods should be facilitated relative to naming for word stimuli
from small neighborhoods. The argument is the same as in the case
of nonwords: Cascaded processing allows a word stimulus to
activate orthographic entries for neighboring words, which in turn
activate phonological entries and finally phonemes. However,
neighborhood effects for word stimuli should not occur in the
model to the same extent as is the case for nonwords. The reason
for this is that in the standard set of parameters, the parameter
controlling lateral inhibition in the orthographic lexicon is set to a
value such that it prohibits much of the facilitatory activation of
the orthographic lexicon.

Andrews (1989, Experiment 3), Andrews (1992, Experiment 2),
and Sears, Hino, and Lupker (1995, Experiment 3b) all found that,
with low-frequency words, high-N words yielded shorter naming
latencies than low-N words. The DRC model’s naming latencies
for the high-N and low-N low-frequency words used in these three
studies were obtained. In none of these three simulations was the
model’s naming latency affected by N. In case this was a problem
due to small sample sizes or insufficiently low frequencies, all
words in DRC’s vocabulary with a CELEX frequency of 1 and

(always a vowel) did influence the articulation of the initial pho~——between four and seven letters were run through the model, and its

neme—that is, even in this speeded word-reading situation, coar-
ticulatory effects occurred. Thus, they claimed that any model of
speeded reading aloud that states that the first phoneme can be
uttered before the second phoneme is known—such as the model
of Kawamoto et al. (1998)—cannot be correct.

The Effect of Neighborhood Size on Word
and Nonword Naming

In the DRC model, one would expect nonword naming to be
facilitated by a large orthographic neighborhood (%), as has been
shown to be the case in human readers (e.g., Laxon, Masterson,
Pool, & Keating, 1992; McCann & Besner, 1987; Peereman &
Content, 1995). Cascaded processing in the model allows non-
words to activate orthographically similar words in the ortho-
graphic lexicon, and this activation then feeds down to the pho-
nological lexicon and finally to the phoneme system. Because
generally the orthographic units that become activated by the
nonword stimulus represent words that are neighbors of the non-
word, and because these neighbors generally have many phonemes
in common with the nonword, phonemic activation generated from
the lexical route, paired with correct nonlexical processing, should
facilitate nonword naming. That is why DRC’s nonword naming is
slowed by turning off the lexical route, as we reported above.

In order to determine whether this intuition about how N should
affect DRC’s nonword naming is correct, we analyzed the naming
latencies for the 244 four-letter nonwords that were in the ran-
domly chosen set of 7,000 nonwords described earlier. We did not
use the five-, six-, and seven-letter nonwords because most had no
neighbors; the mean value of N for these items was well below 1.0.

naming latencies were obtained. Because N and number of letters
are highly correlated, the regression of DRC naming latency on N
was calculated separately for each word length (89 four-letter
words, 168 five-letter words, 141 six-letter words, and 86 seven-
letter words). In none of these four cases did the relationship of N
to DRC naming latency even approach significance. Thus with the
parameter set of Table 1 there simply is no effect of N on DRC’s
word-naming latencies; so here there is a major difference between
the model and human readers.

It seems likely that the absence of an advantage for high-N
words occurs because there is a considerable degree of mutual
inhibition between words with the standard DRC parameter set.
Lateral inhibition between entries in the orthographic lexicon is set
at .06, lateral inhibition between words in the phonological lexicon
is set at .07, and inhibition from letters to words is very high
(.435); the higher this is, the, less a word can excite potentially
supportive neighbors. To explore this explanation for the absence
of an N effect on word naming, we set both lateral inhibitory
parameters to zero and reduced letter-to-word inhibition to .350.
With these parameters, there is now a highly significant beneficial
effect of N on word naming (p < .0001), a significant frequency
effect (p = .045), and no interaction between these two factors.
We note that although both Andrews (1989) and Sears et al. (1995)
reported a significant interaction between N and frequency in their
word-naming experiments, Andrews (1992) found an N advantage
that did not interact with frequency, as occurred in this simulation.
Clearly more experimental work and more computational work is
needed here; once it is clear what the human results actually are,
it will be necessary to study whether the DRC model can yield a
beneficial effect of N on word naming through a modification of
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the parameter set that does not compromise its successful simula-
tions of the other effects discussed in this article.

We should also point out that in none of the experiments finding
an effect of N on human word-naming latencies were nonwords
used. The DRC model needs to have a high value for letter-to-word
inhibition, such as .435, to prevent lexical capture of nonwords in
reading aloud. If only words are presented, this value can be
lowered to .350 without causing reading errors. So it would be of
particular interest to discover whether human readers continue to
show an effect of N on word-reading latencies when words and
nonwords in random presentation order make up the materials of
the experiment.

The PSH Advantage

Although PSHs are disadvantaged in lexical decision relative to
nonpseudohomophonic nonwords (e.g., Besner & Davelaar, 1983;
Coltheart & Coltheart, 2000; Coltheart, Davelaar, Jonasson, &
Besner, 1977; McQuade, 1981), they are advantaged in naming
{e.g., McCann & Besner, 1987; Seidenberg et al., 1996; Taft &
Russell, 1992). The conditions under which this advantage ap-
pears, and the effects that accompany the advantage, are complex.
The effect is modulated by orthographic similarity; PSHs are
pronounced more quickly if they are orthographically similar to
their base words than if they are orthographically distant (Mar-
murek & Kwantes, 1996). The PSH advantage is further modu-
lated by base-word frequency, but only when readers are “slow”
(Taft & Russell, 1992) or when the stimulus list contains only
PSHs (Kwantes & Marmurek, 1995; Marmurek & Kwantes, 1996).

We have carried out a DRC simulation of reading aloud of PSHs
and control nonwords with the items used by Taft and Russell
(1992). The DRC model operating under the standard set of
parameters shows a PSH advantage for both PSHs with high-
frequency base words, 1(28) = 7.24, p < .01, and for PSHs with
low-frequency base words, 1(28) = 4.12, p < .0l. There was an
effect of base-word frequency: PSHs with high-frequency base
words were named more quickly by the model than were PSHs
with low-frequency base words, #(28) = 2.67, p < .05, as was
shown by the slower readers of Taft and Russell (1992).

Taft and Russell (1992) reported that their group of fast readers
showed neither effects of PSH base frequency nor an advantage for
PSHs at all. We sought to simulate this effect by causing the DRC
model to name nonwords more quickly: The interletter interval
parameter was decreased from 17 to 8, and the GPC excitation
parameter was increased from .055 to .25. Under these conditions,
there was no longer any difference between PSHs with high-
frequency base words and those with low-frequency base words,
#(28) = .93. Furthermore, there was no PSH advantage at all, either
for PSHs with high-frequency base words, #(28) = .87, or for PSHs
with low-frequency base words, #28) = .22, Here, the fast DRC
model is behaving exactly like the fast readers of Taft and Russell
(1992).

The reason why the speed of the nonlexical route modulates the
PSH advantage in the DRC model is that there is more time for
activation of the base word in the phonological lexicon to rise
when the nonlexical route operates slowly and therefore time for
this activation to feed forward to facilitate activation at the pho-
neme level. Because the rise of activation in the phonological
lexicon is determined, in part, by word frequency, PSHs with

higher base-word frequencies are facilitated more than are PSHs
with lower base-word frequencies.

McCann and Besner (1987) also studied the effect of
pseudohomophony on reading aloud, and we obtained the DRC
naming latencies for their very well matched sets of PSHs and
control nonwords (excluding a few items that are pseudchomo-
phonic in Canadian speech but not in Australian English speech,
and their controls, plus a small number of nonwords that the model
misread). McCann and Besner found that human readers were
faster at naming PSHs than control nonwords; that was so for the
DRC model also (pseudohomophone mean latency = 138.4, con-
trol nonword mean latency = 152.1, #65) = 9.964, p < .001).
They then analyzed the regression of N on naming latency, sepa-
rately for PSHs and control nonwords.

For control nonwords, regressing the linear and quadratic com-
ponents of the N main effect with the human naming latencies
produced r = .45, p < .01, and with the DRC naming latencies,
r = .52, p < .0l. For PSHs, this correlation for human naming
latencies was .19 (ns), and the correlation for DRC naming laten-
cies was .28 (ns). Overall, the fit of model to data here is remark-
ably close.

Priming of Reading Aloud

A model that adheres to the GRIN principles, such as the DRC
model, can approach the simulation of priming in a number of
different ways. Priming could occur as a result of short-term
changes in between-module communication strengths based on the
effects of the prime or could occur as a result of a decrease in the
critical activation required for a response after the presentation of
a prime. The approach that we have taken to priming is discussed
by Rastle and Coltheart (1999a). They suggested that a simulation
of priming could be achieved in the DRC model by allowing
residual activation from the presentation of the prime to affect the
processing of a subsequently presented target. In order to simulate
priming in this way in the model, activation within the system is
not reset to zero after the offset of the prime stimulus; instead, the
target stimulus is presented to a system still partially activated due
to the influence of the prime.

If the experiments to be simulated involved a prime-target
delay, then in DRC simulations a decay period must be instituted
between the presentation of the prime and the presentation of the
target, during which activations generated by the prime decay.
Thus Rastle and Coltheart (1999a) implemented a proportion de-
cay parameter in the model to decrease the amount of residual
activation left behind by the prime. The proportion of decay
parameter can be set to one value throughout every unit in the
entire system or can be set individually for each module in the
lexical route.

Rastle and Coltheart (1999a) implemented a second parameter,
the length of decay (prime-target interval), in order to achieve a
simulation of priming in the DRC model. Because units in the
model are updated on each processing cycle, the influence of
frequency or neighborhood might make some units resistant to
decay and others more vulnerable to decay. Thus, activation from
the prime is not reduced with one massive hit of decay; rather, it
is decreased gradually, cycle by cycle.

Orthographic form priming might occur, then, because of the
influence of residual activation in the letter or orthographic units;
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homophone priming might occur because of the influence of
residual activation in the phoneme or phonological units; and all of
these effects might contribute to repetition priming.

Given this characterization of priming in the DRC model, we
can consider more specifically how the model simulates priming in
unmasked and masked conditions.

Simulating unmasked priming. In their phonological priming
experiments, Rastle and Coltheart (1999a) measured word and
nonword naming latencies in a reading-aloud experiment that
varied prime and target lexicality factorially. In the priming con-
ditions of the experiments, prime and target were orthographically
different but phonologically identical. They found that homophone
priming occurred only when at least one of the prime or the target
was orthographically a word; no priming occurred for PSH prime—
PSH target pairs or for nonword prime-nonword target pairs.
Exactly the same pattern of results occurred with the DRC model
when a simulation of unmasked priming, using the same items as
were used with human readers, was carried out using that model.
Rastle and Coltheart (1999a) further showed that the locus of this
priming effect was in the model’s local phonological representa-
tions and, more subtly, that serial properties of the nonlexical route
in the model alsa played a role in the successful simulation. It is
unclear at present how any model in which representations are
distributed might be able to accommodate these results. In partic-
ular, if phonological representations are distributed as in the model
of Plaut et al. (1996), then the items brayk, brake, and braik will
have identical representations at the phonological level. Why, then,
does the prime brayk facilitate brake yet have no effect on braik?

Because the interstimulus intervals in these experiments were
well over 1 s, it might be argued that these priming effects are in
some way strategic in nature, but Rastle and Coltheart (19992)
considered this possibility and rejected it for two reasons. First,
primes and targets were presented as a continuous stream of items
to all of which the readers had to respond, so readers did not know
which items were primes and which were targets. Second, Rastle
and Coltheart (1999a) followed the recommendations made by
Lukatela and Turvey (1994) regarding how to avoid strategy
effects in priming experiments, namely, to keep the incidence of
related prime-target pairs low. Lukatela and Turvey (1994) argued
that “because homophonic similarity was limited to 15% of the
stimuli and to only 7.5% of the stimuli if the identity prime
conditions are excluded, it would seem that the success of Exper-
iment 5 cannot be attributed to a general strategy” (p. 342).
Quoting this reasoning and then adopting it, Rastle and Coltheart
(1999a) argued

Likewise, because only an average of 9.3% of the targets used in our
experiments were preceded by phonologically matching items, we
were also confident that any of the priming effects we observed could
not be attributed to a general strategy of using phonological informa-
tion to anticipate the target. (p. 466)

Simulating masked priming. In masked priming experiments
(e.g., Forster & Davis, 1991), a prime is very briefly presented
(e.g., for 50 ms) and then replaced by a target that the reader has
to read aloud (or perform a lexical decision). This is simulated in
DRC by presenting the prime for a relatively low number of
processing cycles and then, without resetting the unit activations
generated by the prime, presenting a target for reading aloud by the
model.

The effect we have studied here is the “onset effect” of Forster
and Davis (1991). They found that when prime and target share the
same initial phoneme (belly-BREAK), naming latency for the
target is facilitated, relative to a no-similarity condition (merry—
BREAK) or a rhyming condition (take-BREAK). This onset effect
is also present in DRC’s word naming latencies when masked form
priming is simulated using a prime duration of 15 cycles (Coltheart
et al., 1999).!3 That is, the model names target words faster when
they share the first letter or phoneme of the prime word than when
they share some other letter or phoneme, or share no letters or
phonemes. This onset effect occurs because of the left-to-right
operation of the DRC model’s nonlexical route; for briefly pre-
sented primes, only the first letter of the stimulus has been pro-
cessed by the nonlexical GPC procedure at the point at which the
target word is presented.

We discuss other aspects of masked priming later in this article.

Simulating repetition priming. Visser and Besner (in press)
argued that the DRC model predicts that the interaction between
regularity and frequency in reading aloud should be reduced by
repetition, because repetition of a word facilitates its processing by
the lexical route and has no influence on its processing by the
nonlexical route, and the more the lexical route contributes to
reading aloud the smaller the regularity effect will be. In their
human naming latency data using the regular and irregular words
from Paap and Noel (1991), they found effects of repetition,
frequency, and regularity, and a three-way interaction such that the
Frequency X Regularity interaction was smaller in the repeated
than in the nonrepeated condition. They reported a simulation by
the DRC model of this experiment, in which repetition priming
was simulated as described above. In this simulation, the model
latencies showed exactly the same pattern of effects as the human
latencies, including the three-way interaction; the Regularity X
Frequency interaction is smaller at second presentation.

Simulation of Lexical Decision

The DRC approach to lexical decision has been developed from
work by Coltheart et al. (1977), who discussed the lexical decision
task in relation to two broad classes of lexical access model:
serial-search models and parallel-activation models. Serial-search
models offer a rather natural account of how the lexical decision
task is performed. The lexicon is searched serially, in order of
frequency. If at any point during this search a match is found
between a lexical entry and the stimulus, the decision YES is
made. If the search is completed and no such match is detected, the
response NO is made. This interpretation is natural because there
is a discrete event that justifies a YES decision (the occurrence of
a lexical match) and a discrete event that justifies a NO decision
(completion of the search with no match having been found).
Moreover, some correct predictions follow from the serial-search
interpretation of lexical decision: there will be an effect of fre-
quency on YES latencies, and NO latencies will be longer than
YES latencies.

Lexical decision is more challenging for parallel-activation
models, because there is no discrete event in the processing of such

'3 This way of simulating masked priming with a computational model
was developed by Jacobs and Grainger (1991) and Grainger and Jacobs
(1993).
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models that signals that the stimulus must be a word, and no
discrete event that signals that it must be a nonword. When the
stimulus is a word, activation in its lexical entry rises continuously
over time toward its asymptotic value. Coltheart et al. (1977)
suggested that an activation criterion is set that allows the YES
decision to be made; if any entry in the orthographic lexicon
attains an activation that exceeds this criterion, then the YES
decision is made. They also suggested that the NO decision is
made by using a deadline: if a certain processing duration has
elapsed and a YES decision has not yet been made, then decide
NO. They then reported the results of a lexical decision experiment
in which the words and nonwords differed in orthographic neigh-
borhood size (N). Nonwords with high N values yielded signifi-
cantly longer latencies than nonwords with low N values. This is
inconsistent with the serial-search account as formulated above
because all NO decisions should take the same time regardless of
the nature of the nonword if all NO decisions are made after
completion of an unsuccessful serial search of the lexicon. The
result is inconsistent with the parallel-activation account as for-
mulated above for a similar reason: the point in time at which the
deadline has elapsed will not depend on the nature of the nonword.

Hence Coltheart et al. (1977) considered whether there were any
modifications to either of these accounts of lexical decision that
could be made that would reconcile them with the data on the
effect of N on NO latency. For the serial-search approach, one
could suppose that the time made to detect a mismatch between a
lexical entry and a nonword stimulus might be longer when the
nonword was a neighbor of the lexical entry than when it was not.
If so, the exhaustive search would take longer for high-N nonwords
than for low-N nonwords, and so there would be a positive rela-
tionship between nonword N and NO latency. This account, how-
ever, also predicts an effect of N on YES latencies. A word with
many neighbors, unless that word’s frequency is higher than the
frequencies of all of its neighbors, will yield a longer YES latency
than a word with no neighbors. In general there should be a
positive relationship between word N and YES latency, because
the more higher-frequency neighbors a word has, the more mis-
match detections will have occurred prior to the correct match.
However, Coltheart et al. (1977) reported that N had no effect on
YES latency, and they took this as evidence against the serial-
search account of lexical decision. (Subsequently, Andrews, 1989,
1992, found that word N did affect YES latencies as long as words
were of low frequency, but the effect was opposite to that predicted
by the serial-search account—high N led to faster YES latencies.
We discuss this further below.)

In contrast, Coltheart et al. (1977) were able to suggest a
plausible modification to the parallel-activation approach that
could explain the effect of N on NO latencies. They suggested that
lexical decision efficiency would be improved if the value of the
deadline for NO responses was variable rather than fixed, with the
variation being controlled by the total overall activation in the
orthographic lexicon early on in processing. When this total is
high, the likelihood that the stimulus is a word is high, so it is
prudent to have a long deadline to avoid a premature incorrect NO
decision. When this total is low, the likelihood that the stimulus is
a word is low, so it is relatively safe to set the deadline to some
rather low value, enabling the NO response to be made quickly.
That would mean that high-N nonwords would yield longer NO
latencies than low-N nonwords, whereas N would have no effect

on YES latencies; and that is the pattern of results found by
Coltheart et al. (1977). They therefore concluded that their results
favored a parallel-activation account of visual lexical access dur-
ing reading such as the logogen model (Morton, 1969) and were
inconsistent with a serial-search account. And, specifically, they
argued that in the lexical decision task the YES response is made
by using an activation criterion applied to the individual lexical
entries in an orthographic lexicon, and the NO response is made
when a deadline has elapsed and no YES response has been made.
The value of this deadline is computed relatively soon after stim-
ulus onset, from the total activation of the orthographic lexicon at
that time; the greater the total, the longer the deadline.

This procedure for making YES and NO decisions in the lexical
decision task was implemented in the context of the IAC model by
Jacobs and Grainger (1992). They successfully simulated the NO
response data from Coltheart et al. (1977); see Figure 7 of Jacobs
and Grainger (1992).

Further developments along these lines were recently proposed
by Grainger and Jacobs (1996). Their account of how lexical
decisions are made adds a third decision criterion to the two
proposed by Coltheart et al. (1977) and implemented by Jacobs
and Grainger (1992), namely, a “fast guess” procedure for making
YES decisions. This procedure works as follows: if early in pro-
cessing the total activation of the orthographic lexicon is suffi-
ciently high, respond YES even if no single entry has reached the
critical activation level. Here, then, there are two different ways to
decide YES, and one way to decide NO.

What evidence is there that this third criterion, the fast-guess
procedure, ought to be included in an account of the lexical
decision task? Grainger and Jacobs (1996) assumed that the critical
activation criterion for the YES response is a fixed property of the
visual word-recognition system and so cannot vary as a function of
properties of the words and nonwords used in lexical decision
experiments (i.e., is not strategically variable). Because they did
observe effects on YES latencies that were plausibly attributable to
strategic responses by readers as a function of the nature of the
stimulus materials, they concluded that there was a second method
for responding YES, one that was strategically modifiable; a
mathematical model of lexical decision involving the three deci-
sion procedures offered a good fit to their data.

A second line of evidence in support of the three-criterion
account was that it was able to simulate the findings of Andrews
(1989, 1992) that with high-frequency words N has no effect on
YES latencies, whereas with low-frequency words YES is faster
when N is high than when N is low. This interaction between
frequency and N in YES responding occurs because for high-
frequency words the critical activation criterion is met earlier in
time than the fast-guess criterion, and it is only the fast-guess
criterion that is sensitive to N.

What is There to Simulate in Lexical Decision?

Our simulation work with the DRC model has been more
extensive in relation to the task of reading aloud than in relation to
the lexical decision task, but we have identified certain basic
phenomena obtained in lexical decision tasks that we consider as
benchmark results that any computational model of reading should
be able to simulate if it has claims to adequacy, and we report here
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simulation studies of all of these phenomena. The phenomena are

as follows:

YES latencies are

(a) Faster for high-frequency words than for low-frequency words
{Forster & Chambers, 1973);

(b) Faster than NO latencies (Forster & Chambers, 1973);

(c) Unaffected by N when words are of high frequency (Andrews,
1989, 1992);

(d) Facilitated by N when words are of low frequency (Andrews,
1989, 1992).

NO latencies are
(a) Longer for high N nonwords than for low N nonwords (Colt-

heart et al., 1977);

(b) Slowed by pseudohomophony (Rubenstein, Lewis, & Ruben-
stein, 1971; Coltheart et al.,, 1977; Coltheart & Coltheart,
2000);

(c) Less affected, or not affected at all, by pseudohomophony
when the PSH is not orthographically very close to the parent
word (e.g., when it is not a neighbor of the parent word;
Coltheart & Coltheart, 2000).

As mentioned above, our practice in DRC simulations is where
possible to use the actual stimuli that were used in the relevant
experiments with human readers, and we have followed that prac-
tice here.

As discussed above in relation to simulation of the results from
experiments on reading aloud, our goal was to find a single set of
parameters under which the model successfully simulates a wide
variety of new experimental results without any parameter manip-
ulation. We were not interested in showing that, for each phenom-
enon to be simulated, there existed a parameter set that gave a
successful simulation. We were interested in showing that one
single parameter set generated successful simulations of many
different data sets illustrating many different empirical phenom-
ena. The only departure from this requirement was that we treated
human strategy variation as equivalent to variation of a rationally
chosen DRC parameter.

Having found a single parameter set that worked well for
simulating reading aloud, then, we went on to explore its use in
simulating lexical decision. This was completely unsuccessful, and
the reason was obvious. As discussed below, one crucial variable
in simulations of lexical decision is neighborhood size, because
this influences both YES and NO latencies in human data. Under
the parameter set with which we simulated reading aloud, how-
ever, the orthographic lexicon of the DRC model was insuffi-
ciently sensitive to N, especially when the stimulus was a word;
this was clearly because of one particular parameter, letter-to-word
inhibition, which is —.435 in the parameter set used for simulation
results from experiments on reading aloud.

A relatively high value for letter-to-word inhibition is necessary
for preventing a nonword from being lexically captured by one of
its orthographic neighbors or for preventing a low-frequency word
from being captured by a high-frequency neighbor, when the DRC
model is performing the reading-aloud task. Such captures would
of course cause erroneous responses in this task, but they may not
lead to difficulties when the task is lexical decision.

Hence we reduced the value of letter-to-word inhibition to
—.300. That was the only parameter, from the set that successfully
simulates reading aloud, that was changed for the lexical decision
simulations. We offer the following justification for treating this

parameter change as a strategic variation adopted specificaily for
the lexical decision task. Reading aloud requires knowledge of the
specific item that has been presented, but lexical decision does not.
As we indicate below, accurate lexical decisions can often be made
simply on the basis of the activity of the orthographic lexicon,
including simply its total activation summed across all entries.
Reducing letter-to-word inhibition from the very high value of
—.435 allows the orthographic lexicon to become much more
active early in processing, and hence provides richer data for a
lexical decision procedure that uses total activation to make deci-
sions (such as the procedure we describe below).

Here our work is closely related to that of Ziegler, Rey, and
Jacobs (1998), who used an IAC-style model to simulate data from
a word-recognition experiment that used the progressive demask-
ing or screen-fragmentation technique (Snodgrass & Mintzer,
1993). They found that different readers adopted different response
strategies when confronted with this task and were able to model
these individual differences in terms of strategic variation of two
parameters of the IAC model, word-to-letter feedback and letter-
to-word inhibition. It is exactly the latter parameter that we are
proposing is strategically reduced when the task is lexical decision,
in comparison with reading aloud.

The Effects of Word Frequency and Neighborhood Size
on Lexical Decision

The words we have used in these simulations were those used by
Andrews in her studies of the N X Frequency interaction (An-
drews, 1989, Experiments 1-4; Andrews, 1992, Sample 1) except
that we had to discard four items because they were polysyllabic
(and so outside the domain of the DRC model) and some other
items so as to achieve matching and equal cell frequencies. This
gave us 24 words per cell, with N and frequency orthogonally
varied. All words were four letters long.

The high-N and low-N nonwords we used were a newly chosen
set, rather than coming from any set previously used with human
readers, because we wanted the words and nonwords to be
matched on N, and as far as we are aware no study of human
lexical decision has done this. So we selected 48 four-letter non-
pseudohomophonic nonwords with high N (matched to the N
values of the high-N¥ words) and 48 four-letter nonpseudohomo-
phonic nonwords with low N (matched to the N values of the
low-N words).

In initial simulations, only the two-decision criteria proposed by
Coltheart et al. (1977) were used. Here it was easy to simulate the
frequency effect on YES and the harmful effect of N on NO. But
we were unable to simulate the Frequency X N interaction on YES
latencies reported by Andrews (1989). When we added the fast-
guess criterion for YES proposed by Grainger and Jacobs (1996),
however, this became possible.

Hence the lexical decision procedure used in the DRC simula-
tions reported here was that first proposed by Grainger and Jacobs
(1996). This procedure operates as follows.

First, we need to define A, S, and D:

A: decide YES if any entry in the orthographic lexicon has
reached an activation level of A.

S: decide YES if the sum of the activations of all of the entries in
the orthographic lexicon has reached the value S (“fast-guess”
mechanism).
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D: decide NO if D processing cycles have elapsed and a YES
decision has not yet been made. Then initial values for A, S,
and D are set. These initial values were A = 0.69, S = 10.00,
and D = 42, and they are applied throughout the first 19 cycles
of processing.’* But at Cycle 20, the values of S and D can be
updated; whether they are updated or remain at their initial
levels depends on the state of the orthographic lexicon at that
cycle. The value of A remains constant throughout; it is not
subject to updating.

Update S on cycle 20? The total activation criterion for mak-
ing a fast YES response is reduced on Cycle 20 if there is sufficient
activity in the orthographic lexicon at that cycle. Specifically, if
the summed activation of all entries in the orthographic lexicon has
reached a value of 0.200 by Cycle 20, the value of S is reduced,
from its original value of 10.00 to a new value of 1.98. If the
summed activation of all entries in the orthographic lexicon has
not reached a value of 0.20 by Cycle 20, then S remains at its
original value of 10.0. In either case, the fast-guess procedure
continues to be applied on subsequent cycles: decide YES if the
sum of the activations of all of the entries in the orthographic
lexicon has reached the value S.

Update D on cycle 202 The deadline value is lengthened on
Cycle 20 if there is sufficient activity in the orthographic lexicon
at that cycle. Specifically, if the summed activation of all entries in
the orthographic lexicon has reached a value of 0.112 by Cycle 20,
the value of D is extended from its original value of 42 cycles to
a new value of 48 cycles. If the summed activation of all entries in
the orthographic lexicon has not reached a value of 0.112 by
Cycle 20, then D remains at its original value of 42 cycles. In
either case, the deadline procedure for NO responses continues to
be applied on subsequent cycles: decide NO if D processing cycles
have elapsed and 2 YES decision has not yet been made.

It is important to realize that claims about what the procedure is
for making lexical decisions are quite distinct from claims about
the architecture of any computational model of the reading system.
Such a model yields data relevant to lexical decision; then some
decision procedure external to the model needs to be applied to
those data if the task is lexical decision.

Figure 8 shows the mean YES latencies from the human data
(Andrews, 1989, 1992), and the DRC model’s mean correct YES
and correct NO latencies. The model made two lexical decision
errors, both false alarms, both in the high-N nonword condition,
responding YES to MAVE and RAME. Human data also show
higher error rates in this condition than in the low-N nonword
condition.

Because Andrews (1989, 1992) reported item means for all of
these words, we can analyze her data from these items even though
they are drawn from two different studies. ANOVAs of the YES
latencies showed significant effects of word frequency, human
data: F(1, 92) = 94.305, p < .0001; DRC data: F(1, 92) =
129.636, p < .0001, and of N, human data: F(1, 92) = 5.015,p =
.0275; DRC data: F(1, 92) = 13.490, p = .0004, and a significant
interaction between these factors, human data: F(1, 92) = 9.161,
p = .0032; DRC data: F(1, 92) = 4.856, p = .03. For both sets of
data the N effect was significant for low-frequency words, human
data: F(1, 46) = 7.790, p = .0076; DRC data: F(1, 46) = 13.382,
p = .007, but not for high-frequency words. Thus there was perfect
correspondence between the effects of word frequency and N on

the YES latencies yielded by human readers and on the YES
latencies yielded by the DRC model.

Human readers show slower NO responses for high-N than for
low-N nonwords, and as Figure 8 shows this is also true for DRC
NO latencies; the N effect was highly significant, F(1,
92) = 75.466, p < .0001.

The effects of lexicality, word frequency, and N on human
lexical decision times are complex; essentially there is a three-way
interaction. High NV hurts NO and helps YES, but only helps YES
when word frequency is low. The DRC model captures this three-
way interaction perfectly.

Neighborhood Frequency Effects in Lexical Decision

The three-way interaction referred to in the previous paragraph,
complex though it is, might not be sufficiently complex, because
there is yet another variable to consider—neighborhood frequency.
Andrews (1997, Table 4) reviewed nine studies that investigated
whether lexical decision to words is influenced by the word having
or not having a single higher-frequency orthographic neighbor,
with the actual number of neighbors matched in these two condi-
tions. Many of these studies found that the YES response in lexical
decision is slowed by the presence of a higher-frequency neighbor,
but in a substantial number of experiments a null effect was
obtained, and in two experiments (Experiments 4A and 6 of Sears
et al., 1995), the effect obtained was actually facilitatory rather
than inhibitory. Even when inhibitory effects were observed, the
situation is not straightforward, as Sears et al. (1995) pointed out.

The present results then pose a severe challenge to the existence of a
“true” inhibitory neighborhood frequency effect (i.e., that having a
higher frequency neighbor per se slows word processing, as Grainger
and colleagues have suggested). The reader should also be reminded
that even Grainger and colleagues have not consistently obtained the
effects. Grainger (1990) observed a trend toward a facilitatory neigh-
borhood frequency effect in a naming task. Grainger et al. (1992) only
observed an inhibitory effect for words when the higher frequency
neighbor was created by changing a letter in the fourth position and
not when the higher frequency neighbor was created by changing the
letter in the second position. Finally, as noted, Grainger (1992) re-
ported an inhibitory neighborhood effect only for five-letter words.
For four-letter words, an equally large facilitatory neighborhood effect
was observed, producing an overall null effect. These results would
also appear to call into question the existence of a true inhibitory
effect of neighborhood frequency. (p. 879)

We are not suggesting that matters should rest here, because it
is clear that if there actually were an inhibitory effect on YES
lexical decisions of the presence of a high-frequency neighbor and
a beneficial effect on YES lexical decisions of having many rather
than few neighbors, this pattern of results might be particularly
challenging to simulate with the DRC model. However, it is surely
premature to consider this issue at the moment, because we do not
know that there actually is an inhibitory effect on YES lexical
decisions of the presence of a high-frequency neighbor. Another

14 As far as S and D are concerned, however, this is equivalent to a
procedure according to which consultation of these criteria simply does not
begin until cycle 20. That would have the same effect as setting the criteria
so high prior to cycle 20 that they are never exceeded.
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Figure 8. Effects of word frequency and neighborhood size on lexical decision times for human readers and

the DRC model.

reason for caution here is that neighborhood frequency effects can
be found in the Reicher—Wheeler forced-choice tachistoscopic
recognition task (K. Paap, personal communication, April 2000).
We have not yet studied this task with the DRC model, but that
must be done, because the IAC model, from which the DRC model
grew, was extensively applied to this task. When we do this, we
will be confronted anew with the neighborhood frequency
variable.

The PSH Effect in Lexical Decision

Rubenstein, Lewis, and Rubenstein (1971) discovered that NO
responses in the visual lexical decision task were slower and had
higher error rates when the nonword item was a PSH-—a nonword
whose pronunciation is that of a word, such as brane—than when
the nonword item was both orthographically and phonologically a
nonword, such as slint. This was confirmed by Coltheart et al.
(1977).

Coltheart and Rastle (1994) presented a small demonstration
that this PSH effect can occur when the DRC model is making
lexical decisions, and they explained why the effect occurs with
this model. When the model performs the lexical decision task, its
NO response is based on a deadline whose magnitude depends on
total lexical activation; therefore the PSH effect must arise in the
model because the entry in the orthographic lexicon from which
the PSH was generated (e.g., the coat entry when the nonword is
koat) is getting activation (through the pathway GPC system to
phoneme level to phonological lexicon to orthographic lexicon),
and this activation will boost the total level of activation in the
orthographic lexicon.

Coltheart and Rastle (1994) further pointed out that, although
the orthographic lexical entry for coat is receiving excitation
through the feedback pathway described above when the stimulus
is koat, that orthographic lexical entry is also receiving some
inhibition from koat, according to the DRC model. This inhibition
arises because the letter detector for the letter k in Position 1



THE DRC MODEL 231

inhibits all entries in the orthographic lexicon for words that do not
begin with the letter k (e.g., the word coar). However, the other
three letters in the stimulus koar excite, rather than inhibit, the
orthographic lexical entry for coar, and this will ameliorate the
inhibitory contribution from the letter k.

Now consider a different and equally valid PSH of coat, namely,
kote. The phonological feedback through the GPC route to the
orthographic lexical entry coar will be as great for kote as it will be
for koat.'> But three letters of kote inhibit the orthographic lexical
entry for coat, whereas only one letter of koat does so; the other
three letters of koat actually contribute excitation to the coat entry.
It follows obviously that the activation of coat, and therefore the
total activation in the orthographic lexicon, will be larger with koar
than with kote. Therefore the PSH effect in lexical decision by the
DRC model should be larger for the PSH koat than for the PSH
kote. For these particular items, Coltheart and Rastle (1994)
showed that this was so.

Of course, the nature of this balance between excitation and
inhibition will be highly parameter dependent. If letter-to-word
inhibition is very high, even a single-letter mismatch between the
PSH and the orthographic lexical entry for its parent word will be
enough to block the PSH effect on lexical decision; and if letter-
to-word excitation is very high, even a single-letter match between
the PSH and the orthographic lexical entry for its parent word will
be enough to generate the PSH effect on lexical decision. Hence it
is highly likely that if parameters are manipulated at will, many
different outcomes are possible, including (a) no PSH effect at all
and (b) a PSH effect that is independent of the degree of ortho-
graphic overlap between the PSH nonword and its lexical parent.

However, Coltheart and Coltheart (2000) measured the PSH
effect on lexical decisions by the DRC model without adjusting
any parameters at all. They took unchanged the parameter set and
the lexical decision procedure from the simulation of neighbor-
hood and frequency effects on lexical decision described above.

Coltheart and Coltheart (2000) selected 40 PSHs that were
neighbors of their parent words (i.e., these PSHs differed from
their parent words by exactly one letter), 40 control non-PSHs for
these, 40 PSHs that were not neighbors of their parent words,
and 40 control non-PSHs for these. All items were monosyllabic.
The four sets of items were matched on number of letters, number
of neighbors, number of body neighbors, number of body friends,
number of body enemies, summed frequency of neighbors,
summed frequency of body friends, positional bigram frequency,
and positional trigram frequency. A set of 160 filler words
matched to the nonwords on all of these variables was also chosen,
and a lexical decision experiment was carried out with this mate-
rial. They found that there was significantly worse performance
with PSHs than with their controls (more errors and slower RTs)
when the PSHs were neighbors of their parent words. With PSHs
that were not neighbors of their parent words, pseudohomophony
had no effect on speed or accuracy of the NO response. .

Then they submitted these 320 items to the DRC model for
lexical decision. Analyses of the DRC model’s NO latencies
indicated no main effects of pseudohomophony or orthographic
similarity, but the interaction between these two factors was sig-
nificant, F(1, 156) = 4.602, p = .03. Planned contrasts showed
that PSHs did not differ from controls in the orthographically
different condition (mean NO latencies = 42.15 vs. 42.30) but did
differ significantly in the orthographically similar condition (mmean

NO latencies = 42.90 vs. 42.15), F(1,77) = 6.65, p = .01, exactly
as was found with human readers.

Coltheart and Coltheart (2000) attributed this effect on the DRC
model’s NO latencies to feedback to the orthographic lexicon
through the following route: letters to GPC rules to phoneme level
to phonological lexicon to orthographic lexicon. They verified this
interpretation by setting the activation level of the GPC route to
zero (which means there is no longer any nonlexical activation of
phonemes from letters) and resubmitting the same items for lexical
decision. Now, the interaction between pseudohomophony and
distance was no longer significant, F = 0.00, and there was no
longer any effect of pseudohomophony in the neighbor condi-
tion, F < 1, nor, of course, in the nonneighbor condition, F < 1.
These results show that in the DRC model the effect of
pseudohomophony on lexical decision does indeed arise through
the feedback pathway we have described. We propose that this is
also the case for human readers.

The Consistency Effect

Consistency Versus Regularity

We have already discussed one stimulus variable based on the
relationships of orthography to phonology, namely regularity, and
have shown that the DRC model does an excellent job of simu-
lating the results of various studies of human reading involving
this variable and its interactions with other variables. A second and
different variable based on the relationships of orthography to
phonology is consistency.

The Definition of Regularity

A word is regular if its pronunciation is correctly generated by
a set of grapheme--phoneme correspondence rules. Hence for some
words there is room for debate about whether the word is regular
but this will always be a debate about whether a certain GPC rule
is appropriate. For any given set of GPC rules, there is no uncer-
tainty about whether any word is regular. We treat as regular all
monosyliabic words whose pronunciations are correctly specified
by the GPC rules of the DRC model, and as irregular (exceptional)
all monosyllabic words whose correct pronunciations are not gen-
erated by these rules.

Nonwords, of course, cannot be regular or irregular, because this
concept depends on whether dictionary and rule-based pronunci-
ations agree, and nonwords by definition do not have dictionary
pronunciations.

13 For this particular example, this turns out not to be quite true: the
example is contaminated by the whammy effect (Rastle & Coltheart,
1998), an effect of which Coltheart and Rastle (1994) were unaware. When
a Jetter string with a multiletter grapheme-—VUTH, for example—is being
translated left to right, letter by letter by a GPC procedure, when that
procedure has gone as far as dealing with the first three letters VUT it will
generate the phoneme /t/ in the third position. When it gets to the fourth
letter, it will generate the phoneme /6/ in the third position. Because a
different third-position phoneme has already been activated, the correct
phoneme /6/ will suffer some competitive inhibition—it will be “wham-
mied”—-and this will cause an increase in naming latency. Such increases
are seen not only in the DRC model but also in human readers (Rastle &
Coltheart, 1998).
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The Definition of Consistency

The concept of consistency comes from Glushko (1979): “1 used
regular and exception words, but my definitions were not based on
grapheme-phoneme rules; I defined a word as an exception if it
had a different spelling-to-sound structure than other words with
the same vowel and terminal consonants” (p. 684). Thus Glushko’s
definition of “inconsistent” was as follows: A letter string (word or
nonword) is inconsistent if and only if the body of that letter string
has at least two pronunciations in the set of words possessing that
body. Oue thing to note is that on this definition, consistency is a
categorical (all or none) variable. Another thing to note is that on
this definition, “regular” and “consistent” are not synonyms, nor
are “irregular” and “inconsistent.” Plaut et al. (1996) attempted to
conflate regularity and consistency by treating “regular” and “ir-
regular” as two points on a continuum of consistency, but that is
indefensible given Glushko’s definition. Glushko himself appreci-
ated that according to his definition of consistency there are
irregular words that are consistent. His solution to this problem
was as follows: “An unfortunate asymmetry here forces me to
confess what 1 did with the ‘exception and consistent’” words
... like LAUGH and MAUVE . .. I have chosen to ignore them”
(Glushko, 1979, Footnote 3).

Other definitions of consistency exist. For example, various
authors have defined consistency in a way that makes it a contin-
uous rather than a categorical variable (e.g., Plaut et al., 1996;
Jared, 1997; Rastle & Coltheart, 1999b), relating consistency, for
example, to such variables as
(a) the proportion of words that have the same orthographic body

as the word or nonword that also have the majority pronunci-
ation of that body;

(b) the difference between number of friends (other words that
have the word item’s body and the same pronunciation of it}
and number of enemies (other words that have the word item’s
body but a different pronunciation of it);

(c) the summed frequency of friends minus the summed frequency
of enemies.

It was originally believed that word naming was faster for
consistent than for inconsistent words only when these were of low
frequency. However, Jared (1997) argued that this may have been
because of a confounding between word frequency and the exis-
tence of high-frequency orthographic enemies. When she carried
out a study that controlled for the presence of high-frequency
enemies, she found effects of both consistency and word fre-
quency on word-naming latencies, but no interaction; high-
frequency words benefited just as much from consistency as
low-frequency words (Jared, 1997, Experiment 1).

Because many inconsistent words are irregular and many con-
sistent words are regular, one might be tempted to argue that this
result is actually a regularity effect, but that cannot be so, because
only 30% of Jared’s (1997) high-frequency inconsistent words
were irregular, and only 30% of her low-frequency inconsistent
words were irregular. These percentages are low enough that if the
only variable at work here were regularity, no effect of “consis-
tency” could have arisen. Jared’s Experiment 4 completely uncon-
founded regularity from consistency and confirmed that there is a
genuine effect of consistency per se: “Experiment 4 has demon-
strated that a spelling-sound consistency effect is observed for
high-frequency words with lower frequency neighbors even when
there are no exception words in the list” (p. 521).

Table 3
The DRC Model’s Naming Latencies for the Stimuli of Jared
(1997), as a Function of Consistency and Frequency

Word type High frequency Low frequency
Consistent 75.63 79.50
Inconsistent 71.37 81.65

The existence of a consistency effect that is independent of the
regularity effect would appear to pose a severe problem for the
DRC model. The reason is this; consistency is defined in relation
to the orthographic body of a word or nonword; the orthographic
body is not a representational level in the DRC model, and there-
fore the model should predict no effect of consistency when it is
unconfounded from regularity.

We investigated this by obtaining the DRC model’s naming
latencies for the words from Jared’s (1997) Experiment 1.'¢ The
mean DRC naming latencies in each condition are shown in
Table 3. An ANOVA revealed a significant effect of frequency,
F(1,74) = 4.027, p < .05, and consistency, F(1,74) = 17.71,p <
.0001, but no interaction between these two variables, F < 1. That
is exactly the pattern of results shown by Jared’s readers. We also
analyzed the naming latencies for these items from the three other
existing computational models of reading aloud (which are dis-
cussed in more detail below), the PMSP model, the ZHB model,
and Norris’s (1994) model. The latencies of the PMSP and Zorzi
models showed main effects of frequency and consistency and no
interaction between these variables, as is also shown by the DRC
and human latencies. However, the Norris model showed only a
frequency effect; the consistency variable yielded F << 1. This
occurred because all 40 high-frequency words and most of the
low-frequency words were named in exactly one cycle by the
Norris model, regardless of whether they were consistent or
inconsistent.

How could this result with the DRC model have occurred? Why
is the model showing an effect of consistency when it does not use
the orthographic body as a processing unit? One possibility is that
this result is due to the effects of a type of consistency to which the
DRC model could be sensitive—neighborhood consistency. Be-
cause cascaded processing in the DRC model allows words ortho-
graphically similar to the target to be activated in the orthographic
lexicon, the possibility exists that activation to the phoneme sys-
tem from these neighboring items might help or hurt naming,
depending on the phonemes that become activated by the neigh-
bors. For example, naming of the highly inconsistent word bough
will be greatly disadvantaged by activation sent to the phoneme
system from its unfriendly neighbors tough, reugh, and cough,
none of which have any phonemes in common with the to-be-
named word. Naming of the highly consistent word rang, on the
other hand, will benefit from the fact that all 14 of its neighbors
share two of its three phonemes.

An item’s orthographic neighbors (on which the concept of
neighborhood consistency is based) are often highly correlated

16 We excluded two words here: CLERK, because that is irregular in
DRC’s Australian English vocabulary but not in the Canadian pronuncia-
tion of Jared's subjects, and THOUGH, because inadvertently that word
was not in DRC’s vocabulary when this work was being done.
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with its body neighbors (on which the concept of body consistency
is based). In fact, in a recent analysis of Australian English
monosyllables, Andrews (1997) found that 46% of the ortho-
graphic neighbors of four-, five-, and six-letter words are also body
neighbors. This fact about English raises the possibility that the

body-consistency effects that have been reported in the literature .

might actually be neighborhood consistency effects.

If this were the correct explanation of the effect of consistency
seen in the DRC simulation of Experiment 1 of Jared (1997), then
it would have to be the case that under the parameter set used (the
parameters of Table 1), the entries for the neighbors of target
words in the orthographic lexicon should be activated while the
target word is being processed by the model. However, when we
measured such neighbor activation, we found it absent; the high
value of the letter-to-word inhibition parameter here caused
enough inhibition from one mismatching letter to prevent neighbor
activation.

So, as a direct test of the neighborhood consistency hypothesis,
we reran the Jared (1997) stimuli through the DRC model but with
the nonlexical route turned off (GPC activation set to zero). If the
consistency effect is a property of the lexical route, as is the case
if it is due to neighborhood consistency, the effect will still be
present when the nonlexical route is inoperative. The mean DRC
naming latencies in each condition are shown in Table 4. ANOVA
revealed a significant effect of frequency, F(1, 74) = 68.076, p <
.0001, but no effect of consistency, F(1, 74) = 924, p = .34, and
no interaction between these two variables, F < 1.

It is not surprising that the frequency effect is much larger in this
simulation than in the previous simulation of Jared’s (1997) data,
because in this simulation reading is being done solely lexically.
But what is surprising is that the consistency effect has disap-
peared. It follows that in the DRC model the effect is being
generated by the nonlexical route. Yet only a small percentage of
the inconsistent words are irregular, as we have noted, and so the
effect here cannot be due to irregularity. Why, then, are the regular
inconsistent words suffering from their nonlexical processing?

There is a second property of words (and nonwords) that gen-
erates difficulties for their reading through the nonlexical route, the
property of being whammied (Rastle & Coltheart, 1998; and see
Footnote 15). Consider the regular word drove. As the nonlexical
route operates on this word from left to right, there will be a point
at which the first four letters have been translated through GPCs,
and at that point the phonemes /drov/ will be active. When the
nonlexical route gets to the fifth letter, the vowel phoneme now
activated will be /ou/. But a different phoneme in the third posi-
tion, /o/, is already active, and inhibition of /ou/ by /o/ will slow the
rise of activation of the correct phoneme /ou/, and so slow the
naming of drove. In contrast, with the regular word drift, no such

Table 4

The DRC Model’s Naming Latencies for the Stimuli of Jared
(1997), as a Function of Consistency and Frequency, With the
Model’s Nonlexical Route Turned Off

Woid type High frequency Low frequency
Consistent 73.95 78.30
Inconsistent 73.68 77.60

contlicts between competing phonemes—no whammy effect—
will arise.

We therefore revisited Jared’s (1997) stimulus material and
classitied each word as IW (irregular or whammied; these are the
words for which the nonlexical route will generate difficulties) or
RU (regular and unwhammied; these are the words for which there
will be no difficulties generated by the nonlexical route). For
high-frequency words, 55% were IW, for low-frequency words,
the percentage was the same. So there is no confounding of
frequency with the IW property. However, 75% of the inconsistent
words were IW, whereas only 35% of the consistent words were
IW, a highly significant difference, x*(1, N = 80) = 12.94, p <
.001. The same is true for the materials of Experiment 3 of Jared
(1997); IW items are significantly more frequent in her inconsis-
tent condition than in her consistent condition. So that is the source
of the apparent consistency effect in the DRC simulations of
Jared’s data: it is a combination of an irregularity effect and a
whammy effect, and that is why it vanishes when the nonlexical
route is turned off.

We are not, of course, asserting that it follows that the source of
the effect in human readers must be a combination of the irregu-
larity effect and the whammy effect. But we have shown that this
could be so. More generally, we have shown that the DRC model
can simulate the Jared (1997) results and have discovered why;
hence we have shown that there is no conflict between her results
and the DRC model. Even more generally, for these reasons we
believe that the body of experiments showing effects of consis-
tency on reading aloud are compatible with the DRC model despite
the fact that this model contains no level of representation specific
to orthographic bodies.

“Fast Phonology,” “Strong Phonology,”
and the DRC Model

The Horse Race Metaphor

The dual-route theory of reading aloud has sometimes been
expressed (see e.g., Norris & Brown, 1985) in terms of a horse
race, this metaphor being nicely described as follows by Frost
(1998):

The lexical and the prelexical routines can operate independently of
each other and . . . the winner of this race is determined by the speed
and efficiency of the lexical or assembly process. . . . The “horse race”
metaphor that depicts this state of affairs gives these processes a
flavour of independence. (p. 86)

None of the present authors has ever described the dual-route
theory in this way, however, because the most basic of data refute
it. Consider what would happen when regular and irregular words
are being read aloud, if the lexical and nonlexical routes were
racing toward some winning post. If the lexical route wins, the
word will be read correctly, regardless of whether it is regular or
irregular, and there will be no difference in latency between the
two types of word (because the lexical route is completely unaf-
fected by whether a word is regular or irregular). If, on the other
hand, the nonlexical route wins, a regular word would be read
aloud correctly, but an irregular word will not: its pronunciation
will be according to the nonlexical GPC rules and hence incorrect.
It follows that, although irregularity will affect error rate, it will
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not affect the latency of correct reading-aloud responses. Yet a
very large number of studies have shown that, at least for low-
frequency words, latencies of correct responses are longer for
irregular words than for regular words.

The relationship between the two routes in dual-route theory is
thus not correctly characterized by the horse race metaphor. Nor is
it correctly characterized by the term “independence.” If two
processing routes are independent, that means they share no pro-
cessing components, and that again is something that no dual-route
theorist has proposed. On the contrary, the lexical route and the
nonlexical route share two processing components. One is the
letter-identification system, because the input to both routes comes
from that system. The other is the speech output (phoneme) sys-
tem, because the output from both routes goes to that system.

As Frost (1998) pointed out, according to the horse race meta-
phor, “the derived phonology of a specific word in a specific
experiment is either assembled or addressed” (p. 88). That is not at
all what happens with the DRC model. In that model, the derived
phonology for all reading-aloud responses (whether the input be a
regular word, an irregular word, or a nonword) is the result of the
inputs from both the nonlexical (assembled) and lexical (ad-
dressed) routes to the phoneme level. Exactly as Frost (1998) said,
“phonology is always partly assembled and always partly lexical”
(p- 95).

The horse race metaphor was seductive because it made it easy
1o understand such statements as “the lexical route is faster than
the nonlexical route”—that would just mean that the lexical route
wins the race more often than the nonlexical route. But if the horse
race metaphor is inappropriate as a characterization of the dual-
route theory, how should statements about the relative speeds of
the two routes be understood?
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Relative Speeds of the Two Routes and
the Concept of “Fast Phonology”

The DRC model requires 76 cycles to read aloud the word szrap.
Figure 9 shows separately the nonlexical and lexical activations of
the phonemes of this word during this period of 76 cycles.

Consider first the four plots labeled “nonlexical.” These show
the phoneme activations generated from the nonlexical route. The
later a phoneme is in a word, the later is the time at which that
phoneme begins to receive activation from the nonlexical route;
that is because the nonlexical route operates left to right on the
input string, with an interval of 17 cycles between when it begins
to operate on letter n and when it begins to operate on letter (n +
1). Activation of the first phoneme, /s/, is zero until Cycle 10
because the nonlexical route does not begin to operate at all until
the tenth processing cycle. Nonlexical activation of the second
phoneme, /t/, is zero until Cycle 27 because the nonlexical route
moves on to treating the (n + Dth letter 17 cycles after it has
begun treating the nth letter. So nonlexical activation of the third
phoneme, //, is zero until Cycle 44, and nonlexical activation of
the fourth phoneme, /a/, is zero until Cycle 61. The fifth phoneme,
/p/, is not represented in these plots because the nonlexical route
would not begin to activate it until Cycle 78, and the word has been
uttered by then (on Cycle 76).

Next consider the plot labeled “lexical.” This shows phoneme
activation through the lexical route. Because that activation occurs
in parallel, all five phonemes in the word receive the same acti-
vation from the lexical route on each cycle, so the activation plots
for the five phonemes lie on top of each other—that is why there
is only one plot for lexical activation.

Now we can consider the statement “the lexical route is faster
than the nonlexical route.” Is this true or false for the DRC model?
It is clearly false as far as the first phoneme is concerned; that

All phonemes
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Figure 9.
model.

Lexical and nonlexical activation of the phonemes of the word STRAP during its reading by the DRC
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phoneme begins to receive nonlexical activation on Cycle 10, but
receives no lexical activation until much later (Cycle 25). But as
far as the third phoneme is concerned, this statement is clearly true;
that phoneme begins to receive nonlexical activation on Cycle 44,
but is in receipt of lexical activation from Cycle 25 onward. And
as for the second phoneme, it begins to receive nonlexical and
lexical activation virtually at the same time. Thus the question
“which is faster in the DRC model, the lexical route or the
nonlexical route?” is ill posed.

Strong Phonology

This term was introduced by Frost (1995), who distinguished
between a weak and a strong phonological hypothesis about read-
ing. The weak phonological hypothesis “views the generation of
phonological information from print as a process that may involve,
in principle, both addressed and assembled phonology” (Frost,
1995), whereas “the strong phonological hypothesis does not make
use of the notion of addressed phonology at all because phonology
is never entirely addressed, but always computed” (p. 399). Frost
discussed this distinction in relation to models of reading aloud
only, but it applies more generally—it applies also to models of
visual word recognition and to models of reading comprehension.
A weak phonological theory of reading posits that reading tasks
are not purely orthographic in nature and that all such tasks involve
both orthographic and phonological processing. A strong phono-
logical theory of reading posits that in at least some reading tasks
processing is solely phonological and not orthographic at all.

All those concerned with building models of reading, at least for
alphabetically written languages, agree that the reading system
contains a letter (or letter cluster) level, a body of orthographic
knowledge (essential for e.g., spelling), and a semantic system.
Models differ with respect to how these three levels are linked and,
hence, differ in the account they give of how various reading tasks
are performed. We consider here three tasks: visual word recog-
nition, (single-word) reading comprehensions, and reading words
aloud. The DRC model offers a weak phonological theory of all
three of these tasks and is inconsistent with a strong phonological
theory of each of them.

Visual Word Recognition

A strong phonological theory for this task denies that there is a
direct pathway from the letter level to the body of orthographic
knowledge and asserts that communication between these two
levels is always phonologically mediated. A weak phonological
theory for this task asserts that there is a direct pathway from the
letter level to the body of orthographic knowledge, but that there
is also indirect phonologically mediated communication between
these two levels. The DRC model offers a weak phonological
theory for this task. For example, it explains the PSH effect in
lexical decision as due to the activation of the orthographic lexicon
(the body of orthographic knowledge) through an indirect phono-
logically mediated pathway (letters to GPC rules to phonemes to
phonological lexicon to orthographic lexicon); it has a direct
pathway from the letter level to the orthographic lexicon (the
pathway denied by a strong phonological theory). We know of no
evidence that favors the strong over the weak phonological theory

in relation to this task; if there were such evidence, that would
count as evidence against the DRC model.

(Single-Word) Reading Comprehension

A strong phonological theory for this task denies that there is a
direct pathway from the body of orthographic knowledge to the
semantic system and that communication between these two levels
is always phonologically mediated. A weak phonological theory
for this task asserts that there is a direct pathway from the body of
orthographic knowledge to the semantic system, but that there is
also indirect phonologically mediated communication between
these two levels. Phonological influences on reading comprehen-
sion have been the subject of much work in recent years, typically
involving homophone and PSH effects in tasks requiring semantic
processing, such as semantic categorization or judgments of se-
mantic relatedness. With semantic categorization, it has been
shown that performance on NO trials is influenced by homophony
(A type of flower? rows) and pseudchomophony (A type of
flower? roze), and corresponding results are obtained when the
task is judgment of semantic relatedness (NO responses are diffi-
cult with stimuli such as fulip rows or tulip roze).

Such results are consistent with both a weak and a strong
phonological theory of reading comprehension. The DRC model
offers a weak phonological theory of these effects as follows (this
analysis of phonological influences on reading comprehension was
first proposed by Coltheart, 1980b). When the target item is a
homophone of a category exemplar (A type of flower? rows) the
pathway letters to orthographic lexicon to phonological lexicon to
semantic system will generate activation of the semantic represen-
tation for that exemplar, which will cause difficulties in deciding
on the response NO. When the target item is a PSH of a category
exemplar (A type of flower? roze) the pathway, letters to GPC
rules to phonemes to phonological lexicon to semantic system, will
generate activation of the semantic representation for that exem-
plar, which will cause difficulties in deciding on the response NO.
Provided that semantic activation through the direct route, letters
to orthographic lexicon to semantic system (activation that will
indicate that NO is the correct answer in these cases), begins to rise
earlier than semantic activation through the indirect, phonologi-
cally mediated routes, the correct decision will usually be made,
but the decision will be slowed by the spurious activation arising
from the indirect routes. Note that the horse race analogy is again
incorrect and misleading here: If there were a race between the
direct and indirect routes, a race with a winner, then this kind of
interference would not occur. But as mentioned above, the DRC
model is not a race model.

Recent work has attempted to decide between the weak and the
strong phonological theories of these effects on reading compre-
hension, and the verdict has gone in favor of the weak phonolog-
ical theory. For example, consider Luo’s (1996) conclusion:

A strong version of the phonological recoding hypothesis claims that
phonological recoding is not only mandatory, but also is in fact the
only route to the internal lexicon (e.g., Gough, 1972; Hanson &
Fowler, 1987; Lukatela & Turvey, 1991, 1994; Rubenstein et al.,
1971; Van Orden, 1987, 1991). . . . Because the evidence collected so
far falls short of a strong conclusion, it may be appropriate to take a
reconciliatory position. The revised dual-route model shown in Fig-
ure 2 represents such an attempt. According to this model, there are
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two independent routes to the lexicon (one orthographic and one
phonological). (p. 891)

Luo’s theory is identical to the weak-phonological DRC theory,
except that Luo assumes that the phonological route is on average
faster than the orthographic route; but the only basis for this
assumption is a horse race conception of the two routes. Without
that conception, the Luo/DRC analysis works even if the ortho-
graphic route begins to activate semantics earlier than the phono-
logical route.

Folk (1999) also sought to decide between the weak and the
strong phonological theories of these effects on reading compre-
hension, and she reached the same conclusion as Luo (1996):

The present data suggest that phonological codes play an important
role in meaning activation during silent reading. However, there was
also evidence that orthography interacted with phonology under cer-
tain circumstances to influence processing. This is consistent with
traditional dual-route models that posit both orthographic and phono-
logical routes to meaning (e.g., Coltheart et al., 1993; Ellis & Young,
1988; Patterson & Morton, 1985) and with numerous studies in the
neuropsychological literature. There have been numerous studies of
impaired patients who exhibited intact comprehension of written
words while demonstrating deficits in their ability to generate the
spoken names (e.g., Hanley & McDonnell, 1997; Miceli, Benvegnu,
Capasso, & Caramazza, 1997; Rapp, Benzing, & Caramazza, 1997,
Shelton & Weinrich, 1997). (p. 904)!"

Reading Words Aloud

A strong phonological theory for this task denies that there is a
direct pathway from the body of orthographic knowledge to the
phonological system and that communication from the letter level
to phonology always and only uses sublexical mappings between
orthographic and phonological segments. A weak phonological
theory for this task asserts that there is a direct pathway from the
body of orthographic knowledge to phonological system, but that
there is also a system of sublexical mappings between ortho-
graphic and phonological segments.

It is difficult to see how the strong phonological theory of
reading aloud could be reconciled with phonological dyslexia, the
form of acquired dyslexia in which nonword reading is far more
impaired than word reading; Frost (1998, p. 93) observed that such
a theory “would have to assume that although matching whole-
orthographic and whole-phonological units is not a default proce-
dure of the cognitive system, it could in principle be done reason-
ably well,” and that of course would no longer be a strong
phonological theory of reading aloud, in the sense in which we are
using the term “strong phonological theory.” We know of no
evidence that favors the strong over the weak phonological theory
in relation to reading aloud—that is, no evidence to suggest that
there is no direct pathway from the body of orthographic knowl-
edge to the phonological system. If there were such evidence, that
would count as evidence against the DRC model.

Frost (1998) has extensively reviewed the literature on phono-
logical effects in reading and has documented an abundance of
such effects. None of the effects he discusses, however, requires a
strong phonological model of reading (as we have here defined
“strong phonological model™); that is, he reports no evidence
suggesting that the letter level does not communicate directly with
the body of orthographic knowledge, no evidence suggesting that

the body of orthographic knowledge does not communicate di-
rectly with the semantic system, and no evidence suggesting that
the body of orthographic knowledge does not communicate di-
rectly with phonology. Hence the data he reviews are consistent
with a weak phonological model of reading (as we have here
defined “weak phonological model™), and so are consistent with
the DRC model. As is shown in various parts of this article, the
DRC model’s reading behavior shows numerous phonological
influences—PSH effects in lexical decision and in reading aloud,
phonological priming of reading aloud, the onset effect in masked
priming, the regularity effect in reading aloud words, and strategy
effects on reading of regular words.

We are making these claims solely about the reading of English.
The facts about reading in other languages may, and in some cases
must, be different. The Chinese, Japanese, and Korean writing
systems are structurally so different from the English writing
system that a model like the DRC model would simply not be
applicable: For example, monosyllabic nonwords cannot even be
written in the Chinese script or in Japanese kanji, so the distinction
between a lexical and nonlexical route for reading aloud cannot
even arise. The Hebrew writing system also differs fundamentally
from that used for English because text is typically written without
vowels. Frost (1995, Figure 2) has proposed an explicit model that
suggests how Hebrew readers deal with this problem of missing
vowels, a problem with which English readers are not confronted.
This is a strong phonological model because it has no connections
between whole orthographic word forms and whole phonological
word forms. It could well be that a strong phonological theory of
visual word recognition is correct for Hebrew even though a weak
phonological theory of visual word recognition (such as the DRC
model) is correct for English. There are no reasons to expect
universals of written langnage, even if there are universals for
spoken language; unlike spoken language, written language is
culturally transmitted rather than innate, a recent rather than a
long-standing human ability and an ability possessed even today
by only a minority of the people in the world.

Even if we just consider languages written alphabetically with
vowels present, we might find that one such language, Serbo-
Croatian, differs from all other such languages in terms of reading
mechanisms, because two alphabets, the Roman and the Cyrillic,
are used to write it. This presents unusual problems to those
speakers of Serbo-Croatian who are literate in both alphabets,
because some letters are common to both alphabets but given
different pronunciations (for review, see Lukatela & Turvey,
1998). Differences in the way English and Serbo-Croatian reading
is acquired have been found; vowels are easier to Jearn than
consonants in Serbo-Croatian, whereas the reverse is true in En-
glish (Ognjenovic, Lukatela, Feldman, & Turvey, 1983). The
degree to which conclusions reached about how English is read
apply to Serbo-Croatian, and vice versa, is thus an interesting
empirical question.

Finally, consider languages written just with the Roman alpha-
bet. We have extended our work with the DRC model to modeling

'7 Note however that Folk argued that her data “suggest that, although
both phonological and orthographic codes are involved in word recogni-
tion, phonological codes play a central role in meaning activation” (Foik,
1999, p. 904).
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the reading of German (Ziegler, Perry, & Coltheart, 2000) and are
also working on French and Italian. Although these and other
languages written with the Roman alphabet vary in the proportion
of irregular words they contain, all do contain some irregular
words, and in all it is possible to write unfamiliar words and
nonwords. Hence we expect the DRC approach to be appropriate
for all such langnages. That is not to say that appropriate parameter
settings for the model might not be very different for different
languages written in the Roman alphabet. For languages where few
words are irregular, a highly active nonlexical route would not be
as harmful as it would be for English; perhaps that is why Italian
is read aloud more rapidly than English (Paulesu et al., 2000).

Comparisons With Other Computational Models of
Reading Aloud

As we have mentioned above, there are four computational
models of reading aloud of English currently in existence: in
addition to the DRC model, there is the Norris model (Norris,
1994), the PMSP model (Plaut et al., 1996), and the ZHB model
(Zorzi et al., 1998)."® All four models can generate model naming
latencies for sets of words and nonwords. It is therefore possible to
compare these models by selecting sets of items (words or non-
words) for which mean human naming latencies are available, and
then studying how closely each model’s naming latencies fit the
human data. However, investigation of the Norris model’s word
naming latencies showed that 84% of the 3,130 words used in
these analyses were named in exactly one cycle. Hence this model
in its present form is not suitable for simulating individual item-
naming latencies.

As discussed by Spieler and Balota (1997), there are two ways
of assessing the goodness-of-fit of model to data, which we will
refer to as the factorial and regression methods. To use the
factorial method, an ANOVA of the model latencies and of the
human latencies is carried out. Then a model is assessed by
determining whether all the effects significant with the human
latency data are also significant with the model latency data, and
whether all the effects that are nonsignificant with the human data
are also nonsignificant with the model data. To use the regression
method (Spieler & Balota, 1997), the correlation across items
between the human latencies and the model latencies is computed
and squared; the squared correlation is a measure of the proportion
of variance in the human latencies for which the model “can
account.” We have applied both methods (or just the regression
method where the data did not come from a factorial design) to six
databases of human naming latencies and three databases of com-
putational model naming latencies.’® The human databases are as
follows:

(a) The Whammy database. This database of human nonword
naming latencies is taken from Rastle and Coltheart (1998) and
consists of mean naming latencies for 48 five-letter monosyl-
labic and pronounceable nonwords, 24 with five phonemes
and 24 with three phonemes.

(b) The Length database. This database of human word and non-
word naming latencies was taken from Weekes (1997) and
consists of mean naming latencies for 300 monosyllabic
items—100 high-frequency words, 100 low-frequency words,
and 100 pronounceable nonwords. Within each of these three

sets of 100 items, there are 25 items at each of the lengths 3-6
letters.

(¢) The Position database. This database of human word naming
latencies is taken from Rastle and Coltheart (1999b) and
consists of mean naming latencies for 88 monosyllabic irreg-
ular words with irregular grapheme-to-phoneme correspon-
dences at either the first, second, or third phoneme position,
and 88 matched monosyllabic regular words.

(d) The SB database (Spieler & Balota, 1997). This consists of
human naming latencies for 2,870 monosyllabic words from
the training corpora of the PMSP model and its predecessor,
the SM model.

(e) The WS (Wayne State) database (Treiman, Mullenix, Bijeljac-
Babic, & Richmond-Welty, 1995). This consists of human
naming latencies for 1,327 monosyllabic words with the pho-
nemic structure consonant—vowel—consonant (CVC).

(f) The SW database (Seidenberg, Waters, Bames, & Tanenhaus,
1984). This consists of human naming latencies for 1,153
monosyllabic words with the phonemic structure CVC.

We report first the results using the factorial method with the
first three databases, and then the results using the regression
method with all six databases. In all cases, incorrect responses by
the models, or responses to words that were not in a model’s
training set (this does not apply to the DRC model) were treated as
missing data.

The Factorial Appfoach
The Whammy Database

Rastle and Coltheart (1998) found that human naming latencies
for 48 five-letter nonwords that had either three or five phonemes
were greater for the three-phoneme items than for the five-
phoneme items and explained this effect in terms of a phenomenon
they termed the “whammy effect,” described earlier in this article.

One complication to which we should immediately draw atten-
tion is that these 48 nonword stimuli are particularly difficult for
the PMSP and ZHB models because a number of the items end in
consonant + final s. Because most plural monosyllables of English
were excluded from the training set used for those models, the
models had little experience of the pattern consonant + final s as
they learned to read. An additional difficulty for the ZHB model
with these items is that a number of them have orthographic bodies
that do not occur in any item in the training set (e.g., elst), and
body representations are relevant to the way the ZHB model
learns. These are the reasons for the PMSP and ZHB models
achieving only 75% and 48% accuracy, respectively, in reading
these 48 nonwords. The DRC model read 47% of the nonwords
correctly.

These accuracy data complicate the analysis. The two sets of
nonwords were pairwise matched on N, initial phoneme, number
of letters, number of body friends, number of body enemies, and
the summed frequencies of body friends and of body enemies, so

¥ A computational model of reading aloud in French also exists; see
Ans, Carbonnel, and Valdois (1998).

19 We are grateful to David Balota, David Plaut, Daniel Spieler, Rebecca
Treiman, Brendan Weekes, and Marco Zorzi for making human and
modeling data available to us.
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a within-item analysis of the whammy effect is appropriate. But if
one member of a matched pair is wrongly read by a model, its
matched twin should also be excluded from the analysis; if there
are many wrongly read items, the number of item pairs included in
the analysis becomes very small. It is not illegitimate to apply a
between-item analysis to data of this kind (although it is likely to
have lower power than a within-item analysis), so we report both
types of analysis.

Mean latency data for the within-item and between-item anal-
yses are shown in Table 5.

Human data. The human data yielded a whammy effect in the
within-item analysis such that the whammied items (three pho-
nemes) produced longer naming latencies than the unwhammied
items (five phonemes), F(1, 23) = 6.20, p = .02; the between-item
analysis yielded F(1, 46) = 2.82, p = .10. Given the greater power
of the within-item analysis, we take this as evidence that human
readers are susceptible to the whammy effect.

DRC data. Both the within-item analysis, F(1, 23) = 8.54,
p = .008, and the between-item analysis, F(1, 46) = 10.03, p =
003, produced a significant whammy effect such that whammied
items were read more slowly by the model than unwhammied
items. Thus, the DRC model is, like human readers, susceptible to
the whammy effect.

PMSP data. Five whammied items and seven unwhammied
items were read wrongly by the model; these items were removed
from the between-item analysis, and they and their matched con-
trols were removed from the within-item analysis. The within-itern
analysis yielded, F(1, 13) = 4.34, p = .058, and the between-item
analysis yielded, F(1, 34) = 2.88, p = .099. Hence, the whammy
effect was not significant, but there was a strong trend toward
significance, particularly in the more powerful within-item
analysis.

ZHB data. Thirteen whammied items and 12 unwhammied
items were read wrongly by the model. These items were excluded
from the between-item analysis, and they and their matched con-
trols were excluded from the within-item analysis. The within-item
analysis yielded, F(1, 5) = 2.5, p = .175, and the between-item
analysis yielded, F(1,21) = 3.22, p = .087. Note that the whammy
effect, nearly significant in the between-item analysis, is in the
opposite direction to that shown by the human readers. Hence, this
model does not show the whammy effect seen in the human data.

Table 5

Mean Naming Latencies for Whammied and Unwhammied
Nonwords, for Human Participants and

Three Computational Models

Source of data ~ Unwhammied Whammied Total N (MAX = 48)
Humans 567.6 585.5 48
DRC 157.4 1674 47
PMSP 1.784 1.886 36
ZHB 3.917 3.364 23

Note. DRC = dual-route cascaded model;, PMSP = Plaut, McClelland,
Seidenberg, and Patterson (1996) model; ZHB = Zorzi, Houghton, and
Butterworth (1998) model.

The Length Database

Weekes (1997) used a multiple regression approach so as to
determine whether length affected naming latency when confound-
ing variables, particularly N, were controlled. He found an inter-
action between length and lexicality: Length had no effect on
naming latency for words, but was significantly related to naming
latency for nonwords. We have analyzed these data using an
analysis of covariance (ANCOVA) in which length and lexicality
were treated as between-items factors, and N was treated as a
covariate.

Human data. Naming latencies for two items were removed
from the analysis of the human data because they are not mono-
syllabic (trying and flying). The ANCOVA revealed a significant
interaction between length and lexicality, F(3, 289) = 15.60, p <
.001, as there was a clear effect of length for nonwords but not for
words. Figure 10 shows the form of this interaction. The main
effects of length, F(3, 289) = 14.95, p < .001, and lexicality, F(1,
289) = 189.73, p < .001, were also significant.

DRC data. Four items, in addition to the two disyllabic words,
were removed from the analysis. One item, blest, is not in DRC’s
vocabulary; the other three items were nonwords read incorrectly
by the model (fretch read as french, grite read as grit, and sush
read as such).

The ANCOVA revealed a significant interaction between length
and lexicality, F(3, 285) = 109.54, p < .001. The main effects of
length, F(3, 285) =.61.16, p < .001, and lexicality, F(1, 285) =
3518.13, p < .001, were also significant. Like the human data,
there was an effect of length for nonwords but not for words. The
form of the interaction, shown in Figure 10, is as in the human
data.

PMSP data. In the ANCOVA, the main effects of length, F(3,
254) = 3.46, p < .05, and lexicality, F(1, 254) = 19.34, p < .001,
were significant. There was a near significant interaction between
length and lexicality, F(3, 254) = 2.43, p = .066. However,
Figure 10 shows that the form of this interaction was quite differ-
ent from that seen in the human data.

ZHB data. The ANCOVA yielded a nonsignificant interaction
between length and lexicality, F(3, 253) = 1.64, p = .18. As
shown in Figure 10, the model latencies show no suggestion of a
larger length effect for words than for nonwords. The model did
not produce an overall main effect of length, F(3, 253) = .35, ns,
but it did produce a main effect of lexicality, F(1, 253) = 103.37,
p < .001.

The Position Database

These data were analyzed using an ANCOVA in which regu-
larity was treated as a within-items factor, and position was treated
as a between-items factor. The covariates were N and consistency
(see Rastle & Coltheart, 1999b, for details on how consistency was
measured). Results are shown in Figure 11.

Human data. The ANCOVA yielded a significant Position X
Regularity interaction, F(2, 83) = 11.12, p < .0001, as the cost of
irregularity declined monotonically across position of irregularity.
The effect of regularity at position 3 was analyzed separately with
N as a covariate; it was not significant, nor were the main effects
of position and regularity.

DRC data. As with the human data, the ANCOVA yielded a
significant interaction between position of irregularity and regu-



700+
650
660
6403
620 3
600
560 3
560 3
540 3

—8- Word

~~ Nonword

THE DRC MODEL

>

520
500 3

Human data

T

3 4

Ul

239

PMSP
1.854 data

] —8- Wword
3 -o— Nonword

3 4 5 6

200
180 3
160 3
140 3
120 3
1003
805 PN 1 ! Y
603
40 3 -8- Word
204 DRC data -9~ Nonword
0] - :
3 5 6
45-
43 ck\\\\\ﬂg////’/J}h*_‘—qg
3'5_3 -~ word
? - Nonword
3
257
i ZHB data
2 , . —
3 4 5 6

Figure 10. Effects of length and lexicality on naming latencies from human readers and the three computa-

tional models.

larity, F(2, 80) = 33.78, p < .0001, with cost of irregularity
declining monotonically across position of irregularity to a non-
significant effect, F(1, 27) = 3.43, p = .075. The main effects of
position, F(2, 80) = 47.20, p < .0001, and regularity, F(1,
80) = 43.67, p < .0001, were both significant.

PMSP data. The ANCOVA did not yield a significant Posi-
tion X Regularity interaction, F(2, 41) = .08, ns. Neither the main
effect of position, F(2, 41) = .14, ns, nor the main effect of
regularity, F(1, 41) = .13, ns, was significant. Thus the PMSP
model did not produce the same pattern of data as was produced by
human participants—the cost of irregularity did not decline with
position of irregularity.

ZHB data. As with the human data, the ZHB model yielded a
significant interaction between regularity and position of irregu-
larity, F(2, 39) = 3.32, p = .047, with the cost of irregularity
declining monotonically over position of irregularity. The effect of
regularity at position 3 was analyzed separately with N as a
covariate; this effect was significant; F(1, 4) = 6.44, p = .024.
Whereas the main effect of regularity was significant, F(1,
39) = 6.80, p = .013, the main effect of position of irregularity
was not, F(2, 39) = 2.18, ns.

Summary of Results Obtained Using
the Factorial Approach

With the whammy database, there was a whammy effect on the
human latencies and on the DRC model latencies, but not on the

PMSP model latencies (though the effect was close to signifi-
cance) nor on the ZHB model latencies.

With the length database, in the human data length and lexicality
interacted such that there was a length effect on naming latencies
for nonwords but no length effect for words. This was true also for
the DRC latencies, but not for the latencies from the other two
models.

With the position database, in the human data the cost of
irregularity declined as the position of irregularity increased. This
was also true of the DRC and ZHB model latencies, but not of the
PMSP model latencies. For words with position 3 irregularities,
there was no significant regularity effect in the human or DRC
model latencies, but there was in the ZHB model latencies.

For all three databases, then, the DRC model provided a closer
fit to human performance than either of the other two models.
Indeed, in all cases every effect that was significant in the human
latencies was also significant in the DRC latencies, and every
effect that was insignificant in the human latencies was also
insignificant in the DRC latencies.

The Regression Approach

All three models made a few errors when reading words aloud,
so we eliminated from consideration any word that any of the
models misread. We also eliminated from consideration any word
that was not in both the PMSP model’s training set and the ZHB
model’s training set as well as being in the DRC model’s vocab-
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three computational models.

ulary. This yielded a set of 2,516 words for which we had the
latency of correct reading by all three models. Model naming
latencies used in the regression analyses were drawn from this set.

The Whammy Database

Latencies for the items that each model read correctly were
regressed against human naming latencies, and we calculated the
percentage of variance in the human data accounted for by each
model. Both the DRC model and the PMSP model accounted for
a significant amount of the variance in the human data. The PMSP
model accounted for 12.97% (p = .03) of the variance (N =
36/48) and the DRC model accounted for 12.44% (p < .01) of the
variance (N = 48/48). The ZHB mode! did not account for a
significant amount of the variance in the human data.

The Length Database

Latencies for correctly named items were regressed against
human naming latencies for each model. All models accounted for
a statistically significant percentage (p < .05) of the variance in
human naming latency, but these percentages varied widely among
the three models. The PMSP model accounted for 2.8% of the
variance in human naming latency, the ZHB model accounted
for 11.6%, and the DRC model accounted for 47.97%.

Nonwords played a large role in the high percentage of variance
accounted for by the DRC model. Table 6 shows the percentage of
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variance in human naming latency accounted for by each model
when words and nonwords are anatyzed separately.

All three of the models accounted for a significant percentage of
the variance in the word data (p < .05), with the DRC model
accounting for the largest percentage; for all three models, these
percentages are small. Only the DRC model accounts for a signif-
icant percentage of the variance in nonword naming latency.

The Position Database

For the 176 items, model naming latency was regressed on
human naming latency for all three models. The DRC model
accounted for 13.08% (p < .01) of the variance in human naming

Table 6
Percentages of Variance of Word-Naming Latency and
Nonword-Naming Latency Accounted for by the Three Models

Model Words Nonwords
PMSP 2.5% 0.1% (ns)
ZHB 3.1% 0.03% (ns)
DRC 4.5% 39.4%

Note. PMSP = Plaut, McClelland, Seidenberg, and Patterson (1996)
model; ZHB = Zorzi, Houghton, and Butterworth (1998) model; DRC =
dual-route cascaded model.
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latency, the PMSP model accounted for 1.1% (nonsignificant), and
the ZHB model accounted for 11.7% (p < .01).

Because exception words and regular words were pairwise
matched, we regressed the model cost of irregularity (exception
word latency minus matched regular control latency) on human
cost of irregularity. When model costs are regressed on human
costs, the DRC model accounts for 24.36% (p < .01) of the
variance in human cost of irregularity, the PMSP model accounts
for 0.7% (nonsignificant) of the variance, and the ZHB model
accounts for 14.02% (p < .01).

The SB Database

All three models accounted for a significant percentage (p <
.05) of the variance of the human naming latencies, although these
percentages were all small: ZHB = 7.73%, DRC = 3.49%,
PMSP = 2.54%.

The WS Database

Once again, all three models accounted for a significant per-
centage (p < .05) of the variance of the human naming latencies,
although these percentages were all small: DRC = 4.89%,
ZHB = 4.70%, PMSP = 1.67%.

The SW Database

Again, all three models accounted for a significant percentage
(p < .05) of the variance of the human naming latencies, although
these percentages were all small: DRC = 6.37%, ZHB = 6.33%,
PMSP = 2.54%.

Summary of Results Obtained Using
the Regression Approach

In all of these regression analyses involving word stimuli, the
PMSP model accounted for considerably less of the variance of
human. word naming latency than did the two dual-route models
(DRC and ZHB), whereas the latter two models performed com-
parably. Only the DRC model was able to account for any signif-
icant proportion of the variance of human nonword naming laten-
cies in both nonword datasets; the PMSP model accounted for a
significant proportion in one of these, and the ZHB did not account
for a significant amount of variance in either.

It is not surprising that the ZHB and DRC models behave
similarly on word reading, because, as Zorzi et al. (1998) noted,
“For the lexical procedure, we assume that the output comes from
an interactive activation network similar to that of Coltheart and
colleagues (1993, 1994)” (p. 1149). Thus the phonological lexicon
and its parallel activation of the phoneme level in the ZHB model
are essentially the same as in the DRC model. It should be noted,
however, that the lexical route in the ZHB model, like the semantic
route in the PMSP model (but unlike the lexical route in the DRC
model), is not fully implemented. There is no input from orthog-
raphy to the phonological lexicon in the ZHB model. For the
purposes of running simulations of word reading, the nonlexical
route gets input from letters, but the response of the lexical route
is mimicked by directly turning on the word’s representation in the
phonological lexicon of the model, not by providing the model
with orthographic input.

Where the ZHB and DRC models do differ is in how the
nonlexical route operates—for example, one is parallel and the
other is serial. Here, the models perform quite differently. The
DRC model accounts for significant proportions of the variances
of nonword naming latencies, whereas the ZHB model does not.

The proportion of variance in nonword naming latencies ac-
counted for by the DRC model was substantial, yet the proportions
of variance in word reading latency accounted for by the ZHB and
DRC models was not very high. Why? One reason—though
clearly not the only one—is that there are factors affecting naming
latency that lie outside the scope of these models, factors to do
with early visual and late articulatory processes. However, such
factors would affect nonword naming latencies too, and because
the DRC model accounts for much less of word reading variance
than nonword reading variance, these factors can only be a small
part of the story. Nor can unreliability of word naming latencies be
capping the amount of systematic variance that is there to be
accounted for, because Spieler and Balota (1997) have shown that
a regression using the three stimulus dimensions of length, log
frequency, and neighborhood size accounted for 21.7% of the
variance of word naming latencies in their human data set. Hence,
even though the DRC model does rather a good job of explaining
how the nonlexical route for reading works, there must be aspects
of the lexical route for reading that are inadequately characterized
by the DRC model. That provides a focus for future work with the
model. For example, systematic study of the words for which the
DRC model makes a good prediction of human naming latency
versus the words for which it does not might identify word prop-
erties to which human readers are much more sensitive than the
model, and this would provide guidance as to how to improve the
model.

Be that as it may, the outcome of this work using the factorial
and regression approaches for comparative evaluation of the three
computational models of reading aloud is clear: The DRC model
provides a much better account of human reading aloud than do the
other two models.

Modeling Reading Impairments

Acgquired Dyslexia

Any computational mode! of skilled reading should also aspire
to be able to simulate various distinct patterns of acquired dyslexia.
Cognitive peuropsychologists interpret such patterns as arising
from various distinct patterns of preservations and impairments of
the subcomponents of the skilled reading system (see, e.g., Colt-
heart, 1981, 1982, 1985). Computational cognitive neuropsycholo-
gists thus attempt to reproduce patterns of acquired dyslexia by
lesioning specific components of their computational models and
studying how closely the resultant acquired dyslexia in the com-
putational model corresponds to the acquired dyslexia in the pa-
tient being simulated.

Plaut and Shallice (1993) described simulations of one acquired
dyslexia, deep dyslexia (Coltheart, Patterson, & Marshall, 1980)
but the computational model they were lesioning was not a model
of normal reading (e.g., it had no procedure for reading nonwords),
and so this work is not relevant here. The two forms of acquired
dyslexia on which relevant computational modeling work has been
done are phonological dyslexia and surface dyslexia.
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Phonological dyslexia (see, e.g., Coltheart, 1996) is a condition
in which after brain damage a previously skilled reader has a
selective difficulty in reading nonwords aloud; for example, the
patient WB (Funnell, 1983) was completely unable to read even
the simplest CVC nonwords aloud after his stroke, whereas read-
ing accuracy for words, even long low-frequency polymorphemic
abstract words such as preliminary or satirical, was close to
normal.

Surface dyslexia (Patterson, Marshall, & Coltheart, 1985) is a
condition in which after brain damage a previously skilled reader
has a selective difficulty in reading irregular words aloud; errors
with such words are generally regularization errors. Nonword
reading is relatively preserved, perhaps even normal in some
patients (e.g., KT, see McCarthy & Warrington, 1986; or MP, see
Behrmann & Bub, 1992).

To simulate extreme versions of these two acquired dyslexias is
trivial with the DRC model. Turning down the activation param-
eter of the nonlexical route to zero will produce extreme phono-
logical dyslexia; the model will have normal accuracy at word
reading but will score zero percent on nonword reading.?® Turning
down an appropriate parameter of the lexical route to zero—for
example, letter-to-word excitation—will produce extreme surface
dyslexia. The model will have normal accuracy at nonword read-
ing and regular word reading but will produce a regularization
error with every immegular word.

Using a preliminary version of the DRC model (Coltheart et al.,
1993), Coltheart, Langdon, and Haller (1996) attempted more
challenging simulations of these two acquired dyslexias.

Surface Dyslexia and the DRC Model

With respect to the surface dyslexics MP and KT, Coltheart et
al. (1996) sought to lesion the DRC model so that its nonword
reading accuracy and regular word reading accuracy would remain
normal, but accuracy of irregular word reading would be impaired
but not abolished, with a greater impairment for low-frequency
than for high-frequency irregular words, and with the errors for
irregular words being regularization errors. This pattern of results
was chosen because both MP and KT showed exactly this pattern,
with KT being more severely impaired than MP. Coltheart et al.
(1996) began with a DRC model that was normal at reading
irregular words, regular words, and nonwords. They altered just
one parameter of that model, reducing letter-to-word excitation to
25% of its normal value. The model’s reading accuracy for irreg-
ular words, regular words, and nonwords now fitted the quantita-
tive data from MP very well; reducing letter-to-word excitation
still further, to 21% of its normal value, gave a model whose
reading accuracy for irregular words, regular words, and nonwords
now fitted the quantitative data from the more severe patient, KT,
very well.

Here we take a slightly different approach to the simulation of
surface dyslexia. First, because surface dyslexic patients are typ-
ically tested under unspeeded conditions, we used in our simula-
tions of acquired dyslexia a value of .70 for the minimum phoneme
activation criterion; that value simulates normal unspeeded reading
aloud, whereas a value of .43 simulates speeded reading aloud.
Second, we chose a different lesion site in the DRC model, the
orthographic lexicon itself, rather than the excitatory connections
to it from the letter level (which was the site chosen by Coltheart

et al., 1996, in their preliminary simulation). We did this because
MP was not only surface dyslexic but also surface dysgraphic. In
the version of the DRC model that will be capable not only of
reading but also of spelling (see below for discussion of this
extension of the model), a lesion of the orthographic lexicon
should produce not only surface dyslexia but also surface
dysgraphia.

Thus we are suggesting that both MP’s acquired dyslexia and
her acquired dysgraphia occur because entries in her orthographic
lexicon have become less accessible, that is, more difficult to
activate. Entries in the DRC model’s orthographic lexicon can be
made less excitable by increasing the Frequency Scale parameter.
As in the IAC model, each word in the orthographic lexicon of the
DRC model has a frequency constant associated with it, which
varies in value from zero (for the most common word in the
lexicon) to —1.0 (for the least common word), as we described
earlier. Whenever the activation level of a unit in the orthographic
lexicon is updated, adding this frequency constant is part of the
updating (see Equation 7). The sensitivity of the model to fre-
quency can be varied through the Frequency Scale parameter, by
which the frequency constant is multiplied at each updating. The
larger this Frequency Scale parameter is, the smaller will be the
amount of activation added to the unit’s activation level when the
unit is updated, that is, the less responsive the unit will be to input.
Hence we simulated a decrease in the responsiveness of units in
the orthographic lexicon by increasing the value of the Frequency
Scale parameter from 0.105 (its value in the standard parameter
set) to 0.25.

The data from MP we have simulated are from Behrmann and
Bub (1992, Appendix 1). These are data from a study of MP in
which she was given regular and irregular words of varying
frequencies to read aloud, plus the nonwords from Glushko (1979).
Her performance with these items, and the performance of the
DRC model with its lesioned orthographic lexicon, are shown in
Figure 12. The correspondence between MP’s data and the data
from the lesioned model is extremely close.

More severe cases of surface dyslexia, such as KT (McCarthy &
Warrington, 1986) can be simulated by further increasing the value
of the Frequency Scale parameter, which has the effect of making
the orthographic lexicon even less responsive to input. This is
illustrated in Figure 13, which shows that the larger the value of
this parameter the worse performance is with irregular words. At
all values of this parameter tested, the model made no errors in
reading regular words.

Phonological Dyslexia and the DRC Model

With respect to phonological dyslexia, Coltheart et al. (1996)
successfully simulated an effect seen in some but not all phono-
logical dyslexics (e.g., patient LB of Derouesné & Beauvois, 1985,
and the adult developmental phonological dyslexic studied by
Howard & Best, 1996), namely, that nonwords that are PSHs are
read with greater accuracy than nonpseudohomophonic nonwords
and that this PSH advantage is greater when the PSH is only one

20 Here nonwords would be read as orthographically similar real words.
That is the most common error type seen in the nonword reading of people
with phonological dyslexia.
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Figure 12.  Simulation of the reading of the surface dyslexic patient MP.

letter different from its parent word than when the difference is
greater. Exactly this pattern of results was seen in the nonword
reading of the preliminary version of the DRC model when its
nonlexical route was lesioned. This route moves from left to right
across a letter string at a rate controlled by a parameter that
specifies how many cycles elapse before the next letter in the
string is processed by the nonlexical route. The successful simu-
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Figure 13.  Simulation of surface dyslexia at varying levels of severity by
a DRC mode] with an orthographic lexical lesion.

lation of phonological dyslexia was achieved by increasing this
parameter. We did exactly this with the final version of the DRC
model, increasing the parameter from its standard value of 17
cycles to a value of 27 cycles, and also, as with the simulation of
surface dyslexia, using a phoneme activation criterion of .70 to
simulate unspeeded reading aloud. Figure 14 shows data from the
acquired phonological dyslexic LB (Derouesné & Beauvois, 1985;
the adult developmental phonological dyslexic Melanie-Jane,
Howard & Best, 1996, showed a very similar pattern) and the
nonlexically lesioned DRC model. In all three cases, PSHs yield a
higher level of accuracy than nonpseudohomophonic nonwords,
and the effect is larger when the PSH is an orthographic neighbor
of its parent word than when it is not. The PSH advantage with the
DRC model latencies is significant for the condition in which
PSHs were neighbors of their parent words, x*(1, N = 80) = 3.8,
p = .05, but not significant for the condition in which PSHs were
not neighbors of their parent words; this was also true for Howard
and Best’s case.

Not all phonological dyslexics exhibit this PSH advantage. In
the original study by Beauvois and Derouesné (1979), two pho-
nological dyslexic patients showed this effect, and two did not.
More recently, Berndt, Haendiges, Mitchum, and Wayland (1996)
have reported a study of 11 phonological dyslexic patients in
which the PSH advantage is shown by 6 patients and not by the
other 5. Coltheart (1985) and Derouesné and Beauvois (1985) have
argued that, because the nonword reading route has a number of
distinct processing stages, there will be a number of different ways
in which nonword reading can be impaired, and hence a number of
different forms of phonological dyslexia. We argue that whether a
phonological dyslexic will show a PSH advantage will depend on
the nature of the damage to the nonlexical reading route. In our
simulation, this damage takes the form of abnormally slow oper-
ation of an otherwise intact nonlexical route. This route therefore
produces correct but weak excitation at the phoneme level. For
PSHs, this abnormally weak excitation is boosted by top-down
interactive activation from the entry in the phonological lexicon of
the PSH’s parent word; that is the source of the PSH advantage in
our simulation of phonological dyslexia.

If instead the grapheme-phoneme correspondences themselves
are damaged in the DRC model, the nonlexical route will produce
incorrect rather than weak phoneme activations. In this case, a

09 0.8

X
0.8 Patient LB 0.8 DRC Model
0.7 0.7
0.6 ' 0.6
0.5 X PSHs 05
0.4 0.4 X PSHs

o
0.3 \ 0.3 o

o Controls o Controls
0.2 0.2
01 0.1
1] T | 0 T T
Close Distant Close Distant

Figure 14. Simulation of phonological dyslexia by a DRC model with a
lesion of the nonlexical route: Effects of pseudohomophony and ortho-
graphic similarity to base word.
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PSH will not be able to excite the representation of its parent word
in the phonological lexicon, and so here there will be impaired
nonword reading but no PSH advantage.

A third form of acquired dyslexia, pure alexia or letter-by-letter
reading (Coltheart, 1998) is perhaps worth mentioning here. In this
disorder words are not read aloud by rapid immediate recognition;
instead, reading is slow and arduous, often taking the form of
naming the individual letters of a word from left to right. If all the
letters are correctly named, the patient will then usually be able to
say the whole word. Writing and spelling are typically intact.
Behrmann, Plaut, and Nelson (1998) have discussed how pure
alexia might be explained within the context of the IAC model
(and hence, a fortiori, within the context of the DRC model) in
terms of abnormally weak activation at the level of the letter units,
although there have been as yet no actual simulation studies to
investigate whether pure alexia can be successfully simulated in
this way. :

Future work will be required to determine how successful sim-
ulations of pure alexia by the DRC model will be; it is already
clear that successful simulations of phonological dyslexia and
surface dyslexia by the model have been achieved.

Acquired Dyslexia and the PMSP Model

Both surface and phonological dyslexia have been considered in
the context of the PMSP model. One way to approach such
simulation is to lesion the trained orthography-to-phonology at-
tractor network (which, unlesioned, reads both exception words
and nonwords very well) in order to try to simulate surface
dyslexia. Plaut et al. (1996, pp. 92-94) explored this possibility in
various ways. They were able to simulate the accuracy data from
high- and low-frequency regular and irregular words from the
surface dyslexic MP (Bub, Cancelliere, & Kertesz, 1985), but not
the data from the more severe surface dyslexic KT (McCarthy &
Warrington, 1986).

Hence Plaut et al. (1996) suggested a different approach. The
verbal (i.e., unimplemented) form of their model includes two
pathways from orthography to phonology, the direct orthog-
raphy — phonology (OP) pathway (which they did implement)
and an indirect pathway through semantics, the orthography —
semantics — phonology (OSP) pathway (which has not been
implemented). In relation to the use of these two pathways for
reading aloud, they proposed a division-of-labor hypothesis. Pre-
suming that the OSP pathway would only be able to read words
(because nonwords have no semantic representations), Plaut et al.
argued that

if the semantic pathway contributes significantly to the pronunciation
of words, then the phonological pathway need not master all of the
words by itself. Rather, it will tend to learn best those words high in
frequency, consistency, or both; low-frequency exception words may
never be learned completely . . . readers of equivalent skill may differ
in their division of labor between the two pathways. In fact, if the
semantic pathway continues to improve with additional reading ex-
perience, the phonological pathway would become increasingly spe-
cialized for consistent spelling-sound mappings at the expense of
higher frequency exception words. (p. 91)

Given this division-of-labor hypothesis, explanations of acquired
dyslexia can be approached by the PMSP model. Plaut et al. (1996)
described this as follows:

A new network was trained in the context of an approximation to the
contribution of semantics. Including a full implementation of the
semantic pathway is, of course, beyond the scope of the present work.
Rather, we will characterize this pathway solely in terms of its
influence on the phoneme units within the phonological pathway
... Over the course of training, the magnitude ... of the input to
phoneme units from the (putative) semantic pathway for a given word
was set to be (a function of word frequency). (pp. 95-96)

Surface Dyslexia and the PMSP Model

The division-of-labor hypothesis led to an interpretation of
surface dyslexia as follows: “At any point, brain damage that
impaired or eliminated the semantic pathway would lay bare the
latent inadequacies of the phonological pathway. . . . Surface dys-
lexia . . . seems to involve reading primarily via the phonological
pathway because of an impairment of the semantic route” (Plaut et
al., 1996, p. 92). In the trained division-of-labor network, the
strength of the contribution of semantics to reading is a function of.
training epoch. Early in training, the phonological pathway is
relatively good at reading irregular words—indeed, at around 400
epochs it was essentially perfect with high-frequency irregular
words—but as training proceeds further and further, the phono-
logical pathway becomes worse and worse with irregular words. In
other words, this pathway becomes more and more surface dys-
lexic. After 400 epochs of training, the network’s performance
when it was semantically lesioned was similar to the performance
of the less severe surface dyslexic MP. After 2,000 epochs of
training, its performance when semantically lesioned was similar
to that of the more severe surface dyslexic KT.

This account obviously predicts that all patients with a severe
semantic impairment should be surface dyslexic. However, this is
not the case, as Plaut et al. (1996) acknowledged. Both WLP
(Schwartz, Saffran, & Marin, 1979) and DRN (Cipolotti & War-
rington, 1995) exhibited severe semantic impairments yet very
good reading of irregular words. The account of this offered by
Plaut et al. (1996) was as follows: “By our account, these obser-
vations suggest that, in these individuals, the phonological path-
way had developed a relatively high degree of competence without
assistance from semantics; but this post hoc interpretation clearly
requires some future, independent source of evidence” (p. 99).

Here, Plaut and colleagues (1996) are drawing attention to the
following problem: In order to reconcile the data from WLP and
DRN with the PMSP model’s account of surface dyslexia, they
need to suppose that individual differences in the competence of
the phonological pathway of intact readers are so large that in
some cases that pathway was premorbidly almost perfect at read-
ing irregular words (WLP, DRN), whereas in other cases was poor,
for example, capable of reading only about 70% of low-frequency
irregular words (MP), and in other cases extremely poor, for
example, capable of reading only about 25% of low-frequency
irregular words (KT). That makes their theory unfalsifiable with-
out some independent source of evidence about what the phono-
logical reading pathway might have been like premorbidly in these
patients.

Such evidence is not completely unattainable, however. Accord-
ing to the division-of-labor hypothesis, the more reading experi-
ence a person has, the greater will be the contribution of the
semantic pathway to reading. One might therefore expect that
people with a great deal of reading experience would have pho-
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nological pathways that are rather poor at irregular word reading,
and people who do little reading would have much more compe-
tent phonological pathways. So, for a fixed degree of semantic
impairment, the more premorbid reading experience a person has
had, the more severe their surface dyslexia should be. DRN and
MP are an appropriate comparison here. MP was educated to
secondary level, and her occupation was homemaker. DRN was a
biological scientist with a tertiary education. It would be difficult
not to conclude that DRN had much more experience with reading
than MP. Because both had profound semantic impairments, it
follows that DRN should have been much more surface dyslexic
than MP, given the PMSP model’s analysis of surface dyslexia.
But the reverse was the case: MP had a clear surface dyslexia,
whereas DRN was not surface dyslexic at all.

Plaut (1997) has approached this issue in relation to the patients
DRN, discussed above, and DC (Lambon Ralph, Ellis, & Franklin,
1995), both of whom had semantic impairments but no surface
dyslexia. DC left school at age 14 so is very unlikely to have had
as much reading experience as the biological scientist DRN. Be-
cause neither was surface dyslexic, both must have premorbidly
possessed a nonsemantic pathway for reading that was similarly
good at reading low-frequency exception words, despite the pre-
sumably large difference in their premorbid reading experience.
Simulations of surface dyslexia by removing the semantic input
from a trained feed-forward network showed that relatively good
reading of low-frequency exception words was present if either of
two things had been true when the network was being trained:
(a) Weight decay in the network had a low value, and the strength

of the semantic input during training was high, or
(b) Weight decay in the network was relatively high, and the
strength of the semantic input during training was low.

Plaut (1997) aligned DRN with situation (a) and DC with
situation (b), but this seems quite arbitrary: he gave no justification
for the argument that someone who reads a lot would have a
network with lower levels of weight decay than someone who does
not, and no justification for the argument that someone who reads
a lot would have a network with a higher semantic contribution to
the phonological route than someone who does not. Why isn’t the
reverse just as plausible?

Phonological Dyslexia and the PMSP Model

Plaut et al. (1996) offered the following interpretation of pho-
nological dyslexia in terms of the PMSP model: “Phonological
dyslexia has a natural interpretation within the SM89 framework in
terms of selective damage to the phonological pathway (or perhaps
within phonology itself; see Patterson & Marcel, 1992) so that
reading is accomplished primarily (perhaps even exclusively in
some patients) by the semantic pathway” (p. 92). Our interpreta-
tion is the same: if the route on which nonword reading depends is
damaged at any point after the letter level and before the phoneme
level, words will still be read well, but nonwords will be read
badly. The letter level and the phoneme level are needed for word
reading, so damage at either of those levels would affect word
reading as well as nonword reading, but even here nonwords might
be more affected than words, because interactive support from
orthographic lexicon to letter level, or from phonological lexicon
to phoneme level, would help overcome the difficulties for words
without assisting nonwords.

There is a difference between the two models, however, because
in the DRC model the route on which phonological dyslexics are
presumed to be relying for word reading has been implemented,
whereas it has not been implemented in the PMSP model. Hence
the DRC model (but not the PMSP model) can be used for
quantitative simulation of data from phonological dyslexic pa-
tients, and such simulations have been successful, as we have
reported above.

Our conclusion, then, concerning the simulation of acquired
dyslexia is that the PMSP model has not successfully computa-
tionally simulated anything about phonological dyslexia, whereas
the DRC model has.

As for surface dyslexia, the DRC model has succeeded in a
genuine simulation, whereas the PMSP model cannot do so, be-
cause one needed component of such a simulation, the semantic
route of the model, has not been implemented. To the extent to
which this has been approached, the attempt to explain semantic
impairment without surface dyslexia in patients with very different
levels of premorbid literacy has led the PMSP model into some
rather strange territory. Note that the association and dissociation
between surface dyslexia and semantic impairment is handled very
simply by the DRC model. Damage just to the semantic system
will produce just a semantic impairment without surface dyslexia.
Additional damage that affects the reading system—for example,
damage to the orthographic lexicon, or to its links to the phono-
logical lexicon—will produce semantic impairment accompanied
by surface dyslexia.

Deep Dyslexia

The computational cognitive neuropsychology of reading inves-
tigates whether it is possible to lesion a computational model of the
normal reading system in such a way that the model now makes
reading errors that correspond to the kinds of errors made by
patients with specific forms of acquired dyslexia. We have dis-
cussed in some detail successes achieved in lesioning the DRC
model in a way that make its reading resemble the reading of
people with surface dyslexia (selective impairment of the lexical
route) and in a way that make its reading resemble the reading of
people with phonological dyslexia (selective impairment of the
nonlexical route). We have also mentioned work on a third form of
acquired dyslexia, “pure alexia” (also known as letter-by-letter
reading; see Coltheart, 1998, for a review of this form of acquired
dyslexia); Behrmann et al. (1998) have discussed how pure alexia
might be explained within the context of the IAC model (and
hence, a fortiori, within the context of the DRC model) in terms of
abnormally weak activation at the letter-identification level.

Might this approach also be applied to a fourth kind of acquired
dyslexia, deep dyslexia (Coltheart, Patterson, & Marshall, 1980)?
The characteristic symptoms of deep dyslexia are semantic errors
in reading aloud (ill read as “sick”; bush read as “tree”), visual
errors (sword read as “words”), and morphological errors (fleeing
read as “flee”), particular difficulties in reading abstract words and
function words, and a complete inability to read nonwords. Colt-
heart (1980a) contrasted two possible ways to explain this pattern
of symptoms. One (Morton & Patterson, 1980) was to seek to
show that some specific pattern of impairments of the components
of the normal reading system would generate all of the error types
evident in the reading of deep dyslexia. The other (Coltheart,
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1980a; Saffran, Bogyo, Schwartz, & Marin, 1980) was to argue
that deep dyslexics are reading, not with a damaged version of the
normal reading system, but with a completely different reading
system, located in the right hemisphere.

Subsequent research has provided very strong evidence for this
right-hemisphere interpretation of deep dyslexia. Patterson,
Vargha-Khadem, and Polkey (1989) studied the reading of a
teenage girl who had been acquiring reading at a normal rate until
she developed a brain disease that necessitated removal of her left
cerebral hemisphere when she was 13 years of age. Her reading at
age 15 showed all the symptoms that deep dyslexic patients show.
As Patterson et al. (1989) remarked “the empirical conclusion is
clear: adult deep dyslexics, who may be reading with the right
hemisphere, and N.I., who must be reading with the right hemi-
sphere, are strikingly similar” (p. 56). Michel, Henaff, & Intrilli-
gator (1996) reported the case of AC, a 23-year-old college student
who suffered a lesion of the posterior part of the corpus callosum,
impairing communication between the two hemispheres. His read-
ing was tested by briefly presenting words and nonwords to the left
or right visual hemifields. With right-hemifield (left-hemisphere)
presentation, no abnormalities in his reading were detected. With
left-hemifield (right-hemisphere) presentation, his reading showed
the symptoms of deep dyslexia. Weekes, Coltheart, & Gordon
(1997) reported data from a brain-imaging study of a deep dyslexic
patient, a surface dyslexic patient, and two normal controls that
show that in a visual word recognition task there was more
activation of the right hemisphere than the left for the deep
dyslexic patient but not for the other three. Finally, Coltheart
(2000) has argued that the data from another brain-imaging study
of deep dyslexia (Price et al., 1998) also supports the right-
hemisphere interpretation of deep dyslexic reading.

In the work on surface dyslexia, phonological dyslexia, and pure
alexia discussed above, the idea has been that someone with
acquired dyslexia is reading using a damaged form of the normal
reading system (this system being located in the left hemi-
sphere)—that is, the normal system but with one or more of its
boxes or arrows damaged or deleted. Within cognitive neuropsy-
chology, this is known as the assumption of subtractivity (Saffran,
1982; Caramazza, 1984), the assumption that brain damage does
not add to, but only subtracts from, functional architectures of
cognitive systems. That assumption needs to hold for a patient with
acquired dyslexia if studies of that patient are to tell us anything
about the normal reading system. It appears to hold for surface
dyslexics, phonological dyslexics, and pure alexics, but not for
deep dyslexics. If so, it is fruitless to seek to interpret deep
dyslexia in relation to a model of the normal reading system, and
thus fruitless to seek to simulate it by lesioning the DRC model,
even though this is a fruitful enterprise in relation to the other three
forms of acquired dyslexia. So the explanation of any symptom of
deep dyslexia is outside the scope of the DRC model, even such
intriguing symptoms as the occurrence of a PSH effect in lexical
decision in deep dyslexic readers who cannot succeed in reading
aloud any nonwords at all (Buchanan, Hildebrandt, & MacKinnon,
1994).2!

Learning to Read and Developmental Dyslexia

Because the DRC model is not developed through any kind of
learning algorithm, for reasons we explained earlier, it has nothing

to say about the actual process of learning to read. Nevertheless, it
does offer a perspective on learning to read and developmental
dyslexia. A child in the process of learning to read is a child in the
process of acquiring the reading system whose architecture is
shown in Figure 7. An impairment in learning to read could be an
impairment in acquiring any one component of this architecture.

For example, some children might be acquiring the components
of the lexical route at a normal rate, but be having difficulty with
one or more components of the nonlexical route. Such children
would have a selective difficulty in reading nonwords aloud. This
is developmental phonological dyslexia, and it has been docu-
mented in various single case studies and group studies (Broom &
Doctor, 1995; Campbell & Butterworth, 1985; Castles & Colt-
heart, 1993; Cestnick & Coltheart, 1999; Manis, Seidenberg, Dot,
McBride-Chang, & Petersen, 1996; Snowling & Hulme, 1989;
Snowling, Stackhouse, & Rack, 1986; Temple, 1984, 1997; Tem-
ple & Marshall, 1983).

Other children might be acquiring the components of the non-
lexical route at a normal rate, but be having difficulty with one or
more of the components of the lexical route. Such children would
have a selective difficulty in reading irregular words aloud. This is
developmental surface dyslexia, and it too has been documented in
various single case studies and group studies (Broom & Doctor,
1995; Castles & Coltheart, 1993, 1996; Cestnick & Coltheart,
1999; Coltheart, Byng, Masterson, Prior, & Riddoch, 1983; Gou-
landris & Snowling, 1991; Hanley, Hastie, & Kay, 1992; Holmes,
1973, 1978; Job, Sartori, Masterson, & Coltheart, 1984; Manis et
al., 1996; Temple, 1984, 1997).

The occurrence of these two broad subtypes of developmental
dyslexia provides support for the view that the dual-route theory of
reading of which the DRC model is a computational realization is
useful as a framework for accounting not only for skilied reading
but also for learning to read and developmental dyslexia.

Further support for this view is provided by quantitative studies
of the prediction of accuracy of reading regular words in samples
of young normal readers and dyslexic and brain-damaged children
(Coiltheart, Dufty, & Bates, 2000). In this work various data sets in
which children read regular words, irregular words, and nonwords
were analyzed. According to the dual-route framework, although
there are three variables being measured here, there are only two
underlying processes controlling the reading-aloud performance,
the lexical reading procedure and the nonlexical reading proce-
dure. It should therefore be possible to predict scores on any one
of the reading tasks from scores on the other two. For example,
percent correct on reading irregular words is a direct estimate of
the competence of the lexical route, and percent correct on reading
nonwords is a direct estimate of the competence of the nonlexical
route. Because according to dual-route theory a regular word will
be read correctly if either route succeeds, the proportion correct for
regular words should be predictable from the proportions correct
on irregular words and nonwords by the following equation:

P(reg) = P(irreg) + (1 — P(irreg)) X P(nwd) €3]

2! Note that these authors explicitly comment that “The Right Hemi-
sphere hypothesis can, however, accommodate the present findings since
one need only claim that the right hemisphere is capable of implicit
translation of orthography to phonology but is incapable of explicitly
accessing that information” (Buchanan et al., 1994, p. 174).
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Coltheart et al. (2000) applied this equation to eight data sets in
which reading accuracy for regular and irregular words and non-
words was measured in children aged 7 to 15. Some of these
samples were normal readers, some were dyslexic, and one was a
sample of children who had suffered strokes. In all of these eight
samples, the correlations between predicted and obtained accuracy
of regular word reading were uniformly and remarkably high,
ranging from .825 to .980. Figure 15 shows a plot of predicted
versus obtained accuracy of regular word reading for the entire set
of 1,488 children. The correlation between predicted and observed
regular word reading accuracy here is +0.921.

So although the dual-route framework is not a model of learning
to read, it works well as a means of characterizing what a normal
or dyslexic child has so far learned at any particular point in time
during the course of learning to read. If that is entirely so, then the
correlation between predicted and obtained regular word reading
accuracy should be just as high for the youngest children in this
sample as for the oldest. This turned out to be the case: the
correlation was +.84 for the 7-year-olds and +.78 for the
15-year-olds.

This suggests that even very young or very poor readers do not
have reading systems with architectures radically different from
that shown in Figure 7. Instead, their reading systems are scaled-
down versions of the dual-route system that the skilled adult reader
uses.

Is the DRC Model Falsifiable?

Occasionally we have heard doubts expressed about the falsifi-
ability of the DRC model. One way in which these doubts might
be expressed is to argue that a model with such a large number of
parameters can explain everything, and to explain everything is to
explain nothing. We have four points to make here.

0.9
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0.6
0.5
0.4

0.3+

Obtained regular-word accuracy

0.24

0.1

Predicted regular-word accuracy

Figure 15. Prediction from dual-route theory of regular word reading
accuracy from accuracy of reading irregular words and nonwords, in a
sample of 1,488 children aged 814 years (some normal readers, some
developmentally dyslexic, some with brain damage).

(@) 1tis true that a mathematical model with 31 parameters can fit
perfectly an extremely complex data set—any empirical func-
tion with up to 31 points in it. But that point is not relevant to
the DRC model. The parameters of mathematical models are
generally uninterpreted, whereas each parameter of the DRC
model has a specific meaning. In mathematical modeling, the
modeler is free to choose how many parameters to use to fit the
data, but that is not so for DRC modeling. The number of
parameters is dictated by the architecture of the model; given
the architecture, the model cannot have fewer than, or more
than, 31 parameters.

(b) Fitting the DRC model to data is not an exercise in parameter
estimation. As we have emphasized at various points in this
article, what we did is to find a set of parameters that fitted one
set of human data on reading aloud, and then showed that
numerous other data sets were also well fitted by the model
without changing any parameter. Here, for all but the initial
data set, the model does not have 31 free parameters; on the
contrary, it has no free parameters. Then we made a single—
and rationally justified—change to this parameter set (reduc-
ing the strength of letter-to-word inhibition) and showed that
human data from lexical decision tasks were well-simulated by
the DRC model when it was performing the visual lexical
decision task.

(c) In the claim, “the model can explain everything,” what is
meant by “everything”? If it means “everything we currently
know about reading aloud and visual lexical decision,” then
this can scarcely be taken as a criticism of the model. If instead
it means “all logically possible outcomes of experiments on
reading aloud and visual lexical decision,” then the claim is
false. There are many possible outcomes of such experiments
that would conflict with predictions from the model. Some of
these outcomes could be dealt with by minor or major modi-
fications of the model. For example, suppose Rastle and Colt-
heart (1999b) had found that the size of the regularity advan-
tage in reading aloud was independent of the position in an
irregular word of its irregular grapheme-phoneme correspon-
dence. That refutes the idea that the nonlexical GPC route
operates left to right, but it does not refute the idea that there
is a nonlexical route that uses GPC rules.

Here, one could seek to build a new version of the DRC
model in which the nonlexical route operates in parailel across
the letters of the input string. Other logically possible out-
comes of experiments would, however, refute the DRC model
entirely. For example, there is no parameter set, and o version
of the model, that could yield faster reading aloud of irregular
words than regular words, or faster reading aloud of nonwords
than regular words. Another outcome that would refute the
model would be to find that when body consistency, as defined
by Glushko (1979), is taken into account, regularity has no
effect on reading aloud. Such an experiment would use regular
and irregular words matched for body consistency (and of
course other relevant factors). One way to do that is to use
words that have unique bodies; all such words have an equal
degree of body consistency. Thus if body consistency and not
regularity were the critical factor here, irregular words like
yacht and waltz would be no slower to read aloud than regular
words like blitz or gauze. That result would refute any model
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that proposes that there exists a reading route that uses GPC
rules.

(d) As we discussed earlier, a word like chef will be regularized by
the DRC model if the GPC route is too active, whereas a
nonword like starn will be lexicalized by the model if the GPC
route is not active enough. If the DRC model were unfalsifi-
able, we would have known in advance that there would be a
value for the level of activity for the GPC route that is low
enough to avoid regularization errors for first-position irregu-
lar words like chef yet also high enough to avoid lexicalization
errors for nonwords with last-position neighbors, such as
starn. We did not know this; on the contrary, we went through
a very large number of parameter sets that erred with chef or
else erred with starn until we eventually located a region in
parameter space for which both items were read correctly.

These are some of our reasons for rejecting the claim that the
DRC model is unfalsifiable.

The history of the logogen model that we recounted earlier in
this article is relevant to this issue of falsification. As we explained
above, the original version of the logogen model, shown in Figure
4(a), predicted that picture naming should prime word reading at
relatively long intervals, and this turned out not to be the case. So
a new model was developed that was consistent with these priming
data; that is the model shown in Figure 4(b). Was this a falsifica-
tion of the logogen model? No, the correct way of describing what
happened was that a logogen model was falsified, the model shown
in Figure 4(a). The Figure 4(b) model is also a logogen model. The
term “logogen model” refers to a class of models, to which all of
the models in Figure 4 belong. Is this whole class of models
falsifiable, or only specific examples from the class? Because the
class has certain defining properties, such that processing is thresh-
olded rather than cascaded, the class itself is falsifiable: evidence
that processing is cascaded rather than thresholded would falsify
the whole class. We think that this is in fact the case. As explained
earlier, consistency effects on nonword reading aloud appear to be
mediated through the lexical route, but nonwords could not get to
phonology through the lexical route if processing in the visual
word recognition system were thresholded, because that system
would yield no output if the input were a nonword.

One can view the DRC model as a class of models, a falsifiable
class, in just the same way. Any exemplar from this class can be
false just because its parameter set is wrong, a change in the
parameters might be all that is needed to reconcile it with all
available data. Or the exemplar might be rather more seriously
wrong at an architectural level; for example, data might be col-
lected that show that orthographic word bodies influence nonword
reading independently of graphemes. A new version of the DRC
model in which the nonlexical route used nonlexical orthography-
to-phonology rules that operated at the body level as well as rules
operating at the grapheme level might succeed in simulating the
new data. If so, the new data would falsify one exemplar of, but not
the whole class of, DRC models. But the whole class itself is
falsifiable, just like the whole class of logogen models, as we have
shown in point {(c¢) above.

The Issue of Model Complexity

Suppose that the DRC model and one of the other computational
models discussed here turned out to have exactly equal explana-

tory capacity—all the effects that the DRC model could simulate
could be simulated by the other model, and vice versa. Because
here the data do not discriminate between the two models, how
might we choose which model to favor? Jacobs and Grainger
(1994) proposed the criterion of model simplicity, described how
this can be evaluated, and suggested that when two models have
equal observational adequacy, what we should do is choose the
simpler one.

That is certainly a defensible methodology, but we take a
different methodological stance, namely, that when two models
have equal observational adequacy, what we should do is collect
more data with the aim of discriminating between the two theories.
Unless the two models are only notational variants of each other,
it will be possible to devise experiments about whose outcomes the
two models make different predictions. When these experiments
are done, it might be the simpler model that makes the correct
predictions, or it might be the more complex. Our preference is to
use the ability to make correct predictions, rather than the criterion
of simplicity, as the basis for preferring one model over another.

Future Developments

Spelling to Dictation and Auditory Lexical Decision

Reading aloud by the DRC model begins with activation of a
letter string’s representation at the visual feature level and ends
with activation of that letter string’s representation at the phoneme
level. However, because the model is an interactive one, activation
of a letter string’s representation at any level of the model will
eventually create activation of its representation at all other appro-
priate levels. Thus turning on the phonemes representing the
correct pronunciation of any word or nonword will lead to the
activation of the letter units representing the spelling of that word
or nonword, and that amounts to the task of spelling to dictation.

This is not quite so with the version of the model we have
described so far, however. In this model, there is feedback from the
phoneme level to the letter level on the lexical route, but not on the
nonlexical route. So the model could spell words to dictation, but
not nonwords. Currently we are adding a phoneme-grapheme
correspondence (PGC) rule system to the model; in this version of
the model, there is both lexical and nonlexical activation from
phoneme level to letter level. This will allow the model to spell
regular words, irregular words, and nonwords.

Just adding a PGC system, however, is insufficient. If one
attempts to simulate spelling to dictation by turning on the appro-
priate phoneme units and awaiting activation of corresponding
letter units, what can happen is that activations of the phoneme
units representing the stimulus decline to zero before adequate
activation of the letter units occurs. This is because there is
interactive activation between phonological lexicon and phoneme
level. This interactive activation can sometimes switch phoneme
units off. That is why the communication from visual feature level
to letter level in the IAC model, and hence in the DRC model, is
one-way. There is no feedback from letters to the feature level, so
nothing can turn feature units off; once they are turned on, they are
effectively clamped on. If spelling to dictation is to be possible by
the model, there has to be a similar arrangement at the phoneme
level. Hence we have implemented a phonetic feature level that has
excitatory and inhibitory links to the phoneme level, but receives
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no input from that level. The spelling-to-dictation task is carried
out by initially activating the sets of phonetic feature units corre-
sponding to the phoneme string to be spelled. These units will
remain on, and spelling will have been achieved when units at the
letter level have reached an adequate level of activation.

This will allow us to explore simulation of acquired dysgraphias
such as surface dysgraphia (Weekes & Coltheart, 1996), a selec-
tive difficulty in spelling irregular words with relative preservation
of nonword spelling, and phonological dysgraphia (Shallice,
1981), a selective difficulty in spelling nonwords to dictation with
relative preservation of word spelling. We will also be able to
explore various results that implicate feedback interactions from
phonemic to orthographic levels. One of these is the orthographic
effect on auditory rhyme judgments reported by Seidenberg and
Tanenhaus (1979). A second is the feedback inconsistency effect
in lexical decision and naming (Ziegler, Montant, & Jacobs, 1997).
A third is the effect reported by Lesch & Pollatsek (1998). The task
in their experiment was to judge whether two printed words were
semantically related; they found that readers were slower to re-
spond NO to items like pillow bead than to items like pitlow bend.
The point here is that although bead is not 2 homophone of “bed,”
nor is it pronounced “bed” by the nonlexical route of a dual-route
model, there are words such as sead or dead in which the segment
ead is pronounced /ed/. A DRC model with both lexical and
nonlexical feedback from phoneme to letter level should be capa-
ble of simulating this effect, as follows. The word bead will excite
a number of neighbors such as head and dead in the orthographic
lexicon, hence activating their entries in the phonological lexicon
and hence activating the phoneme /e/ in the second position and
the phoneme /d/ in the third; the phonemes /b/ in the first position
and /d/ in the third will have been activated through the ortho-
graphic and phonological lexical entries for the actual stimulus
bead. Because all of the phonemes for the word “bed” will be
active at the phoneme level, the excitatory links from phonemes to
phonological lexicon will activate the phonological lexical entry
for “bed” and hence its semantics. Further access to the semantics
of “bed” will be provided by activation of the letters e in the
second position and d in the third position through the PGC rule
route applied to the phonemes /e/ in the second position and /d/ in
the third, and these letter activations will contribute activation to
the bed entry in the orthographic lexicon. That explanation is well
supported by the finding of Lesch and Pollatsek (1998, p. 578) that
the more orthographic neighbors of the false homophone (here
bead) there are that support the pronunciation of the semantically
related item (here bed), the longer the NO latency is.

The DRC model extended in this way will also be able to
perform the auditory lexical decision task, applying to the activa-
tion of the phonological lexicon the decision criteria described
earlier in connection with the model’s performance of the visual
lexical decision task.

Polysyllabic Words

All of the current computational models of reading English,
including the DRC model, are restricted to the processing of
monosyllabic stimuli.?? The problems encountered when items of
more than one syllable are considered are numerous; when such
items are considered, one is forced to develop hypotheses about
how a nonlexical procedure for translating from orthography to

phonology could accomplish the placement of stress and the re-
duction of vowels. These problems have been underrepresented in
the psycholinguistic literature and virtually ignored in modeling
reading.

If a dual-route model is to be applied to polysyllabic word
reading, then it must be shown how the nonlexical route deals with
the difficulties encountered when these words are considered.
What are the nonlexical rules for assigning stress and reducing
vowels? If such a set of rules can be identified, then it seems clear
that some words would follow those rules and other words would
not, and thus a stress regularity effect may emerge in reading
aloud.

The approach adopted by Rastle and Coltheart (2000a) to de-
veloping a set of ruies for the nonlexical route was based on the
work of Garde (1968) and the more recent work of Fudge (1984),
who took the view that certain orthographic patterns may function
as morphemes, and these morphemes may influence the placement
of stress. Rastle and Coltheart (2000a) thus designed an algorithm
that searches a letter string for the presence of a possible affix and
computes phonology, assigns stress, and reduces vowels according
to a series of rules. Because this algorithm is meant to function as
a nonlexical route, it can be applied to nonword reading.

Rastle and Coltheart (2000a) found that the algorithm that they
developed predicted the assignment of stress to disyllabic non-
words well when tested against a group of human readers. More-
over, when they classified words as irregularly or regularly
stressed on the basis of the algorithm, they found that those items
classified as irregularly stressed were named more slowly than
those items classified as regularly stressed, particularly if they
were of low frequency.

Potential Problems for the DRC Model

Masked Phonological Priming Effects

With various masking paradigms, evidence has been reported
that phonological properties of very briefly presented stimuli can
affect performance in reading aloud and lexical decision tasks.
Perfetti and Bell (1991) and Perfetti, Bell, and Delaney (1988)
investigated report of a target presented very briefly (for, say,
between 35 and 55 ms) and followed by a brief backward mask (a
letter string) and then a pattern mask. They found that target report
was more accurate when the mask that immediately followed the
target was phonologically identical to it (blue BLOO XXXX) in
comparison with an orthographically related control condition
(blue BLAR XXXX). Using a different kind of masking design,
Lukatela, Frost, and Tarvey (1998) reported that when a prime was
briefly presented and then backward-masked by a subsequent
target word, lexical decision to the target word was faster when the
prime was a PSH of the target (KLIP clip) than when it was a
matched control (PLIP clip).

Both types of study thus suggest that a phonological represen-
tation of a letter string (the target in one case, the prime in the
other) is available very early because these letter strings were
presented so briefly. We have already discussed how and why

22 See Ans, Carbonnel, and Valdois (1998) for a computational model of
reading French that considers the issue of reading polysyllabic words.
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early activation of phonological information occurs with the DRC
model, so evidence of such activation is not intrinsically problem-
atical for the DRC model, However, whether the model could
actually simulate these effects needs to be investigated, and this
cannot be done at the moment because the model lacks an adequate
account of how masking occurs—that is, an account of how one

" briefly presented letter string is influenced by, and influences, a
subsequent briefly presented letter string. The only account of
masking offered by the model involves residual activation from the
first string affecting the processing of the second string—that is
how the onset effect was explained—but there is certainly more to
masking than just this mechanism.

Even if the DRC model were extended by adding to it a
computational model of backward and forward masking, however,
there currently exist some difficulties concerning exactly what the
effects are that would need to be simulated. This is so for both
of the masking paradigms discussed above. For example, both
Brysbaert and Praet (1992) and Verstaen, Humphreys, Olson, and
&’ Ydewalle (1995) found that the effect of phonological identity of
a backward mask on report of a target—the phenomenon investi-
gated by Perfetti and colleagues (1988)—only occurs when a very
large percentage of the trials involve phonological identity of
target to mask, or when the experimental situation encourages in
other ways the use of phonological information. Without such
encouragement, the phonological priming effect does not occur.
Hence this effect cannot be due to there always being rapid
automatic phonological encoding of briefly presented letter
strings; and indeed Verstaen et al. (1995) expressed serious doubts
about the relevance of this paradigm to normal reading processes:
“Qur study shows that a particular reading strategy may be adopted
in the backward masking paradigm, favouring phonemic effects.
Since the orthographically determined process of word recognition
is highly vulnerable to the effects of backward masking, subjects
are encouraged to use a phonological procedure that is relatively
invulnerable to the effects of pattern masking. Therefore it is not
justified to claim that phonological information is always used in
word identification on the basis of phonemic effects in backward
masking” (pp. 351-352).

With respect to the klip CLIP effect referred to above, Lukatela,
Frost, and Turvey (1998, Footnote 2) observed “For unknown
reasons, the dim lighting proves to be crucial. Pilot work failed to
find any differences, at very brief prime durations, among full and
partial phonological primes under the conditions of high illumina-
tion in our research room which had previously served as an office.
It was only by reducing the room illumination to that provided by
a single desk lamp at floor level that we could obtain reliable
priming differences.” However, Lukatela, Frost, and Turvey
(1999) reported that masked identity priming was greater for
consistent words such as bent than for inconsistent words such as
bowl, an effect they ascribed to phonological processing of the
brief prime—yet this experiment was done “in a well-lit room”
(Lukatela et al., 1999, p. 778). It seems essential to discover what
the unknown reasons are for the need to have very dim lighting to
obtain the klip CLIP effect before one would attempt to simulate
this result. The situation is made even more complicated by a
finding reported by Lukatela and Turvey (2000), namely, that
masked priming by a PSH did not occur when PSH primes differed
from targets by their vowel spellings (e.g., NAIM-name) but did
when they differed in consonant spellings (e.g., KLIP-clip)—

indeed, in their Experiments 2 and 3 the vowel PSHs actually
slowed target processing.

Hence the implementation of a computational account of mask-
ing effects in the DRC model would need to be accompanied by
considerable further empirical work on masked phonological prim-
ing to establish exactly what the effects are that need to be
simulated.

Orthographic Bodies and Consistency

We have argued that there is not yet any convincing evidence
that the orthographic body is a level of representation in the human
reading system, but many authors (e.g., Taft, 1991) do consider
that this is so, and convincing evidence may well emerge. If it
does, then the DRC model in its present form will have been
refuted. Modification of the model, however, might not be diffi-
cult. One obvious modification would be to relax the requirement
that the nonlexical rules operate only with graphemes and pho-
nemes and to add to the rule set a set of body-to-rime rules, and
perhaps also a set of head-to-onset rules. Such a model would still
be a dual-route model in that it would still possess lexical and
nonlexical procedures for reading aloud.

Lexical Decision

The procedure by which the DRC model makes lexical deci-
sions is still extremely crude, particularly with respect to NO
decisions, the latencies of which can at present have only two
possible values: the default value, or the extended value adopted
when overall orthographic activation is high early in processing.
This coarseness may well prevent the model from being capable of
simulating some subtle effects on lexical decision NO responses. A
more continuous procedure, whereby the deadline for NO respond-
ing is adjusted afresh on each cycle rather than just on one
occasion, may turn out to be needed.

Amount of Variance of Word Naming Latencies
Accounted for by the DRC Model

As shown earlier, this is disappointingly low (especially when
compared with the amount of variance of nonword naming laten-
cies accounted for), although statistically significant and no worse
than it is with the other two computational models we have
discussed. Because the problem is specific to words, it must
presumably be caused by an inadequacy of some part of the model
that is specific to words (so not caused, e.g., by the choice of
representational scheme for letters or for phonemes). Perhaps the
simple system by which the letter level is connected to the ortho--
graphic lexicon is at fault; one possibility worth exploring is the
insertion of an intermediate level of representation, perhaps ortho-
graphic heads and bodies as advocated by Taft (1991). Computa-
tionally, this is perfectly feasible and easily evaluated, but does it
substantially increase the amount of variance of word naming
latencies accounted for?

Polysyllabic Words

As described above, Rastle and Coltheart (2000a) have done
some preliminary work relevant to extending the DRC model
beyond the monosyllable, but much more work needs to be done
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in this domain, and many potential problems are evident. For
example, how might we reconcile the nonlexical stress-assignment
algorithm proposed by Rastle and Coltheart (2000a)—which
makes use, in part, of the ends of words—with a nonlexical system
that operates serially? The representation of lexical stress in the
model may also cause difficulty: in particular, should stress be
stored in each phonological lexical entry, or should segmental and
suprasegmental information be stored separately?

Conclusions

The model of visual word recognition and reading aloud we
have described in this article is the most recent development in a
modeling endeavor that began more than a century ago, with the
19th-century cognitive neuropsychologists who believed that the
language-processing system was best modeled in terms of a mul-
ticomponent modular cognitive information-processing system
that included not only a semantic system but also lexicons, mod-
ules containing word-specific local representations. This approach
languished in the first half of the 20th century, but was revived by
Morton and Treisman in the 1960s. Morton went on to develop a
detailed version of his logogen model that dealt with visual word
recognition, auditory word recognition, spelling, and spoken word
production. A generalization of this model—one that was not tied
specifically to the concept of the logogen—was offered by various
authors in the 1980s (e.g., Ellis & Young, 1988; Harris & Colt-
heart, 1986; Patterson & Shewell, 1987).

The first step toward making this model computational was
taken by McClelland and Rumelhart (1981) because their IAC
model was a computational realization of the part of the model that
dealt with visual word recognition; subsequently Jacobs and
Grainger (1992) and Grainger and Jacobs (1996) developed the
IAC model of visual word recognition further, as did Coltheart et
al. (1993), whose DRC model envisaged an IAC-style model for
handling visual word recognition plus a phonological lexicon and
a nonlexical GPC route to handle reading aloud. The DRC model
described by Rastle and Coltheart (1999a, 1999b) and in this
article is the complete version of that model.

To evaluate DRC’s worth as a model of visual word recognition
and reading aloud, we selected a variety of basic effects observed
in studies of lexical decision and reading aloud, and investigated
the ability of the model to simulate these effects. The effects that
were successfully simulated are as follows:

Reading Aloud
1. Frequency effect
2. Lexicality effect
3. Regularity effect
4. Interaction of regularity with frequency
5. Interaction of regularity with position of irregularity
6. Consistency effect
7. Pseudohomophony effect
8. Base word frequency effect on pseudohomophone reading
9. Absence of N effect on pseudohomophone reading
10. Presence of N effect on nonword reading
11. Whammy effect
12. Strategy effects
13. Homophone and pseudohomophone priming
14. Repetition priming
15. Onset effect in masked form priming

16. Triple interaction between regularity, frequency, and
repetition

17. Length effect

18. Interaction between lexicality and letter length

Lexical Decision

1. Word frequency effect

2. Pseudohomophone effect

3. Interaction between pseudohomophone effect and ortho-
graphic similarity

4. N effect on NO responding

5. Interaction between N and frequency on YES responding

Acquired Dyslexias

1. Quantitative simulation of exception word, regular word,
and nonword reading in surface dyslexia, and of the effect of
frequency on surface dyslexic reading of exception words.

2. Quantitative simulation of the interaction between pseudo-
homophony and orthographic similarity in phonological dyslexia.

Other Effects

1. Stroop effect and its interaction with position of overlap

2. Prediction of regular-word reading accuracy from accuracy
exception-word and nonword reading in normal, dyslexic, and
brain-damaged children

We have already mentioned that no other computational modet

of reading can simulate both the reading-aloud task and the lexical
decision task; the DRC model does well with both kinds of
simulation. Moreover, even if we confine our attention just to the
reading-aloud task, the set of phenomena that the DRC modei can
simulate is much larger than the set that any other current com-
putational model of reading aloud can simulate; and, to the best of
our knowledge, there is no effect seen in reading aloud that any of
these other models can simulate but that the DRC model cannot.
We suggest, therefore, that the DRC model is the most successful
of current computational models of reading.
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