CHAPTER 1 5

Interactive Processes in
Speech Perception: The TRACE Model

J. L. McCLELLAND and J. L. ELMAN

Consider the perception of the phoneme /g/ in the sentence She
received a valuable gift. There are a large number of cues in this sen-
tence to the identity of this phoneme. First, there are the acoustic cues
to the identity of the /g/ itself. Second, the other phonemes in the
same word provide another source of cues, for if we know the rest of
the phonemes in this word, there are only a few phonemes that can
form a word with them. Third, the semantic and syntactic context
further constrain the possible words that might occur, and thus limit
still further the possible interpretation of the first phoneme in gift.

There is ample evidence that all of these different sources of infor-
mation are used in recognizing words and the phonemes they contain.
Indeed, as R. A. Cole and Rudnicky (1983) have recently noted, these
basic facts were described in early experiments by Bagley (1900) over
80 years ago. Cole and Rudnicky point out that recent work (which we
consider in detail below) has added clarity and detail to these basic
findings but has not lead to a theoretical synthesis that provides a satis-
factory account of these and many other basic aspects of speech
perception.

In this chapter, we describe a model that grew out of the view that
the interactive activation processes that can be implemented in PDP
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models provide a natural way to capture the integration of multiple
sources of information in speech perception. This view was based on
the earlier success of the interactive activation model of word percep-
tion (McClelland & Rumelhart, 1981; Rumelhart & McClelland, 1982)
in accounting for integration of multiple sources of information in
recognizing letters in words.

In attempting to apply the ideas embodied in the interactive activa-
tion model of word perception to speech, it soon became apparent that
speech provided many challenges. The model we have come up with,
the TRACE model, is a response to many of these challenges and
demonstrates how they can be met within the PDP framework. After
we developed the model, we discovered many aspects of its behavior
that are consistent with facts about speech. Thus, we were gratified to
discover that the search for a mechanism that was sufficient to meet
many of the challenges also lead to a model that provided quite close
accounts of a number of basic aspects of the literature on speech per-
ception.

In what follows, we begin by reviewing several facts about speech
that played a role in shaping the specific assumptions embodied in
TRACE. We then describe the structure of the TRACE model and the
salient features of the two versions we have developed to handle dif-
ferent aspects of the simulations. Following this, we describe how the
model accounts for a considerable body of psychological data and meets
some of the computational challenges facing mechanisms of speech per-
ception. The discussion section considers some reasons for the success
of the model, explains its limitations, and indicates how we plan to
overcome these in future work.

SOME IMPORTANT FACTS ABOUT SPEECH

Our intention here is not to provide an extensive survey of the
nature of speech, but rather to point to several fundamental aspects of
speech that have played important roles in the development of the
TRACE model. A very useful discussion of several of these points is
available in Klatt (1980).

Temporal Nature of the Speech Stimulus

It does not, of course, take a scientist to observe one fundamental
characteristic of speech: It is a signal that is extended in time. This
differentiates speech perception from most other perceptual applications
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of PDP models, which have generally been concerned with visual
stimulj.

The sequential nature of speech poses problems for the modeling of
contextual influences, in that to account for context effects, it is neces-
sary to keep a record of the context. It would be a simple matter to
process speech if each successive portion of the speech input were pro-
cessed independently of all of the others, but, in fact, this is clearly not
the case. The presence of context effects in speech perception requires
a mechanism that keeps some record of that context, in a form that
allows it to influence the interpretation of subsequent input.

Left and Right Context Effects

A further point, and one that has been much neglected in certain
models, is that it is not only prior context, but also subsequent context,
that influences perception. (This and related points have recently been
made by Grosjean & Gee, 1984: Salasoo & Pisoni, 1985; and Thomp-
son, 1984). For example, Ganong (1980) reported that the identifica-
tion of a syllable-initial speech sound that was constructed to be
between /g/ and /k/ was influenced by whether the rest of the syllable
was /Is/ (as in kiss) or /ift/ (as in gif). Such right context effects
(Thompson, 1984) indicate that the perception of what comes in now
both influences and is influenced by the perception of what comes in
later. This fact suggests that the record of what has already been
presented cannot be a static representation but should remain in a
malleable form, subject to alteration as a result of influences arising
from subsequent input.

Lack of Boundaries and Temporal Overlap

A third fundamental point about speech is that the cues to successive
units of speech frequently overlap in time. The problem is particularly
severe at the phoneme level. A glance at a schematic speech spectro-
gram (Figure 1) clearly illustrates this problem. There are no separable
packets of information in the spectrogram like the separate feature bun-
dles that make up letters in printed words.

Because of the overlap of successive phonemes, it is difficult, and we
believe counterproductive, to try to divide the speech stream up into
separate phoneme units in advance of identifying the units. A number
of other researchers (e.g., Fowler, 1984; Klatt, 1980) have made much
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FIGURE 1. A schematic spectrogram for the syllable bag, indicating the overlap of the
information specifying the different phonemes. (From "The Grammars of Speech and
Language” by A. M. Liberman, 1970, Cognitive Psychology, 1, p. 309. Copyright 1970 by
Academic Press, Inc. Reprinted by permission.)

the same point. A superior approach seems to be to allow the phoneme
identification process to examine the speech stream for characteristic
patterns, without first segmenting the steam into separate units.

The problem of overlap is less severe for words than for phonemes,
but it does not go away completely. In rapid speech, words run into
each other, and there are no pauses between words. To be sure, there
are often cues that signal the locations of boundaries between words—
stop consonants are generally aspirated at the beginnings of stressed
words in English, and word initial vowels are generally preceeded by
glottal stops, for example. These cues have been studied by a number
of investigators, particularly Lehiste (e.g., Lehiste, 1960, 1964) and
Nakatani and collaborators. Nakatani and Dukes (1977) demonstrated
that perceivers exploit some of these cues, but found that certain utter-
ances do not provide sufficient cues to word boundaries to permit reli-
able perception of the intended utterance. Speech errors often involve
errors of word segmentation (Bond & Garnes, 1980), and certain seg-
mentation decisions are easily influenced by contextual factors (R. A.
Cole & Jakimik, 1980). Thus, it is clear that word recognition cannot
count on an accurate segmentation of the phoneme stream into separate
word units, and in many cases such a segmentation would perforce
exclude from one of the words a shared segment that is doing double
duty in each of two successive words.



62  PSYCHOLOGICAL PROCESSES

Context Sensitivity of Cues

A fourth major fact about speech is that the cues for a particular unit
vary considerably with the context in which they occur. For example,
the transition of the second formant carries a great deal of information
about the identity of the stop consonant /b/ in Figure 1, but that for-
mant would look quite different had the syllable been big or bog instead
of bag. Thus, the context in which a phoneme occurs restructures the
cues to the identity of that phoneme (Liberman, 1970).

Not only are the cues for each phoneme dramatically affected by
preceding and following context, they are also altered by more global
factors such as rate of speech (J. L. Miller, 1981), by morphological
and prosodic factors such as position in the word and in the stress con-
tour of the utterance, and by characteristics of the speaker such as size
and shape of the vocal tract, fundamental frequency of the speaking
voice, and dialectical variations (see Klatt, 1980, and Repp & Liber-
man, 1984, for discussions).

A number of different approaches to the problem have been tried by
different investigators. One approach is to try to find relatively
invariant—generally relational —features (e.g., Stevens & Blumstein,
1981). Another approach has been to redefine the unit so that it
encompasses the context, and therefore becomes more invariant
(Fujimura & Lovins, 1982; Klatt, 1980; Wickelgren, 1969). While
these are both sensible and useful approaches, the first has not yet suc-
ceeded in establishing a sufficiently invariant set of cues, and the
second may alleviate but does not eliminate the problem: Even units
such as demisyllables (Fujimura & Lovins, 1982), context-sensitive
allophones (Wickelgren, 1969), or even whole words (Klatt, 1980) are
still influenced by context. We have chosen to focus instead on a third
possibility: that the perceptual system uses information from the con-
text in which an utterance occurs to alter connections dynamically,
thereby effectively allowing the context to retune the perceptual
mechanism in the course of processing.

Noise and Indeterminacy in the Speech Signal

To compound all the problems alluded to above, there is the addi-
tional fact that speech is often perceived under less than ideal cir-
cumstances. While a slow and careful speaker in a quiet room may pro-
duce sufficient cues to allow correct perception of all of the phonemes
in an utterance without the aid of lexical or other higher-level

I5. THE TRACE MODEL 63

constraints, these conditions do not always obtain. People can correctly
perceive speech under quite impoverished conditions if it is semanti-
cally coherent and syntactically well-formed (G. A. Miller, Heise, &
Lichten, 1951). This means that the speech mechanisms must be able
to function, even with a highly degraded stimulus. In particular, as
Grosjean and Gee (1984), Norris (1982), and Thompson (1984) have
pointed out, the mechanisms of speech perception cannot count on
accurate information about any part of a word. As we shall see, this
fact poses a serious problem for one of the best current psychological
models of the process of spoken word recognition, the COHORT model
of Marslen-Wilson and Welsh (1978).

Many of the characteristics that we have reviewed differentiate
speech from print—at least, from very high quality print on white
paper—but it would be a mistake to think that similar problems are not
encountered in other domaijns. Certainly, the sequential nature of spo-
ken input sets speech apart from vision, in which there can be some
degree of simultaneity of input. However, the problems of ill-defined
boundaries, context sensitivity of cues, and noise and indeterminacy are
central problems in vision just as much as they are in speech (cf.
Ballard, Hinton, & Sejnowski, 1983; Barrow & Tenenbaum, 1978;
Marr, 1982). Thus, though the model we present here is focused on
speech perception, we would hope that the ways in which it deals with
the challenges posed by the speech signal will be applicable in other
domains.

The Importance of the Right Architecture

All of the considerations listed above played an important role in the
formulation of the TRACE model. The model is an instance of a PDP
model, but it is by no means the only instance of such a model that we
have considered or that could be considered. Other formulations we
considered simply did not appear to offer a satisfactory framework for
dealing with these central aspects of speech (see Elman & McClelland,
1984, for discussion). Thus, the TRACE model hinges on the particu-
lar processing architecture it proposes for speech perception as well as
on the PDP mechanisms that implement the interactive activation
processes that occur within it.

Sources of TRACE's architecture. The inspiration for the architec-
ture of TRACE goes back to the HEARSAY speech understanding sys-
tem (Erman & Lesser, 1980; Reddy, Erman, Fennell, & Neely, 1973).
HEARSAY introduced the notion of a Blackboard, a structure similar
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to the Trace in the TRACE model. The main difference is that the
Trace is a dynamic processing structure that is self-updating, while the
Blackboard in HEARSAY was a passive data structure through which
autonomous processes shared information. The architecture of TRACE
also bears a resemblance to the neural spectrogram proposed by Crowder
(1978; 1981) to account for interference effects between successive
items in short-term memory.

THE TRACE MODEL

The TRACE model consists primarily of a very large number of
units, organized into three levels, the JSeature, phoneme, and word levels.
Each unit stands for an hypothesis about a particular perceptual
object—feature, phoneme, or word—occurring at a particular point in
time defined relative to the beginning of the utterance. Thus, the
TRACE model uses local representation.

A small subset of the units in TRACE Il, the version of the model
with which we will be mostly concerned, is illustrated in Figures 2, 3,
and 4. Each of the three figures replicates the same set of units, illus-
trating a different property of the model in each case. In the figures,
each rectangle corresponds to a separate processing unit. The labels on
the units and along the side indicate the spoken object {feature,
phoneme, or word) for which each unit stands. The left and right
edges of each rectangle indicate the portion of the input the unit spans.

At the feature level, there are several banks of feature detectors, one
for each of several dimensions of speech sounds. Each bank is repli-
cated for each of several successive moments in time, or time slices.
At the phoneme level, there are detectors for each of the phonemes.
There is one copy of each phoneme detector centered over every three
time-slices. Each unit spans six time slices, so units with adjacent
centers span overlapping ranges of slices. At the word level, there are
detectors for each word. There is one copy of each word detector cen-
tered over every three feature slices. Here, each detector spans a
stretch of feature slices corresponding to the entire length of the word.
Again, then, units with adjacent centers span overlapping ranges of
slices.

Input to the model. in the form of a pattern of activation to be
applied to the units at the feature level, is presented sequentially to the
feature-level units in successive slices, as it would be if it were a real
stream of speech. Mock-speech inputs on the three illustrated dimen-
sions for the phrase tea cup (/tik’p/) are shown in Figure 2. At any
instant, input is arriving only at the units in one slice at the feature
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FIGURE 2. A subset of the units in TRACE lI. Each rectangle represents a different
unit, The labels indicate the item for which the unit stands, and the horizontal edges of
the rectangle indicate the portion of the Trace spanned by each unit. The input feature
specifications for the phrase req cup, preceded and followed by silence, are indicated for
the three illustrated dimensions by the blackening of the corresponding feature units,

level. In terms of the display in Figure 2, then, we can visualize the
input being applied to successive slices of the network at successive
moments in time. However, it is important to remember that all the
units are continually involved in processing, and processing of the input
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FIGURE 3. The connections of the unit for the phoneme /k/, centered over Time-Slice
24. The rectangle for this unit is highlighted with a bold outline. The /k/ unit has mutu-
ally excitatory connections to all the word- and feature-level units colored either partly or
wholly in black. The more coloring on a unit's rectangle, the greater the strength of the
connection. The /k/ unit has mutually inhibitory connections to all of the phoneme-level
units colored partly or wholly in grey. Again, the relative amount of inhibition is indi-
cated by the extent of the coloring of the unit; it is directly proportional to the extent of
the temporal overlap of 1he units,

arriving at one time is just beginning as the input is moved along to the
next time slice.

The entire network of units is called the Trace, because the pattern of
activation left by a spoken input is a trace of the analysis of the input at

15. THE TRACE MODEL 67

[ A
k/\p %‘ihA h[_h—
P Tk P T
A P 1 |
AP A
24
e} . 17 L
Yo th J:,vl} ;
§  —e—— T
- | S S S S 500 B 4530 S
AN S NN 442298 415200 o2-208 MCHN |
p pnaogg. oi]
t N T NS T 1 T 0 O O Y S |
DU SN ST N § R S ) T
8 Kk L LI
T 3T T T3]
2 = N meeaEEEE
2 e mEm==
o A MA A
- R SN B N AR R S
T T -T-T1-1r-1
hi
L
g
S
10
W @ hi
L 3
S &
-
3 2
w 510
w hi
é’ﬁ
Q
3
g 10

FIGURE 4. The connections of the highlighted unit for the high value on the vocalic
feature dimension in Time-Slice 9 and for the highlighted unit for the word /K" p/ starting
in Slice 24. Excitatory connections are represented in black, inhibitory connections in
gray, as in Figure 3.

each of the three processing levels. This trace is unlike many traces,
though, in that it is active since it consists of activations of processing
elements, and these processing elements continue to interact as time
goes on. The distinction between perception and (primary) memory is
completely blurred since the percept is unfolding in the same structures
that serve as working memory, and perceptual processing of older por-
tions of the input continues even as newer portions are coming into the
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system. These continuing interactions permit the model to incorporate
right context effects and allow the model to account directly for certain
aspects of short-term memory, such as the fact that more information
can be retained for short periods of time if it hangs together to form a
coherent whole.

Processing takes place through the excitatory and inhibitory interac-
tions of the units in the Trace. Units on different levels that are mutu-
ally consistent have mutually excitatory connections, while units on the
same level that are inconsistent have mutually inhibitory connections.
All connections are bidirectional. Thus, the unit for the phoneme /k/
centered over Feature-Slice 24 (shown in Figure 3) has bidirectional
excitatory connections to feature units that would be activated if the
input contained that phoneme centered on Time-Slice 24. It also has
bidirectional excitatory connections to all the units at the word level for
words containing /k/ at Time-Slice 24. The connections of illustrative
feature- and word-level units are shown in Figure 4. Units on the same
level are mutually incompatible, and hence mutually inhibitory, to the
extent that the input patterns they stand for would overlap with each
other in time. That is to say, units on the same level inhibit each other
in proportion to the extent of the overlap of their temporal spans, or
windows. At the feature level, units stand for the content of only a
single time slice, so they only compete with units standing for other
values on the same dimension (see Figure 4). At the phoneme and
word level, however, there can be different degrees of overlap, and
hence of mutual inhibition. The extent of the mutual inhibition
between the /k/ in Slice 24 and other phoneme-level units is indicated
in Figure 3 by the amount of shading that falls over the rectangle for
the other unit. Similarly, the extent of mutual inhibition between the
unit for /k"p/ starting in Slice 24 and other word-level units is indi-
cated in Figure 4.

Context-Sensitive Tuning of Phoneme Units

The connections between the feature and phoneme levels determine
what pattern of activations over the feature units will most strongly
activate the detector for each phoneme. To cope with the fact that the
features representing each phoneme vary according to the phonemes
surrounding them, the model uses multiplicative connections of the
kind proposed by Hinton (1981b) and discussed in Chapters 4 and 16.
These multiplicative connections essentially adjust the connections from
units at the feature level to units at the phoneme level as a function of
activations at the phoneme level in preceding and following time slices.
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For example, when the phoneme /t/ is preceded or followed by the
vowel /i/, the feature pattern corresponding to the /t/ is very different
than it is when the /t/ is preceded or followed by another vowel, such
as /a/. Accordingly, when the unit for /i/ in a particular slice is active,

it changes the pattern of connections for units for /t/ in preceding and
following slices.

TRACE I and TRACE II

In developing TRACE and in trying to test its computational and
psychological adequacy, we found that we were sometimes led in rather
different directions. We wanted to show that TRACE could process
real speech, but to build a model that did so, it was necessary to worry
about exactly what features must be extracted from the speech signal,
about differences in duration of different features of different
phonemes, and about how to cope with the ways in which features and
feature durations vary as a function of context, Obviously, these are
important problems, worthy of considerable attention. However, con-
cern with these issues tended to obscure attention to the fundamental
properties of the model and the model’s ability to account for basic
aspects of the psychological data obtained in many experiments.

To cope with these conflicting goals, we have developed two dif-
ferent versions of the model, called TRACE I and TRACE II. Both
models spring from the same basic assumptions, but focused on dif-
ferent aspects of speech perception. TRACE | was designed to address
some of the challenges posed by the task of recognizing phonemes
from real speech. This version of the model is described in detail in
Elman and McClelland (in press). With this version of the model, we
have been able to show that the TRACE framework could indeed be
used to process real speech—albeijt from a single speaker uttering iso-
lated monosyllables at this point. We have also demonstrated the effj-
cacy of the idea of using multiplicative connections to adjust feature-
to-phoneme connections on the basis of activations produced by sur-
rounding context.

The second version of the model, TRACE II, will be the main focus
of this chapter. We developed this version of the model to account for
lexical influences on phoneme perception and for what is known about
on-line recognition of words, though we will use it to illustrate how cer-
tain other aspects of phoneme perception fall out of the TRACE frame-
work. This version of the model is actually a simplified version of
TRACE 1. Most importantly, we eliminated the connection-strength
adjustment facility, and we replaced the real speech inputs to TRACE |
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with mock speech. This mock-speech input consisted of overlapping
but contextually invariant specifications of the features of successive
phonemes. Thus, TRACE II sidesteps many of the issues addressed by
TRACE I, but it makes it much easier to see how the mechanism can
account for a number of aspects of phoneme and word recognition. A
number of further simplifying assumptions were made to facilitate
examination of basic properties of the interactive activation processes
taking place within the model.

Implementation Details

The material in this section is included for completeness, but the
basic line of development may be followed without reading it. Readers
uninterested in these details may wish to skip to the section on factors
influencing phoneme identification.

Units and their dynamics. The dynamic properties of the units in
TRACE are the same as those used in the interactive activation model
of visual word perception; these are described in detail in Chapter 2. In
brief, the model is a synchronous model, in that all the units update
their activation at the same time, based on the activations computed in
the previous update cycle. Each unit takes a sum of the excitatory and
inhibitory influences impinging on it. Each influence is essentially the
product of the output of the influencing unit and the weight on the
connection between it and the receiver. [f this net input is positive, it
drives the activation of the unit upward in proportion to the distance
left to the fixed maximum activation level; if the net input is negative,
it drives the activation of the unit down in proportion to the distance
left to the fixed minimum. Activations also tend to decay back to their
resting activation level, which was fixed at 0 for all units. The output
of a unit is 0 if the activation is less than or equal to 0; otherwise it is
equal to its activation.

TRACE I. The inputs to TRACE I are sets of 15 parameter values
extracted at 5 msec intervals from syllables spoken by a male native
speaker of English. The bulk of the TRACE I simulations have been
done with a set of CV syllables consisting of an unvoiced stop con-
sonant (/p/, /t/, or /k/) followed by one of the vowels /a/,/i/, and
/u/, as in the words shah, tea, and who. At the feature level, TRACE 1
consists of detectors for each of eight different value ranges on each of
the 15 input parameters. There is a complete set of detectors for each
5 msec time slice of the input. Since there are 100 slices, the model is
capable of processing 500 msec samples of speech.
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There are no word-level units in TRACE 1. However, there are
phoneme-level units for each successive 15 msec time slice of the
speech. The connections from the feature to the phoneme units were
determined by using the perceptron convergence procedure (see
Chapter 2) under two different conditions. First, in the invariant con-
nections condition, a single set of connection strengths was found for
each phoneme, using tokens of the phoneme spoken in all different
contexts. In the context-sensitive connections condition, separate sets
of connection strengths were found for each stop consonant in the con-
text of each of the vowels.

TRACE I can be tested either using the invariant connections or
using the multiplicative context-sensitive connections described above.
In the latter case, the weights coming into a particular phoneme are
weighted according to the relative activation of other phonemes in the
surrounding context. Consider an arbitrary phoneme unit which we
will designate, for now, the target unit. The strengths of the connec-
tions coming into this unit can be designated by the vector w, where
the elements of the vector are just the individual weights from each
feature unit to the phoneme unit. This vector is the average over all
context phonemes k of the context-specific weight vectors appropriate
for the target phoneme in the context of k, where the contribution of
each of these context-specific weight vectors is proportional to the
exponential of the activation of phoneme k summed over the time
slices adjacent to the target phoneme unit (see Elman & McClelland,
1986, in press, for further details).

TRACE II. Inputs to TRACE II are not real speech, but mock
speech of the kind illustrated in Figure 2. The mock speech is a series
of specifications for inputs to units at the feature level, one for each 25
msec time slice of the mock utterance. These specifications are gen-
erated by a simple computer program from a sequence of to-be-
presented segments provided by the human user of the simulation pro-
gram. The allowed segments consist of the stop consonants /b/, /p/,
/d/, /t/, /g/, and /k/; the fricatives /s/ and /S/ (sh as in ship); the
liquids /1/ and /r/; and the vowels /a/ (as in pot), /i/ (as in beet), /u/
(as in boot), and /*/ (as in bur). /*/ is also used to represent reduced
vowels such as the second vowel in target. There is also a "silence"
segment represented by /-/. Special segments, such as a segment half-
way between /b/ and /p/, can be constructed as well.

A set of seven dimensions is used in TRACE II to represent the
feature-level inputs. Of course, these dimensions are intentional sim-
plifications of the real acoustic structure of speech, in much the same
way that the font used by McClelland and Rumelhart (1981) in the
interactive activation model of visual word recognition was an
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intentional simplification of the real structure of print. Each dimension
is divided into eight value ranges. Each phoneme has a value on each
dimension;, the values on the vocalic, diffuseness, and acuteness
dimensions for the phonemes in the utterance /tik'p/ are shown in
Figure 2. The dimensions and the values assigned to each phoneme on
each dimension are indicated in Table 1. Numbers in the cells of the
table indicate which value on the indicated dimension is most strongly
activated by the feature pattern for the indicated phoneme. Values
range from 1 (very low) to 8 (very high). The last two dimensions
were altered for the categorical perception and trading relations simula-
tions, as described below.

Values are assigned to approximate the values real phonemes would
have on these dimensions and to make phonemes that fall into the
same phonetic category have identical values on many of the dimen-
sions. Thus, for example, all stop consonants are assigned the same
values on the power, vocalic, and consonantal dimensions. We do not
claim to have captured the details of phoneme similarity exactly.
Indeed, one cannot do so in a fixed feature set because the similarities
vary as a function of context. However, the feature sets do have the
property that the feature pattern for one phoneme is more similar to
the feature pattern for other phonemes in the same phonetic category
(stop, fricative, liquid, or vowel) than it is to the patterns for phonemes

TABLE |

PHONEME FEATURE VALUES USED IN TRACE II

PHONEME POW voC DIF ACU CON VOI BUR
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b e o Lo LA LA OO OO 00 00 OO OO
00 00 00 OO OO 00 m—t et o = ~d = = =
‘

POW = power, VOC = vocalicness, DIF = diffuseness, ACU = acuteness,
CON = consonantal, VYOI = voicing, BUR = burst amplitude. Only the
stops have values on this last dimension.
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in other categories. Among the stops, those phonemes sharing place of
articulation or voicing are more similar than those sharing neither
attribute.

The feature specification of each phoneme in the input stream
extends over 11 time slices of the input. The strength of the pattern
grows to a peak at the sixth slice and falls off again, as illustrated in
Figure 2. Peaks of successive phonemes are separated by six slices.
Thus, specifications of successive phonemes overlap, as they do in real
speech (Fowler, 1984; Liberman, 1970).

Generally, there are no cues in the speech stream to word
boundaries—the feature specification for the last phoneme of one word
overlap with the first phoneme of the next in just the same way feature
specifications of adjacent phonemes overlap within words, However,
entire utterances presented to the model for processing—be they indi-
vidual syllables, words, or strings of words—are preceded and followed
by silence. Silence is not simply the absence of any input; rather, it is a
pattern of feature values, just like the phonemes. Thus, a ninth value
on each of the seven dimensions is associated with silence. These
values are actually outside the range of values that occurred in the
phonemes themselves so that the features of silence are completely
uncorrelated with the features of any of the phonemes.

TRACE II contains a unit for each of the nine values on each of the
seven dimensions, in each time slice of the Trace. At the phoneme
level, each Trace contains a detector for each of the 15 phonemes and a
detector for the presence of silence. The silence detectors are treated
like all other phoneme detectors. Each member of the set of detectors
for a particular phoneme is centered over a different time-slice at the
feature level, and the centers are spaced three time-slices apart. The
unit centered over a particular slice receives excitatory input from
feature units in a range of 11 slices, extending both forward and back-
ward from the slice in which the phoneme unit is located. [t also sends
excitatory feedback down to the same feature units in the same range
of slices.

The connection strengths between the feature-level units and a par-
ticular phoneme-level unit exactly match the feature pattern the
phoneme is given in its input specification. Thus, as illustrated in
Figure 3, the strengths of the connections between the unit for /k/
centered over Time-Slice 24 and the units at the feature level are
exactly proportional to the pattern of input to the feature level pro-
duced by an input specification containing the features of /k/ centered
in the same time slice.

TRACE II also contains detectors for the 211 words found in a com-
puterized phonetic word list that met all of following criteria: (a) The
word consisted only of phonemes in the list above; (b) it was not an
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inflection of some other word that could be made by adding ed, s, or
ing, and (c) the word together with its ed, s, and ing inflections
occurred with a frequency of 20 or more per million in the Kucera and
Francis (1967) word count. It is not claimed that the model’s lexicon is
an exhaustive list of words meeting these criteria since the computer-
ized phonetic lexicon was not complete, but it is reasonably close to
this. To make specific points about the behavior of the model, detec-
tors for the following three words not in the main list were added:
blush, regal, and sleet. The model also has detectors at the word level
for silence (/-/), which is treated like a one-phoneme word.

Presentation and processing of an utterance. Before processing of
an utterance begins, the activations of all of the units are set at their
resting values. At the start of processing, the input to the initial slice
of feature units is applied. Activations are then updated, ending the
initial time cycle. On the next time cycle, the input to the next slice of
feature units is applied, and excitatory and inhibitory inputs to each
unit resulting from the pattern of activation left at the end of the previ-
ous time slice are computed.

It is important to remember that the input is applied, one slice at a
time, proceeding from left to right as though it were an ongoing stream
of speech “writing on" the successive time slices of the Trace. The
interactive activation process is occurring throughout the Trace on each
time slice, even though the external input is only coming in to the
feature units one slice at a time. Processing interactions can continue
even after the left to right sweep through the input reaches the end of
the Trace. Once this happens, there are simply no new input specifica-
tions applied to the Trace; the continuing interactions are based on
what has already been presented. This interaction process is assumed
to continue indefinitely, though for practical purposes it is always ter-
minated after some predetermined number of time cycles has elapsed.

Activations and overt responses. Activations of units in the Trace
rise and fall as the input sweeps across the feature level. At any time, a
decision can be made based on the pattern of activation as it stands at
that moment. The decision mechanism can, we assume, be directed to
consider the set of units located within a small window of adjacent
slices within any level. The units in this set then constitute the set of
response alternatives, designated by the identity of the item for which
the unit stands (note that with several adjacent slices included in the
set, several units in the alternative set may correspond to the same
overt response). Word-identification responses are assumed to be
based on readout from the word level, and phoneme-identification
responses are assumed to be based on readout from the phoneme level.
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As far as phoneme identification is concerned, then, a homogeneous
mechanism is assumed to be used with both word and nonword stimuli.
The decision mechanism can be asked to make a response either (a) at
a critical time during processing, or (b) when a unit in the alternative
set reaches a critical strength relative to the activation of other alterna-
tive units. Once a decision has been made to make a response, one of
the alternatives is chosen from the members of the set. The probability
of choosing a particular alternative i is then given by the Luce (1959)
choice rule:

S;
J

where j indexes the members of the alternative set, and §; = " The
exponential transformation ensures that all activations are positive and
gives great weight to stronger activations; the Luce rule ensures that
the sum of all of the response probabilities adds up to 1.0. Substan-

t(ially )the same assumptions were used by McClelland and Rumelhart
1981).

Parameters. At the expense of considerable realism, we have tried
to keep both TRACE I and TRACE II simple by using homogeneous
parameters wherever possible. The strength of the total excitation com-
ing into a particular phoneme unit from the feature units is normalized
to the same value for all phonemes, thus making each phoneme equally
excitable by its own canonical pattern. Other simplifying assumptions
should be noted as well. For example, there are no differences in con-
nections or resting levels for words of different frequency. It would
have been a simple matter to incorporate frequency as McClelland and
Rumelhart (1981) did, and a complete model would, of course, include
some account for the ubiquitous effects of word frequency. We left
it out here to facilitate an examination of the many other factors
that appear to influence the process of word recognition in speech
perception.

Even with all the simplifications described above, TRACE II still has
10 free parameters; these are listed in Table 2. There was some trial
and error in finding the set of parameters used in the reported simula-
tions, but, in general, the qualitative behavior of the model is remark-
ably robust under parameter variations, and no systematic search of the
space of parameters is necessary.

[n all the reported simulations using TRACE I, the parameters were
held at the values given in Table 2. The only exception to this
occurred in the simulations of categorical perception and trading rela-
tions. Since we were not explicitly concerned with the effects of feed-
back to the feature level in any of the other simulations, we set the
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TABLE 2

PARAMETERS OF TRACE Il

Parameter Value
Feature-Phoneme Excitation .02
Phoneme-Word Excitation .05
Word-Phoneme Excitation 03
Phoneme-Feature Excitation 00
Feature-Level Inhibition .04
Phoneme-Level Inhibition* 04
Word-Level Inhibition* .03
Feature-Level Decay 01
Phoneme-Level Decay 03
Word-Level Decay 05

*Per 3 time slices of overlap.

feedback from the phoneme level to the feature level to zero to speed
up the simulations in all other cases. In the categorical perception and
trading relations simulations this parameter was set at 0.05. Phoneme-
to-feature feedback tended to slow the effective rate of decay at the
feature level and to increase the effective distinctiveness of different
feature patterns. Rate of decay of feature level activations and strength
of phoneme-to-phoneme competition were set to 0.03 and 0.05 to com-
pensate for these effects. No lexicon was used in the categorical per-
ception and trading relations simulations, which is equivalent to setting
the phoneme-to-word excitation parameter to zero. In TRACE I, the
parameters were tuned separately to compensate for the finer time scale
of that version of the model.

FACTORS INFLUENCING PHONEME IDENTIFICATION

We are ready to examine the performance of TRACE, to see how
well it can account for psychological data on the process of speech per-
ception and, to determine how well it can cope with the computational
challenges posed by speech. In this section we consider the process of
phoneme identification. In the next section we examine several aspects
of word recognition. The sections may be read independently, in either
order.

In the introduction, we motivated the approach taken in the TRACE
model in general terms. In this section, we will see that the simple
concepts that lead to TRACE provide the basis for a coherent and syn-
thetic account of a large number of different kinds of findings on the
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perception of phonemes. Previous models have been able to provide
fairly accurate accounts of a number of these phenomena. For exam-
ple, Massaro and QOden’s feature integration model (Massaro, 1981;
Massaro & Oden, 1980a, 1980b; Oden & Massaro, 1978) accounts in
detail for a large body of data on the influences of multiple cues to
phoneme identity, and the Pisoni/Fujisaki-Kawashima model of
categorical perception (Fujisaki & Kawashima, 1968; Pisoni, 1973,
1975) accounts for a large body of data on the conditions under which
subjects can discriminate sounds within the same phonetic category.
Marslen-Wilson’s COHORT model (Marslen-Wilson & Welsh, 1978)
can account for the time course of certain aspects of lexical influences
on phoneme identification. Recently Fowler (1984) has proposed an
interesting account of the way listeners cope with coarticulatory influ-
ences on the acoustic parameters of speech sounds. Here we will show
that TRACE brings these phenomena, and several others not con-
sidered by any of these other models, together into a coherent picture
of the process of phoneme perception as it unfolds in time.

This section consists of four main parts. The first focuses on lexical
effects on phoneme identification and the conditions under which these
effects are obtained. The second part of this section focuses on the
question of the role of phonotactic rules—that is, rules specifying which
phonemes can occur together in English—in phoneme identification.
Here, we see how TRACE mimics the apparently rule-governed
behavior of human subjects, in terms of a "conspiracy" of the lexical
items that instantiate the rule. The third part focuses on two aspects of
phoneme identification often considered quite separately from lexical
effects—namely, the contrasting phenomena of cue tradeoffs in
phoneme perception and categorical perception. The simulations in the
first three parts were all done using TRACE II. The fourth part
describes our simulations with TRACE 1, illustrating how the
connection-modulation mechanisms embedded in that version of the
model account for the fact that listeners appear to alter the cues they
use to identify phonemes in different contexts.

Lexical Effects

You can tell a phoneme by the company that it keeps.! In this sec-
tion, we describe a simple simulation of the basic lexical effect on

U This title is adapted from the title of a talk by David E. Rumelhart on related

phenomena in letter perception. These findings are described in Rumelhart and McClel-
fand (1982).
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phoneme identification reported by Ganong (1980). We start with this
phenomenon because it, and the related phonemic restoration effect,
were among the primary reasons why we felt that the interactive activa-
tion mechanisms provided by PDP models would be appropriate for
speech perception, as well as visual word recognition and reading,

For the first simulation, the input to the model consisted of a feature
specification which activated /b/ and /p/ equally, followed by (and par-
tially overlapping with) the feature specifications for /1/ , then/*/, then
/g/. Figure 5 shows phoneme- and word-level activations at several
points in the unfolding of this input specification. FEach panel of the
figure represents a different point in time during the presentation and
concomitant processing of the input. The upper portion of each panel is
used to display activations at the word level; the lower panel is used for
activations at the phoneme level. Each unit is represented by a rectan-
gle labeled with the identity of the item the unit stands for. The hor-
izontal extension of the rectangle indicates the portion of the input
spanned by the unit. The vertical position of the rectangle indicates the
degree of activation of the unit. In this and subsequent figures, activa-
tions of the phoneme units located between the peaks of the input
specifications of the phonemes (at Slices 3, 9, 15, etc.) have been
deleted from the display for clarity. The input itself is indicated below
each panel, with the successive phonemes positioned at the temporal
positions of the centers of their input specifications. The "*" along the
X-axis represents the point in the presentation of the input stream at
which the snapshot was taken,

The figure illustrates the gradual build-up of activation of the two
interpretations of the first phoneme, followed by gradual build-ups in
activation for subsequent phonemes. As these processes unfold, they
begin to produce word-level activations. It is difficult to resolve any
word-level activations in the first few frames, however, since in these
frames, the information at the phoneme level simply has not evolved to
the point where it provides enough constraint to select any one particu-
lar word. It is only after the /g/ has come in that the model has infor-
mation telling it whether the input is-closer to plug, plus, blush, or blood
(TRACE’s lexicon contains no other words beginning with /pl*/ or
/bt"/). After that point, as illustrated in the fourth panel, plug wins the
competition at the word level, and through feedback support to /p/,
causes /p/ to dominate /b/ at the phoneme level. The model, then,
provides an explicit account for the way in which lexical information
can influence phoneme identification.

Factors influencing the lexical effect. There is now a reasonable
body of literature on lexical effects on phoneme identification. One
important property of this literature is the fact that the lexical effect is
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FIGURE 5. Phoneme- and word-level activations at several points in the unfolding of a

segment ambiguous between /b/ and /p/, followed by/l/,/"/, and /g/. See text for a
full explanation.

often somewhat difficult to obtain. For example, Fox (1982, 1984)
found that the lexical effect can be eliminated by time pressure.
Ganong reported that the lexical effect only shows up with segments
that are ambiguous; we know that in running speech, people often per-
ceived as correctly pronounced words with deliberate errors (Marslen-
Wilson & Welsh, 1978), but at the beginnings of isolated words lexical
influences appear to lead to misperceptions of unambiguous tokens of
phonemes. In reaction time studies, it has been observed by Foss and
Blank (1980) that there is no lexical effect on the reaction time to
detect word-initial phonemes.

Many of these findings have been taken as evidence against the view
that top-down influences really play a role in normal perceptual process-
ing (Foss & Gernsbacher, 1983), and only come into play in a post-
perceptual stage of processing (Fox, 1982). However, we observe the
same results in simulations with TRACE, where top-down influences
are always at work. The reason why lexical effects do not emerge until
late in processing for word-initial targets is simply that the contextual
information is not available until then. The reason why lexical effects
do not emerge with word-initial targets that are not ambiguous is simply
that the bottom-up information is there to identify the target, long
before the contextual information would be available. Simulations
demonstrating the absence of lexical effects for word-initial segments
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under speeded conditions or when the segment is unambiguous are
described in McClelland and Elman (in press).

The crucial observations concern what happens with lexical effects on
word-final segments. It is well known that lexical effects are larger
later in words than they are at the beginnings of words (Marsien-
Wilson & Welsh, 1978) and can be obtained in reaction time studies
even with unambiguous segments (Marslen-Wilson, 1980).

TRACE produces stronger lexical effects when the target comes late
in the word, simply because the context is already providing top-down
support for the target when it starts to come in under these cir-
cumstances. We illustrate by comparing response strength for the
phoneme /t/ in /sikr't/ (the word secret) and in the nonword /g'1d"t/
{guldut) in Figure 6. The figure shows the strength of the /t/ response
as a function of processing cycles, relative to all other responses based
on activations of phoneme units centered at Cycle 42, the peak of the
input specification for the /t/. Clearly, response strength grows faster
for the /t/ in /sikr't/ than for the /t/ in /g 1d"t/; picking an arbitrary
threshold of 0.9 for response initiation, we find that the /t/ in /sikr’t/
reaches criterion about 3 cycles or 75 msec sooner than the /t/ in
/€' 1d"t/. The size of the effect Marslen-Wilson (1980) obtains is quite
comparable to the effect observed in Figure 6.
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FIGURE 6. Probability of the /t/ response as a function of processing cycles, based on
activation of phoneme units at Cycle 42, for the stream /sikr"t/ (secrer) and /g7 Id™t/ (gui-
dur). Vertical lines indicate the peaks of the input patierns corresponding to the succes-
sive phonemes in either stream.
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Are Phonotactic Rule Effects the Result of a Conspiracy?

Recently, Massaro and M. M. Cohen ( 1983) have reported evidence
they take as support for the use of phonotactic rules in phoneme iden-
tification. In one experiment, Massaro and Cohen’s stimuli consisted of
phonological segments ambiguous between /r/ and /1/ in different con-
texts. In one context (/t.i/), /r/ is permissible in English, but /1/ is
not. In another context (/s_i/), /1/ is permissible in English but /r/ is
not. In a third context (/f_i/), both are permissible, and in a fourth
(/v_i/), neither is permissible. Massaro and Cohen found a bias to
perceive ambiguous segments as /t/ when /r/ was permissible, or as
/1/ when /1/ was permissible. No bias appeared in either of the other
two conditions.

With most of these stimuli, phonotactic acceptability is confounded
with the actual lexical status of the item; thus /fli/ and /fri/ (flee and
Jree) are both words, as is /tri/ but not /tli/. In the /s_i/ context,
however, neither /sli/ or /sri/ are words, yet Massaro and Cohen
found a bias to hear the ambiguous segment as /1/, in accordance with
phonotactic rules.

It turns out that TRACE produces the same effect, even though it
lacks phonotactic rules. The reason is that the ambiguous stimulus pro-
duces partial activations of a number of words (sleep and sleet in the
model’s lexicon; it would also activate sleeve, sleek, and others in a
model with a fuller lexicon). None of these word units gets as active as
it would if the entire word had been presented. However, all of them
(in the simulation, there are only two, but the principle stiil applies) are
partially activated, and all conspire together and contribute to the
activation of /1/. This feedback support for the /1/ allows it to dom-
inate the /r/, just as it would if /sli/ were an actual word, as shown in
Figure 7.

The hypothesis that phonotactic rule effects are really based on word
activations leads to a prediction: We should be able to reverse these
effects if we present items that are supported strongly by one or more
lexical items even if they violate phonotactic rules. A recent experi-
ment by Eiman (1983) confirms this prediction. In this experiment,
ambiguous phonemes (for example, halfway between /b/ and /d/)
were presented in three different types of contexts. In all three types,
one of the two (in this case, the /d/) was phonotactically acceptable,
while the other (the /b/) was not. However, the contexts differed in
their relation to words. In one case, the legal item actually occurred in
a word (bwindle/ dwindle). In a second case, neither item made a word,
but the illegal item was very close to a word (bwacelet/ dwacelet). In a
third case, neither item was particularly close to a word (bwiffle/ dwiffle).
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FIGURE 7. State of the Trace at several points in processing a segment ambiguous
between /1/ and /r/ in the context /s_i/. The units for sleep {/slip/) and sieer (/slit/)
are boxed together since they take on identical activation values.

Results of the experiment are shown in Table 3. The existence of a
word identical to one of the two alternatives or differing from one of
the alternatives by a single phonetic feature of one phoneme strongly
influenced the subjects’ choices between the two alternatives. Indeed,
in the case where the phonotactically irregular alternative (bwaceler)
was one feature away from a particular lexical item (bracelet), subjects
tended to hear the ambiguous item in accord with the similar lexical
item (that is, as a/b/) even though it was phonotactically incorrect.

TABLE 3

PERCENT CHOICE OF PHONOTACTICALLY IRREGULAR CONSONANT

Percentage of Identifications

Stimulus Type Example as "lllegal™ Phoneme (/b/)*
Legal word/illegal nonword dwindle/bwindle 37%
Legal nonword/illegal nonword dwiffle/bwiffle 46%
Legal nonword/illegal near-word  dwacelet/bwacelet 55%

*F(2.34) = 26414, p < 001
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To determine whether the model would also produce such a reversal
of the phonotactic rule effects with the appropriate kinds of stimuli, we
ran a simulation using a simulated input ambiguous between /p/ and
/t/ in the context /_luli/. /p/ is phonotactically acceptable in this con-
text, but /t/ in this context makes an item that is very close to the
word fruly. The results of this run, at two different points during pro-
cessing, are shown in Figure 8. Early on in processing, there is a slight
bias in favor of the /p/ over the /t/ because at first a large number of
/pl/ words are slightly more activated than any words beginning with
/t/. Later, though, the /t/ gets the upper hand as the word truly comes
to dominate at the word level. Thus, by the end of the word or shortly
thereafter, the closest word has begun to play a dominating role, caus-
ing the model to prefer the phonotactically inappropriate interpretation
of the ambiguous initial segment.

Of course, at the same time the word truly tends to support /r/ rather
than /1/ for the second segment. Thus, even though this segment is
not ambiguous and the /I/ would suppress the /r/ interpretation in a
more neutral context, the /r/ stays quite active.
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FIGURE 8. State of the Trace at several points in processing an ambiguous /p/-/t/ seg-
ment followed by /luli/.
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Trading Relations and Categorical Perception

In the simulations considered thus far, phoneme identification is
influenced by two different kinds of factors: featural and lexical. When
one sort of information is lacking, the other can compensate for it.
The image that emerges from these kinds of findings is of a system that
exhibits great flexibility by being able to base identification decisions on
different sources of information. [t is, of course, well established that
within the featural domain each phoneme is generally signaled by a
number of different cues and that human subjects can trade these cues
off against each other. The TRACE model exhibits this same flexibil-
ity, as we shall detail shortly.

But there is something of a paradox. While the perceptual mechan-
isms exhibit great flexibility in the cues that they rely on for phoneme
identification, they also appear to be quite "categorical” in nature. That
is, they produce much sharper boundaries between phonetic categories
than we might expect based on their sensitivity to multiple cues; and
they appear to treat acoustically distinct feature patterns as perceptually
equivalent, as long as they are identified as instances of the same
phoneme.

In this section, we illustrate that in TRACE, just as in human speech
perception, flexibility in feature interpretation coexists with a strong
tendency toward categorical perception.

For these simulations, the model was stripped down to the essential
minimum necessary so that the basic mechanisms producing cue trade-
offs and categorical perception could be brought to the fore. The word
level was eliminated altogether, and at the phoneme level there were
only three phonemes, /a/, /g/, and /k/, plus silence (/-/). From
these four items, inputs and percepts of the form /-ga-/ and /-ka-/
could be constructed. The following additional constraints were
imposed on the feature specifications of each of the phonemes: (a) the
/a/ and /-/ had no featural overlap with either /g/ or /k/ so that nei-
ther /a/ nor /-/ would bias the activations of the /g/ and /k/ phoneme
units where they overlapped with the consonant in time; (b) /g/ and
/k/ were identical on five of the seven dimensions and differed only on
the remaining two dimensions.

The two dimensions which differentiated /g/ and /k/ were voice
onset time (VOT) and the onset frequency of the first formant (F10F).
These dimensions replaced the voicing and burst amplitude dimensions
used in all of the other simulations. Figure 9 illustrates how FIOF
tends to increase as voice onset time is delayed.

Trading relations. TRACE quite naturally tends to produce trading
relations between features since it relies on the weighted sum of the
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FIGURE 9. Schematic diagram of a syllable that will be heard as /ga/ or /ka/, depend-
ing on the point is the syllable at which voicing begins. Before the start of voicing, F2
(top curve) and F3 are energized by aperiodic noise sources, and FI is "cut back” (ihe
noise source has little or no energy in this range). Because of the fact that F| rises over
time after syllable onset (as the vocal tract moves from a shape consistent with the con-
sonant into a shape consistent with the vowel), its frequency at the onset of voicing is
higher for later values of VOT. Parameters used in constructing this schematic syllable
are derived from Kewley-Port (1982).

excitatory inputs to determine how strongly the input will activate a
particular phoneme unit. All else being equal, the phoneme unit
receiving the largest sum bottom-up excitation will be more strongly
activated than any other and will therefore be the most likely response
when a choice must be made between one phoneme and another.
Since the net bottom-up input is just the sum of all of the inputs, no
one input is necessarily decisive in this regard.

Generally, experiments demonstrating trading relations between two
or more cues manipulate each of the cues over a number of values
ranging between a value more typical of one of two phonemes and a
value more typical of the other. Summerfield and Haggard (1977) did
this for VOT and F1OF and found the typical result, namely, that the
value of one cue that gives rise to 50% choices of /k/ was affected by
the value of the other cue: The higher the value of F10OF, the shorter
the value of VOT needed for 50% choices of /k/. Unfortunately, they
did not present full curves relating phoneme identification to the values
used on each of the two dimensions. In lieu of this, we present curves
in Figure 10 from a classic trading relations experiment by Denes
(1955). Similar patterns of results have been reported in other studies,
using other cues (e.g., Massaro, 1981), though the transitions are often
somewhat steeper.
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FIGURE 10. Results of an experiment demonstrating the trade-off between two cues to
the identity of /s/ and /z/. Data from Denes, 1955, reprinted and fitted by the model of
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Reprinted by permission.)

To demonstrate that TRACE would simulate the basic tradeoff
effect, we generated a set of 25 intermediate phonetic segments made
up by pairing each of five different intermediate patterns on the VOT
dimension with each of five different intermediate patterns on the
F1OF dimension. The different feature patterns used on each dimen-
sion are shown in Figure 11, along with the canonical feature patterns
for /g/ and /k/ on each of the two dimensions. On the remaining five
dimensions, the intermediate segments all had the common canonical
feature values for /g/ and /k/. .

The model was tested with-each of the 25 stimuli, preceded by
silence (/-/) and followed by /a-/. The peak on the intermediate
phonetic segment occurred at Slice 12, the peak of the following vowel
occurred at Slice 18, and the peak of the final silence occurred at Slice
24. For each input presented, the interactive activation process was
allowed to continue through a total of 60 time slices, well past the end
of the input. At the end of the 60th time slice, we recorded the activa-
tion of the units for /g/ and /k/ in Time-Slice 12 and the probability of
choosing /g/ based on these activations. It makes no difference to the
general pattern of the results if a different decision time is used.
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FIGURE 11. Canonical feature level input for /g/ and /k/, on the two dimensions that
distinguish them, and the patterns used for the five intermediate values used in the trad-
ing relations simulation. Along the abscissa of each dimension, the nine units for the
nine different value ranges of the dimension are arrayed. The curves labeled /g/ and /k/
indicate the relative strength of the excitatory input to each of these units produced by
the indicated phoneme. The canonical curves also indicate the strengths of the feature to
phoneme connections for /g/ and /k/ on these dimensions,

Response probabilities computed using the formulas given earlier are
shown in Figure 12 for each of the 25 conditions of the experiment.
The pattern of results is quite similar to that obtained in Denes’ (1955)
experiment on the /s/-/z/ continuum. The contribution of each cue is
approximately linear and additive in the middle of the range, and the
curves flatten out at the extremes, as in the Denes (1955) experiment.
More importantly, the model’s behavior exhibits the ability to trade one
cue off against another. In terms of Summerfield and Haggard’s meas-
ure, the value of VOT needed to achieve 50% probability of reporting
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FIGURE 12. Simulated probability of choosing /k/ at Time-Slice 60, for each of the 25
stimuli used in the trading relations simulation experiment. Numbers next to each curve
refer to the intermediate pattern on the FIOF continuum used in the S stimuli contribut-
ing to each curve. Higher numbers correspond to higher values of FIOF.

/k/, we can see that the VOT needed increases as the F1OF decreases,
just as these investigators found.

Categorical perception. In spite of the fact that TRACE is quite
flexible in the way it combines information from different features to
determine the identity of a phoneme, the model is quite categorical in
its overt responses. This is illustrated in two ways: First, the model
shows a much sharper transition in its choices of responses as we move
from /g/ to /k/ along the VOT and FIOF dimensions than we would
expect from the slight changes in the relative excitation of the / g/ and
/k/ units. Second, the model tends to obliterate differences between
different inputs which it identifies as the same phoneme, while sharp-
ening differences between inputs assigned to different categories. We
will consider each of these two points in turn, after we describe the
stimuli used in the simulations.

Eleven different consonant feature patterns were used, embedded in
the same simulated /-_a-/ context as in the trading relations simulation.
The stimuli varied from very low values of both VOT and F 10F, more
extreme than the canonical /g/, through very high values on both
dimensions, more extreme than the canonical /k/. All the stimuli were
spaced equal distances apart on the VOT and F1OF dimensions. The
locations of the peak activation values on each of these two continua
are shown in Figure 13.

15. THE TRACE MODEL 89

/e/ /k/

1234567891011

‘ | |

Q 1 2 3 4 5 8 7 8 9
Voice Onset Time

/8/ /k/

1234567891011

| l J

o] t 2 3 4 5 8 7 8 9
Fl Onset Frequency

FIGURE 13. Locations of peak activations along the VOT and FIOF dimensions, for
each of the 11 stimuli used in the categorical perception simulation.

Figure 14 indicates the relative initial bottom-up activation of the /g/
and /k/ phoneme units for each of the 11 stimuli used in the simula-
tion. The first thing to note is that the relative bottom-up excitations
of the two phoneme units differ only slightly. For example, the canon-
ical feature pattern for /g/ sends 75% as much excitation to /g/ as it
sends to /k/. The feature pattern two steps toward /g/ from /k/
(stimulus number 5), sends 88% as much activation to/g/ as to /k/.

The figure also indicates, in the second panel, the resulting activa-
tions of the units for/g/ and /k/ at the end of 60 cycles of processing.
The slight differences in net input have been greatly amplified, and the
activation curves exhibit a much steeper transition than the relative
bottom-up excitation curves.

There are two reasons why the activation curves are so much sharper
than the initial bottom-up excitation functions. The primary reason is
competitive inhibition. The effect of the competitive inhibition at the
phoneme level is to greatly magnify the slight difference in the excita-
tory inputs to the two phonemes. It is easy to see why this happens.
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FIGURE 14. Effects of competition on phoneme activations. The first panel shows rela-
tive amounts of bottom-up excitatory input to /8/ and /k/ produced by each of the 11
stimuli used in the categorical perception simulation. The second panel shows the activa-
tions of units for /g/ and /k/ at Time-Cycle 60. Stimuli 3 and 9 correspond (o the
canonical /g/ and /k/, respectively.

Once one phoneme is slightly more active than the other, it exerts a
stronger inhibitory influence on the other than the other can exert on
it. The net result is that "the rich get richer." This general property of
competitive inhibition mechanisms has been noted many times
(Grossberg, 1976; Levin, 1976, McClelland & Rumelhart, 1981). A
second cause of the sharpening of the activation curves is the
phoneme-to-feature feedback, which we will consider in detail in a
moment.

The identification functions that result f rom applying the Luce choice
rule to the activation values shown in the second panel of Figure 14 are
shown in Figure 15 along with the ABX discrimination function, which
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FIGURE 15. Simulated identification functions and forced-choice accuracy in the ABX
lask.

will be discussed later. The identification functions are even sharper
than the activation curves; there is only a 4% chance that the model
will choose /k/ instead of /g/ for Stimulus 5, for which /k/ receives
88% as much bottom-up support as /g/. The increased sharpness is
due to the properties of the response strength assumptions. These
assumptions essentially implement the notion that the sensitivity of the
decision mechanism, in terms of 4’ for choosing the most strongly
activated of two units, is a linear function of the difference in activation
of the two units. When the activations are far enough apart, d’ will be
sufficient to ensure near-100% correct performance, even though both
units have greater than zero activation, 2

In TRACE, the categorical output of the model comes about only
after an interactive competition process that greatly sharpens the differ-
ences in the activation of the detectors for the relevant units. This
interactive process takes time. In the simulation results reported here,
we assumed that subjects waited a fixed time before responding. But, if
we assume that subjects are able to respond as soon as the response
strength ratio reaches some critical level, we would find that subjects

2 Many readers will note that the apparent sharpness of the identification functions
shown in Figure 15 contrasts with the much shallower functions shown previously in the
trading relations simulations. The reason for this is simply that the stimuli are spaced
more closely together in the trading relations simulation than in the categorical perception
case. This follows the standard experimental practice of emphasizing gradualness in
trade-off experiments and sharpness in categorical perception experiments (Lane, 1965).
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would be able to respond more quickly to stimuli near the prototype of
each category than they can to stimuli near the boundary. This is
exactly what was found by Pisoni and Tash (1974).

There is another aspect to categorical perception as exhibited by
TRACE. This is the fact that feedback from the phoneme to the
feature level tends to cause the model to obliterate the differences
between input feature patterns that result in the identification of the
same phoneme. This allows the model to account for poor within-
category discrimination and good between-category discrimination—the
second halimark of categorical perception. * The way it works is this.
When a feature pattern comes in, it sends more excitation to some
phoneme units than others: as they become active, they begin to com-
pete, and one gradually comes to dominate the others. This much we
have already observed. But as this competition process is going on,
there is also feedback from the phoneme level to the feature level.
Thus, as a particular phoneme becomes active, it tends to impose its
canonical pattern of activation on the feature level. The effect of the
feedback becomes particularly strong as time goes on since the feature
input only excites the feature units very briefly; the original pattern of
activation produced by the phoneme units is, therefore, gradually
replaced by the canonical pattern imposed by the feedback from the
phoneme level. The result is that the pattern of activation remaining at
the feature level after 60 cycles of processing has become assimilated to
the prototype. In this way, feature patterns for different inputs
assigned to the same category are rendered nearly indistinguishable.

This effect is illustrated in Figure 16, which shows how different
pairs of patterns of activation at the feature level are at the end of 60
cycles of processing. The measure of difference is simply | — Tab »
where r,;, stands for the correlation of the patterns produced by stimuli
a and 4. Only the two dimensions which actually differ between the
canonical /g/ and /k/ are considered in the difference measure.

3 Strictly speaking, at least as defined by Liberman, Cooper, Shankweiler, and
Studdert-Kennedy (1967). true categorical perception is only exhibited when the ability to
discriminate different sounds is no better than could be expected based on the assump-
tion that the only basis a listener has for discrimination is the categorical assignment of
the stimulus to a particular phonetic category. However, it is conceded that "true”
categorical perception in this sense is never in fact observed (Studdert-Kennedy. Liber-
man, Harris, & Cooper, 1970). While it is true that the discrimination of sounds is much
better for sounds that perceivers assign to different categories than for sounds they assign
to the same category, there is also at least a tendency for discrimination o be somewhat
better than predicted by the identification function, even between stimuli that are always
assigned 1o the same calegory. TRACE 1l produces this kind of approximate categorical
perception.
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FIGURE 16. Differences between patterns of activation at the feature level at Cycle 60,
for pairs of stimuli one step apart along the /g/-/k/ continuum used for producing the
identification functions shown previously in Figure 15.

To relate the difference between two stimuli to probability correct
choice performance in the ABX task generally used in categorical per-
ception experiments, we once again use the Luce (1959) choice model.
The probability of identifying stimulus x with alternative a is given by

Sax

A T

where S, is the "strength" of the similarity between a and x. This is
given simply by the exponential of the correlation of ¢ and X,

Sax = ek,ra,

and similarly for S,,. Here, k. is the parameter that scales the relation
between correlations and strengths. The resulting response probabilities
are shown in Figure 15,

Basically, the figures show that the effect of feedback is to make the
feature patterns for inputs well within each category more similar than
those for inputs near the boundary between categories. Differences
between stimuli near the prototype of the same phoneme are almost
obliterated. When two stimulj straddle the boundary, the feature level
patterns are much more distinct. As a result, the probability of
correctly discriminating stimuli within a phoneme category is much
lower than the probability of discriminating stimuli in different
categories.
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Like the completion process considered earlier, the process of
"canonicalization” of the representation of a speech sound via the feed-
back mechanism takes time. During this time, two things are happen-
ing: One is that the activations initially produced by the speech input
are decaying; another is that the feedback, which drives the representa-
tion toward the prototype, is building up. In the simulations, we
allowed a considerable amount of time for these processes before com-
puting similarities of different activation patterns to each other. Qbvi-
ously, if we had left less time, there would not have been as much of
an opportunity for these forces to operate. Thus, TRACE is in agree-
ment with the finding that there tends to be an increase in within-
category discrimination when a task is used that allows subjects to base
their responses on judgments of the similarity of stimuli spaced closely
together in time (Pisoni & Lazarus, 1974).

It should be noted that it would be possible to account for categorical
perception in TRACE without invoking feedback from the phoneme
level to the feature level. All we would need to do is assume that the
feature information that gives rise to phoneme identification is inacces-
sible, as proposed by the motor theory of speech perception (Liberman,
Cooper, Shankweiler, & Studdert-Kennedy, 1967), or is rapidly lost as
proposed by the dual code model (Fujisaki & Kawashima, 1968; Mas-
saro, 1975, 1981; Pisoni, 1973, 1975). The dual code model has had
considerable success accounting for categorical perception data and
accounts for all the aspects of categorical perception discussed thus far.

Both feedback models and dual code models can also accommodate
the fact that vowels show less of a tendency toward categorical percep-
tion than consonants (Fry, Abramson, Eimas, & Liberman, 1962:
Pisoni, 1973). It is simply necessary to assume that vowel features are
more persistent than consonant features (Crowder, 1978, 1981; Fujisaki
& Kawashima, 1968; Pisoni, 1973, 1975). However, the two classes of
interpretations do differ in their predictions of performance in discrim-
inating two stimuli, both away from the center of a category, but still
within it. Here, TRACE tends to show greater discrimination than it
shows between stimuli squarely in the middle of a category. Standard
interpretations of categorical perception can account for increases in
discriminability near the boundary between two categories (where iden-
tification may in fact be somewhat variable) by assuming that marginal
stimuli are more likely to give rise to different category labels. But
TRACE can account for increases in discriminability at extreme values
of feature continua which would not give rise to different category
labels. In TRACE, the reason for this increase in discriminability is
that the activation of the appropriate item at the phoneme level is
weaker, and therefore the feedback signal is weaker than it is when the
input occurs near the center of the category. This results in less
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canonicalization of the extreme stimuli and produces a W-shaped
discrimination function, as shown in Figure 16. Few studies of categor-
tcal perception use stimuli that extend far enough into the extreme
ranges of each phonetic category to observe reliable W-shaped curves;
however, Samuel (1977) did carry out such a study and obtained just
such W-shaped discrimination curves.

In summary, TRACE appears to provide a fairly accurate account of
the phenomena of cue trade-offs and categorical perception of speech
sounds. It accounts for categorical perception without relying on the
notion that the phenomenon depends on read-out from an abstract
level of processing; it assumes instead that the feature level, like other
levels of the system, is subject to feedback from higher levels which
actually changes the representation as it is being retained in memory,
pushing it toward a canonical representation of the phoneme most
strongly activated by the input.

Retuning of Phoneme Detectors by Context

In our simulations of trading relations, we have shown that the boun-
dary between phonetic categories on one dimension can be affected by
inputs on other dimensions. Other factors also influence the phoneme
perceived as a result of particular featural input. The identity of
phonemes surrounding a target phoneme, the rate of speech of a sylla-
ble in which a particular feature value occurs, as well as characteristics
of the speaker and the language being spoken all influence the interpre-
tations of features. See Repp and Liberman (1984) for a review of
these effects.

In TRACE, we account for local, coarticulatory influences on
phoneme identification by assuming that activations of phoneme units
can modulate the feature to phoneme connections among units in adja-
cent time slices. This idea provides one way of implementing what
Fowler (1984) has called a factoring of coarticulatory influences out of
the pattern of activation produced by a feature pattern at the phoneme
level. The modulation of connections can also account for the fact that
phoneme boundaries shift as a function of local phonetic context
(Mann & Repp, 1980). In simulations using TRACE I, we were able to
improve the performance of the model in identifying the correct con-
sonant at the beginning of a CV syllable from 79% correct without
using connection modulation to 90% correct with connection modula-
tion in place. Interestingly, the model is capable of generalizing from
the connection strengths appropriate for the vowels it has been trained
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on to other vowels, such as /e/, which fall between those on which it
was trained. Figure 17 shows phoneme-level activations produced by
the same token of the syllable /de/ with connection modulation turned
on, in the upper panel, and off, in the lower panel. Though other units
are activated in both cases, units for /d/ tend to dominate in the
former case, but not the latter.

It has been suggested by J. L. Miller, Green, and Schermer (1984)
that lexical effects and semantic and syntactic influences on phoneme
identification may be due to a different mechanism than influences of
such variables as speech rate and coarticulatory influences due to local
phonetic context. The assumptions we have incorporated into TRACE
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FIGURE 17. Activation of phoneme units resulting from the input /de/, with variable
connection strengths enabled, in the upper panel, and disabled, in the lower panel. The
/d/ units are depicted using a larger font just to increase their visibility.
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make a similar distinction. Lexical effects are due to the additional
source of input to the phoneme level provided by units at the word
level. This is quite different from the connection modulation mechan-
ism we have used to account for coarticulatory influences. In the dis-
cussion, we will consider ways of extending the connection modulation
idea to accommodate effects of variations in rate and speaker
parameters.

Summary of Phoneme Identification Simulations

We have considered a number of phenomena concerning the identifi-
cation and perception of phonemes. These include lexical influences on
phoneme identification and the lack thereof under certain cir-
cumstances; phonotactic rule effects on phoneme identification and the
role of specific lexical items in influencing these effects; the integration
of multiple cues to phoneme identity; and the categorical nature of the
percept that results from this integration. We have also seen how con-
nection modulation can be used to implement context-sensitive
phoneme detectors, thereby allowing the model to improve its perform-
ance in identifying real speech and to account for effects of phonetic
context on boundaries between phonemes. TRACE integrates all of
these phenomena into a single account that incorporates aspects of the
accounts offered for particular aspects of these results by other models.
In the next section, we show how TRACE can also encompass a
number of phenomena concerning the recognition of spoken words.

THE TIME COURSE OF SPOKEN WORD RECOGNITION

The study of spoken word recognition has a long history, and many
models have been proposed. Morton’s now-classic logogen model
(Morton, 1969) was the first to provide an explicit account of the
integration of contextual and sensory information in word recognition.
Other models of this period (e.g., Broadbent, 1967) concentrated pri-
marily on effects of word frequency. Until the midseventies, however,
there was little explicit consideration of the time course of spoken word
recognition. Several studies by Marslen-Wilson and his collaborators
(Marslen-Wilson, 1973; Marslen-Wilson & Tyler, 1975), and by
R. A. Cole and his collaborators (Cole, 1973; Cole & Jakimik, 1978,
1980) pioneered the investigation of this problem.
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Marslen-Wilson’s COHORT model (Marslen-Wilson & Tyler, 1989;
Marslen-Wilson & Welsh, 1978) of speech perception was bqsg:d on this
early work on the time course of spoken word. recognition. The
COHORT model was one of the sources of inspiration for TRACE for
two main reasons. First, it provided an explicit account of the way
top-down and bottom-up information could be co’mbined.to produce a
word recognition mechanism that actually worked in real time. Sgcond,
it accounted for the findings of a number of important f_experlments
demonstrating the on-line character of the speech recognition process.
However, several deficiencies of the COHORT model have been
pointed out, as we shall see. '

Because TRACE was motivated in large part by a desire to keep whgl
is good about COHORT and improve upon its weaknesses, we begm
this section by considering the COHORT model in some detal'l. Fl{st
we review the basic assumptions of the model, then consider its
strengths and weaknesses.

There appear to be four basic assumptions of the COHORT model:

1. The model uses the first sound (in Marslen-Wilson & Tyler,
1980, the initial consonant-cluster-plus-vowel) of the wor.d to
determine which words will be in an initial cohort or candidate
set.

2. Once the candidate set is established, the model elimina}es
words from the cohort immediately, as each successive
phoneme arrives, if the new phoneme fails to match the next
phoneme in the word. Words can also be eliminated on th_e
basis of semantic constraints, although the initial cohort is
assumed to be determined by acoustic input alone.

3. Word recognition occurs immediately, as soon as the cghort hgs
been reduced to a single member; in an auditory lexical deci-
sion task, the decision that an item is a nonword can be made
as soon as there are no remaining members in the cohort.

4. Word recognition can influence the identification of phonemes
in a word only after the word has been recognized.

There is a considerable body of data that supports various predic?ions
of the COHORT muodel. It has been observed in a variety of paradigms
that lexical influences on phoneme identification responses are much
greater later in words than at their beginnings (Bagley, 1900; R A.
Cole & Jakimik, 1978, 1980; Marslen-Wilson, 1980; Marslen-Wilson
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& Welsh, 1978). We considered some of this evidence in earlier sec-
tions. Another important finding supporting COHORT is the fact that
the reaction time to decide that an item is a nonword is constant when
measured from the occurrence of the first phoneme that rules out the
last remaining word in the cohort (Marslen-Wilson, 1980).

Perhaps the most direct support for the basic word-recognition
assumptions of COHORT comes from the gating paradigm, introduced
first by Grosjean (1980). In this paradigm, subjects are required to
guess the identity of a word after hearing successive presentations of
the word. The first presentation is cut off so that the subject hears only
the first N msec (N = 30 to 50 in different studies). Later presenta-
tions are successively lengthened in N msec increments until eventually
the whole word is presented. The duration at which half the subjects
correctly identify the word is called the isolation point. Considerably
more input is required before subjects are reasonably sure of the iden-
tity of the word; that point is termed the acceptance point. Grosjean’s
initial study confirmed many basic predictions of COHORT, though it
also raised a few difficulties for it (see below). In a more recent study
using the same method, Tyler and Wessels (1983) carried out a very
close analysis of the relation between the - empirically determined isola-
tion point and the point at which the input the subject has received is
consistent with one and only one remaining item—the point at which
recognition would be expected to occur in the COHORT model. They
report that the isolation point falls very close to this theoretically
derived recognition point, strongly supporting the basic immediacy
assumptions of the COHORT model.

It should be noted that the gating task is not a timed task, and so it
does not provide a direct measure of what the subject knows as the
speech input is unfolding, However, it is now in fairly wide use, and
Cotton and Grosjean (1984) have established that the basic patterns of
results obtained in Grosjean’s (1980) pioneering gating experiment do
not depend on the presentation of successively longer and longer
presentations of the same stimulus,

A dilemma for COHORT. Though the COHORT model accounts
for a large body of data, there are several difficulties with it. We con-
sider first the one that seems the most serious: as stated, COHORT
requires accurate, undistorted information about the identity of the
phonemes in a word up to the isolation point. Words cannot enter into
consideration unless the initial consonant-cluster-plus-vowel is heard,
and they are discarded from it as soon as a phoneme comes along that
they fail to match. No explicit procedure is described for recovering
words into the cohort once they have been excluded from it or when
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the beginning of the word is not accurately perceived due to noise or
elision.

These aspects of COHORT make it very difficult for the model to
explain recognition of words with distorted beginnings, such as dwibble
(Norris, 1982), or words whose beginnings have been replaced by noise
(Salasoo & Pisoni, 1985). From a computational point of view, this
makes the model an extremely brittle one; in particular, it fails to deal
with the problem of noise and underspecification which is so crucial for
recognition of real speech (Thompson, 1984).

The recognizability of distorted items like dwibble might be taken as
suggesting that all we need to do is liberalize the criterion for entering
and retaining words in the cohort. Thus, the cohort could be defined
as the set of words consistent with what has been heard or mild devia-
tions (e.g., one or two features) from what has been heard. This would
allow mild distortions like replacing /r/ with /w/ not to disqualify a
word from the cohort. It would also allow the model to cope with cases
where the beginning of the word is underspecified; in these cases, the
initial cohort would simply be larger than in the case where the input
clearly specified the initial phonemes.

However, there is still a problem. Sometimes we need to be able to
rule out items that mismatch the input on one or two dimensions and
sometimes we do not. Consider the items pleasant and blacelet. In the
first case, we need to exclude present from the cohort, so the slight
difference between /1/ and /r/ must be sufficient to rule it out; in the
second case, we do not want to lose the word bracelet, since it provides
the best fit overall to the input. Thus, in this case, the difference
between /1/ and /r/ must not be allowed to rule a word candidate out.

Thus the dilemma: On the one hand, we want a mechanism that will
be able to select the correct word as soon as an undistorted input speci-
fies it uniquely, to account for the Tyler and Wessels results. On the
other hand, we do not want the model to completely eliminate possibili-
ties that might later turn out to be correct. We shall shortly see that
TRACE provides a way out of this dilemma. -

Another problem for COHORT. Grosjean (1985) has recently
pointed out another problem for COHORT, namely, the possibility that
the subject may be uncertain about the location of the beginning of
each successive word. A tacit assumption of the model is that the sub-
ject goes into the beginning of each word knowing that it is the begin-
ning. In the related model of R. A. Cole and Jakimik (1980), this
assumption is made explicit. Unfortunately, it is not always possible to
know in advance where one word starts and the next word ends. As we
discussed in the introduction, acoustic cues to juncture are not always
reliable, and in the absence of acoustic cues, even an optimally efficient
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mechanism cannot always know that it has heard the end of one word
until it hears enough of the next to rule out the possible continuations
of the first word.

What is needed, then, is a model that can account for COHORT’s
successes and overcome these two important deficiencies. The next
two sections show that TRACE does quite well on both counts. The
first of these sections examines TRACE’s behavior in processing words
whose beginnings and endings are clearly delineated for it by the pres-
ence of silence. The second considers the processing of multiword
inputs, which the model must parse for itself.

One Word at a Time

In this section, we see how TRACE resolves the dilemma facing
COHORT, in that it is immediately sensitive to new information but is
still able to cope with underspecified or distorted word beginnings. We
also consider how the model accounts for the preference for short-word
responses early in processing a long word. The section concludes with a
discussion of ways the model could be extended to account for word
frequency and contextual influences.

Competition  vs. bottom-up  inhibition. TRACE deals with
COHORT’s dilemma by using competition rather than phoneme-to-
word inhibition. The essence of the idea is simply this: Phoneme units
have excitatory connections to all the word units they are consistent
with. Thus, whenever a phoneme becomes active in a particular slice
of the Trace, it sends excitation to all the word units consistent with
that phoneme in that slice. The word units then compete with each
other; items that contain each successive phoneme in a sequence dom-
inate all others, but, if no word ‘matches perfectly, a word that provides
a close fit to the phoneme Sequence can eventually win out over words
that provide less adequate matches.

Consider, from this point of view, our two items pleasant and blacelet
again. In the first instance, pleasant will receive more bottom-up exci-
tation than present and so will win out in the competition. We have
already seen, in our analysis of categorical perception at the phoneme
level, how even slight differences in initial bottom-up excitation can be
magnified by the joint effects of competition and feedback; but the real
beauty of the competition mechanism is that this action is contingent
on the activation of other word candidates. Thus, in the case of bla-
celet, since there is no word blacelet, bracelet will not be suppressed.
Initially, it is true, words like blame and blatant will tend to dominate
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bracelet, but, since the input matches bracelet better than any other
word, bracelet will eventually come to dominate the other possibilities.

This behavior of the model is illustrated using examples from its
restricted lexicon in Figure 18. In one case, the input is legal, and the
word regal is completely dominated by legal. In the other case, the
input is lugged, and the word rugged eventually dominates because there
is no word /ugged (pronounced to rhyme with rugged—the word lug is
not in the model’s lexicon). Here, rugged must compete with other par-
tial matches of /ugged, of course, and it is less effective in this regard
than it would be if the input exactly matched it, but it does win out in
the end.

[t should be noted that the details of what word will be most strongly
activated in such cases depend on a number of factors, including, in
particular, the distinctiveness of mismatching phonemes. Also, it is
possible to find cases in which a word that correctly spans a part of a
longer string dominates a longer word that spans the whole string but
misses out on a phoneme in one place or another. An item like
vigorefte may or may not be a case in point. In such cases, though, the
most important thing might not turn out to be winning or losing, but
rather the fact that both tend to stay in the game. Such neologisms can
suggest a poetic conjunction of meanings, if used just right: "He walked
briskly down the street, puffing his vigorette."

Time course of word recognition in TRACE. So far we have shown
how TRACE overcomes a difficulty with the. COHORT model in cases
where the beginning of a word has been distorted. In earlier sections
on phoneme processing, some of the simulations illustrate that the
model is capable of recognizing words with underspecified (i.e., ambi-
guous) initial phonemes. In this section, we examine how well TRACE
emulates the COHORT model in cases where the input is an undis-
torted representation of some particular word. In particular, we wanted
to see how close TRACE would come to behaving in accord with
COHORT’s assumption that incorrect words are dropped from the
cohort of active candidates as soon as the input diverges from them.

To examine this process, we considered the processing of the word
product (/prad’ct/). Figure 19 shows the state of the Trace at various
points in processing this word, and Figure 20 shows the response
strengths of several units relative to the strength of the word product
itself, as a function of time relative to the arrival of the successive
phonemes in the input. In the latter figure, the response strength of
product is simply given as 1.0 at each time slice and the response
strengths of units for other words are given relative to the strength of
product. The curves shown are for the words rrot, possible, priest, pro-
gress, and produce; these words differ from the word product (according
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to the simulation program'’s stressless encoding of them!) in the first,
second, third, fourth, and fifth phonemes, respectively. Figure 20
shows that these items begin to drop out just after each successive
phoneme comes in. Of course, there is nothing hard and fast or abso-
lute about dropping a candidate in TRACE. What we see instead is that
mismatching candidates simply begin to fade as the input diverges from
them in favor of some other candidate. This is just the kind of
behavior the COHORT model would produce in this case, though, of
course, the drop-off would be assumed to be an abrupt, discrete event.?

There is one aspect of TRACE’s behavior which differs from
COHORT: Among those words that are consistent with the input up to
a particular point in time, TRACE shows a bias in favor of shorter
words over longer words. Thus, priest has a slight advantage before the
/a/ comes in, and produce is well ahead of product until the /*/ comes
in (in phonemes, produce is one shorter than product).

4 The data reported by Tyler and Wessels actually appears to indicate an even more
immediate drop-off than is seen in this simulation. However, it should be remembered
that the curves shown in Figure 20 are on-line response strength curves, and thus reflect
the lags inherent in the percolation of input from the feature to the word level. The gat-
ing task, on the other hand, does not require subjects to respond on-line, If the input is
simply turned off at the peak of each phoneme’s input specification and then allowed to
run free for a few cycles, the dropout point shifts even earlier.
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FIGURE 20. Response strengths of the units for several words relative to the response
strength of the unit for product (/prad”kt/), as a function of time relative to the peak of
the first phoneme that fails to match the word. The successive curves coming off of the
horizontal line representing the normalized response strength of product are for the words
irot, possible, priest, progress, and produce, respectively. In our lexicon they are rendered
as /trat/, /pas’b’l/, /prist/, /pragr’s/, and / pradus/, respectively.

This advantage for shorter words is due to the competition mechan-
ism. Recall that word units compete with each other in proportion to
the overlap of the sets of time slices spanned by each of the words.
Overlap is, of course, symmetrical, so long and short words inhibit each
other to an equal extent; but longer words suffer more inhibition from
other long words than short words do. For example, progress and prob-
able inhibit product more than they inhibit priest and produce. Thus,
units for longer words are generally subjected to extra inhibition, partic-
ularly early on in processing when many candidates are active, and so
they tend to suffer in comparison to short words as a result.

We were at first somewhat disturbed by this aspect of the model’s
behavior, but it turns out to correspond quite closely with results
obtained in experiments by Grosjean (1980) and Cotton and Grosjean
(1984) using the gating paradigm. Both papers found that subjects
hearing the beginnings of words like caprain tended to report shorter
words consistent with what they had heard (e.g., cap). However, we
should observe that in the gating paradigm, when the word captain is
truncated just after the /p/, it will sound quite a bit like cap followed by
silence. In TRACE, this silence would activate silence units at the
phoneme and word levels, and the word-level silence units would com-
pete with units for words that extend into the silence. The silence will
reinforce the preference of the model for short-word interpretations
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because the detection of the silence will inhibit the detector for the
longer word. Thus, there are actually two reasons why TRACE might
favor short-word interpretations over long-word interpretations in a gat-
ing experiment. Whether human subjects show a residual preference
for shorter interpretations over longer ones in the absence of a follovy-
ing silence during the course of processing is not yet clear from avail-
able data.

We should point out that the experimental literature indicates that
the advantage of shorter words over longer ones holds only under the
special circumstances of gated presentation and then only with early
gates, when shorter words are relatively more complete than longer
ones would be. It has been known for a long time that longer words
are generally more readily recognized than shorter ones when the whole
word is presented for identification against a background of noise (Lick-
lider & Miller, 1951). . Presumably, the reason for this is simply that
longer words generally provide a larger number of cues than shorter
words do, and hence are simply less confusable.

Frequency and context effects. There are, of course, other factors
that influence when word recognition will occur, beyond those we have
considered thus far. Two very important ones are word frequency and
contextual predictability. The literature on these two factors goes back
to the turn of the century (Bagley, 1900). Morton’s (1969) logogen
model effectively deals with several important aspects of this huge
literature, though not with the time course of these effects.

We have not yet included either word frequency or higher-level con-
textual influences in TRACE, though, of course, we believe they are
important. Word frequency effects could be accommodated, as they
were in the interactive activation model of word recognition, in terms
of variation in the resting activation level of word units or in terms of
variation in the strength of phoneme-to-word connections. Contextual
influences can be thought of as supplying activation to word units from
even higher levels of processing than the word level. In this way, basi_c
aspects of these two kinds of influences can be captured. We leave it
to future research, however, to determine to what extent these elabora-
tions of TRACE would provide a detailed account of the data on the
roles of these factors. For now, we turn to the problem of determining
where one word ends and the next one begins.

Lexical Basis of Word Segmentation

How do we know when one word ends and the next word pegins‘?
This is by no means an easy task, as we noted in the introduction. To
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recap our earlier argument, there are some cues in the speech stream,
but as several investigators have pointed out (R. A. Cole & Jakimik,
1980; Grosjean & Gee, 1984: Thompson, 1984), they are not always
sufficient, particularly in fluent speech. It would appear that there is an
important role for lexical knowledge to play in determining where one
word ends and the next word begins, as well as in identifying the
objects that result from the process of segmentation. Indeed, as Reddy
(1976) has suggested, segmentation and identification may simply be
joint results of the mechanisms of word recognition. .

R. A. Cole and Jakimik (1980) discuss these points and present evi-
dence that semantic and syntactic context can guide segmentation in
cases where the lexicon is consistent with two readings (car go vs.
cargo). Qur present model lacks syntactic and semantic levels, so it
cannot make use of these higher-level constraints; but it can make use
of its knowledge about words, not only to identify individual words in
isolation, but to pick out a sequence of words in continuous streams of
phonemes. Word identification and segmentation emerge together
from the interactive activation process as part and parcel of the process
of word activation.

This section considers several aspects of the way in which word seg-
mentation emerges from the interactive activation process, as observed
in simulations with TRACE II. Before we consider these, it is worth
recalling the details of some of the assumptions made about the
bottom-up activation of word units and about competitive inhibition
between word units. First, the extent to which a particular phoneme
excites a particular word unit is independent of the length of the word.
Second, the extent to which a particular word unit will inhibit another
word unit is proportional to the temporal overlap of the two word units.
This means that words which do not overlap in time will not inhibit
each other but will gang up on other words that partially overlap each
of them. These two assumptions form most of the basis of the effects
we will observe in the simulations.

The boundary is in the ear of the "behearer." First, we consider the
basic fact that the number of words we will hear in a sequence of
phonemes can depend on our knowledge of the number of words the
sequence makes. Consider the two utterances she can’t and secant.
Though we can say either item in a way that makes it sound like a sin-
gle word or like two words, there is an intermediate way of saying them
so that the first seems to be two words and the second seems like only
one.

To see what TRACE II would do with single and multiple word
inputs, we ran simulation experiments with each individual word in the
main 211-word lexicon preceded and followed by silence, and then with
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211 pairs of words, with a silence at the beginning and at the end of the
entire stream. The pairs were made by simply permuting the lexicon
twice and then abutting the two permutations so that each word
occurred once as the first word and once as the second word in the
entire set of 211 pairs. We stress, of course, that real speech would
tend to contain cues that would mark word boundaries in many cases;
the experiment is simply designed to show what TRACE can do in
cases where these cues are lacking.

With the individual words, TRACE made no mistakes—that is, by a
few slices after the end of the word, the word that spanned the entire
input was more strongly activated than any other word. An example of
this is shown using the item /parti/ in Figure 21. The stream /parti/
might be either one word (party) or two (par tea, or par tee—the model
knows of only one word pronounced /ti/). At early points in process-
ing the word, par dominates over party and other longer words for rea-
sons discussed in the previous section. By the time the model has had
a chance to process the end of the word, however, party comes to dom-
inate.

Why does a single longer word eventually win out over two shorter
ones in TRACE? There are two main reasons. First of all, a longer
word eventually receives more bottom-up support than either shorter
word, simply because there are more phonemes activating the longer
word than the shorter word. The second reason has to do with the

’

barti}
ipar 1
o 5 Cpary v
parti}
FarElD e B2ty
*@ e {T &}
~ -p _p to-
p art —par i
2r
t .
a
r i
u
bé uli p ~
vt 4 Tooul oy o N P
-parti- -parti- ~parti- -parta-

FIGURE 21. The state of the Trace at various points during processing of / parti/.
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segugntial nature of the input. In the case of /parti/, by the time the
/t!/ IS coming in, the word party is well enough established that it keeps
/ti/ from getting as strongly activated as it would otherwise. This
behavior of the model leads to the prediction that short words imbed-
ded in the ends of longer words should not get as strongly activated as
shorter words coming earlier in the longer word. This prediction could
be tested using the gating paradigm or a cross-modal priming paradigm
such as the one used by Swinney (1982).

However, it should be noted that this aspect of the behavior of the
model can be overridden if there is bottom-up information favoring the
two-word interpretation. Currently, this can only happen in TRACE
through the insertion of a brief silence between the par and the tea. As
shown in Figure 22, this results in par and tea dominating all other
word candidates.

What happens when there is no long word that spans the entire
stream, as in /barti/? In this case, the model settles on the two word
Interpretation bar tea, as shown in Figure 22. Note that other words,
such as art, that span a portion of the input, are less successful than
either bar or tea. The reason is that the interpretations bar and art
overlap with each other, and art and teq overlap with each other, but
bar and tea do not overlap. Thus, art receives inhibition from both bar
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and tea, while bar and tea each receive inhibition only from art. Thus,
two words that do not overlap with each other can gang up on a third
word that each overlaps with partly and drive it out.

These remarkably simple mechanisms of activation and competition
do a very good job of word segmentation without the aid of any sylla-
bification, stress, phonetic word-boundary cues, or semantic and syntac-
tic constraints. In 189 of the 211 word pairs tested in the simulation
experiment, the model came up with the correct parse, in the sense
that no other word was more active than either of the two words that
had been presented. Some of the failures of the model occurred in
cases where the input was actually consistent with two parses, either a
longer spanning word rather than a single word (as in party) or a dif-
ferent parse into two words, as in part rust for par trust. In such cases
TRACE tends to prefer parses in which the longer word comes first.
There were, however, some cases in which the model did not come up
with a valid parse, that is, a pattern than represents complete coverage
of the input by a set of nonoverlapping words. For example, consider
the input /parki/. Though this makes the two words par and key, the
word park has a stronger activation than either par or key, as illustrated
in Figure 22.

This aspect of TRACE II's behavior indicates that the present ver-
sion of the model is far from the final word on word segmentation. A
complete model would also exploit syllabification, stress, and other cues
to word identity to help eliminate some of the possible interpretations
of TRACE II's simple phoneme streams. The activation and competi-
tion mechanisms in TRACE II are sufficient to do quite a bit of the
word segmentation work, but we do not expect them to do this per-
fectly in all cases without the aid of other cues.

Some readers may be troubled by a mechanism that does not insist
upon a parse in which each phoneme is covered by one and only one
word. Actually, though, this characteristic of the model is often a vir-
tue, since in many cases, the last phoneme of a word must do double
duty as the first phoneme of the next, as in hound dog or brush shop.
While speakers tend to signal the doubling in careful speech, the cues
to single vs. double consonants are not always sufficient for disambi-
guation, as is clear when strings with multiple interpretations are used
as stimuli. For example, an utterance intended as no notion will some-
times be heard as known notion (Nakatani & Dukes, 1977). The model
is not inclined to suppress activations of partially overlapping words,
even when a nonoverlapping parse is available. This behavior of
TRACE is illustrated with /b*stap/ (bus top or bus stop) in Figure 23.
In this case, higher levels could provide an additional source of infor-
mation that would help the model choose between overlapping and
nonoverlapping interpretations.
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Thus far in this section, we have considered the general properties of
the way in which TRACE uses lexical information to segment a speech
slreqm into words, but we have not considered much in the way of
empirical data that these aspects of the model shed light on. However,
there are two findings in the literature which can be interpreted in
accordance with TRACE’s handling of multiword speech streams.

Where does a nonword end? A number of investigators (e.g., R. A.
Cole & Jakimik, 1980) have suggested that when one word is identi-
fied, its identity can be used to determine where it ends and, therefore,
where the next word begins. In TRACE, the interactive activation pro-
Cess can often establish where a word will end even before it actually
does end, particularly in the case of longer words or when activations at
the word level are aided by syntactic and semantic constraints. How-
ever, it is much harder to establish the end of a nonword since the fact
that it is a nonword means that we cannot exploit any knowledge of
where it should end to do so.

This fact may account for the finding of Foss and Blank (1980) that
sgbjects are much slower to respond to target phonemes at the begin-
ning of a word preceded by a nonword than at the beginning of a word
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preceded by a word. For example, responses to detect word-initial /d/
were faster in stimuli such as the following;

At the end of last year, the government decided . . .

than they were when the word preceding the target phoneme (in this
case, government) was replaced by a nonword such as gatabont. It
should be noted that the targets were specified as word-initial segments.
Therefore, the subjects had not only to identify the target phoneme;
they had to determine that it fell at the beginning of a word as well.
The fact that reaction times were faster when the target was preceded
by a word suggests that subjects were able to use their knowledge of
where the word government ends to help them determine where the
next word begins.

An example of how TRACE allows one word to help establish where
its successor begins is illustrated in Figure 24. In the example, the
model receives the stream possible target or pagusle target, and we imag-
ine that the target is word-initial /t/. In the first case, the word possible
is clearly established, and competitors underneath it have been com-
pletely crushed by the time the initial /t/ in target becomes active at the
phoneme level (second panel in the upper part of the figure), so there
is no ambiguity about the fact that this /t/ is at the beginning of the
next word. (The decision mechanism would, of course, be required to
note that the model had established the location of the end of the
preceding word. We have not yet incorporated explicit assumptions
about how this would be done.) In the second case, words beginning
and ending at a number of different places, including some that overlap
with the location of the /t/, are partly activated. Thus, a listener would
have to wait until the input is well into the word target before it
becomes clear that the first /t/ in target is in fact a word-initial /t].

In reality, the situation is probably not as bleak for the perceiver as it
appears in this example because in many cases there will be cues in the
manner of pronunciation and the syllabification of the input that will
help to indicate the location of the word boundary. However, given the
imprecision and frequent absence of such cues, it is not surprising that
the lexical status of one part of a speech stream plays an important role
in helping listeners determine where the beginning of the next word
must be,

The long and short of word identification. One problematic feature
of speech is the fact that it is not always possible to identify a word
unambiguously until one has heard the word after it. Consider, for
example, the word far. If we are listening to an utterance and have got-
ten just to the /r/ in The man saw the tar box, though rar will tend to be
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FIGURE 24. State of the Trace at several points during the processing of possible targer
and pagusle target.

the preferred hypothesis at this point, we do not have enough informa-
tion to say unequivocally that the tar will not turn out to be target or
tarnished or one of several other possibilities. It is only after more time
has passed, and we have perceived either a silence or enough of the
next word to rule out any of the continuations of /tar/, that we can
decide we have heard the word far. This situation, as it arises in
TRACE with the simple utterance /tarbaks/ (tar box), is illustrated in
Figure 25. Though rar is somewhat more active than the longer word
farget when the /r/ is coming in, it is only when the word box emerges
as the interpretation of the phonemes following far that the rival target
finally fades as a serious contender.
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FIGURE 25. State of the Trace at several points in processing far box and guitar box.

With longer words the situation is different. As we have already
seen in another example, by the time the end of a longer word is
reached it is much more likely that only one word candidate will
remain. Indeed, with longer words it is often possible to have enough
information to identify the word unambiguously well before tl}e end. of
the word. An illustration of this situation is provided.by a simulation
using the utterance guitar box / g tarbaks/. By the time the / r/ has
registered, guitar is clearly dominant at the word level and can be
unambiguously identified without further ado.

Recently, an experiment by Grosjean (1985) has demonsFrated these
same effects empirically. Grosjean presented subjects with long or
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short words followed by a second word and measured how much of the
word and its successor the subject needed to hear to identify the target.
With longer words, subjects could usually guess the word correctly well
before the end of the word; and by the end of the word, they were
quite sure of the word’s identity. With monosyllabic words, on the
other hand, many of the words could not be identified correctly until
well into the next word. On average, subjects were not sure of the
word’s identity until about the end of the next word or the beginning of
the one after. As Grosjean (1985) points out, a major reason for this is
simply that the spoken input often does not uniquely specify the iden-
tity of a short word. In such cases, the perceptual system is often
forced to process the short word and its successor at the same time.

Recognizing the words in a short sentence. One last example of
TRACE II's performance in segmenting words is illustrated in Figure
26. The figure shows the state of the Trace at several points during the
processing of the stream /SiS"t"baks/. By the end, the words of the
phrase she shut a box, which fits the input perfectly with no overlap,
dominate all others. ,

This example illustrates how far it is sometimes possible to go in
parsing a stream of phonemes into words without even considering syn-
tactic and semantic constraints, or stress, syllabification, and juncture
cues to word identification. The example also illustrates the difficulty
the model has in perceiving short, unstressed words like a. This is, of
course, just an extreme version of the difficulty the model has in pro-
cessing monosyllabic words like rar and is consistent with Grosjean’s
data on the difficulty subjects have with identifying short words. In
fact, Grosjean and Gee (1984) report pilot data indicating that these
difficulties are even more severe with function words like a and of. It
should be noted that TR ACE makes no special distinction between con-
tent and function words per se, and neither do Grosjean and Gee.
However, function words are usually unstressed and considerably
shorter than content words. Thus, it is not necessary to point to any
special mechanisms for closed versus open class morphemes to account

- for Grosjean and Gee’s results.

Summary of Word Identification Simulations

While phoneme identification has been studied for many years, data
from on-line studies of word recognition is just beginning to accumu-
late. There is an older literature on accuracy of word identification in
noise, but it has only been quite recently that useful techniques have
been developed for studying word recognition in real time.
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FIGURE 26. The state of the Trace at several points during the processing of the stream
/SiS " baks/ (she shut a box).

What evidence there is, though, indicates the complexity of the word
identification process. While the word identification mechanism is sen-
sitive to each new incoming phoneme as it arrives, it is nevertheless
robust enough to recover from underspecification or distortion of word
beginnings. And, it appears to be capable of some simultaneous pro-
cessing of successive words in the input stream. TRACE appears to
capture these aspects of the time course of word recognition. In these
respects, it improves upon the COHORT model, the only previously
extant model that provides an explicit account of the on-line process of
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word recognition. And, the mechanisms it uses to accomplish this are
the same ones that it used for the simulations of the process of
phoneme identification described in the preceding section.

GENERAL DISCUSSION
Summary of TRACE’s Successes

In this chapter, we have seen that TRACE can account for a number
of different aspects of human speech perception. We begin by listing
the major correspondences between TRACE and what we know about
the human speech understanding process.

1. TRACE, like humans, uses information from overlapping por-

tions of the speech wave to identify successive phonemes.

The model shows a tendency toward categorical perception of
phonemes, as do human subjects. The model’s tendency
toward categorical perception is affected by many of the same
parameters that affect the degree of categorical perception
shown by human subjects; in particular, the extent to which
perception will be categorical increases with time between
stimuli that must be compared.

The model combines feature information from a number of dif-
ferent dimensions and exhibits cue trade-offs in phoneme iden-
tification.

The model augments information from the speech stream with
feedback from the lexical level in reaching decisions about the
identity of phonemes. These lexical influences on phoneme
identification occur in conditions similar to those in which lexi-
cal effects have been reported, but do not occur in conditions
in which these effects have not been obtained.

Like human subjects, the model exhibits apparent phonotactic
rule effects on phoneme identification, though it has no explicit
representation of the phonotactic rules. The tendency to
prefer phonotactically regular interpretations of ambiguous
phonemes can be overridden by particular lexical items, just as
it can in the human perceiver.
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6. Our simulations with TRACE I show that the model is able to
use activations of phoneme units in one part of the Trace to
adjust the connection strengths determining which features will
activate which phonemes in adjacent parts of the Trace. In this
way the model can adjust as human subjects do to coarticulatory
influences on the acoustic properties of phonemes (Fowler,
1984; Mann & Repp, 1980).

7. In processing unambiguous phoneme sequences preceded by
silence, the model exhibits immediate sensitivity to information
favoring one word interpretation over another. It shows an ini-
tial preference for shorter words relative to longer words, but
eventually a sequence of phonemes that matches a long word
perfectly will be identified as that word, overturning the initial
preference for the short-word interpretation. These aspects of
the model are consistent with human data from gating experi-
ments.

8. Though the model is heavily influenced by word beginnings, it
can recover from underspecification or distortion of a word’s
beginning.

9. The model can use its knowledge of the lexicon to parse
sequences of phonemes into words and to establish where one
word ends and the next one begins when cues to word bound-
aries are lacking.

10. Like human subjects, the model sometimes cannot identify a
word until it has heard part of the next word. Also like human
subjects, it can better determine where a word will begin when
it is preceded by a word rather than a nonword.

11. The model does not demand a parse of a phoneme sequence
that includes each phoneme in one and only one word. This
allows it to cope gracefully with elision of phonemes at word
boundaries. It will often permit several alternative parses to
remain available for higher-level influences to choose among.

There is, of course, more data on some of these points than others.
It will be very interesting to see how well TRACE will hold up against
the data as further empirical studies are carried out.
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Reasons for TRACE’s Successes

We think there are two main reasons why TRACE has worked so
well. The first is its use of massively parallel, interactive processing.
The second is the Trace architecture. We do not believe that the model
would have worked without both of these characteristics. The Trace
provides a processing structure that lays out the hypotheses about the
contents of an utterance in a way that captures directly the task to be
performed—to find an interpretation of the utterance consisting of a
sequence of units on each of several processing levels. Appropriate
competition within levels and mutual facilitation between levels is quite
naturally arranged in such a situation. This is important, but it would
not work without the parallel, interactive processing that is provided by
the PDP framework.

There is evidence to support both parts of this point, One source
comes from our early attempts to model speech perception without
adopting the Trace architecture. Our early mode! (described in Elman
& McClelland, 1984) failed to provide a straightforward representation
of the temporal structure of the speech stream.

It is a commonplace observation in the field of artificial intelligence
that success in modeling depends on having the right representation,
and Marr (1982) made very much of this point. But it is also true that
one must have the right kind of processing system to exploit the archi-
tecture. The fact that the HEARSAY speech understanding system was
not terribly successful attests to this. HEARSAY had the right
architecture—a better one, in fact, in some ways, than we have in the
current version of TRACE (see Chapter 16). But HEARSAY lacked
the massively parallel, interactive capabilities of PDP models.

Some Deficiencies of TRACE

Although TRACE has had a number of important successes, it also
has a number of equally important deficiencies. One fundamental defi-
ciency is the fact that the model requires reduplication of units and
connections, copying over and over again the connection patterns that
determine which features activate which phonemes and which
phonemes activate which words. One reason why this is a problem has
to do with learning. Learning in PDP models involves tuning connec-
tions between pairs of units based on both of their states. This kind of
learning is inherently local to the specific connections between the
specific units involved. Given TRACE’s architecture, such learning
would not generalize from one part of the Trace to another and so
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would not be accessible for inputs arising at different locations in the
Trace. A second problem is that the model, as is, is insensitive to
variation in global parameters such as speaking rate, speaker charac-
teristics and accent, and ambient acoustic characteristics. A third defi-
ciency is that it fails to account for the fact that one presentation of a
word has an effect on the perception of it a very short time later (Nus-
baum & Slowiaczek, 1982). These two presentations, in the current
version of the model, simply excite separate tokens for the same word
in different parts of the Trace.

All these deficiencies reflect the fact that the Trace consists of a large
set of independent tokens of each feature, phoneme, and word unit.
What appears to be called for instead is a model in which there is a sin-
gle stored representation of each phoneme and each word in some cen-
tral representational structure. If this structure is accessed every time
the word is presented, then we could account for repetition priming
effects. Likewise, if there were a single central structure, learning
could occur in just one set of units, as could dynamic retuning of
feature-phoneme and phoneme-word connections to take account of
changes in global parameters or speaker characteristics.

However, it remains necessary to keep straight the relative temporal
location of different feature, phoneme, and word activations as we
argued just above. Thus, it will not do to simply abandon the Trace in
favor of a single set of units consisting of just one copy of each
phoneme and one copy of each word.

It seems that we need to have things both ways: We need a central
representation that plays a role in processing every phoneme and every
word and that is subject to learning, retuning, and priming. We also
need to keep a dynamic trace of the unfolding representation of the
speech stream so that we can continue to accommodate both left and
right contextual effects. The next chapter describes a model of reading
that has some of these characteristics. It uses connection information
stored in a central PDP network to set connections in a processing
structure much like the Trace, thereby effectively programming this
structure in the course of processing. The next step in the develop-
ment of TRACE is to apply these ideas to speech perception. Some
comments about how this might be done are included at the end of the
next chapter.

CONCLUSION

Our aim in this chapter has been to show that parallel distributed
processing mechanisms provide a natural framework for developing
models capable of meeting the computational challenges posed by
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speech and of accounting for the data on human speech perception.
The TRACE model does quite well on both counts. Though the archi-
tecture of the model is partially responsible for its successes, we have
argued that the successes of the model depend at least as much on the
parallel distributed processing operations that take place within the
architecture. TRACE does have some limitations, but it successes so far
have been quite encouraging. Just how easy it will be to overcome the
limitations is a matter for future research.
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