Note that McClelland and Rumelhart use "j" for the sending unit
and "i" for the receiving unit, but also reverse the order of the
subscripts for weights (so w_ij is the weight from "j" to "i", which
is sending-to-receiving).

CHAPTER 4

Learning in PDP Models: The Pattern Associator

In previous chapters we have seen how PDP models can be used as
content-addressable memories and constraint-satisfaction mechanisms.
PDP models are also of interest because of their learning capabilities. They
learn, naturally and incrementally, in the course of processing, In this
chapter, we will begin to explore learning in PDP models. We will consider p
two "classical” procedures for learning: the so-called Hebbian, or correia-
tional learning rule, described by Hebb (1949) and before him by William
James (1890), and the error-correcting or "delta" learning rule, as studied
in slightly different forms by Widrow and Hoff (1960} and by Rosenblatt
(1959).

We will also explore the characteristics of one of the most basic network
architectures that has been widely used in distributed memory modeling
with the Hebb rule and the delta rule. This is the pattern associator. The
pattern associator has a set of input units connected to a set of output units
by a single layer of modifiable connections that are suitable for training
with the Hebb rule and the delta rule. Models of this type have been
extensively studied by James Anderson (see Anderson, 1983, for a more
recent review), Kohonen {1977}, and many others; a number of the papers
in the Hinton and Anderson (1981) volume describe models of this type.
The models of past-tense learning and of case-role assignment in PDP:18
and PDP:19 are pattern associators trained with the delta rule. An analysis
of the delta rule in pattern associator models is described in PDFE:11.

As these works point out, one-layer pattern associators have several sug-
gestive properties that have made them attractive as models of learning and
memory. They can learn to act as content-addressable memoties; they gen-
eralize the responses they make to novel inputs that are similar to the
inputs that they have been trained on; they learn to extract the prototype of
a set of repeated experiences in ways that are very similar to the concept-
learning characteristics seen in human cognitive processes, and they

84 BACKGROUND

degrade gracefully with damage and noise. In this chapter our aim is to
help you develop a basic understanding of the characteristics of these sim-
ple parallel networks. However, it must be noted that these kinds of net-
works have limitations. In the next chapter we will examine these limita-
tions and consider learning procedures that allow the same positive charac-
teristics of pattern associators to manifest themselves in networks and over-
come one important class of limitations.

We begin this chapter by presenting a basic description of the learning
cules and how they work in training connections coming into a single unit,
We will then apply them to learning in the pattern associator.

BACKGROUND
The Hebb Rule

In Hebb's own formulation, this learning rule was somewhat vaguely
described. He suggested that when {wo cells fire at the same time, the
strength of the connection between them should be increased. There are a
variety of mathematical formulations of this principle that may be given.
The simplest by far is the following:

a (1

AW“ == €d; o

i
Here we use ¢ to refer to the value of the learning rate parameter. This
version has been used extensively in the early work of James Anderson
(e.g., Anderson, 1977). If we start from all-zero weights, then expose the
network to a sequence of learning events indexed by /, the value of any
weight at the end of a series of learning events will be

(2)

W,-j o GEIGJJGJ;“

In studying this rule, we will assume that activations are distributed around
0 and that the units in the network have activations that can be set in either
of two ways: They may be clamped to particular values by external inputs or
they may be determined by inputs via their connections to other units in
the network. In the latter case, we will initially focus on the case where the
units are completely linear; that is, on the case in which the activation and
the output of the unit are simply set equal to the net input:

(3)

a; = zj‘-ajw;j~ [note "i" is receiving, "j" is sending]

In this formulation, with the activations distributed around 0, the wy
assigned by Equation 2 will be proportional to the correlation between the

4 THE PATTERN ASS0CIATOR 85

actwattgns of units / and j, normalizations can be used to preserve this
correlational prpperty when units have mean activations that vary from 0
The correlational character of the Hebbian learning rule is at once Ehe
strengti} of the procedure and its weakness. It is a strength because these
c.orrelatior.as can sometimes produce useful associative learning; that is, par-
ticular units, when active, will tend to excite other units whoge activa;tions
h.ave been coyrelated with them in the past. It can be a weakness, though
since correlations between unit activations often are not sufﬁcien{ to aliov:r
; ::twork to learn even very simple associations between patterns of activa-
‘ First igt‘s examine a positive case: a simple network consisting of two
input units and one output unit (Figure 1A). Suppose that we arrange
.thmgs so that by means of inputs external to this network we are able to
impose patterns of activation on these units, and suppose that we use tne
Hgbb rule (Equation 1 above) to train the connections from the two input
units to thg output unit. Suppose further that we use the four patterns
shown in Figure 1B; that is, we present each pattern, forcing the units to

B
_____O input Qutput

2 1

A

I 1+ 4+ ©
P+ 1 +
1§+ 4+

C
O °
4 input Output
c 1 2 3 4
4+ - e R
0 1 2 3 + o+ + o+ +
+ o+ o+ - -
R -

e

FIGURE t. Two simple associative networks and the patterns*used in training them.

86 BACKGROUND

the correct activation, then we adjust the strengths of the connections
between the units. According to Equation 1, wyy (the weight on the con-
nection to unit 2 from unit 0) will be increased in strength for each pattern
by amount €, which in this case we will set to 1.0. On the other hand, wy
will be increased by amount € in one of the cases (pattern 0) and reduced
by € in the other case, for a net change of 0.

As a result of this training, then, this simple network wa:mid have
acquired a positive connection weight to unit 2 from ugit 0 This connec-
tion will now allow unit 0 to make unit 2 take on an activation value corre-
fated with that of unit 0. At the same time, the network would have
acquired a nuil connection from unit 1 to unit 2, captug‘ing‘ the fact %hat the
activation of unit 1 has no predictive relation to the activation otf unit 2. In
this way, it is possible to use Hebbian learning to le.am associations that
depend on the correlation between activations of units ina net‘work))

Unfortunately, the correlational learning that is pos'mble with a He.bb:-an
learning rule is a "unitwise” correlation, and sometimes, these unitwise
correlations are not sufficient to learn correct associations between whole
input patterns and appropriate responses. To see that this_ is S0, SUPPOSE we
change our network so that there are now four input units a;}d one output
unit, as shown in Figure 1C. And suppose we want to train the connec-
tions in the network so that the output unit takes on the values given in
Figure 1D for each of the four input patterns shown there. In this case,
the Hebbian learning procedure will not produce correr:t results. To sce
why, we need to examine the values of the weights (eguwglently, the pair-
wise correlations of the activations of each sending unit with fhe receiving
unit). What we see is that three of the connections engl up with 0 weigl}ts
because the activation of the corresponding input unit is upcorre!ated with
the activation of the output unit. Only one of the input units, unit 2, has a
positive correlation with unit 4 over this set of patterns. This means _that
the output unit will make the same response to the ﬁ{'st. three patterns since
in all three of these cases the third unit is on, and this is the only unit with
a nonzero connection to the output unit, ’

Before leaving this example, we should note that then_a are vaiups o_f the
connection strengths that will do the job. One such set is shown In Figure
1E. The reader can check that this set produces the correct results for each
of the four input patterns by using Equation 3. ‘ ' ’

Apparently, then, successful learning requires ﬁndlqg ponnect:on
strengths that are not proportional to the correlations of activations of the
units. How can this be done?

The Delta Rule

One answer that has occurred to many people over the years is the idea
of using the difference between the desired, or farget, activation and the

4 THE PATTERN ASSOCIATOR 87

obtained activation to drive learning. The idea is to adjust the strengths of
the connections so that they will tend to reduce this difference or error
measure. Because the rule is driven by differences, we have tended to call
it the delta rule, Others have called it the Widrow-Hoff learning rule or the
least mean square (LMS) rule (Widrow & Hoff, 1960}; it is related to the
perceptron convergence procedure of Rosenblatt (1959).

This learning rule, in its simplest form, can be written

Aw,-- e Ee,‘aj {4)
where ¢;, the error for unit /, is given by
e =t —a, [t i is target of output (receiving) unit] (5)

the difference between the teaching input to unit 7 and its obtained activa-’
tion. :

To see how this rule works, let’s use it to train the five-unit network in
Figure 1C on the patterns in Figure 1D. The training regime is a little dif-
ferent here: For each pattern, we turn the input units on, then we see what
effect they have on the output unit; its activation reflects the effects of the
current connections in the network. (As before we assume the units are
linear.) We compute the difference between the obtained output and the
teaching input (Equation 5). Then, we adjust the strengths of the connec-
tions according to Equation 4. ‘We will follow this procedure as we cycle
through the four patterns several times, and look at the resulting strengths
of the connections as we go. The network is started with initial weights of
0, The results of this process for the first cycle through all four patterns
are shown in the first four rows of Figure 2.

The first time pattern 0 is presented, the response (that is, the obtained
activation of the output unit) is 0, so the error is +1. This means that the
changes in the weights are proportional to the activations of the input units.
A value of 0.25 was used for the learning rate parameter, so each Aw is
+0.25. These are added to the existing weights (which are 0}, so the
resulting weights are equal to these initial increments. When pattern 1 is
presented, it happens to be uncorrelated with pattern 0, and so again the
obtained output is 0. (The output is obtained by summing up the pairwise
products of the inputs on the current trial with the weights obtained at the
end of the preceding trial.} Again the error is 41, and since all the input
units are on in this case, the change in the weight is +0.25 for each input.
When these increments are added to the original weights, the result is a
value of +0.5 for wq, and wy,, and 0 for the other weights. When the next
pattern is presented, these weights produce an output of +1. The error is
therefore —2, and so relatively larger Aw terms result. Even so, when the
final pattern is presented, it produces an output of +1 as well. When the
weights are adjusted to take this into account, the weight from iniput unit 0
is negative and the weight from unit 2 is positive; the other weights are 0.
This completes the first sweep through the set of patterns. At tl}is point,

88 BACKGROUND

Ep Pat Input Tgt: Cutput Erxor Delta w's New values of w's
1 -1 1 -1 1 0.00 1.001 0.28-0.25 0.25-0.25 | 0.25-0.25 0.25-0.25
g g 1 1 1 1: 3 0.00 1.00¢ 0.25 0.25 0.25 0.25] 0.50 0.00 0.50 0.00
0 2 t 1 1-Lf -1 1.00 -2.00{-0.50-0.50-0.50 0.50 { 0.00-0.50 0.00 0.50
0 3 1-1-1 1% -1 1,00 =-2,00{-0.50 0.50 0.50~0.50 | -0.50 0.00 0.50 0.00
tss: 10,00
1 0 1 -1 1 -1] % ©0.00 1.00f 0,25-0.25 0.25-0.25) -0.25-0.25 0.75~0.25
31 1 1t 1 1 1] 1 0.00 1.00)] €.25 0.25 0.250.25(0.00 0.00 1.00 0.00
i 2 1 1 1-1} -1 1.00 -2.00/-0.%0-0.%0-0.50 0.50 | ~-0.50-0.50 6.50 0.50
1 3 1-1=-1 1j -1 0.00 -1.001-0.25 0.25 0.25-0.25 | -0.75-0.25 0.75 €¢.25
tss: T.00
3 ¢ 1«1 1~1] 1 0.25 ©0.75| 0.19-0.19 0,19-0.1% | ~0.63-0.63 1.25 0.25
2 1 1 it 1 1} 1 ©0.25 0.75| 0.19 ©.19 0.15 0.19 | -0.44-0.44 1.44 0.44
3 2 1 3 1=-1} -1 .13 -1.13}-0.26~0,28-0.28 0.28 | -0.72-0,72 1.16 0.72
3 3 1-1-% 1] -1 -0.44 -0.56]-0.14 0.14 0.14-0.14 | -0G.B6-0.5B 1.3 0.58
tss: 1.52
10 0 1 -1 1 -1} %t ©.90 0.19f 0.03-0.03 ¢.03-0.03 { ~0.95-0.95 1.90 0.30
0 1 t 1 1 1] 1 0.90 ©.101 0.03 0.03 0.03 0.03 | ~0.92~0.92 1.92 0.92
70 2 1 1 1 -1t -1 —-0.85% ~0.15|~0.04-0.04~0.04 0.04 | -0 96-0.96 1.99 0.96
30 3 1 -1 -1 1] -1 -0.92 -0.08j-0.02 0.02 0.02-0.02 | -0.98-0.94 1.91 0.%4
tgs: 0.05
20 ¢ 1 -1 1 -1f 1 06.99 0.0i] 0.00-0.00 ¢.00-C.00 | ~1.00-1.00 1.99 0.93
20 1 1 1 1 11 1 0.99 0.01} 0.00 0,00 0.00 ©.00 | -1.00-1.00 2.00 1.00
20 2 1 1 1 -3| ~1 -0.%9 ~0.01{~0.00~0.00-0.00 ©.00 | ~1.00-1.00 1.89 1.00
26 3 1 -1 ~1 1} =1 -1.00 =0.00{-0.00 ¢.00 0.00-0.00 | -1.00-1.00 1,89 1.00

taa: 0.00

FIGURE 2 Learning with the delta rule See text for explanation

the values of the weights are far from perfect; if we froze them at these
values, the network would produce 0 output to the first three patterns. It
would produce the correct answer (an output of ~1) only for the last pat-
tern.

The correct set of weights is approached asymptotically if the_: training
procedure is continued for several more sweeps through the set of patterns.
Each of these sweeps, or fraining epochs, as we will call them henceforth,
results in a set of weights that is closer to a perfect solution. To get a
measure of the closeness of the approximation to a perfect solution, we can
calculate an error measure for each pattern as that pattern is being pro-
cessed. For each pattern, the error measure is the value of the error
(t—a) squared. This measure is then summed over all patterns to get a
total sum of squares or tss measure, The resulting error measure, shown for
each of the illustrated epochs in Figure 2, gets smaller over epochs, as do
the changes i the strengths of the connections. The weights that result at

4. THE PATTERN AS50CIATOR 89

the end of 20 epochs of training are very close to the perfect solution
values. With more training, the weights converge to these values.

The error-correcting learning rule, then, is much more powerful than the
Hebb rule. In fact, it can be proven rather easily that the error-correcting
rule will find a set of weights that drives the error as close to 0 as we want
for each and every pattern in the training set, provided such a set of
weights exists. Many proofs of this theorem have been given; a particularly
clear one may be found in Minsky and Papert {1969).

The Linear Predictability Constraint

We have just noted that the delta rule will find a set of weights that
solves a network learning problem, provided such a set of weights exists.
What are the conditions under which such a set actually does exist?

Such a set of weights exists only if for each input-pattern—target-pair the
target can be predicted from a weighted sum, or linear combination, of the
activations of the input units. That is, the set of weights must satisfy

1, = E}w,,-aj ' (6)
for output unit i in all patterns p.

This constraint (which we called the linear predictability constraint in
PDPF:17) can be overcome by the use of hidden units, but hidden units can-
not be trained using the delta rule as we have described it here because (by
definition) there is no teacher for them. Procedures for training such units
are discussed in Chapter 5.

Up to this point, we have considered the use of the Hebb rule and the
delta rule for training connections coming into a single unit. We now con-

sider how these learning rules produce the characteristics of pattern associa-
tor networks.

THE PATTERN ASSOCIATOR

t

In a pattern associator, there are two sets of units: input units and output
units. There is also a matrix representing the connections from the input
units to the output units. A pattern associator is really just an extension of -
the simple networks we have been considering up to now, in which the
number of output units is greater than one and each input unit has a con-
nection to each output unit. An example of an eight-unit by eight-unit pat-
tern associator is shown in Figure 3.

The pattern associator is a device that learns associations between input
patterns and output patterns. It is interesting becausewhat it learns about

¥

90 THE PATTERN ASSOCIATOR

. . el o1 1 o

TP PE ¥
22222122%“?
PP PbEE
SO PED €7
BANAANVAV A APV &
BT
S S
TP PP X

O
(-
O

SAAAARS
FIGURE 3 A schematic diagram of an eight-unit pattern asseciator An input pattern, an out-

put pattern, and values for the weights tha will allow the input to produce the ocutput are
shown. (From FDP.18, p. 227)

one pattern tends to generalize to other similar patterns. In what follows
we will see how this property arises, first in the simplest possible pattern
associator—-a pattern associator consisting of linear units, trained by the
Hebb rule. !

The Hebb Rule in Pattern Associator Models

To begin, let us consider the effects of training a network with a single
learning trial /, involving an input pattern i, and an output pattern o,.
Assuming all the weights in the network are initially 0, we can express the
value of each weight as

—] 7
WU’ = Elﬂﬂ”. ()

Note that we are using the variable i; to stand for the activation of input

unit j in input pattern i;, and we are using oy to stand for the activation of:
output unit i in output pattern o;. Thus, each weight is just the product of

\

| Readers who wish to gain a better grasp on the mathemalical basis of this class of model's
may find it worthwhile to read PDP.9 An in-depth analysis of the della rule in pattern assoct-
ators is in PDP: 11

b e yo ol bk

4 THE PATTERN aAssociator 91

the activation of the input unit times the activation of the output unit in
the learning trial /.

Now let us present a test input pattern, i,, and examine the resuiting out-
put pattern it produces. Since the units are linear, the activation of output
unit i when tested with input patterni, is

0y = ZWyiy. (8)
J
Substituting for w; from Equation 7 yields
0, = Zeiyoyly, @
J

Since we are summing with respect to j in this last equation, we can pull
out € and o0y: .

g; = EO,’,%I}! Ji,-, . - (10)

Equation 10 says that the output at the time of test will be proportional to
the output at the time of learning times the sum of the elements of the
input pattern at the time of learning, each multiplied by the corresponding
element of the input pattern at the time of test.

This sum of products of corresponding elements is called the dot product.
It is very important to our analysis because it expresses the simifarity of the
two patternsi, and i,. It is worth noting that we have already encountered
an expression similar to this one in Equation 2. In that case, though, the
quantity was proportional to the correlation of the activations of two units
across an ensemble of patterns. Here, it is proportional to the correlation of
two patterns across an ensemble of units. It is often convenient to normal-
ize the dot product by taking out the effects of the number of elements in
the vectors in question by dividing the dot product by the number of ele-
ments, We will call this quantity the normalized dot product. For patterns
consisting of all +1s and —1s, it corresponds to the correlation between the
two patterns. The normalized dot product has a value of 1 if the patterns
are identical, a value of —1 if they are exactly opposite to each other, and a
value of 0 if the elements of one vector are completely uncorrelated with
the elements of the other. .

We can rewrite Equation 10, then, replacing the summed quantity by the
normalized dot product of input pattern i, and input pattern i,, which we
denote by (i, i,),:

0“- == kﬂ” (i.l' il)n (11).

where k = ne (n is the number of units). Since Equation 11 applies to all
of the elements of the output pattern o,, we can write

o, = ko, (i;-i,),. (12)

92 THE PATTERN ASSQCIATOR

This result is very basic to thinking in terms of patterns since it demon-
strates that what is crucial for the performance of the network is the simi-
larity relations among the input patterns—their correlations—rather than
their specific properties considered as individuals. 2 Thus Equation 12 says
that the output pattern produced by our network at test is a scaled version
of the pattern stored on the learning trial. The magnitude of the pattern is
proportional to the similarity of the learning and test patterns. In particu-
lar, if k=1 and if the test pattern is identical to the training pattern, then
the output at test will be identical to the output at learning,

An interesting special case occurs when the normalized dot product
between the learned pattern and the test pattern is 0. In this case, the out-
put is 0: There is no response whatever. Patterns that have this property
are called orthogonal or uncorrelated, note that this is not the same as being
opposite or anticorrelated.

To develop intuitions about orthogonality, you should compute the nor-
malized dot products of each of the patterns b, ¢, d, and e below with pat-
tern @

o
+— 4=
+——+
4+
-+

R ol

You will see that patterns b, ¢, and d are all orthogonal to pattern a; in fact,
they are all orthogonal to each other. Pattern e, on the other hand, is not
orthogonal to pattern a, but is anticorrelated with it. Interestingly, it forms
an orthogonal set with patterns b, c, and d. When all the members of a set
of patterns are orthogonal to each other, we call them an orthogonal set.

Now let us consider what happens when an entire ensemble of patterns is
presented during learning. In the Hebbian learning situation, the set of
weights resulting from an ensemble of patterns is just the sum of the sets
of weights resulting from each individual pattern. That is, after learning
trials on each of a set of input patterns i,, each paired with an output pat-
tern o,, the value of each weight will be

WU = Ezliﬂohh (13)
Thus, the output produced by each test pattern is

0, B k?)[(i[“ i;)". (14)
i
2 Technically, performance depends on the similarity relations among the patterns and ¢n their

oversll strength or magnitude. However, among vectors of equal strength (e g, the vectors
consisting of all +1s and —1s}, only the similarity relstions are important

4 THE PATTERN ASSOCIATOR 93

In words, the output of the network in response to input pattern ¢ is the
sum of the output patterns that occurred during learning, with each
pattern’s contribution weighted by the similarity of the corresponding input
pattern to the test pattern. Three important facts follow from this:

1. If a test input pattern is orthogonal to all training input patterns,
the output of the network will be 0; there will be no response to an
input pattern that is completely orthogonal to ali of the input pat-
terns that occurred during learning.

2. If a test input pattern is similar to one of the learned input patterns
and is uncorrelated with ali the others, then the test output will be
a scaled version of the output pattern that was paired with the simi-
lar input pattern during learning. The magnitude of the output will
be proportional to the similarity of the test input pattern to the
learned input pattern.

3. For other test input patterns, the output will always be a blend of
the training outputs, with the contribution of each output pattern
weighted by the similarity of the corresponding input pattern to the
test input pattern.

In the exercises, we will see how these properties lead to several desir-
able features of pattern associator networks, particularly their ability to gen-
eralize based on similarity between test patterns and patterns presented dur-
ing training.

These properties also reflect the limitations of the Hebbian learning rule,
when the input patterns used in training the network do not form an
orthogonal set, it is not in general possible to avoid contamination, or
"cross-talk," between the response that is appropriate to one pattern and the
response that occurs to the others. This accounts for the failure of Hebbian
learning with the second set of training patterns considered in Figure 1.
The reader can check that the input patterns we used in our first training
example in Figure 1 (which was successful) were orthogonal but that the
patterns used in the second example were not orthogonal.

The Delta Rule in Pattern Associator Models

Once again, the delta rule allows us to overcome the orthogonality limita-
tion imposed by the Hebb rule. For the pattern associator case, the delta
rule for a particular input-target pairi,, t; is

Awy = ety — 0g)iy. (15)

94 THE PATTERN ASSOCIATOR

Therefore the weights that result from an ensemble of learning pairs
indexed by I can be written:

WU == GEI(IH - Of])ijp (16)

It is interesting to compare this to the Hebb rule. Consider first the case
where each of the learned patterns is orthogonal to every other one and is
presented exactly once during learning. Then o, will be 0 (a vector of all
zeros) for all learned patterns /, and the above formula reduces to

Wjj == e%tﬂiﬂu (17)

In this case, the delta rule produces the same results as the Hepb rule; the
teaching input simply replaces the output pattern from Equatlon_ 13. As
long as the patterns remain orthogonal to each other, there will be no
cross-talk between patterns. Learning will proceed independently for each
pattern. There is one difference, however. If we continue Eegming beyond
a single epoch, the delta rule will stop learning when the weights are such
that they allow the network to produce the target patterns e).cactlyh‘ In the
Hebb rule, the weights will grow linearly with each presentation of the set
of patterns, getting stronger without bound,)

In the case where the input patterns i, are not orthogonal, the results of
the two learning procedures are more distinct. In this case, though, ‘we can
observe the following interesting fact: We can read Equation 15 as md;qat-
ing that the change in the weights that occurs on a jearning trialnls storing
an association of the input pattern with the error pattern; that is, we are
adding to each weight an increment that can be thought of as an association
between the error for the output unit and the activation of the input unit.
To see the implications of this, let’s examine the effects of a learning trial
with input pattern i, paired with output pattern t; on the output p?oduced
by test patterni,. The effect of the change in the weights due 10 this learn-
ing trial (as given by Equation 15) will be to change the output 0{“ some
output unit i by an amount proportional to the error that occurred for that
unit on the learning trial, e;, times the dot product of the learned pattern
with the test pattern:

Aoy = keﬂ(if' if)n'

Here k is again equal to € times the number of input units 7. In vector
notation, the change in the output patterno, can be expressed as

A 6, = kel (in" if)n

Thus, the change in the output pattern at test is proportional to the error
vector times the normalized dot product of the input pattern that occurred

4. THE PATTERN ASSOCIATOR 95

during learning and the input pattern that occurred during test. Two facts
follow from this:

1. If the input on the learning trial is identical to the input on the test
trial so that the normalized dot product is 1.0 and if & = 1.0, then
the change in the output pattern will be exactly equal to the error
pattern. Since the error pattern is equal to the difference between
the target and the obtained output on the learning trial, this
amournts to one trial learning of the desired association between the
input pattern on the training trial and the target on this trial.

2. However, if i, is different from i, but not completely different so
that (i, i,), is not equal to either 1 or 0, then the output produced
by i, will be affected by the learning trial. The magnitude of the
effect will be proportional to the magnitude of (i, 1,),.

The second effect—the transfer from learning one pattern to performance
on another—may be either beneficial or interfering. Importantly, for pat-
terns of all +1s and ~1s, the transfer is always less than the effect on the
pattern used on the learning trial itself, since the normalized dot product of
two different patterns must be less than the normalized dot product of a
pattern with itself. This fact plays a role in several proofs concerning the
convergence of the delta rule learning procedure (see Kohonen, 1977, and
PDP:11 for further discussion),

The Linear Predictability Constraint Again

Earlier we considered the linear predictability constraint for training a
single output unit. Since the pattern associator can be viewed as a collec-
tion of several different output units, the constraint applies to each unit in
the pattern associator. Thus, to master a set of patterns there must exist a
set of weights w; such that

tfﬁ=§wfj’:iﬂ (18)
for all output units / for all target-input pattern pairs p.

Another way of putting this set of constraints that is appropriate for the
pattern associator is as follows: An arbitrary output pattern o, can be
correctly associated with a particular input patterni, without ruining associ-
ations between other input-output pairs, only if i, cannot be written as a
linear combination of the other input patterns. A pattern that cannot be
written as a linear combination of a set of other patterns is said to be

i
]
!
i

06 THE PATTERN ASSOCIATOR

linearly independent from these other patterns. When all the members of a
set of patterns are linearly independent, we say they form a linearly indepen-
dent set. To ensure that arbitrary associations to each of a set of input pat-
terns can be learned, the input patterns must form a linearly independent
sef,

It is worth noting that the linear independence constraint is primarily a
constraint on the similarity relations among input patterns. If we consider
the input patterns to be representations of environmental inputs, then
whether a set of weights exists that allows us to associate arbitrary
responses with each environmental input depends on the way in which
these environmental inputs are represented as patterns of activation over a
set of input units inside the system. As long as we already have a way of
representing a set of environmental inputs so that they are linearly indepen-
dent, the deita rule will be able to associate any arbitrary responses with
these environmental inputs.

Although this is a serious constraint, it is worth noting that there are
cases in which the response that we need to make to one input pattern can
be predictable from the responses that we make to other patterns with
which they overlap. In these cases, the fact that the pattern associator pro-
duces a response that is a combination of the responses to other patterns
allows it to produce very efficient, often rule-like solutions to the problem
of mapping each of a set of input patterns to the appropriate response. We
will examine this property of pattern associators in the exercises.

Nonlinear Pattern Associators

Not all pattern associator models that have been studied in the literature
make use of the linear activation assumptions we have been using in this
analysis. Several different kinds of nonlinear pattern associators (i.e., asso-
ciators in which the output units have nonlinear activation functions) fall
within the general class of pattern associator models. These nonlinearities
have effects on performance, but the basic principles that we have observed
here are preserved even when these nonlinearities are in place. In particu-
lar;

1. Orthogonal inputs are mutually transparent,

2. The learning process converges with the deita rule as long as there
is a set of weights that will solve the learning problem; the non-
linearities that have been tried tend not to have much effect on
which sets of patterns can be learned and which cannot.

3. What is learned about one pattern tends to transfer to others.

4 THE PATTERN ASsociaTOR 97

THE FAMILY OF PATTERN ASSOCIATOR MODELS

With the above as background, we turn to a brief specification of several
members of the class of pattern associator models that are available through
the pa program. These are all variants on the pattern associator theme.
Each model consists of a set of input units and a set of output units. The
activations of the input units are clamped by externally supplied input pat-
terns. The activations of the output units are determined in a single two-
phase processing cycle. First, the net input to each output unit is computed.
This is the sum of the activations of the input units times the correspond-
ing weights, plus an optional bias term associated with the output unit:

net; = Lwy + bias;. (19
J. -

Activation Functions

After cqmputing the net input to each output unit, the activation of the
output unit is then determined according to an activation function. Several
variants are available:

o [inear. Here the activation of output unit i is simply equal to the
net input.

e Linear threshold. In this variant, each of the output units is a linear
threshold unir, that is, its activation is set to 1 if its net input
exceeds 0 and is set to 0 otherwise. Units of this kind were used
by Rosenblatt in his work on the perceptron (1959).

® Stochastic. This is the activation function used in PDP:I8 and
PDP:19. Here, the output is set to 1, with a probability p given by
the logistic function:

I (20}

1+ e»«rm,-/ T

P (Uiﬂl) =

This is the same activation function used in Boltzmann machines.

e (Continuous sigmoid. In this variant, each of the output units takes
on an activation that is nonlinearly related to its input according to
the logistic function:

1 (21)
1+ e--nerj/T

