2 The attraction of parallel
distributed processing for
modelling cognition

The representation and processing of information in connectionist networks is
distributed. Decisions are reached by consensus of a large number of simple com-
putations taking place in parallel as stimulus information interacts with stored
knowledge. Inn consequence, connectionist memories display many huwman charac-
teristics: They are relatively innmune to damaged components within the system or to
noisy input; they allow retrieval by content; they are likely to retrieve typical
instances from categories.

The last decade has seen an explosive growth in the connectionist modelling of
cognitive processes, with simulation of most of the classical experimental paradigms
of cognitive psychology. One reason for this enthusiasm is that, independent of their
success at modelling human performance at any particular cognitive task, all con-
nectionist models exhibir some general characteristics which are shown by human
cognitive processes and distinguish them from non-biological computational systems
such as computer programs: They still perform reasonably well after minor damage
to components of the system; they still perform reasonably well if their input is noisy
or inaccurate; they allow memory retrieval by content.

In this chapter we will look at two aspects of connectionist systems which are
responsible for these characteristics. Like the principles of internearonal com-
munication described in chapter 1, these are based on general observations of brain
structure. First, knowledge representation is distributed across many processing
units. Second, computations take place in parallel across these distributed
representations. The result is that conclusions are reached on the basis of a consensus
of many calculations rather than depending on any particular one.

These principles put connectionist models in direct contrast to many traditional
models in cognitive psychology or artificial intelligence where knowledge representa-
tion is local and computation is serial. In general, such models are not immune to

The representation of knowledge in connectionist netiworks is distributed 31

damage or resistant to noisy input. So a traditional model of, say, syllogistic
reasoning, might give as good a fit to the experimental data as a connectionist model,
but it would do so without exhibiting the full range of human characreristics as it
performed the task.

The representation of knowledge in connectionist networks
is distributed

Traditional models of cognitive processing usually assume a local representation of
knowledge. That is, knowledge about different things is stored in different,
independent locations. In a traditional model of reading aloud, for example,
information about how to pronounce the letter string DOG is stored in one place and
information about how to pronounce the string CAT in another. Whar could be
more natural? The two pieces of information are independent and would be required
at different times. So storing them independently makes obvious sense. The
information storage systems we are familiar with in everyday life—dictionaries,
telephone directories, computer discs—use local representation. Each discrete piece
of information is stored separately. How else could it be done?

In connectionist models information storage is not local, it is distributed. There is
no one place where a particular piece of knowledge can be located. Consider the
segment of network at the bottom of figure 1.2 in chapter 1, part of a larger network
which is learning to read aloud. Any input, such as the letter string DOG, would

~excite units and connections all over the network, Learning takes place by changing

the weights of the connections leading to all output units which have an incorrect
level of acrivity. The knowledge of how to pronounce the input DOG is distributed
across many different connections in different parts of the system. It is the sum total
effect of all these connections which produces the pronunciation, not any single one
of them,

The concept of distributed storage may be difficult to grasp at firse because it is
counter to our everyday experience of information storage systems. The connections
which contain the system’s knowledge about how to pronounce DOG are the same
as those with the knowledge about how to pronounce any other letter string. All the
knowledge that the network contains is superimposed on the same ser of
connections, Intuitively this may seem entirely implausible. How can the same set of
weights store independent and even contradictory pieces of information? As we will
see, it can be done, and some of the emergent properties of such systems are
intriguingly similar ro properties of human cognitive processes. But for the moment
this will have to be taken on trust. There are no familiar informarion storage systems
which use distributed coding, so analogy to a familiar system is not possible.

Lad
[2]

The attraction of parallel distributed processing for modelling cognition

Distributed representations are damage resistant and fault
tolerant

When one considers the structure of the brain it is remarkable that it ever manages to
come to the correct conclusion about anything. By any conventional standards
neurons are an entirely unsuitable medium for computation: they die throughout the
brain’s life, causing random loss of stored information; they have a finite probability
of firing even when they are not engaged in signal processing; the response of a
neuron to any particular input is probabilistic, not fixed.

If we look at the firing pattern of a single neuron the problem that probabilistic
responses cause for the system will become clear. The upper part of figure 2.1 shows
the average response of a single neuron in the visual cortex to a stimulus presented to
the eye. The stimulus is presented ar time 0. Time after the presentation of the
stimulus is shown on the horizontal axis. The verrical axis shows the neuron’s firing
rate. It has an average background firing rate of a few spikes per second. When the
stimulus is presented a signal is superimposed on this. About 50 ms after the stimulus
appears the neuron fires strongly for about 30 ms. 100 ms later it fires again, rather
less intensely, for about 50 ms. This is the signal that the neuron transmits to the
other neurons to which it is connected, indicating what pattern of stimulation it has
received.

This seems fairly straightforward. But the histogram was obtained by summing the
spike patterns over a number of presentations of the stimulus. The lower part of the
figure shows 12 different occasions on which the same stimulus was presented. Each
time the neuron fires there is a vertical spike. If we look at these individual trials the
patrern which emerges is much less clear than that suggested by the overall average at
the top. On trial 5 the initial burst was missing. On trial 10 the second burst was
missing. On trial 11 the neuron did not respond at all. It is clear that the ‘signal’
which the histogram at the top shows is an idealised average. On any given trial the
output will only approximate this, sometimes quite closely, sometimes not at all,
How can the system produce a reliable response on every trial when the individual
components only produce their signal on average across trials?

If the processing components in a conventional digital computer produced random
spontaneous output, a different response to the same stimulus on different occasions
and suffered from random component drop-out, the system would be totally un-
predicrable! Sometimes it would work correctly, but if a computation required access
ro the contents of a missing memory unit, or a burst of noise obliterated a signal, the
result would be garbage. Although the components in the brain can fire and die at
random, the computations performed by the brain are not unpredictable. With minor
damage it becomes a little slower and less accurate, but it still produces roughly the
same answer. It has to suffer serious damage before it produces nonsense.

Distributed representations are damage resistant and fault tolerant 33

Average rate over many trials

Firing rate
{spikes/sec)
201
W0
i H L 5
-50 0 50 100 150 200
Time {msec)
Individual trials
Triais

! Lt L

Ll RN N RIS ETaT
! P Ty H|m £ T I
;) :
T '

il
it I 511 ! i3 HEELLEL JELLEE L}
llliﬂfﬁ&%ﬂl | #IFHHEHn i i
0 80 100 150 ZGO
Time (msec)

Figure 2.1 The response of a neuron in the visual cortex for 250 ms after stimujus presentation Upper:
The firing rate of the neuron summed over a number of presentations of the stimulus. Lower: The pastern
on 12 of the trials which contributed to the average response shown at the top. Each vertical line
represents the time ag which the neuron Ared. (Based on Morrell 1972}

The brain escapes the consequences of the unpredictable behaviour of individual
neurons because its computations are performed in parallel on representations which
are distributed over many neurons. No one neuron plays a crucial role in processing,
The overall result is the outcome of many distributed sub-compurtations. Even if
individual components of the calculation are not accurate, the ensemble averaging

34 The attraction of parallel distributed processing for inodelling cognition

can nevertheless give an answer which is accurate enough. When the memory
location required for a calculation in a localist information storage system is
damaged, the result is disaster. If the first page of a dictionary is missing, there is no
way of checking whether aardvark is really spelt like that. But, in a connecrionist
system, there is no such thing as ‘the memory location required for a cakcula:io-n’.)
Information and calculation are spread across the network. If one unit or connection
in the network is damaged, others can make up for the missing part.

The system will, of course, be slightly less accurate if a connection is lost. But the
pattern of loss is quite different in localist and distributed systems. Damage to a
localist system causes some information to be lost rotally while other information is
unaffected. In a distributed system any damage causes partial loss of a range of
information. As damage increases, the performance of the system inevitably begins to
drop. But a small amount of damage may have no noticeable effect on the output of
the system. The ability of brains and connectionist models to continue to produce a
reasonable approximation to the correct answer following damage, rather than
undergoing catastrophic failure, is an example of fault tolerance referred to as
graceful degradation.

Connectionist networks allow memory access by content

Human memory is content-addressable. That is, you can access a memory by using
some part of the information contained in the memory (the content) as a retrieval
cue. This is unlike retrieval from familiar forms of information storage, such as
dictionaries, telephone directories or computer discs. In these, the place where the
information is stored has an address. The only way to access information for
retrieval is with the address. For example, in a dictionary the address is the spelling of
the word; the information stored with this address is the definition of the word. In a
computer system a typical address is the name of a file; the information which can be
accessed with this address is the contents of the file.

To understand the difference between accessing a memory by address and by
content, contrast retrieving information from a dictionary with obraining the same
information from a person. Imagine that you want to know the name of a man-made
wall, built.across a valley, to contain water to build up a head of pressure to generate
electricity. With a dictionary, there is no way to access the location where this
information is stored and extract the missing piece, the word ‘dam’. If you start with
the address (DAM) you can access all the information stored at the address. Without
it you can access nothing, In contrast, a person given part of the information would
probably be able to retrieve the rest. Unlike a dictionary, human memory allows
access via any patt of the information that forms the memory. One of the reasons
why connectionist models of human memory are ateractive is that content address-

Retrieving information from a distributed database

i
e

ability follows as a narural consequence of their distributed structure. Content
addressability can be built into localist storage but only by adding a complex cross-
referencing system.

Any information processing system which works in the brain must be fault tolerant
because the signals it has ro work with are seldom perfect. There is a random compon-
ent to neuronal firing; speech is usually heard against a background of other noises;
objects rarely present the same image on different occasions. An attractive aspect of
content-addressable memory is thac it is inherently fault rolerant. Imagine someone
asked you to guess who they were thinking of: ‘This man was a British Conservative
politician. He became Prime Minister in 1978 and was Prime Minister during the
Falklands War. He was ousted from office by his own party, being held responsible
for the fiasco of the Poll Tax. He was eventually replaced as Prime Minister by John
Major.” You could probably suggest ‘Margaret Thatcher’ as an answer despite the
fact that some of the information is incorrect. Mrs Tharcher did not become Prime
Minister until 1979, of course. With content-addressable memory the.weight of
evidence pointing to one answer can overcome other evidence that is inconsistent. A
best fir solution can be chosen even if it is not perfect. This is unlike memory systems
in which access by address is the only possibility. Any error in the address wiil lead to
failure. A search of Who's Who using the address ‘Margaret Patcher’ would discover
nothing, despite the fact that most of the search term fits an existing entry.

Retrieving information from a distributed database

To see how a distributed system with parallel processing works in practice we will
look at retrieval from a simple connectionist memory described by McClelland
(1981).! This memory demonstrates content addressability and fault rolerance. Tt
also shows typicality effects in retrieval-—if asked to retrieve a random member of a
category it will produce’a typical member. Considering the simplicity of the
simulation it demonstrates a remarkable range of human characteristics in memory
retrieval,

Imagine that you live in a neighbourhood where many of your male acquaintances
belong to one of the two rival local gangs, the Jets or the Sharks. Your knowledge
about these characters will come from a succession of independent episodes. One
night Fred emerges from behind a bush and offers you some white powder. You hear
Dave and his wife trading insults as she drives off with a car full of suitcases.
Everyone in the bar is laughing because Don has been admitted to college on the
basis of forged examination results. Nick hangs out with Karl whom vou know to be
a Shark. All these pieces of information about your neighbours are gradually

'The Jers and Sharks memory system is nor implemented in tlearn but its propertics and the examples
described in the text can be expiored using the tac program in McCleliand and Rumelhart (1988)

36 The attraction of parallel distributed processing for modelling cognition

Table 2.1
Address Conrents

Gang Age Education Marital Occupation

‘ Starus

Alan Jets 305 JH Married Burglar
Art ',lcts 405 JH Single i’ushe.r
Clyde fets 40s T Single Bookic
D:;ve Sharks 30s HS Divorced Pusher
Don Sharks 305 Col Married Burla.r
Doug Jes 30s HS Singlc.' Bookie
Earl Sharks 40s HS Married Burglar
Fred Jess 20s HS Single Pusher
Gene Jets 20s Col Singte Pusher
George Jets 20s IH Divorced Burglar
Greg Jets 20s HS Married I’ushe_r
ke Sharks 30s JH Single Bookie
Jim Jets 20s TH Divorced Burgiar
.50511} Jets 208 JH Married Burgl.a:’
Karl Sharks 40s HS Married Bookie
Ken Sharks 20s HS Single Burglar
Lance Jets 20s H Married Burgl.ar
Mike Jets 30s HH Single Bookfe
Neal Sharks 30s HSs Single Book{c
Med Sharks 30s Col Married Bookie
Nick Sharks 30s HS Singie Pusher
Oliver Sharks 30s Col Married I’ushclr
Pese Jers 20s Hs Single Baokie
Phil Sharks 30s Col Married Pusher
Ralph fets 30s T Single Pusher
Rick Sharks 30s HS Divorced Burgl‘ar
Sam Jets 20s Col Married Bookie

{Based on McClelland 1981))

assembled over the years. Fred is a pusher; Dave is divorced; Don went to college;
Nick is a Shark. ‘
Table 2.1 shows how this information might be stored in a conventional
informarion storage system. The system has a set of storage locations, corresponding
to a set of cards in an index file or a set of files on disc in a computer, for example,
cach headed by an address. The address is the name of the person. Each new piece (?E
information relating to him is stored at the location headed by this address. In this
simple simulation we imagine that we have information about the Gang each person
belongs to {Jets or Sharks), a rough idea of his Age (20s, 30s or 40s), the exfent qf his
Education {Junior High, High School or College), his Marital Status (Married, SmgA!e
or Divorced), and his Occupation (Bookie, Burglar or Pusher). The format used in

Retrieving information from a distributed database 37

rable 2.1, address + contents, is a logical way of storing the information since the
name Alan is the key which binds one set of information together, Clyde connects
another set, and so on.

This form of storage is efficient for retrieving information in response to questions
like ‘Is Fred a pusher?’. The question contains the address, and the address leads
directly to the place where the information which provides rhe answer is stored. But
it is not so good for answering other enquiries. If you are asked *Do you know the
name of a pusher?’, the only way is ro search through the list of addresses until you
find one where the information Pusher is stored under Occupation. Although the
information Pusher is stored at many locations, it does not form part of the address.
So an answer to this question cannot be extracted directly from the memory.

Admittedly, with this particular database it would not take long to find a pusher if

you searched addresses at random. But a more realistic representation of knowledge
of these people would include many unique pieces of information, such as the fact
that Fred’s grandparents came from Ballylickey. The only way to store this in a
system like that shown in table 2.1 is as the fact ‘grandparents came from Ballylickey’
at the storage location with the address Fred. The question ‘Whose grandparents
came from Ballylickey? could only be answered by random search of the addresses
until the one containing that informartion was found. This might take a long time
although you would get there in the end. But a human memory would not respond
like that. If you could remember the information at all you would usually produce
the answer reasonably quickly. This is because human memory can be accessed by
content—any part of the knowledge base can be used to access any other part.
‘Ballylickey” can be used as a cue, and will lead to Fred. The information storage
system shown in table 2.1 is perfectly logical. Indeed, it is probably the sort of systemn
you would use if you were asked to store the informarion about the Jers and Sharks.
But human memory cannot be organised like this, A memory organised like table 2.1
does not allow content-addressable retrieval; human memory does.

Another way of seeing why human memory cannot be organised so thar access is
only possible by address is to consider how you would answer the question *“Whar are
the Jets like?”. Table 2.1 allows easy access to information about individual Jets. But
it offers no simple way to answer questions requiring generalisations across a
number of entries. Human memory does allow generalisations across areas of
memory. A person who knew these two gangs could probably teil you that the Jets
were younger than the Sharks without having to think very hard. Although the
method of information storage shown in table 2.1 seems natural, it cannor be the
way that human memory is organised.

(1} Setting up a distributed database for the Jets and Sharks base. McCleliand
explored the consequences of storing the information about the Jets and Sharks in
a distributed system. The architecture of his system is shown in the upper part of

38 The attraction of parallel distributed processing for modelling cognition

figure 2.2. To store the information in table 2.1 we need to represent facts about
Name, Gang Membership, Age, Education, Marital Status and Occupation. Within
each of these areas of knowledge there is a node corresponding to the possible values
that someone could have. So in the Age area there are nodes for 20s, 30s and 40s, in
Occupation for B glar, Bookie and Pusher, in Gang for Jet and Shark, and so on.
This model might seem to be localist racher than distributed because there are
individual nodes to represent specific conceprs. Bur, as we shall see, the underlying
dynamics of the model are parallel and distributed. The resuit of any input is
determined by interaction across the entire database. The localist coding of concepts
is used to make it easy 1o see what the model is doing in the examples which follow.

A memory is formed by setting up a link berween two nodes. If we discover that
Sam is a bookie we set up a positive connection between the Sait node in the Name
area and the Bookie node in the Occupation area. If we then discover that he is
married we set up a positive connection berween Sam in the Name area and Married
in Marital Status, and between Bookie and Married (since we now know of a bookie
who is married). To store all the information we know about Sam we would set up
positive links between all the possible pairwise combinations of San in Name, Jet in
Gang, 20s in Age, College in Education, Married in Marital Status and Bookie in
Occupation. The way that McClelland did this is shown in the middle of figure 2.2.
He set up a Person node in the central region of the model and then made a positive
connecrion between this and each fact that was related to that person. The result is
similar to setting up all 15 links necessary to represent these facts individually,
but requires fewer links. Person nodes were then set up for each of the people in table
2.1 and the necessary links formed to represent everything that is known about
them™.

The bottom part of figure 2.2 shows the connections between the various nodes
building up as information about five of the people is added to the system. This also
shows a second element of the model. There are mutually inhibitory connections
berween each of the exemplar nodes within a knowledge area. There must be some
inhibitory links in a networlk like this where everything is interconnected or the result
of activating any node would be that everything in the network would eventually
reach its maximum activity level and no differential response to different inputs
would be possible. These connections represent the fact that, for example, if someone
is in his 20s, he cannot be in either his 30s or his 40s. This fact could have been im-
plemented by making negative connections from each person node to all the things
he is not. Building mutually inhibitory links between alternative instance nodes

24t might seem that the Person node corresponds to the address for the information just as the name Sam
does in tabie 2 1 When information is retrieved from the net the Person node cannot be accessed, so it
cannot be used as a rerrieval address. [t is just a convenience which reduces the number of connections

reguired o set up the modet and makes the eperation of the model casier 1o follow.

Retrieving information from a distributed database 39

within an area has a similar effect on the performance of the net but greatly reduces
the number of connections required. As we shall see, the way that inhibition is builr
into this nerwork has an important role to play in the way the model runs.

(2} Running the network. The nodes are the processing units of the model. They
act like the one at the bottom of figure 1.3 which was described in chapter 1. Each
has an activity level associated with it. When the model runs, each node passes
activity ro all the other nodes to which it is connected, in the way described in
equation 1.1. That is, the input to the receiving node is the product of the acriviry
level of the sending node and the weight of the connection between them. In this
simple model the weight of all posirive connections between nodes is +1 and thar of
negative connections is ~1.> So, when the model runs, every node which has a
positive activity level tries to increase the activity level of every node ro which it has a
positive connection, and to reduce the activity of every node to which it has a
negative connection. The net input of each node is determined by summing these
negative and positive inputs (as described in equation 1.2). The net input is then
converted by an activation function to an activity level. The exact form of the
activation function used by McClelland was not the same as any of those shown in
figure 1.4 but had the same effect as the sigmoid function in fgure 1 .4(c) of limiting
the maximum value which the activity level could reach, and of slowing the change in
activity level with changes in ner input as the unit’s activicy level approached its
maximum value. In a single processing cycle the activity level of each unit is
computed by summing its inputs and converting these to an activity level with the
aceivation function. On the next cycle these new activity levels are used to compute
the new net inputs to each unit, and thus their new acrivity level. This is continued
until the net reaches a steady state, That is, until each node in the nerwork reaches a
consrant acriviry level.

(3) Retrieval from the database. To test the memory performance of this system we
ask it a question such as ‘Can you remember the name of a pusher?’. This is done by
activating the Pusher node in Occupation and waiting to see which unit becomes
active in the Name area as activity passes round the network. The activity of all
nodes starts at a level of —0.,1. Activity of the Pusher node increases the activity level
of all nodes to which it has a positive connection and decreases the activiry of all
those to which it has a negarive connection. Once the activity level of a node rises

*There is no gradual fearning phase in Jers and Sharks. Facis are given to the model complete. Therefore
the weights do not develop as knowledge is acquired as they would in a convenrionat connectionist
model. The way that information is entered into this system is an example of Hebbian learning (which
will be discussed in dezail in chaprer 3). If two things are muzually consistent {e.g. being in your 20s and
being a burglar) & positive connection (via the appropriate Person node} is made berween them. If two
things are mutually inconsistent (e g. being in your 205 and 30s} a negative connection is made between
them.

40 The attraction of parallel distributed processing for modelling cognition

(a) Name
an Age
Rick
Lance] 205 305
Ralph Sam 408
Qocupation
Burglar
. Bookie
Education
HS Col Pusher
Jet singie tarred
divoreed
Gang Shark
Marital status
(b) Name
" Age
Rick
Lance l 20s 30
Ralph Sam 408
Cccupation
o Burglar
. H T Bookd
Education / e
HS Cal Pusher
" single married
civarced
Gang Shark

Marital status

Burglar

Pushar

/
gang ¢ ™ divorced
Marital status

above 0 it excites all the nodes to which it has a positive connection and inhibits all
those to which it has a negative connection. Eventually the system reaches a steady
state in which the activity level of each node is constant, either because it has reached
its maximum or minimum permitred value, or because its negative and positive

Retrieving information from a distributed database 41

Figure 2.2 The archirecture of McClelland's system for storing the information abourt the Jets and
Sharks shown in table 2.1 {a} Each cloud represents an area of knowledge abour the members of the two
gangs, with the nodes within a cloud representing possible instances (b) The informasion abour Sam is
represented by serting up excitarory conrections between the faces that are known about him. This is
done by serring up a Person node {the black node in the ceneral circle) and linking this to alf the instance
nodes which represene his properties If any one of these nodes becomes active these links will ensure that
the nodes representing his other characreristics will be activated. (¢} The excitatory connections necessary
to represent atl the information about five members of the gang have been entered Inhibitary
connections (links with fifled circles on their ends) have been ser up berween competing instances nodes
within cach area of knowledge. When the model runs, any node which has a positive activiry level will
inhibir any other node to which it is conneceed by one of these links. (Based on MeClelland 1981.)

inputs are exactly balanced.” The Name node which is most serongly activated when
steady state is reached is the system’s answer to the question.

Does such a system behave like human memory? Apart from being able to retrieve
the information it had been given directly, by answering such questions as ‘What
does Fred do?’, anyone who knew these people would find it easy to answer
questions like ‘Do you know the name of a pusher?' or *“Whar are the Jers like?”.
These are the sort of questions which it is difficult to answer with a localist memory
store organised like table 2.1. Will this distributed, connectionist memory system find
them any easier?

With the aid of the bottom part of figure 2.2 it is possible to ger some idea of what
happens when the system runs. To see what answer the system will retrieve when it is
asked: ‘Can you remember the name of a pusher?’ the Pusher node is acrivated. This
activity passes along all the connections from the Pusher node. So the Ralph and At
Person nodes become excited because there is a positive connection to them from
Pusher. (In the real model all the Person nodes of pushers would be excited. For
simplicity we will just follow two of them.) The Bookie and Burglar nodes become
inhibited because there are negative connections to them from Pusher. In the next
processing cycle the Ralph Name, Jet, 30s, [H, Single and Pusher nodes are excired
by the Ralph Person node, and the Art Name, Jet, 40s, JH, Single and Pusher nodes
become excited by the Art Person node. At each succeeding cycle every node which is
active influences every node to which it is connected by an amount which depends on
its activity level and in a direction which depends on whether the connection between
them is excitatory or inhibitory. So, for example, the fact that the 30s node is excited
by the Ralph Person node will in turn cause excitation of all the Person nodes
connected to 30s, and inhibition of the 20s and 40s Age nodes, At the same time the
excitation of the 40s Age node by the Arf Person node may be sufficient to overcome

In McClelland’s model the activiry of each unit aiso decays on each cycle by an amount proportional to
its acrivity level This affects the dynamic behaviour of the aer but to understand why the net reaches a
steady stare it can be considered as another negarive input contriburing to the balance berween positive
and negative inpurts to each unit

42 The attraction of parallel distributed processing for modelling cognition

this and cause exciration of all Person nodes connected to 40s and the inhibicion of
the 30s and 20s Age nodes. After several processing cycles the activity level of every
node in the system is being influenced by a mixture of positive and negative inputs.
Obviously it soon becomes impossible to keep track of the patterns of excitation and
inhibition and predict whether the system will reach a stable state, and if so, what
will be excited and what depressed. The only way 1o find out what the system will do
in response to stimulation of any of its nodes is to run a computer simulation of the
whole system.

It should now be clear that a connectionist memory system is totally unlike a
conventional memory such as a computer filing system. In a conventional system
independent pieces of information are stored separately. When a specific piece of
information is accessed, it and it alone is retrieved. But in a distributed connectionist
system, an attempt to extract any information from the system leads to a flow of
excitation and inhibition throughout the system to everything which has any relation
to this information. This resuits in many different nodes becoming active. What is
retrieved is the information which corresponds to the most active node(s} once this
flow has stabilised. If one is accustomed to information retrieval from a con-
venrional, non-connectionist system such as a telephone directory, this might seem
very odd. If you looked up Tom Brown’s number in a connectionist telephone
directory the number retrieved would be influenced by the entries of everyone with a
similar name or a similar number to Tom’s. This would not be useful. You do not
want the number retrieved to be influenced by the fact that there happens to be
someone called Tim Brown who has a telephone number quite unlike Tom’s. You
want the information stored at the location with the address ‘Tom Brown® and
nothing else. But the interference which a connectionist system allows during
retrieval between related items of stored information turns out to have some
interesting and useful properties.

(4) Content-addressable memory in Jets and Sharks. To see whether this memory
system allows access by content, we can ask it the question ‘Do you know the name
of a pusher?’. To do this we activate the Pusher node, leave it on, and see which
Name nodes becomes activated. Figure 2.3 shows the activity level of three of the
Name nodes as a function of the number of processing cycles for which the system
has been allowed to run. Al the pushers names initially become activated. Most of
them, like Oliver, quickly return to their resting level. But Fred and Nick both
become increasingly activated. After about 50 cycles Fred starts to dominate and
soon the system enters a stable state with Fred activated and all the other names back
at their resting level. The system answers the question with the reply: ‘Err... Fred.” So,
unlike the storage system of table 2.1, chis system does allow information to be
retrieved when it has been accessed by content rather than address.

The relative activity of the name Fred compared to the name Nick over the last 50

Retrieving information from a distributed database 43

Gdr “Do you know the name of a pusher?”

"Brr Fred”

2
wt

+

Activity 2
level

Figure 2.3 To see how the svstem responds to the
question, the Prsher node in the Occupation
area is held On and activiey flows from here
through the system The initial activity level of all

Cycles nodes is set to-0.1. The activicy level of three of
B Fr‘e(i the nodes in the Name area is plotted as a
—¥— Nlpk function of the number of cycles of activicy
~1— Oliver passing around the system

cycles demonstrates an important characteristic of models wirh mutual inhibition
between competing responses. When alternatives are equally activated they inhibit
each other equally and everything is balanced. Burt once one gets ahead it inhibits the
others more than they inhibit it. This reduces their activity and thus the extent to
which they inhibit the one which is ahead. So it becomes more active and inhibits the
others yet more. This rapidly results in the one that is a little more active
consolidating its position in the lead and completely inhibiting the alternatives. The
effect is sometimes referred to as ‘the rich get richer” or ‘winner takes all’.

Building positive feedback into the system in this way makes it likely chat the
system will quickly come 10 a definite conclusion, even if the difference berween the
evidence favouring one alternative rather than the other is small. Bur it makes the
decision process vuinerable to noise. A random disturbance may be magnified and
treated as a signal. This would generally be considered a drawback in a decision
making system but it has one useful consequence. Figure 2.3 suggests that the system
would always answer the question ‘Do you know a pusher?’ with the reply ‘Fred’. If
s0, it would be an indifferent model of human memory. People would give a different
answer to this question on different occasions, or if asked for an alternative answer,
could provide the names of other pushers. It is straightforward to achieve this
response variability with the model. If random noise is added ro the starting activity
levels the system will produce a different answer. Positive feedback ensures that a
node that gets ahead is likely to consolidate its advantage. S0 a small change in
starting conditions, or during processing, can make a radical difference to the
outcome. Figure 2.4 shows the resulr of setting the initial activity level of Nick’s
Person node to —0.07 rather than ~0.1 before activating the Pusher node. Now the
system answers the question ‘Do you know a pusher?’ with the reply ‘Err.. Nick’.

44 The attraction of parallel distributed processing for modelling cogmition

941 Do you know the name of a pusher?”
"Gy Nick”

03¢

Activity 221
level

Figure 2.4 The effect of adding noise to the
activity levels before asking the question. The
initial activity of Nick’s Person node is set to
—0.07 rather than -0 1.

Given that we know the brain is a noisy system, it is appropriate to model it with an
inherently noisy network. The result is the human characteristic of variability in
response to the same input.

(5) Typicality effects in memory retrieval. If the information abour the Jets and
Sharks was stored in the manner of table 2.1 it would not be possible to retrieve the
names of pushers directly, because pusher is not part of the address. But the
information could be extracted by sampling addresses at random and giving the
names of ones that turned out to contain the information Pusher under Occupation.
In that case any pusher would have an equal chance of being produced as an
example. But this is not how the network behaves when asked to name pushers. As
figure 2.3 shows, it is more likely to retrieve the names of some pushers than others.
It might retrieve Fred or Nick, but it is unlikely to produce Oliver’s name.

Human memory retrieval has the same characreristic {see, for example, Rosch
1975). If you ask people to produce a list of birds (the equivalent of asking the
network “Tell me the names of all the pushers you know’) most people will include
Robin in their list but fewer will include Chicken. Some information is more easily
available for retrieval from memory than other information from the same category.
Since the answers which are most likely to be given to this question are the names of
birds which would be rated as typical examples of the category, this result is called,
unsurprisingly, a typicality effect.

The reason why the network is likely to retrieve Fred rather than Oliver in reply to
the request for the name of a pusher can be seen in table 2.2. Pushers are more likely
to be a Jet than a Shark, they tend to be in their 30s, to have been educated to High
School level and to be single. So the Person nodes which get excited when Pusher is
activated send more activity to the Jet, 30s, HS and Single nodes than to other nodes.

Constraint satisfaction in connectionist networks 45

Table 2.2 The pushers

Gang Jets Sharks

5 4
Age 20s 30s +0s

3 5 1
Education JH HS College

2 4 3
Marital Single Married Divorced
status 5 3 1
The prototypical pusher: Jer 30s HS Single
Fr.cd Jet 20s Hs Single
le:i(Shark 30s HS Single
Oliver Shark 30s Col Married

The mutual inhibition berween alternative instance nodes with an area means that
Single, HS and Jet become more activated, and Married, College and Shark become
less activated. This in turn means that the Person nodes connected to Single, HS and
et get supported, and the Name nodes connected to these become activated but the
Person nodes and hence the Name nodes connected to Married, College and Shark
do not. Fred is a single, High School educated, Jet; Oliver is a married, College
educated, Shark. So, as a result of Fred’s similarity to a prototypical pusher, his
Person and Name nodes become more and more active as processing continues.
Oliver’s dissimilarity to the prototypical pusher means that his become less and less
active. The result is that when the system is asked to think of a pusher, Fred’s name is
retrieved but Oliver’s is not. If asked to generate instances from a category,

distributed connectionist nets automarically generate typical instances, just like
people.

~
Constraint satisfaction in connectionist networks

When activity flows through a connectionist network in response to an input, each
unit influences the state of ail the units to which it is connected. If the connection
weight is positive the sending unit tries to put the receiving unit into the same state of
activity as itself; if the connection weight is negative it tries to put it into the opposite
state. Since all activity changes are determined by these influences, each input can be
seen as setting constraints on the final state (i.e. set of unit activities) which the
system can settle into. When the system runs, the activities of individual units will
change in a way which increases the number of these constraints which are satisfied.
Thus connectionist networks are said to work by constraint satisfaction.

46 The attraction of parallel distributed processing for modelling cognition

The ideal final state would be a set of activities for the individual units where all
the constraints were satisfied. The network would then be stable because no unit
would be trying to change the state of any of the units to which it was connected.
This ideal solurion is unlikely to exist because most units are connected to some units
which are trying 1o increase its activity and others which are trying to reduce it.
There is no way of satisfying both, Burt if the system can find a state in which any
change in the activity levels of the units reduces the overall number of satisfied
constraints, it will stop changing activities. That is, it will have found a stable state.
For most networks there will be many possible stable states with a different pattern
of activity, each one of which will be reached from a different pattern of input
activiry. The realisation thar these stable states could be viewed as the network’s
memories—that is, the set of possible states that it could reach in response to
different inputs—was an important step in the history of connectionism which will
be discussed further in chapter 15.

In a conventiona! connectionist network where knowledge is distributed across
many units, it is difficule to follow constraint satisfaction at work because it is
difficult to see what role any particular unit is playing. In Jets and Sharks it is easy,
because the concept coding is localist rather than distributed. Each node stands for
an identifiable concept. The constraints on the system are the various facts in table
2.1, each one of which is represented by one of the links in the network. The fact that
Clyde is a Jet in his 40s means that if either of the nodes representing these concepts
is activated it will try to activate the other, and inhibit the Shark, 30s and 20s nodes.
The fact that there are also both Jets and Sharks in their 30s and 20s means that a
whole set of other, mutually contradictory constraints are influencing the way that
the system changes the activity level of the units in response to any particular pattern
of input. The key point is that the changes in activity on each cycle will increase the
number of constraiats which are satished.

A system which works by constraine satisfaction has a number of desirable
characteristics for modeiling human cognition. The main one is that it allows a
decision to be reached by a consensus of evidence, a reasonable fit berween input and
memory, rather than requiring an exact match. We have already seen this as a virtue
in any model of human cognition because the nature of the nervous system requires a
degree of fault tolerance in the information processing system (remember figure 2.1).
It is also desirable because of the nature of the input which the cognitive system has
to work with in the real world. Consider what happens when you listen to one
particular speaker in a crowded room. The signals arriving at your ear contain the
sounds made by the person you are listening to, but superimposed on these are a
jumble of sounds from different speakers, the whole thing obliterated from time o
time by bursts of laughter and other noises. And yet, most of the time, what you
perceive is words. The signal you receive bears some relationship to a prototypical

Constraint satisfaction in connectionist network ' 47

representation of the word thar you perceive but will be far from an exact match. The
fact that you perceive words shows that the word recognition system must be looking
for a best fit to the word patterns it has stored rather than for an exact match. This
effect has been studied in the laboratory with an experimental paradigm c;aiied
‘phoneme restoration’. In the original study by Warren (1970) the sound /s/ was
removed from the word ‘legislatire’ and replaced with a cough. People then listened
to a sentence containing the word ‘egi<cough>lature’ and were asked what they
heard. People reported the sentence correctly, adding that there was a cough before
or after‘the word ‘legislature’. In other words, the perceptual system does not
necessarily give a veridical account of the stimulus, it gives a plausible interpretation
of the inpur, given its knowledge of English words.

The same effect can be seen in the Jets and Sharks system. Figure 2.5 shows what
happens when the system is probed with a variety of retrieval cues. The filled circles
show what happens when the net is asked: ‘Do you know a Shark, in his 20s, who
went to High School, who is single and a burglar?” (i.e. the Shark, 20s,.HS S’ing!e
anc‘I Burglar nodes are all switched On). The circles joined by soii’d iin;.';s sh,ow the
activity of Ken’s Name node and the circles joined by dashed lines the activity of the
next most activated Name node. Not surprisingly, the net answers ‘Ken’ quickly.

Qap
03k ® | Activity level of
iKers's name
Activity 2|
level
0.,
Q.. “
]S A SRR SEEEE SRRk i - N
o ° Activity level of next
O e @@ e @@ J most active name
0 20 40 60 80 100
Cycles

~@-- Correct retrieval patiern for Ken
—x- - Incorrect retrieval pattern for Ken
—{F- Even less corract retriaval pattern for Ken

e e TR C

Figure 2.5 ‘C(mstr:ami satisfaction in operation Given correct descriprion of Ken as a retrieval cue, the

s‘r i3 il t I d N H ;

ystem retrieves Ken's name. Given progressively less accurare retrieval cues, which are, neversheless
3y

§]oﬂ?r to a description of him than ro anyone else in the database, it still produces his name Input activity
evels: ’

(®) Shark = 15 20s = 1; HS = 1; Single = 1; Burglar = 1.
(%) Shark = 1;20s = [; JH = 1; Single = 1; Burglar = 1.
{(O) Shark = 1; 20s = 15 JH = 15 Single = 1; Burglar = 0.5; Pusher = 0. 25; Bookie = 0.25.

48 The attraction of parallel distributed processing for modelling cognition

This is the equivalent of presenting a listener with a clear and unambiguous example
of the word ‘legistature’ and asking her what word she heard. The crosses show what
happens when High School is changed to Junior High in the input activity pattern.
This input is no longer an accurate description of anyone in the database (the
equivalent of presenting a listener with ‘legi<cough>lature’). A system which tried to
find an exact match to the input would fail. There is no person who matches that
input pattern in the database. But the network has no problem. It takes slightly
longer to respond (i.e. Ken’s name takes more time to become activated, and does not
reach such a high level) but Ken still comes out as the clearly preferred item retrieved
from memory. The squares show what happens with an even more ambiguous input.
In this the Bookie and Pusher nodes have all been activated as well as Burglar. As
long as the input pattern is closer to a description of Ken than to any alternative, the
system makes a clear decision in favour of the response ‘Ken™,

The fact that connectionist systems work by constraint satisfaction is the reason
why they exhibit faule tolerance. No part of the input uniquely determines the
outcome. The network’s response is the best fit it can make berween the current input
and information it has acquired in the past. It would be possible to devise a system,
based on address + contents information storage like table 2.1, which, if given an
input that failed to match any stored informarion, could compute a best fit.
However, this would be a time consuming process once possible inputs achieved any
degree of complexity. The parallel distributed compurtation in the Jets and Sharks
darabase automatically computes a best fit between inpurt and stored information. It
would continue to do so whatever the degree of complexity of the patterns describing
the individual entries withourt raking any more time.

There is no distinction between ‘memory’ and ‘processing’
in connectionist models

One general point to note about distributed representations is that they blur the
distinction between memory and processing. Traditional models of cognitive
processes often distinguish between ‘memory’, a store of learnt information, and
‘processing’, operations which enable the system to interpret incoming information.
The processing operations may use information from memory, but the conceprual
distinction is clear. Indeed, in many models this is made explicit with separate parts
of the model labelled “memory’ and ‘processor’. Such models exploit the analogy to

$The interaction of information in the Jets and Sharks system produces some strange and unpredictable
resuits which can only be appreciased by playing wish the fac model. For example, figure 2 5 shows chat if
you wait long enough the less accurare description of Ken produces a scronger preference for his name
than the more accurate description

Problems for distributed reprresentations 49

conventional digiral compurers where there are independent systems for storing
information and for processing it.

There is no such distinction in connectionist models. All the informarion which the
neework has—its memory-—is stored in the weights of the connections berween unirs.
Ali the processing that the net can do is determined by the same set of weights.

Problems for distributed representations

We have emphasised the advantage of distributed representations over localist
representations in allowing the system some degree of resistance to damage and
tolerance of noisy inputs. Given the unreliable nature of the matrer which the brain
uses for computation, it seems inevirable that it would use distributed representa-
tions. However, there are two properties of human memory which would not seem
to be easy to account for with connectionist models but which would be expected
with localist information storage: First, the addition of new information does not
necessarily cause the loss of old. Second, learning can be immediate.

In a distributed system, any new information has to be added to the connections
which already carry the system’s current store of knowledge. To add the new
information the strength of connections must be changed. If this is done in a single
trial, addition of new information is likely to lead to some loss of old information. In
a localist system, in contrast, the addition of new information is no problem. It is
simply added to new storage locations and does not affect old information. At this
point, however, we will just suggest that at an intuitive level there are different sorts
of human learning.

‘ At one extreme it seems clear that some sorts of knowledge can be acquired
immediately, without interfering with other information. All young chess players are
shown the smothered mate sequence with a queen sacrificed to a rook on g1 followed
by mate of the king on h1 by a knight moving from h3 ro £2. If you understand chess
you only have to see this sequence once ro remember it for ever, despite the fact that
you may never have an opportunity to use it in a game. Similarily, if you knew
anything about the British ex-Prime Minister Mrs Thatcher, and were rold that her
nickname at schoot was ‘Bossy Roberts’, you would be unlikely to forget it. A novel
piece of information which you find interesting or amusing, in a domain where you
already have sufficient knowledge to understand its significance, is likely to be
remembered after a single presentation. And it can be retrieved as a specific item of
information in future, independent of any other facts in the database. It is difficult to
believe that such acquisition is accompanied by the loss of any other information.
Quick, cost-free, addition of new information to existing databases characterises
certain sorts of human knowledge acquisition. It is natural with localist representa-
tion of knowledge—you just add another entry to the database. But it is difficult to

S0 The attraction of parallel distributed processing for modelling cognition

see how it can happen with a discributed system. {Thar connectionist models can
perform one trial learning will be shown in chapger 13 which demonstrates a model
of the role of the hippocampus in episodic memory formation.)

At the other extreme there are many areas of knowledge acquisition, such as
learning to play tennis or learning to talk, where acquisition of new knowledge is
gradual, and accompanied by the modification or loss of previous patterns. As your
tennis serve improves or you learn to pronounce the language correctly you want to
lose some aspects of your old response patterns because they were inaccurate. Later it
is difficult to recall when a specific piece of information was added to the database.
Such a pattern, where new information is inextricably interwoven with old, occurs
naturally with a distributed system, but not with a localist one. Distinctions betwe:en
different sorts of knowledge representation occur in many models of the cognitive
system. Most of the connectionist learning algorithms we will look 'at are more
appropriate for modelling the latrer sort of acquisition and representation than the

former.

3 Pattern association

This chapter will introduce the architecture and properties of one specific kind of
network, a pattern associator, and the operation of one particular learning rule, the
Hebb rule. During training a pattern associator is presented with pairs of patterns. If
learning is successful then the network will subsequently recall one of the patterns at
output when the other is presented at input. After training, a pattern associator can also
respond to novel inputs, generalising from its experience with similar patterns. Pattern
associators are tolerant of noisy input and resistant to internal damage. They are
capable of extracting the central tendency or prototype from a set of similar examples.

The first two chapters introduced general principles which are shared by all connee-
tionist networks. In this and the next four chapters we will lock in detail at the struc-
eure and properties of a variety of specific network architectures: pattern associators,
autoassociators, competitive nets and recurrent nets. Networks can be trained in a
variety of ways. In this chapter we will look at one particular learning rule, the Hebb
rule. In chapter 4 we will look at the Delta rule and in chapter 5 at backpropagation.

The examples and the nerworks in these early chapters have deliberately been kept
very simple so that the principles involved in their operation can be seen at work. It
may seem that the problems they solve are so trivial that they have little to do with
human cognicion. Don't worry. In chapters 8-14 we will look ar networks which
have been scaled up to the point where they can simulate realistic aspects of human
behaviour. For example, in chapter 8 we will look at a model with roughly 1000
processing units and 200000 connections which learns to pronounce all the
monosyllabic words in the English language. In chapter 13 we will look at a model of
episodic memory formation in the hippocampus with about 4000 processing units
and about half a million connections. Exactly the same principles will be at work in
these networks as in the examples which follow.

The architecture and operation of a pattern associator

A fundamental task for the nervous system is to discover the structure of the world
by finding what is correlated with what. That is, to learn to associate one stimulus

