50 The artraction of parallel distributed processing for modelling cognition

see how it can happen with a distributed system. (That connectionist models can
perform one trial learning will be shown in chapter 13 which demonstrates a model
of the role of the hippocampus in episodic memory formation.}

At the other extreme there are many areas of knowledge acquisition, such as
learning to play tennis ot learning to talk, where acquisition of new knowledge is
gradual, and accompanied by the modification or loss of previous patterns. As your
tennis serve improves or you learn to pronounce the language correctly you wast to
lose some aspects of your old response patterns because they were inaccurate. Later it
is difficult o recall when a specific piece of information was added to the database.
Such a pattern, where new information is inextricably interwoven with old, occurs
naturally with a distribured system, but not with a localist one. Distinctions between
different sorts of knowledge representation occur in many models of the cognitive
system. Most of the connectionist learning algorithms we will look at are more
appropriate for modelling the latter sort of acquisition and representation than the
former.

3 Pattern association

This chapter will introduce the architecture and properties of one specific kind of
ntetwork, a pattern associator, and the operation of one particular learning rule, the
Hebb rule. During training a pattern associator is presented with pairs of patterns. If
learning is successfil then the network will subsequently recall one of the patterns at
output when the other Is presented at input. After training, a pattern associator can also
respond to novel inputs, generalising from its experience with similar patterns. Pattern
associators are tolerant of noisy input and resistant to internal damage. They are
capable of extracting the central tendency or prototype from a set of similar examples.

The first two chaprers introduced general principles which are shared by all connec-
tionist networks. In this and the next four chapters we will look in detail ac the struc-
ture and properties of a véz‘iery of specific network architectures: pactern associators,
autoassociators, competitive nets and recurrent nets, Networks can be trained in a
variety of ways. In this chapter we will look ar one particular learning rule, the Hebb
rule. In chapter 4 we will look at the Delta rule and in chapter § ar backpropagation.

The examples and the networks in these early chapters have deliberately been kept
very simple so that the principles involved in their operation can be seen at work. It
may seem that the problems they solve are so trivial thar they have lictle to do with
human cognition. Don’t worry. In chapters 8-14 we will look at networks which
have been scaled up to the point where they can simulate realistic aspects of human
behaviour. For example, in chapter 8 we will look at a model with roughly 1000
processing units and 200000 connections which learns to pronounce all the
monosyllabic words in the English language. In chapter 13 we will look at a model of
episodic memory formation in the hippocampus with about 4000 processing units
and about half s million connections. Exactly the same principles will be at work in
these networks as in the examples which follow.

The architecture and operation of a pattern associator

A fundamental task for the nervous system is to discover the structure of the world
by finding what is correlated with what. That is, to learn to associate one stimulus

P
)

Pattern association

with another. For example, one stimulus might be the taste of chocolate and the
other its appearance, [nitially there is no connection between these two for a child.
After the association between the patterns of neural firing caused by the two stimuli
has been made, the sight of chocolate can recall responses originally associated with
its taste. If the raste of chocolate caused salivation, then the sight of chocolate, which
was initially neutral, could produce the same response. This form of pattern
association was made famous by Paviov and his dogs in some of the earliest
investigations in experimental psychology. But similar mechanisms underlie far more
than the control of autonomic nervous system responses like salivation. Learning
that the letter string YACHT is pronounced /y/ /ol /t/, that Mary has blonde hair or
how hard you have to push the steering wheel of a car when you want to go round a
corner are all examples of pattern association.

A pattern association network

A simple nerwork which can perform pattern association is shown in figure 3.1, The
upper network is drawn as a stylised version of a real neural network with axons
from two sets of neurons synapsing onto the dendrites of a third. The lower figure is
drawn in the standard formart for a connectionist network, with two sets of
computational units joined by weighted connections. These two ways of representing
a pattern association network may look quite different but they perform exactly the
same rask. They are simply notational variants. By showing them together, the way
that two different conventions represent what a nerwork might compute should
become clear.

In the nerwork in figure 3.1(a), the horizontal rectangular bars represent the den-
drites of a set of neurons labelled ry_. During learning two patterns are presented to
the nerwork simultancously. The first pattern is the output of a set of neurons which
represents, say, the taste of chacolate. In figure 3.1(a) this pattern (P} is {11 001t
reaches the dendrites of neurons ry_4 via unmodifiable synapses {represented by the
symbol —<), forcing the neurons ry.,; into the same pattern of firing (1 1 0 0). The
second pattern, P, (1 010 1 0), is the output of a set of neurons which represents the
sight of chocolate. This reaches ry. along the axons shown by the vertical lines
running downwards across the dendrites. This input connects to the dendrites of
neurons r,.4 through the modifiable synapses represented by the black blobs. The
synapse between axon j and dendrite 7 is wi;. Learning (i.e. forming the association
besween P, and P,) takes place by modification of these synapses.

The process of pattern association in a single fayer connectionist network (i.e. one
with a single layer of modifiable connections berween input and output) is shown in
figure 3.1(b). P, (10101 0)is presented to the input units. Py (110 0} is the pattern
which the net has to learn to produce on the output units in response to the input of

The architecture and operation of a pattern associator

W

(@) pattern 2
dendrite/ 1 o 1 o 1 o .8xng
2ip 9 lp p s T
pattern 1 S A }zw e
i
PP b
ST A A 4 fs
Y Y Y Y r

{b)

nput units

Figure 3.1 A nerwork 3 ing si : : sociar i
g 1 A network for performing simple partern association {a} The network is represenced as it

fmglzt ap;?ear in the nervous system with axons synapsing onto dendrites of cells ry to r; (b) The nerwork
is shown in the conventional connectionist fermat with an input presented to one set of units {indexed by
/) producing an outpue on another set indexed by 4.

P,. The connection between input unit j and output unit / is represented by the line
labelled ;. Pattern association takes place by modifying the strengeh of the
connections between input units and output units.

The differences between these two ways of representing the same process should
be carefully noted: First, the synapse at the junction of axon j and dendrite in the
upper figure has become a connecting line {shown in bold) berween two processing
units in the lower figure. Second, the way that pattern 1 reaches the network is
expticit in the upper figure. In the lower figure it is a signal presented to the output
units by an invisible ‘teacher’. Despire these differences in presentation, the processes
described are conceptually the same. In this chapter we will describe the process of
learning with terms appropriate to figure 3.1(a)—axon, output neuron dendrite and

(WE]

54 Pattern association

synaptic strength. In the next chapter we will use their equivalents in figure 3.1(b)—
input line, output unit and connection weight.

The Hebb rule

During the learning phase the two patterns which are to be associated, P; and P,, are
presented to the nerwork simultaneously. Hebbian Jearning can be implemented in
the network in the upper part of figure 3.1 by applying the following rule: If there is
activity on input axon j when neuron i is active then the strength of the connection,
w;;, between axon j and dendrite i is increased.! (Neuron { will be active if the ith
axon in P, is On.) In the network in figure 3.1(b) Hebbian learning would be
implemented, following the simultaneous presentation of P, at input and Py at
output, by strengthening the connections berween those units which are On in both
the input pattern and the output partern.
The Hebb rule for weight change (Arw;) can be expressed formally as:

AIUI:I'ZSEI,‘LT;' (3.1)

where ¢ is a learning rate constant which specifies how much a synapse alters on
any one pairing of P, and P,

a; is the activity of element 7 in Py,

and a; is the activity of element j in P».

The Hebb rule is expressed in multiplicative form to reflect the idea thar, for a
synapse to increase in strength, both presynaptic activity (from P,) and postsynaptic
activity {from P,) must be present.

Learning with the Hebb rule

The following simple examples will demonstrate the basic principles of the operation
of a pattern associator, They will show how the weight changes brought about by
applying Hebbian learning give rise to some surprising and biologically useful
properties. For simplicity the neurons will be treated as binary with an activity of
(Jorl.

A four neuron pattern associator with six input axons carrying Py and four input
axons carrying P, is represented in figure 3.2. The sight of chocolate is represented by
P, (1010 10)and the raste by P, (1 10 0). The 6x4 weight matrix in figure 3.2
corresponds directly to the 6X4 martrix of synapses in figure 3.1(a). The first row of
weights in figure 3.2 shows the strength of the connections from axons 1 to 6 of Py to

Thar such an operation could be the basis for useful learning in neural structures was first suggested by
the neurophysiologist Donald Hebb, hence Hebbian learning, Hebb’s contribusion to conncctionism wil}
be described in chaprer 15

The architecture and operation of a pattern associator 55

Py 0— 0 9 0 0 0 0

0— 0 & 0 0 0 0
. . Figure 3.2 The weight matrix in the pattern
Weight matrix associator before learning takes place

output neuron 1. Their equivalents in the nerwork in figure 3.1(b} are the connec-
tions from the six input units to output unit 1. The second row of weights in figure
3.2 shows the-tonnections from the six input axons in P, to output neuron 2; these
are represented in figure 3.1(b} by the connections to the second output unit from the
six input units, and so on. The synaptic weights are initially all 0 because no learning
has yet occurred.

After pairing P, and P for one learning trial, the synaptic weights are incremented
according to the Hebb rule expressed in equation 3.1. That is, every synapse which
connects an active axon in P, to an active dendrite will be strengthened. So, for
example, the 1st, 3rd and Sth weights in the first row are incremented because the
first element in P and the 1st, 3rd and 5th elements in P, are all active. But the
weights in the third row are not incremented because the third element in P, is
inactive. Similarily the weights in the second column are not incremented because the
second element in P is inactive. The overal! result following a single learning trial is
shown in figure 3.3 (if e = 1).

1-- 1 0 1 0 1 0
P 0— 0 0 0 0 0 0
- 0 0 0 0 0 0 -

‘ . Figure 3.3 Weight matrix after one learning
Weight matrix trial pairing (1 100 and {1 31010)

56 Pattern association

Recall from a Hebb trained matrix

When learning has taken place, the effectiveness of the memory created is tested 'by
presenting a recali pattern (Pr) to the matrix, on its own, on the axons which
originally carried P,. The consequence should be the recall of the partern Py at
output. That is, the sight of chocolate should recall the taste of chocolate. The net
input to output NeUron 7 is:

netinpug; = X, 4; 1y {3.2)

3,; indicates that the sum is over all the input axons indexed by {i.e. over all the
axons in Py}

To discover what happens during recall we present Py to the matrix of weights
which were acquired on the learning trial. The net input to the four output neurons is
found by applying the operation defined in equation 3.2 to each neuron in turn. That
is, the activity on each of the inpur lines to neuron 7 is multiplied by the weight C.)f the
corresponding synapse and these products are summed down the dendrize, So, if the
recall cue (L 010 10) is presented to the weight matrix in figure 3.3, the net input to
neuron 1 will be (1 X1 +0x0+1X1+0X0+1xX1+0x0)=3 (figure 3.4}

The resulting pattern of net input to ry4 is (3 3 0 0). If the ourput neurons have a
binary threshold activarion function (see figure 1.4(d) in chapter 1) with a tht'eshoi.d
of 2, and we set the activity level of the neuron to 1 if it exceeds the threshold and 0 if
it does not, then the outpur activity pattern is (1 10 0). Thus the pattern associator
has correctly recalled P; when P is presented as a recall cue.

Learning different associations on the same weight matrix

Application of the Hebb rule strengthens every connection between an axon and a
dendrite where both are active. At recall that connection is then used to activate the

?1{
1 0 1 0 1 0

N

A t N T ¢ I —

La

0 10 I 0 i 3

o ¢ 0o 0 o 0 e 0

n o 0 0 0 0 i 0
Weighr matrix netinput,

Figure 3.4 Recall from the marrix after presentation of the pattern (1310 10)

The architectire and operation of a pattern associator 57

P,

Py 0— 0 0 0 ¢ 0 O

b] 16 0 0 1
Figure 3.5 Weights acquired during one
Weight matrix learning trial pairing (010 Dand (1 1000 1),

dendrite when the axon in the recall cue is active. So it is hardly surprising that the
pattern associator is capable of retrieving a pattern which was presented during the
fearning phase. But what happens if we try to store different associations on the same
matrix? Can they still be recalled correctly or will they interfere?

Ler us use the Hebb rule to store the association between the appearance and taste
of apricots on the same connections. In thiscase Py is (0 1 0 1} and P,is (11 000 1).
Equation 3.1 shows that the weights acquired by applying the Hebb rule during this
learning trial will be as shown in figure 3.5,

Superimposing the weights acquired during learning to associate the taste and
appearance of apricots on those acquired learning to associate the rtaste and
appearance of chocolate (i.e. summing the weight matrices in figures 3.3 and 3.5)
produces the combined weight matrix shown in figure 3 6.

The crucial test now is to see what happens when we present each Py in turn as a
recall cue to the combined weight matrix. Presenting (1 1 0 0 0 1) produces the result
(140 3)asshown in figure 3.7.

With the binary output thresholds set to 2 the activity pattern (0 1 0 1) is produced
on the outpur neurons. So recall is correct, The appearance of apricots recalls the
taste of apricots. If the pattern (1 0 1 0 1 0) is presented to the combined matrix the
result will be as shown in figure 3.8. ‘

With the threshold set at 2, the activity pattern (1 1 0 0) is produced. Thus the

1 o 1 0 1 0

i
—

0o 1 1
0o o 0 0 O 0

1+ 0 0 0 |

Figure 3.6 The combined weight matrix after
Weight matrix learning two different Py, P, pairs.

58 Pattern association

¢ 0 o 0o 0 O — 0
{1 1 0 0 0 1 i 3
Weight matrix netinput;

Figure 3.7 The result of presenting the recall cue (11606 1) 10 the combined weight matrix.

p]{

0 0 ¢ 0 0o ¢ — ¢
1 1 0 0 0 1 — 1
Weight marrix netinpu

Figure 3.8 Recall from the combined matrix withthecue (10101 0).

appearance of chocolate still recalls the taste of chocolate even though the same
connections are now also storing the association of the appearance and taste of
apricots.

This simple demonstration shows that accurate recall of different associations
from a pattern associator trained with the Hebb rule is possible even when the
associations are stored on the same connections. However, with only two associa-
rions some interference between the patterns is already apparent—the recalled
patterns do not exactly match the original patterns. In this example the differences
have been removed by the threshold setting of the activation function. But there will
obviously be a limit to the number of associations which can be stored in such a
matrix before interference between the patterns becomes a problem. The effect of
increasing the number of memories in a more realistic pattern associator will be

The architecture and operation of a pattern associator 39

explored in the section on the simulation of episodic memory formation in the
hippocampus in chapter 13.

Recall reflects the similarity of retrieval pattern and stored
patterns

Many operations within a connectionist network can be understood by treating the
input patterns as vectors and the weights in the network as a matrix. To make
connectionism accessible to the non-mathemarical reader we have avoided
explanations in terms of vectors. However, there is one crucial result, which explains
retrieval in partern associators (and also the operarion of competitive nerworks
described in chapter 6} that is most easily understood in terms of vector operations.?
Before we can have the result we need the concepr of the dot product (or inner
product) of two vectors. A vector is an ordered set of numbers, such as [2.0 1 3]. The
dot product of two vectors is found by taking the sum of the products of the numbers
in equivalent positions in the two vectors. That is, the sum of the product of the first
number in vector 1 and the first number in vector 2, the product of the second
number in each vector and so on. If vector 1 was [2 0 1 3] and vector 2 was [T 1 0 4},
the dot product would be 2 X1+ 0X 1+ 1 X0+ 4X3) =14

The set of activities which constitute an input to a network is an ordered ser of
numbers. So they can be treated as the vector p. The activities are represented in
equation 3.2 by @;. An example is the ser of acrivities [1 0 1 0 1 0] on the input lines
representing the appearance of chocolate. The weights of the connections between
the input and output neuron #, represented in equation 3.2 by wy, are another
ordered set of numbers. So they can also be treated as a vector, w;. An example is the
set of weights to output neuron 2 in the joint matrix in the previous example, (211 0
1 1]. Equartion 3.2 shows that the net input to output neuron i is found by summing
the producrt of the first activity in the input pattern and the first weight on the
dendrite of output neuron 7 {a,w;,), the second aceivity in the input pattern and the
second weight (a;i}y), and so on until the products of all pairs of activities and
weights have been summed. So netinput; is the dot product of the vector representing
the input parrern and the vector representing the weights of the connections from
each input {ine to output neuron 1.

The crucial result is this: For any given set of numbers representing the activities in
one vecror and the weights in the other, the more similar the numbers in vector 1 are
to the numbers in the corresponding positions in vector 2, the larger will be the dot

A more detailed analysis is givenin Appendix 2. Whas follows is a simplification intended to help the
understanding of a general result.

60 Pattern association

product. An intuitive grasp of the result can be obtained by raking the dot products
of a set of vectors with 12 binary bits {1 or 0), half on and half off. Imagine that p is
an input pattern vector and wy, Wi, ws and w, are the vectors representing the
weights on output units 1-4; wy is identical to p; wa, w3 and w, have patterns which
are increasingly less like p:

1000000111 11p
100000011111 wy
010000101111 w,
001111011000 w;
011111100000 w,

The dot product is taken by summing the product of corresponding elements in the
rwo vectors. So where there is a 1 in the equivalent position on the two vectors, 1 will
be added to the dot product; when there is a 1 in one vector and a 0 in the equivalent
position in the other, nothing will be added. So the maximum dot product will be
obrained when the two vectors are identical (p and w). It will have a value of 6, each
positive element contributing 1 to the dot product. Every dissimilarity between the
vectors reduces the dot product.’ The dot product of p and w,, which are quite
similar, is reduced to 4 because there are four bits in pattern w; which do not match
those in p. The dot product between p and wj, which have little in common, is
reduced to 2. p and w, have no elements in common so their dot product is 0. p and
w, are said to be orthogonal.

During recall each output neuron in a pattern associator computes the dot product
between the input pattern and its weight vector. What this does is to compute how
similar the input pattern vector p is to the weight vector w; which is stored on its
dendrite. If this similarity is great, netinput; wiil be large and the neuron will be
turned On. If they are dissimilar, netinput; will be small and the neuron will remain
Off Hebbian learning increments weights berween elements of Py and Py which are
both On. Over a series of learning trials therefore, a cumulative record of the
correlation between individual elements in the different pairs of patterns builds up in
the weight matrix. Thus the operation of a pattern associator trained by the Hebb
rule can be summed up in the following way:

Learning—if neuron i is activated by Py, an increment Aw;, that has the same
pattern as P, is added to the weight vector of neuron £.

Recall—since the patterns presented during learning derermine the weight vector
on neuron i, the output of neuron i at recal! reflects the similarity of the recall cue to
the patterns presented during learning.
3The dot product is not the only way to caleulate the similarity of two vectors. For example, zero

elements in corresponding pesitions will contribute ro the similarity of rwo vectoss bur not to their dog
product

Properties of pattern associators 61

Properties of pattern associators

Generalisation

During recall, pattern associators generalise. That is, if a recall cue is similar to a
pattern that has been learnt already, a pattern associator will produce a similar
response to the new pattern as it would to the old. This occurs because the recall
operation on each neuron involves computing the dot product of the recall vector py
with the synapric weight vector w;. The result, netinput,, thus reflects the similarity of
the current input to the previously learnt input patterns. Small differences in
netinput; for similar input patterns can be removed by a threshold at output. In the
world faced by real biological systems, recall cues are rarely identical to the parterns
experienced during learning. So a mechanism which automatically generalises across
slight differences in input pattern has obvious adaptive value. _

Generalisation can be illustrated with the simple binary pattern associator we have
considered afready. What happens when it is presented with the recall cue (11010
0) which is similar, but not identical, to the pattern (1 1 0 0 0 1) which it learnt before?

With a threshold set at 2, the output pactern (0 1 0 1) would be recalled in
response to thecue (1 1 01 0 0) (figure 3.9) just as it was to thecue {1 1000 1). The
network has treated the new pattern as a noisy version of one it already knew, and
reproduced the response it learnt to that. The sight of a slightly bruised apricor still
recalls the taste of an apricot. Generalisation has occurred.

Fault tolerance

Even if some of the synapses on neuron 1 are damaged after learning, netinput;
following the presentation of a recall cue may still be a good approximation to the

pl(

60 0 0 0 0 ¢ - 0
11 0 0 0 1 - 2

Weight matrix netinpug;

Figure 3.9 Recall from the combined matrix when the recall cue (1 10 1 8 0} is presented,

62 Pattern association

Py

¢ 0 0 0o 0 0 - 0
i x 0 0 0 1 - 2
Weight matrix aetinpu;

Figure 3,10 Recall from a damaged matrix afer presentation of thecue (11000 1).

correct value, This is because netinput; represents the correlation of pg with w;.
Provided the pattern carrying the recall cue consists of a reasonably large number of
axons the correlation will not be greatly affected by a few missing items. After
passing through the binary threshold activation function, the result may well be
correct recall, The same result is achieved if some of the input axons carrying the
recall cue are lost or damaged. Since real nervous systems are continually losing cells,
fault tolerance is of great adaptive value.

We can illustrate this with the example shown in figure 3.10; x indicates a
damaged synapse which now has no effect, Whatever information was stored in that
synapse during learning has been lost. Presentation of the recallcue (11000 1) 1o
this matrix produces the net input pattern {1 4 0 2).

With the binary output threshold set to 2 this would produce the output pattern (0
1 0 1), the same as that produced by the complere matrix. The small difference
between the net input to the output neurons produced by the damaged matrix and
the complete one (shown in figure 3.7) illustrates graceful degradation. Minor
damage will cause a small change in response to many inputs, rather than a total loss
of some memories and no effect on others,

The importance of distributed representations for pattern
associators

A distributed representation is one in which the activity of all the elements in the
patrern is used to encode a particular stimulus. Comparing (10101 On(L1o000n)
and the other P»s which could be represented by a pattern of six 1s and Os, we need
to know the state of most of the elements to know which stimulus is being
represented. No one element can be used to identify the stimulus. Since the

Properties of pattern associators 63

information about which stimulus is present is distributed over the population of
elements, this is called a distributed representation.

A local representation is one in which all the information about a particular
stimulus is provided by the activity of one element in the pattern. One stimulus might
be represented by the pattern (1 0 0 0 0 0), another by the pattern (0 1 0 0 0 0) and so
on. The activity of element 1 would indicate that stimulus 1 was present, and of
elernent 2 that stimulus 2 was present. If a particular element is active, we know that
the stimulus represented by that element is present. If elements are taken to be
equivalent to neurons, such coding is said to involve ‘grandmother cells’ because, in
an extreme expression of localist coding, one neuron might represent a stimulus in
the environment as complex and specific as one’s grandmother. Where the activity of
a number of cells must be taken into account in order to represent a stimulus the
representation is described as using ensemble or distributed encoding.

The properties of generalisation and graceful degradation are only achieved if the
representations are distributed. The recall operation involves computing the dot
product of the input pattern vector py with the weight vector w;. This only allows
netinput; to reflect the similarity of the current input pattern to a previously learned in-
put pattern if many elements of py are active. If local encoding were used [(1 000 0 0},
(01000 0) etc.] then a new py pattern would produce a dot product of either 1 or (1.
Generalization and graceful degradation rely on a continuous range of dot products.
They are dependent on distributed representations, for then the dot product can
reflect similarity even when some elements of the vectors involved are altered.

Prototype extraction and noise removal

If a set of similar P3s is paired with the same P, {(e.g. a set of apricots which all look a
little different are all associated with the taste of apricot) the weight vector becomes,
with scaling, the average of the set of vectors appropriate for the individual P,s.
When tested at recall, the output of the memory is then best (i.e. the dot product is
highest) to the average input pattern vector. If the average is thought of as a
prototype, and the individual P,s noisy exemplars of it, then even though the
prototype vector itself may never have been seen, the strongest output of the network
is to the prototype. Recoguition of a prototype which has never been seen is a feature
of human memory performance which will be explored in greater detail in chapter 4.
This phenomenon is an automatic consequence of learning in a pattern associator
with distributed representations.

Speed

Recall is very fast in a real neuronal network. The input firings which represent the
recall cue Py are applied simultaneously to the synapses, so netinput; can be

64 Pattern association

accumulated in one or two time constants of the dendrite (e.g. 10-20ms). If the
threshold of the cell is exceeded, it fires. Thus in no more than a few tens of milli-
seconds all the output neurons of the pattern associator which will be turned On by a
particular input pattern will be firing. The rime taken to switch the output neurons
On will be largely independent of the number of axons or dendrites in the pattern
associator. This is very different from a conventional digital computer. Computing
net input in equation 3.2 with one of these would involve successive multiplication
and addition operations for each weight in the macrix. The time to compute the
output pattern would increase in proportion to the product of the number of axons
and the number of dendrites.

The pattern associator performs parallel computation in two senses. One is that for
2 single neuron, the separate contributions of the activity of each axon multiplied by
the synaptic weight are computed in parallel and added simultaneously. The second is
that this is performed in parallel for all neurons in the network. These types of
neuronal network operate fast in the brain because they perform parallel processing.

Learning is also potentially fast in a pattern associator. A single pairing of Py and
P, could, in principle, enable the association to be learnt. There is no need to repeat
the pairing over many trials in order to discover the appropriate mapping. This is
important for biological systems. A single co-occurrence of two events may provide
the only opportunity to learn something which could have life-saving consequences.
Although repeated pairing with small variations of the vectors produces the useful
properties of prototype extraction and noise reduction, the properties of
generalization and graceful degradation can be obtained with just one pairing. We
will see one trial learning at work in the simulation of episodic memory formation in
the hippocampus in chapter 13.

Interference is not necessarily a bad thing

In the elementary examples in this chapter we have demonstrated that independent
events can be stored on the same connections of a distributed memory. However, it is
obvious that there will be limitations on the number that can be stored without
interference. Interference sounds like an undesirable property of a memory system. In
the localised storage systems like computer discs and telephone directories which we
are accustomed to, it is undesirable. So ‘limitations to interference free storage’ may
sound like a problem. But remember that interference berween responses to different
but similar input patterns is the basis of many important properties of distributed
memories. In this chapter we saw that it allowed generalisation, noise reduction and
prototype extraction. In later chapters we will see how it enables a network to
perform the generalisations which underlie many cognitive processes. The fact that
interference is a property of connectionist pattern associator memories is of inrerest,

Training a pattern associator with tlearn 65

for, unlike strictly localised forms of storage, interference is a major property of
human memory. One reason that interference is rolerated in biological memory is
presumably that the ability to generalize between stimuli is more useful than 100%
accurate memory of specific past events.

Further reading

More detailed analysis of pattern associators and the Hebb rule can be found in Rolls
and Treves (1997) and Hertz et al. (1991). Specific issues which go beyond the
introductory account here are the types of pattern which can be easily learnt by one-
layer pattern associators, the capacity of pattern associators trained with the Febb
rule and modifications to the Hebb rule which allow for decrease in synaptic weights
as well as for increase.

Training a pattern associator with tlearn

Open the project called pa in the Chapter Three folder/directory. This project uses
the tlearn network configuration file pa.ef that defines a nerwork with 6 input
units and 4 output units identical to that shown in figure 3.1(b). All the connections
are set to zero. When you open the pa project, you will also open the pa.data and
pa.teach files that will be used to train the nerwork. These files are shown in figure
3.11. The two distributed data patterns defined in the pa.data file are those used to
represent the appearance of chocolate and apricot earlier in the chapter. Similarly the
two distributed teach patterns defined in the pa.teach file are those used to
represent the taste of chocolate and apricor. You will use these files to train the
network defined by the pa.ef file. You can confirm that you have the right nerwork
architecture by opening the Network Architecture display.

Training the network

In this exercise, you will train the network to associate the two sets of patterns
described above. First, select Training Options. . from the Network menu. The
Training Options. .. dialogue box should appear as in figure 3.12. Set the number of
training sweeps to 2 (we will train the network just once on each input pattern) and
set the learning rate parameter to 10.0. If the other options in the dialogue box are
not as shown, change them so they are. Now Train the network from the Network
menu. The tlearn Status display will indicate when training is complete.

Testing the network

There are several ways to test whether the network has learnt the correct output
patterns. First, open the Node Activities display as shown in figure 3.13. The top row

