Backpropagation:
The Basic Theory

David E. Rumelhart

Richard Durbin

Richard Golden

Yves Chauvin

Department of Psychology, Stanford University

INTRODUCTION

Since the publication of the PDP volumes in 1986,! learning by backpropagation
has become the most popular method of training neural networks. The reason for
the popularity is the underlying simplicity and relative power of the algorithm.
Its power derives from the fact that, unlike its precursors, the perceptron leamning
rule and the Widrow-Hoff learning rule, it can be employed for training nonlinear
networks of arbitrary connectivity. Since such networks are often required for
real-world applications, such a learning procedure is critical. Nearly as important
as its power in explaining its popularity is its simplicity. The basic idea is old and
simple; namely define an error function and use hill climbing (or gradient descent
if you prefer going downhill) to find a set of weights which optimize perfor-
mance on a particular task. The algorithm is so simple that it can be implemented
in a few lines of code, and there have been no doubt many thousands of imple-
mentations of the algorithm by now.

The name back propagation actually comes from the term employed by
Rosenblatt (1962) for his attempt to generalize the perceptron learning algorithm
to the multilayer case. There were many attempts to generalize the perceptron
learning procedure to multiple layers during the 1960s and 1970s, but none of
them were especially successful. There appear to have been at least three inde-
pendent inventions of the modern version of the back-propagation algorithm:
Paul Werbos developed the basic idea in 1974 in a Ph.D. dissertation entitled

VParallel distributed processing: Explorations in the microstructure of cognition. Two volumes by
Rumelhart, McClelland, and the PDP Research Group.

2 RUMELHART, DURBIN, GOLDEN, CHAUVIN

“Beyond Regression,” and David Parker and David Rumelhart apparently devel-
oped the idea at about the same time in the spring of 1982. It was, however, not
until the publication of the paper by Rumelhart, Hinton, and Williams in 1986
explaining the idea and showing a number of applications that it reached the field
of neural networks and connectionist artificial intelligence and was taken up by a
large number of researchers.

Although the basic character of the back-propagation algorithm was laid out
in the Rumelhart, Hinton, and Williams paper, we have learned a good deal more
about how to use the algorithm and about its general properties. In this chapter
we develop the basic theory and show how it applies in the development of new
network architectures.

We will begin our analysis with the simplest cases, namely that of the feedfor-
ward network. The pattern of connectivity may be arbitrary (i.e., there need not
be a notion of a layered network), but for our present analysis we will eliminate
cycles. An example of such a network is illustrated in Figure 1.2

- For simplicity, we will also begin with a consideration of a training set which
consists of a set of ordered pairs [{%, 3},—] where we understand each pair to
represent an observation in which outcome d occurred in the context of event X.
The goal of the network is to learn the relationship between ¥ and d. It is useful to
imagine that there is some unknown function relating ¥ to d, and we are trying to
find a good approximation to this function. There are, of course, many standard
methods of function approximation. Perhaps the simplest is linear regression. In
that case, we seek the best linear approximation to the underlying function. Since
multilayer networks are typically nonlinear it is often useful to understand feed-
forward networks as performing a kind of nonlinear regression. Many of the
issues that come up in ordinary linear regression also are relevant to the kind of
nonlinear regression performed by our networks.

One important example comes up in the case of “overfitting.” We may have
too many predictor variables (or degrees of freedom) and too little training data.
In this case, it is possible to do a great job of “learning™ the data but a poor job of
generalizing to new data. The ultimate measure of success is not how closely we
approximate the training data, but how well we account for as yet unseen cases.
It is possible’ for a sufficiently large network to merely “memorize” the training
data. We say that the network has truly “learned” the function when it performs
well on unseen cases. Figure 2 illustrates a typical case in which accounting
exactly for noisy observed data can lead to worse performance on the new data.
Combating this “overfitting” problem is a major problem for complex networks
with many weights.

Given the interpretation of feedforward networks as a kind of nonlinear re-
gression, it may be useful to ask what features the networks have which might

*As we indicate later, the same analysis can be applied to networks with cycles (recurrent
networks), but it is easiest to understand in the simpler case.

BACKPROPAGATION: THE BASIC THEORY 3

Y
(). () Output Units

1.

Input Units

Figure 1. A simple three-layer network. The key to the effectiveness
of the multilayer network is that the hidden units learn to represent the

input variables in a task-dependent way.

L]

Figure 2. Ewven though the oscillating line passes directly through all
of the data points, the smooth line would probably be the better pre-

dictor if the data were noisy.

4 RUMELHART, DUREIN, GOLDEN, CHAUVIN

give them an advantage over other methods. For these purposes it is useful to
compare the simple feedforward network with one hidden layer to the method of
polynomial regression. In the case of polynomial regression we imagine that we
transform the input variables X into a large number of variables by adding a
number of the cross terms xx,, X;X3, . . . , XXXy, X Xa¥,,. . . . Wecan also add
terms with higher powers xt, xj, . . . as well as cross terms with higher powers.
In doing this we can, of course approximate any output surface we please. Given
that we can produce any output surface with a simple polynomial regression
model, why should we want to use a multilayer network? The structures of these
two networks are shown in Figure 3.

We might suppose that the feedforward network would have an advantage in
that it might be able to represent a larger function space with fewer parameters.
This does not appear to be true. Roughly, it seems to be that the “capacity” of
both networks is proportional to the number of parameters in the network (cf.
Cover, 1965; Mitchison & Durbin, 1989). The real difference is in the different
kinds of constraints the two representations impose. Notice that for the poly-
nomial network the number of possible terms grows rapidly with the size of the
input vector. It is not, in general, possible, even to use all of the first-order cross
terms since there are n(n + 1)/2 of them. Thus, we need to be able to select that
subset of input variables that are most relevant, which often means selecting the
lower-order cross terms and thereby representing only the pairwise or, perhaps,
three-way interactions,

U b

00 Q0

00 00-000

h ey IRy G ROXE:
multhlayer network polynomial network

Figure 3. Two networks designed for nonlinear regression problems.
The multilayer network has a set of hidden units designed to discover
a “low-order” representation of the input variables. In the polynomial
network the number of terms expands exponentially.

1. BACKPROPAGATION: THE BASIC THEORY b

In layered networks the constraints are very different. Rather than limiting the
order of the interactions, we limit only the number of interactions and let the
network select the appropriate combinations of units. In many real-world situa-
tions the representation of the signal in physical terms (for example, in terms of
the pixels of an image or the acoustic representation of a speech signal) may
require looking at the relationships among many input variables at a time, but
there may exist a description in terms of a relatively few variables if only we
knew what they were. The idea is that the multilayer network is trying to find a
low-order representation (a few hidden units), but that representation itself is, in
general, a nonlinear function of the physical input variables which allows for the
interactions of many terms.

Before we turn to the substantive issues of this chapter, it is useful to ask for
what kinds of applications neural networks would be best suited. Figure 4 pro-
vides a framework for understanding these issues. The figure has two dimen-
sions, “Theory Richness” and “Data Richness.” The basic idea is that different
kinds of systems are appropriate for different kinds of problems. If we have a
good theory it is often possible to develop a specific “physical model” to describe
the phenomena. Such a “first-principles” model is especially valuable when we

Data Richnesg ———————

Expert Systems Neural Networks
and
Theary
Richness Related Statistical Models
|
First Principles Models

Figure 4. Neural networks and back propagation can be of the most
value for a problem relatively poor in theory and relatively rich in data.

6 RUMELHART, DURBIN, GOLDEN, CHAUVIN

have little data. Sometimes we are “theory poor” and also “data poor.” In such a
case, a good model may be best determined through asking “experts” in a field
and, on the basis of their understanding, devise an “expert system.” The cases
where networks are particularly useful are domains where we have lots of data
(so we can train a complex network) but not much theory, so we cannot build a
first-principles model. Note that when a situation gets sufficiently complex and
we have enough data, it may be that so many approximations to the first princi-
ples models are required that in spite of a good deal of theoretical understanding
better models can be constructed through learning than by application of our
theoretical models.

SOME PRELIMINARY CONSIDERATIONS

There are three major issues we must address when considering networks such as
these. These are:

1. The representation problem. What is the representational capacity of a
networks of this sort? How must the size of the network grow as the
complexity of the function we are attempting to approximate grows?

2. The learning problem. Given that a function can be approximated reason-
ably closely by the network, can the function be learned by the network?
How does the training time scale with the size of the network and the
complexity of the problem?

3. The generalization problem. Given a network which has learned the train-
ing set, how certain can we be of its performance on new cases? How must
the size of the data set grow as the complexity of the to be approximated
function grows? What strategies can be employed for improving general-
ization?

Representation

The oniginal critique by Minsky and Pappert was primarily concerned with the
representational capacity of the perceptron. They showed (among other things)
that certain functions were simply not representable with single-layer per-
ceptrons. It has been shown that multilayered networks do not have these limita-
tions. In particular, we now know that with enough hidden units essentially any
function can be approximated as closely as possible (cf. Hornik et al., 1989).
There still 1s a question about the way the size of the network must scale with the
complexity of the function to be approximated. There are results which indicate
that smooth, continuous functions require, in general, simpler networks than
functions with discontinuities.

1. BACKPROPAGATION: THE BASIC THEORY 7

Learning

Although there are results that indicate that the general learning problem is
extremely difficult—certain representable functions may not be learnable at
all—empirical results indicate that the “learning” problem is much easier than
expected. Most real-world problems seem to be learnable in a reasonable time.
Moreover, learning normally seems to scale linearly; that is, as the size of real
problems increase, the training time seems to go up linearly (i.e., it scales with
the number of patterns in the training set). Note that these results were something
of a surprise. Much of the early work with the back-propagation algorithm was
done with artificial problems, and there was some concern about the time that
some problems, such as the parity problem, required. It now appears that these
results were unduly pessimistic. It is rare that more than 100 times through the
training set is required.

Generalization

Whereas the learning problem has tumed out to be simpler than expected, the
generalization problem has turned out to be more difficult than expected. It
appears to be possible to easily build networks capable of learning fairly large
data sets. Learning a data set turms out to be little guarantee of being able to
generalize to new cases. Much of the most important work during recent years
has been focused on the development of methods to attempt to optimize general-
ization rather than just the learning of the training set.

A PROBABILISTIC MODEL FOR
BACK-PROPAGATION NETWORKS

The goal of the analysis which follows is to develop a theoretical framework
which will allow for the development of appropriate networks for appropriate
problems while optimizing generalization. The back-propagation algorithm in-

volves specifying a cost function and then modifying the weights iteratively
according to the gradient of the cost function. In this section we develop a

rationale for an appropriate cost function. We propose that the goal is to find that
network which is the most likely explanation of the observed data sequence. We
can express this as trying to maximize the term

P(%|NYP(N)
P(%) '

where N represents the network (with all of the weights and biases specified), @
represents the observed data, and P(%|N) is the probability that the network N
would have produced the observed data 4. Now since sums are easier to work

P(N|@) =

8 RUMELHART, DURBIN, GOLDEN, CHAUVIN

with than products, we will maximize the log of this probability. Since the log is
a monotonic transformation, maximizing the log is equivalent to maximizing the
probability itself. In this case we have

In P(N|D) = In P(D|N) + In P(N) = In P(D).

Finally, since the probability of the data is not dependent on the network, it is
sufficient to maximize In P(@|N) + In P(N).

Now, it is useful to understand the meaning of these two terms. The first term
represents the probability of the data given the network; that is, it is a measure of
how well the network accounts for the data. The second term is a representation
of the probability of the network itself; that is, it is a prior probability or a prior
constraint on the network. Although it is often difficult to specify the prior, doing
50 is an important way of inserting knowledge into the leamming procedure. More
will be said about this later. For the time being, however, we focus on the first
term, the performance.

It is useful to begin by noticing that the data can be broken down into a set of
observations, each, we will assume, chosen independently of the others. Thus,
we can write the probability of the data given the network as

In P(2|N) = In P([{%.d)]|N)
= In H P((x.d)N) = E In P((Z,d)|N).

Note that again this assumption allows us to express the probability of the data
given the network as the sum of terms, each term representing the probability of
a single observation given the network. We can take still another step. We can
break the data into two parts: the outcome d, and the observed event ¥, We can
write

In P(DIN) = 2 In P(A|5; A N) + 2, In P(&).
i i

Now, since we suppose that the event X; does not depend on the network, the last
term of the equation will not affect the determination of the optimal network.
Therefore, we need only maximize the term X, In {P{E,E\; N

So far we have been very general; the only real assumption made is the
independence of the observed data points. In order to get further, however, we
need to make some specific assumptions, particularly about the relationship
between the output of the network ¥; and the observed outcome d;, a probabilistic
assumption. First, we assume that the relationship between %, and d, is not deter-
ministic, but that, for any given X,, there is a distribution of possible values of d,.
The network, however, is deterministic, so rather than trying to predict the actual
outcome we are only trying to predict the expected value of d, given X,. Thus, the
network output ¥, is to be interpreted as the mean of the actual observed value.
This is, of course, the standard assumption.

1. BACKPROPAGATION: THE BASIC THEORY 9

The Gaussian Case

To proceed further, we must specify the form of the distribution of which the
network output is the mean. To decide which distribution is most appropriate, it
is necessary to consider the nature of the outcomes, d. In ordinary linear regres-
sion, there is an underlying assumption that the noise is normally distributed
about the predicted values. In situations in which this is so, a Gaussian proba-
bility distribution is appropriate, even for nonlinear regression problems in which
nonlinear networks are required. We begin our analysis in this simple case.

Under the assumption of normally distributed noise in the observations we can
write

.. — .32
P(d|% A\ N) = K exp (Z y = ;)) ;

2
F 2o

where K is the normalization term for the Gaussian distribution. Now we take the
log of the probability:

_ 20y — dy?

12 AN) = —
In P (d|% A\ N) In K 53

Under the assumption that o is fixed, we want to maximize the following term,
where € is the function to be maximized.

R I
E‘E Ry E 2 {,}l_;z :frj} .
i o

Now we must consider the appropriate transfer functions for the output units.
For the moment, we will consider the case of what we have termed quasi-linear
output units in which the output is a function of the net input of the unit, where?
the net input is simply a weighted sum of the inputs to the unit. That is, the net
input for unit j, v, is given by m; = Z, wyhy + B;. Thus, we have y; = F(m).*

Recall that the back-propagation learning rule is determined by the derivative
of the cost function with respect to the parameters of the network. In this case we
can write

a6 _ (dy — yy) ﬂg{'ﬂj]
an; a2 dn;

This has the form of the difference between the predicted and observed values
divided by the variance of the error term times the derivative of the output

IMote, this is not necessary. The output units could have a variety of forms, but the quasi-linear
class is simple and useful.

“Note that 7, itself is a function of the input vector ; and the weights and biases of the entire
network.

10 RUMELHART, DURBIN, GOLDEN, CHAUVIN

function with respect to its net input. As we shall see, this is a very general form
which occurs often.

Now what form should the output function take? It has been conventional to
take it to be a sigmoidal function of its net input, but under the Gaussian
assumption of error, in which the mean can, in principle, take on any real value,
it makes more sense to let ¥ be linear in its net input. Thus, for an assumption of
Gaussian error and linear output functions we get the following very simple form
of the learning rule:

d€

a_m < (d;] T, }’;j]-
The change in 7 should be proportional to the difference between the observed
output and its predicted value. This model is frequently appropriate for predic-
tion problems in which the error can reasonably be normally distnibuted. As we
shall see, classification problems in which the observations are binary are a
different situation and generate a different model.

The Binomial Case

Often we use networks for classification problems—that is, for problems in
which the goal is to provide a binary classification of each input vector for each
of several classes. This class of problems requires a different model. In this case
the outcome vectors normally consist of a sequence of 0’s and 1’s. The “error”
cannot be normally distributed, but would be expected to be binomially distrib-
uted. In this case, we imagine that each element of ¥ represents the probability
that the corresponding element of the outcome vector d takes on the value O or 1.
In this case we can write the probability of the data given the network as

P@z A N) =[] ya1 = ypr-a.
j

The log of probability is Z; d; In y; + (1 — d}) In (1 — y;) and, finally,

¢ =2 2 dny+(l-d)in(l - y).
L |

In the neural network world, this has been called the cross-entropy error term. As
we shall see, this is just one of many such error terms. Now, the derivative of this
function is

a); - J’j“ = J’j] an;

Again, the derivative has the same form as before—the difference between the
predicted and observed values divided by the variance (in this case the variance

a6 d; — ﬂﬁ{'ﬂ;}

1. BACKPROPAGATION: THE BASIC THEORY 1

of the binomial) times the derivative of the transfer function with respect to its
net input.

We must now determine the meaning of the form of the output function. In
this case, we want it to range between 0 and 1, so a sigmoidal function 1s natural.
Interestingly, we see that if we choose the logistic #(n;) = 1/(1 + e~™), we find
an interesting result. The derivative of the logistic is 9{11,}[1 — ?[n_l,}] or _‘,:,-l{l -
y;). It happens that this is the variance of the binomial, so it cancels the denomi-
nator in the previous equation, leaving the same simple form as we had for the
Gaussian case:

E = (d; — y;).
In the work on generalized linear models (cf. McCullagh & Nelder, 1989) such
functions are called linking functions, and they point out that different linking
functions are appropriate for different sorts of problems. It turns out to be useful
to see feedforward networks as a generalization into the nonlinear realm of the
work on generalized linear models. Much of the analysis given in the McCullagh
and Nelder applies directly to such networks.

The Multinomial Case

In many applications we employ not multiple classification or binary classifica-
tion, but “l-of-n" classification. Here we must employ still another transfer
function. In this case, choose the normalized exponential output function®

eny

g1,al:'_l"|]' 2 m-

In this case, the d vector consists of exactly one 1 and the remaining digits are
zeros. We can then interpret the output unit j, for example, as representing the
probability that the input vector was a member of class j. In this case we can
write the cost function as

— e
{E—' ? %:dglnm.

and, again, after computing the derivative we get

d€
E‘ﬁf e (d.fj = Yyk

I

5This is sometimes called the “soft-max™ or “Potts™ unit. As we shall see, however, it is a simple
generalization of the ordinary sigmoid and has a simple interpretation as representing the posterior
probability of event j out of a set n of possible events.

12 RUMELHART, DURBIN, GOLDEN, CHAUVIN

The General Case

The fact that these cases all end up with essentially the same leamning rule in spite
of different models is not accidental. It requires exactly the right choice of outpmt
functions for each class of problem. It turmns out that this result will occur
whenever we choose a probability function from the exponential family of proba-
bility distributions. This family, which includes, in addition to the normal and the
binomial, the gamma distribution, the exponential distribution, the Poisson dis-
tribution, the negative binomial distribution, and most other familiar probability
distributions. The general form of the exponential family of probability distribu-
tions 1s

Pz A\ N) = exp[E o B{ﬂﬁ; ode |,
i

where 0 is the “sufficient statistic” of the distribution and is related to the mean of
the distribution, & is a measure of the overall variance of the distribution, and the
B(), C() and a() are different for each member of the family. It is beyond the
scope of this chapter to develop the general results of this model.® Suffice it to
say that for all members of the exponential family we get

A€ ” d, — ¥y,

We then choose as an output function one whose derivative with respect to n is
equal to the variance. For members of the exponential family of probability
distributions we can always do this.

The major point of this analysis is that by using one simple cost function, a
log-likelihood function, and by looking carefully at the problem at hand, we see
that, unlike the original work, in which the squared error criterion was normally
employed in nearly all cases, different cost functions are appropriate for different
cases—prediction, cross-classification, and 1-of-n classification all require dif-
ferent forms of output units. The major advantage of this is not so much that the
squared error criterion is wrong, but that by making specific probability assump-
tions we can get a better understanding of the meaning of the output units. In
particular, we can interpret them as the means of underlying probability distribu-
tions. As we shall show, this understanding allows for the development of rather
sophisticated architecture in a number of cases.

SOME EXAMPLES

Before discussing priors and analyzing hidden units, we sketch how to use this
method of analysis to design appropriate learning rules for complex networks.

“See McCullagh and Nelder (1989, pp. 28-30) for a more complete description.

1. BACKPROPAGATION: THE BASIC THEORY 13

A Simple Clustering Network

Consider the following problem. Suppose that we wish to build a network which
received a sequence of data and attempted to cluster the data points into some
predefined number of clusters. The basic structure of the network, illustrated in
Figure 5, consists of a set of input units, one for each element of the data vector
X, a set of hidden “cluster” units, and a single linear output unit. In this case, we
suppose that the hidden units are “‘Gaussian”; that is, their output values are
given by K exp [2, (x; — w;)?/20?]. In this case, the weights W, can be viewed as
the center of the kth cluster. The parameter o, constant in this case, determines
the spread of the cluster. We want the output unit to represent the probability of
the data given the network, P(%,|N).

Now if we assume that the clusters are mutually exclusive and exhaustive we
can write

P(Z|N) = 2, P(R|F € c)P(cy),
k

where ¢, indexes the kth cluster. For simplicity we can assume that the clusters
are to be equally probable, so P(c;) = 1/N, where N is the number of clusters.
Now, the probability of the data given the cluster is simply the output of the kth
hidden unit, k;. Therefore, the value of the output unit is 1/N Z, A, and the log-
likelihood of the data given the input is

|
“E:ln(h—),

Output Unit

O.. Cluster Units

00w () inpt vt

Figure 5. A simple network for clustering input vectors.

14 RUMELHART, DURBIN, GOLDEN, CHAUVIN

The derivative of € with respect to the weights is

€ ({K!’N}EIP[E_;{I_E — wy)?/20?]) X — Wik
dwy \EUKIN)exp — Z[(x; — wu)?/207] '

T2

The term in parentheses represents the posterior probability that the correct
cluster is ¢, given the input in a member of one of the clusters. We can call this
posterior probability p,. We can now see that the leaming rule is again very
simple:

This is a slight modification of the general form already discussed. It is the
difference between the observed value x; and the estimated mean value wy
weighted by the probability that cluster k was the correct cluster p,.

This simple case represents a classic mixture of Gaussian model. We assumed
fixed probabilities per cluster and a fixed variance. It is not difficult to estimate
the probabilities of each cluster and the variance associated with the clusters. It is
also possible to add priors of various kinds. As we will explain, it is possible to
order the clusters and add constraints that nearby clusters ought to have similar
means. In this case, this feedforward network can be used to implement the
elastic network of Durbin and Willshaw (1987) and can, for example, be used to
find a solution to the traveling salesman problem.

Society of Experts

Consider the network proposed by Jacobs, Jordan, Nowlan, and Hinton (1991)
and illustrated in Figure 6. The idea of this network is that instead of having a
single network to solve every problem, we have a set of networks which learn to
subdivide a task and thereby solve it more efficiently and elegantly. The architec-
ture allows for all networks to look at the input units and make their best guess,
but a normalized exponential “gateing” is used to weight the outputs of the
individual network providing an overall best guess. The gateing network also
looks at the input vector.

We must train both the gateing network and the individual “expert” networks.
As before, we wish to maximize the log-likelihood of the data given the network.
The final output of the network is

e = 2 o

where r, is the probability estimated by the normalized exponential “relevance”
network that subnetwork k is the correct network for the current input. At first, it
may not be obvious how to train this network. Perhaps we should look at the
difference between the output of the network and the observed outcome and use

1. BACKPROPAGATION: THE BASIC THEORY 15

Weighted Output Units

Semi-Output
Units

00 mh

Input Units

Figure 6. A simple network for clustering input vectors.

that as the error signal to be propagated back through the network. It turns out
that the probabilistic analysis we have been discussing offers a different, more
principled solution. We should, of course, maximize the log-likelihood—the

probability of the data given the network. On the assumption that each input
vector should be processed by one network and that the relevance network

provides the probability that it should be network k, we can write

I:'E- =]"- F{&;LE: "h"' H,} — I-n E F{a||i.‘ ﬂ "C-'Fk}rkr
k

where f, represents the kth subnet.

We must now make some specific assumptions about the form of P(d[%; /\
¥,). For concreteness, we assume a Gaussian distribution, but we could have
chosen any of the other probability distributions we have discussed. In this case

- (d; - .}:ik}:]
‘€ = In ? Krkexp[él —~—==]

We now must compute the derivative of the log-likelihood function with
respect to my, for each subnetwork and with respect to m, for the relevance
network. In the first case we get

96 _ (rexpl(d; — yu)?/20?]) di = Y _ - d; = Yu
an Z; riKexplZ,(d; — y;)*/2a?] o? Yer

Note that this is precisely the same form as for the clustering network. The only
real difference is that the probabilities of each class given the input were indepen-

16 RUMELHART, DURBIN, GOLDEN, CHAUVIN

dent of the input. In this case, the probabilities are input dependent. It is slightly
more difficult to calculate, but it turns out that the derivative for the relevance
units also has the simple form

a_(gz e
e Py ko

the difference between the position and the prior probability that subnetwork k is
the correct network.

This example, although somewhat complex, is useful for seeing how we can
use our general theory to determine a learning rule in a case where it might not be
immediately obvious and in which the general idea of just taking the difference
between the output of the network and the target and using that as an error signal
is probably the wrong thing to do. We now turn to one final example.

Integrated Segmentation and Recognition Network

A major problem with standard back-propagation algorithms is that they seem to
require carefully segmented and localized input patterns for training. This is a
problem for two reasons: first, it is often a labor-intensive task to provide this
information and, second, the decision as to how to segment often depends on
prior recognition. It is possible, however, to design a network and corresponding
back-propagation learning algorithm in which we simultaneously learn to identi-
fy and segment a pattern.”

There are two important aspects to many pattern recognition problems which
we have built directly into our network and learning algorithm. The first is that
the exact location of the pattern, in space or time, is irrelevant to the classifica-
tion of the pattern. It should be recognized as a member of the same class
whereever or whenever it occurs. This suggests that we build translation inde-
pendence directly into our network. The second aspect we wish to build into the
network is that feedback about wherther or not a pattern is present is all that
should be required for training. Information about the exact location and relation-
ship to other patterns ought not be required. The target information thus does not
include information about where the patterns occur, but only about whether a
pattern occurs.

We have incorporated two basic tricks into our network design to deal with
these two aspects of the problem. The first is to build the assumption of transla-
tion independence into the network by using local linked receptive fields, and the

The algorithm and network design presented here were first proposed by Rumelhart in a presen-
tation entitled “Leamning and generalization in multilayer networks™ given at the NATO Advanced
Research Workshop on Neurocomputing, Algorithms, Architecture and Applications held in Les
Arcs, France, in February 1989. The algorithm can be considered a generalization and refinement of
the TDNN network developed by (Waibel et al., 1989). A version of the algorithm was first published
in Keeler, Rumelhart, and Loew (1991).

1. BACKPROPAGATION: THE BASIC THEORY 17

second is to build a fixed “forward model” (cf. Jordan & Rumelhart, 1992) which
translates a location-specific recognition process into a location-independent out-
put value and then is used to back-propagate the nonspecific error signal back
through this fixed network to train the underlying location-specific network. The
following sections show how these features can be realized and provide a ratio-
nale for the exact structure and assumptions of the network. The basic organiza-
tion of the network is illustrated in Figure 7.

We designate the stimulus pattern by the vector X. We assume that any charac-
ter may occur in any position. The input features then project to a set of hidden
units which are assumed to abstract hidden features from the input field. These
feature abstraction units are organized into rows, one for each feature type. Each
unit within a row is constrained to have the same pattern of weights as every
other unit in the row. The units are thus simply translated versions of one another.
This is enforced by “linking” the weights of all units in a given row, and

Pj; = p(letter i at location j) output target
. |
p—" I Al e T DT g
output
0 b e o S des s 5
z
i J
L
Milden: Lo o0
----------r----.;_dl-- -E:,Lg
|. :..;-E
: ;
i
input o
et
Upto 60 Input Strokes

Figure 7. The basic recognition network. See text for detailed net-
work description.

18 RUMELHART, DURBIN, GOLDEN, CHAUVIN

whenever one weight is changed all linked weights are changed. This is the same
trick used by Rumelhart et al. (1986) to solve the so-called T/C problem and by
LeCun et al. (1990) in their work on zip code recognition. We let the activation
value of a hidden unit of type i at location j be a sigmoidal function of its net
input and designate it h;. We interpret the activation of hidden unit h; as the
probability that hidden feature f; is present in the input at position j. The hidden
units themselves have the conventional logistic sigmoidal transfer functions.

The hidden units then project onto a set of position-specific letter detection
units. There is a row of position-specific units for each character type. Each unit
in a row receives inputs from the feature units located in the immediate vicinity
of the recognition unit. As with the hidden units, the units in a given row are
translated versions of one another. We designate the unit for detecting character i
at location j as p;,. We let

I
Pi= TF ey’

where

My = E w.fkh.l'j + B
k

and wy, is the weight from hidden unit Ay; to the detector p;;. Note that since the
weights from the hidden unit to the detection units are linked, this same weight
will connect each feature unit in the row with a corresponding detection unit in
the row above. Since we have built translational independence into the structure
of the network, anything we learn about features or characters at any given
location is, through the linking of weights, automatically transferred to every
location.

If we were willing, or able, to carefully segment the input and tell the network
exactly where each character was, we could use a standard training technique to
train the network to recognize any character at any location. However, we are
interested in a training algorithm in which we do not have to provide the network
with specific training information. We are interested in simply telling the net-
work which characters were present in the input, not where each character is. To
implement this idea, we have built an additional network which takes the output
of the p;; units and computes, through a fixed output network, the probability that
at least one character of a given type is present anywhere in the input field. We do
this by computing the probability that at least one unit of a particular type is on.
This can simply be written as

}'le_n“_]"g}-
J

Thus, y; is interpreted as representing directly the probability that character i
occurred at least once in the input field.

1. BACKPROPAGATION: THE BASIC THEORY 19

Note that exactly the same target would be given for the word “dog” and the
word “god." Nevertheless, the network learns to properly localize the units in the
p; layer. The reason is, simply, that the individual characters occur in many
combinations and the only way that the network can learn to discriminate cor-
rectly is to actually detect the particular letter. The localization that occurs in the
p;; layer depends on each character unit seeing only a small part of the input field
and on each unit of type i constrained to respond in the same way.

Important in the design of the network was an assumption as to the meaning of
the individual units in the network. We will show why we make these interpreta-
tions and how the learning rule we derive depends on these interpretations.

To begin, we want to interpret each output unit as the probability that at least
one of that character is in the input field. Assuming that the letters occurring in a
given word are approximately independent of the other letters in the word, we
can also assume that the probability of the target vector given the input is

pdl®) = I1 yt1 — ypa-4).
i)

This is obviously an example of the binomial multiclassification model. There-
fore, we get the following form of our log-likelihood function:

€ =2 dlIny + (1 — d)n(l - y),
J

where d; equals 1 if character j is presented, and zero otherwise.

On having set up our network and determined a reasonable performance
criterion, we straightforwardly compute the derivative of the error function with
respect to my;, the net input into the detection unit p;;. We get

d€ Py

J

This is a kind of competitive rule in which the learning is proportional to the
relative strength of the activation of the unit at a location in the ith row to the
strength of activation in the entire row. This ratio is the conditional probability
that the target was at position j under the assumption that the target was, in fact,
presented. This convenient interpretation is not accidental. By assigning the out-
put units their probablistic interpretations and by selecting the appropriate,
though unusual, output unit y;, = 1 — II{1 — p;), we were able to ensure a
plausible interpretation and behavior of our character detection units.

Concluding Remarks

In this section we have shown three cases in which our ability to provide useful
analyses of our networks has given us important insights into network design. It
is the general theory that allows us to see what assumptions to make, how to put

20 RUMELHART, DURBIN, GOLDEN, CHAUVIN

our networks together, and how to interpret the outputs of the networks. We
have, however, attended only to one portion of the problem, namely the measure
of performance. Equally important is the other term of our cost function, namely
the priors over the networks. We now turn to this issue.

PRIORS

Recall that the general form of the posterior likelihood function is

€ = 2, 2 In P(dy|% A N) + In P(N).
i

In the previous section we focused on the performance term. Now we focus on
the priors term. As indicated, the major point of this term is to get information
and constraints into the learning procedure. The basic procedure is to modify the
parameters of the network based on the derivatives of both terms of the entire
cost function, not just the performance term.

Weight Decay

Perhaps the simplest case to understand is the “weight decay™ term. In this case
we assume that the weights are distributed normally about a zero mean. We can
write this term as

W |
In P(N) = Incxp(—%) = _EE wﬁ
i

This amounts to a penalty for large weights. The term o determines how impor-
tant the small weight constraint is. If o is large, the penalty term will not be very
important. If it is small, than the penalty term will be heavily weighted. The
derivative then is given by

Thus, every time we see a new pattern the weights should be modified in two
ways; first, they should be modified so as to reduce the overall error (as in the
first time of Equation 1); then they should be moved toward zero by an amount
proportional to the magnitude of the weight. The term o determines the amount
of movement that should take place.

Why should we think that the weights should be small and centered around
zero? Of course, this could be a bad assumption, but it is one way of limiting the
space of possible functions that the network can explore. All things being equal,
the network will select a solution with small weights rather than large ones. In

1. BACKPROPAGATION: THE BASIC THEORY 21

linear problems this is often a useful strategy. The addition of this penalty term is
known as “ridge regression,” a kind of “regularization™ term which limits the
space of possible solutions to those with smaller weights. This is an important
strategy for dealing with the overfitting problem. Weight decay was first pro-
posed for connectionist networks by Geoffrey Hinton.

Weight Elimination

A general strategy for dealing with overfitting involves a simple application of
Occam’s Razor—that is, of all the networks which will fit the training data, find
the simplest. The idea is to use the prier term to measure the complexity of the
network and “prefer” simpler networks to more complex ones. But how do we
measure the complexity of the network? The basic idea, due to Kolmogorov (cf.
Kolmogorov, 1991), is that the complexity of a function is measured by the
number of bits required to communicate the function. This is, in general, difficult
to measure, but it is possible to find a set of variables which vary monotonically
with the complexity of a network. For example, the more weights a network has
the more complex it is—each weight has to be described. The more hidden units
a network has, the greater the complexity of the network; the more bits per
weight, the more complex is the network; the more symmetries there are among
the weights, the simpler the network is, and so on.

Weigend et al. (1990) proposed a set of priors each of which led to a reduction
in network complexity: for several priors, the weight elimination procedure has
been the most useful. The idea is that the weights are not drawn from a single
distribution around zero, as in weight decay, but we assume that they are drawn
either from a normal distribution centered at zero or from a uniform distribution
between, say, £20. It is possible to express this prior roughly as

(wylay)?]
| + (wyloy)?

P(N) = exp[— E
i

or, taking the log and multiplying through by the sigmus, as

In PON) = — 2 T

| T, ::r1 + w
The derivative is
2
afﬁ _03 Wy
ﬂwﬂ of (o3 + wz}l

Note that this has the property that for small weights (weights in which wy; is
small relative to o), the denominator is approximately constant and the change
in weights is simply proportional to the numerator wy;, as in weight decay. For

22 RUMELHART, DURBIN, GOLDEN, CHAUVIN

large weights (w;; is large relative to o) the change is proportional to 1/w3—in
other words, very little change occurs. Thus, this penalty function causes small
weight to move toward zero, eliminates them and leaves large weights alone.
This has the effect of removing unneeded weights. In the nonlinear case, there is
reason to believe that the weight elimination strategy is a more useful prior than
weight decay since large weights are required to establish the nonlinearities. A
number of successful experiments have been carried out using the strategy (cf.
Weigend, Hubberman, & Rumelhart, 1990 and Weigend, Rumelhart, & Hubber-
man, 1991).

Although similar strategies have been suggested for eliminating unneeded
hidden units and for reducing the information content of weights, these have
been studied very little. Perhaps the most successful paradigm, however, is a
generalization of the weight elimination paradigm to impose important weight
symmetries. This work has been done by Nowlan (1991) and is described here.

Weight Symmetries

In weight decay the idea was to have a prior such that the weight distribution has
a zero mean and is normally distributed. The weight elimination paradigm is
more general in that it distinguishes two classes of weights, of which one is, like
the weight decay case, centered on zero and normally distributed, and the other is
uniformly distributed. In weight symmetries there is a small set of normally
distributed weight clusters. The problem is to simultaneously estimate the mean
of the priors and the weights themselves. In this case the priors are

. — 2
P =112 exp[-)] P(cy),
ik k

where P(c,) 1s the probability of the kth weight cluster and p, is its center. To
determine how the weights are to be changed, we must compute the derivative of
the log of this probability. We get

€ » expl(w, — p)* P(c)/20%] (g — W)

aw, 5 Zexpl(w;, — py)? P(c;)/207] af

We can similarly estimate p,, o, and P(c,) by gradient methods as well. For
example, we write the derivative of the error with respect to p,:

€ exp[—(w; — w)* P(c,)/20%] (w; —)

m ; Zexpl—(w; — w,)? P(c,)/20?] o}

By similar methods, it is possible to estimate the other parameters of the net-
work. Nowlan (1991) have shown that these priors go far toward solving the
overfitting problem.

1. BACKPROPAGATION: THE BASIC THEORY 23

Elastic Network and the
Traveling Salesman Problem

Earlier we showed how one could develop a clustering algorithm by using
Gaussian hidden units and optimizing the log-likelihood of the data given the
network. It turns out that by adding priors to the cost function we can put
constraints on the clusters. Imagine that we are trying to solve the traveling
salesman problem in which we are to find the shortest path through a set of cities.
In this case, we represent the cities in terms of their {x, y) coordinate values so
that there is a two-dimensional input vector for each city. The method is the same
as that proposed by Durbin and Willshaw (1987). There is a set of clusters, each
cluster located at some point in a two-dimensional space. We want to move the
means of the clusters toward the cities until there is one cluster for each city and
adjacent clusters are as close to one another as possible. This provides for the
following cost function:

€ =2 In 2 expl[~(x; = poy)? = i + py)2V207

b I

+ In H EKP[[_[I"'_l.-_j - Fu.;+|}2 - (p'd.,j - l"'d._.i+!}2y:"‘]
I

=2 In 2 expl[—(x; — pe))? — (3 + By)2)202]
i I

+ E_[I-L.;.j o I-L.:Jn}l - [I-l-.nu - FdJ+I}z.

j A

MNote that the constraint concerning the distance between successive cities is
encoded in the prior term by the assumption that adjacent cluster means are necar
one another.

We next must compute the derivative of the likelihood function with respect to
the parameters ., ; and p, ;, by now this should be a familiar form. We can write

AT expll—(x; = pen)? — (d; + i) 1/20%] (X — pys)
TR i zj expl[—(x; — I"L_'.'_j]'z = (d; + wmy;) 207 o?

|
* X (Meks1 = MPgi—1)

In order to make this work, we must imagine that the clusters form a ring so that
the cluster before the cluster —1 is the last cluster and the cluster n + 1 (where
we have n clusters) is the same as cluster 0. Now we proceed to solve the
traveling salesman problem in the following way. We start out with a rather large
value of o. The cities are presented to the network one at a time, and the weights

24 RUMELHART, DURBIN, GOLDEN, CHAUVIN

(i.e, the means p, , and p,,) are adjusted until the network stabilizes. At this
point it is likely that none of the cluster centers are located at any of the cities. We
then decrease o and present the cities again until it stabilizes. Then o is de-
creased again. This process is repeated until there is a cluster mean located at
each city. At this point we can simply follow the cluster means in order and read
off the solution to the problem.

Concluding Comments

In this section we showed how knowledge and constraints can be added to the
network with well-chosen priors. So far the priors have been of two types. (1) We
have used priors to constrain the set of networks explored by the leamning algo-
rithm. By adding such “regularization™ terms we have been able to design net-
works which provide much better generalization. (2) We have been able to add
further constraints among the network parameter relationships. These constraints
allow us to force the network to a particular set of possible solutions, such as
those which minimize the tour in the traveling salesman problem.

Although not discussed here, it is possible to add knowledge to the network in
another way by expressing priors about the behavior of different parts of the

network. It is possible to formulate priors that, for example, constrain the output
of units on successive presentations to be as similar or as dissimilar as possible to

one another. The general procedure can dramatically affect the solution the
network achieves.

HIDDEN UNITS

Thus far, we have focused our attention on log-likelihood cost functions, appro-
priate interpretation of the output units, and methods of introducing additional
constraints in the network. The final section focuses on the hidden units of the
network.® There are at least four distinct ways of viewing hidden units.

1. Sigmoidal hidden units can be viewed as approximations to linear thresh-
old functions which divide the space into regions which can then be
combined to approximate the desired function.

2. Hidden units may be viewed as a set of basis functions, linear combina-
tions of which can be used to approximate the desired output function.

3. Sigmoidal hidden units can be viewed probabilistically as representing the
probability that certain “hidden features™ are present in the input.

8As an historical note, the term “hidden unit™ is used 1o refer to those units lying between the
input and output layers. The name was coined by Geoffrey Hinton, inspired by the notion of “hidden
states” in hidden Markov models.

1. BACKPROPAGATION: THE BASIC THEORY 25

4. Layers of hidden units can be viewed as a mechanism for transforming
stimuli from one representation to another from layer to layer until those
stimuli which are functionally similar are near one another in hidden-umit
space.

In the following sections we treat each of these conceptions.

Sigmoidal Units as Continuous Approximations to
Linear Threshold Functions

Perhaps the simplest way to view sigmoidal hidden units is as continuous approx-
imations to the linear threshold function. The best way to understand this is in
terms of a two-dimensional stimulus space populated by stimuli which are la-
beled as members of class A or class B. Figure 8 illustrates such a space. We can
imagine a single output unit which is to classify the input vectors (stimuli) as
being in one or the other of these classes. A simple perceptron will be able to
solve this problem if the stimuli are linearfy separable; that is, we can draw a
line which puts all of the A stimuli on one side of the line and all of the B stimuli
on the other side. This is illustrated in part (a) of Figure 8. In part (b) we see that
replacing the sharp line of the threshold function with a “fuzzy” line of the
sigmoid causes little trouble. It tends to lead to a condition in which stimuli near
the border as classified less certainly than those far from the border. This may not
be a bad thing since stimuli near the border may be more ambiguous.

When the stimuli are not linearly separable (as illustrated in panel (c) of the
figure), the problem is more difficult and hidden units are required. In this case,
each hidden unit can be seen as putting down a dividing line segmenting the input
field into regions. Ideally each region will contain stimuli of the same kind. Then
the weights from the hidden-unit layer to the output units are used to combine the
regions which go together to form the final classification. If the stimuli are
binary, or more generally if the regions in which they lie are convex (as they are
in panel (c)), a single layer of hidden threshold units will always be sufficient. If
the space is concave, as illustrated in panel (d), then two layers of threshold units
may be necessary so that the right regions can be combined. It is nevertheless
possible to “approximate™ the regions arbitrarily closely with a single hidden
layer if enough hidden units are employed. Figure 9 shows how the problem
illustrated can be solved exactly with two hidden units in the two-layer case and
be approximated arbitrarily closely by many hidden units.

Hidden Units as Basis Functions for
Function Approximation

It is also possible to see the hidden layers as forming a set of “basis functions”
and see the output units as approximating the function through a linear combina-

26 RUMELHART, DURBIN, GOLDEN, CHAUVIN

(a) (b)

(c) (d)

Figure 8. (a) A simple example of a linearly separable set of points.
Perceptrons are capable of classifying such data sets. (b) How the
same data would be classified by a sigmoid. The density of the dots
indicates the magnitude of the sigmoid. If the problem is really linearly
separable, the weights on the sigmoid can grow and it can act just like
a perceptron. (¢} A set of lines can be used to segregate a convex
region. The hidden units put down a set of lines and make space that is
originally not linearly separable into one that is. (d) In a concave space
it might not be possible to find a set of lines which divide the two
regions. In such a case two hidden layers are sometimes convenient.

tion of the hidden units. This is a view espoused by Pogio and Girosi (1989) and
others employing the “radial basis function” approach. Typically, this approach
involves simply substituting a Gaussian or similar radially symmetric function
for the conventional sigmoidal hidden units. Of course, there is no limit to the
kind of transfer function the hidden units might employ. The only real constraint
(as far as back propagation is concerned) is that the functions are differentiable in
their inputs and parameters. So long as this is true any hidden-unit type is
possible. Certain unit types may have advantages over others, however. Among
the important considerations are the problems of local minima.

1. BACKPROPAGATION: THE BASIC THEORY 27

Classifier

Second
Hidden

First
Hidden

O

X Y

Figure 9. The first layer works by putting in the vertical and horizon-
tal lines and moving the points to the corners of the region. This
means that at the second level the problem is convex and two further
hidden units divide the space and make it linearly separable.

As we will see, sigmoidal units are somewhat better behaved than many
others with respect to the smoothness of the error surface. Durbin and Rumelhart
(1989), for example, have found that, although “product units” (F(3|W,) =
[T.xy) are much more powerful than conventional sigmoidal units (in that fewer
parameters were required to represent more functions), it was a much more
difficult space to search and there were more problems with local minima.

Another important consideration is the nature of the extrapolation to data
points outside the local region from which the data were collected. Radial basis
functions have the advantage that they go to zero as you extend beyond the region
where the data were collected. Polynomial units F(m,) = n; are very ill behaved
outside of the training region and for that reason are not especially good choices.
Sigmoids are well behaved outside of their local region in that they saturate and
are constant at 0 or 1 outside of the training region.

Sigmoidal Hidden Units as Representing Hidden
Feature Probabilities

The sigmoidal hidden unit has turned out to be a serendipitous choice. It has a
number of nice properties and interpretations which make it rather useful. The

28 RUMELHART, DURBIN, GOLDEN, CHAUVIN

first property has to do with the learning process itself. As noted from Figure 10,
the sigmoidal unit is roughly linear for small weights (a net input near zero) and
gets increasingly nonlinear in its response as it approaches its points of maximum
curvature on either side of the midpoint. Thus, at the beginning of learning,
when the weights are small, the system is mainly in its linear range and is seeking
an essentially linear solution, As the weights grow, the network becomes increas-
ing nonlinear and begins to move toward the nonlinear solution to the problem.
This property of initial linearity makes the units rather robust and allows the
network to reliably attain the same solution.

Sigmoidal hidden units have a useful interpretation as the posterior probability
of the presence of some feature given the input. To see this, think of a sigmoidal
hidden unit connected directly to the input units. Suppose that the input vectors
are random variables drawn from one of two probability distributions and that the
job of the hidden unit is to determine which of the two distributions is being
observed. The role of the hidden unit is to give an output value equal to the
probability that the input vector was drawn from distribution 1 rather than distri-
bution 2. If drawn from distribution 1 we say that some “hidden feature™ was
present; otherwise we say it was absent. Denoting the hidden feature for the jth
hidden unit as f; we have

P(E|f, = DP(f, = 1)

PU= 1D = BRI =TPG, = 1+ PGT = OPG = 0)

1.0

0.3

0.0

-6.0 -3.0 0.0 3.0 6.0
Logistic Sigmoid Function

Figure 10. The logistic sigmoid is roughly linear near the middle of its
range and reaches its maximum curvature.

1. BACKPROPAGATION: THE BASIC THEORY 29

Now, on the assumption that the x’s are conditionally independent (i.e., if we
know which distribution they were drawn from, there is a fixed probability for
each input element that it will occur), we can write

PEfi=1)=1ILPx[f,=1) and PGl =0) = [LPx[f;, = 0).
Now, on the further assumption that the x’s are binomially distributed we get
PGS =1 = [pj — p)* =,

PGS, =0) =] g1 = g0
i

So we finally have

Mpj(1 = py)' " P(f; = 1)
Mpj(1 = p)"' 2P(f; = 1) + gyl — g)" *P(f, =0

Taking logs and exponentiating give

PU; = 1]4)

P(f; = 1|3) =

!I.P[E (x dn py + (1 = x;linil —pu.Jj+iInF!,|';- |]
[]

u'F[E:'Tth: (1 = xin(l = p)) + In PLf; = |}}‘ i up{z (x, ln gy + (1 = xMall = g,0) + InFUi-l]l]
i i

np{}: (:,h%-**}lhﬂl—pil} + In Py = |}]
I v

up[E(lnl—"_"“P—+ Z!r-:l-p,:} +1nﬂ_.|;-n}+anE ;.lu—'T+ Elﬂl-ﬂ,}] + In PUJ, = I
i ¥ t L7

I*:;p{—z Eh !" H'{‘-"].

i “' I:fhl.l i 1 F‘ql.l F[_ﬁ-m

Now, it is possible to interpret the exponent as representing 7, the net input to
the unit. If we let

P, = 1)
In—24 4 I
2 "T-aq, PU}=I}}

and
F.‘j([o ‘?.}]
(1 — piay

we can see the similarity. We can thus see that the sigmoid is properly understood
as representing the posterior probability that some hidden feature is present given

wy = In

30 RUMELHART, DURBIN, GOLDEN, CHAUVIN

the input. Note that, as before, the binomial assumption is not necessary. It is
possible to assume that the underlying input vectors are members of any of the

exponential family of probability distributions. It is easy to.write the general
form

8, — BB + Cif
HF[E (x8, (8,1 (2.d)
!

+ =
= in P, n]

Fm- [lj'].-.

(x 8, — Bio) + C(id)
o ! E,' ald)

8 — Bib) + Ci¥.&))
ald)

(x;
-rlnPU}'—I}I*ﬂp[E b In PUf, = 0)

By rearranging terms and dividing through by the numerator, we obtain the
simple form

o — 0 Big,) — B(B}) Pl =1) -1
P w1y = | 1 {-{ x a ! 1)”
U= 19 (sl ; T ale) +2 P hr{_ﬁ-ﬂi

im,,[(';;,w,m)]

Thus, under the assumption that the input variables are drawn from some mem-
ber of the exponential family and differ only in their means (represented by 0,),
the sigmoidal hidden unit can be interpreted as the probability that the hidden
feature is present. Note the very same form is derived whether the underlying
distributions are Gaussian, binomial, or any member of the exponential family. It
can readily be seen that, whereas the sigmoid represents the two-alternative case,
the normalized exponential clearly represents the multialternative case. Thus, we
derive the normalized exponential in exactly the same way as we derive the
sigmoid:

P, = 1|7) = exp{Z;[(x;0; — B(8;)) + C(Zd))/a(d) + In P(c; = 1)}

4 ¥, exp{Z[(x,0; — B(8,)) + C(Zd)/a(d) + In P(c, = 1)}
" EIP{EE X 'Hil'rﬂ[¢} T E‘: H{Hf‘]irﬂ('ltl':l + In P(ﬂj — I]J'_

2, explZ; x; 0,/a(d) — B0 a(d) + In P(c, = 1)}

gE X W +ﬂnJI

LI |

Ek fEr.!r'wd+Bi |

Hidden-Unit Layers as Representations of
the Input Stimuli

Figure 11 illustrates a very simple connectionist network consisting of two layers
of units, the input units and output units, connected by a set of weights. As a
result of the particular connectivity and weights of this network, each pattern of
activation presented at the input units will induce another specific pattern of
activation at the output units. This simple architecture is useful in various ways.
If the input and output patterns all use distributed representations (i.e., can all be

1. BACKPROPAGATION: THE BASIC THEORY 31

O 00e Outputs
O 000].np'U.ts

Similar Inputs Lead
to Similar Qutputs

Figure 11. Similar inputs produce similar outputs.

described as sets of microfeatures), then this network will exhibit the property
that “similar inputs yield similar outputs,” along with the accompanying general-
ization and transfer of leaming. Two-layer networks behave this way because the
activation of an output unit is given by a relatively smooth function of the
weighted sum of its inputs. Thus, a slight change in the value of an input unit will
generally yield a similarly slight change in the values of the output units.

Although this similarity-based processing is mostly useful, it does not always
yield the correct generalizations. In particular, in a simple two-layer network, the
similarity metric employed is determined by the nature of the inputs themselves.
And the “physical similarity” we are likely to have at the inputs (based on the
structure of stimuli from the physical world) may not be the best measure of the
“functional™ or “psychological™ similarity we would like to employ at the output
(to group appropriate similar responses). For example, it is probably true that a
lowercase a is physically less similar to an uppercase A than to a lowercase o, but
functionally and psychologically a @ and A are more similar to one another than
are the two lowercase letters. Thus, physical relatedness is an inadequate sim-
tlarity metric for modeling human responses to letter-shaped visual inputs. It is
therefore necessary to transform these input patterns from their initial physically
derived format into another representational form in which patterns requiring
similar (output) responses are indeed similar to one another. This involves learn-
ing new representations.

Figure 12 illustrates a layered feedforward network in which information
(activation) flows up from the input units at the bottom through successive layers
of hidden units, to create the final response at the layer of output units on top.
Such a network is useful for illustrating how an appropriate psychological or
functional representation can be created. If we think of each input vector as a
point in some multidimensional space, we can think of the similarity between

32 RUMELHART, DURBIN, GOLDEN, CHAUVIN

Output

Final
Representation

Figure 12. We can think of multilayer networks as transforming the
input through a series of successive transformations so as to create a
representation in which "functionally” similar stimuli are near one
another when viewed as points in a multidimensional space.

two such vectors as the distance between their two corresponding points. Further-
more, we can think of the weighted connections from one layer of units to the
next as implementing a transformation that maps each original input vector into
some new vector. This transformation can create a new vector space in which the
relative distances among the points corresponding to the input vectors are differ-
ent from those in the original vector space, essentially rearranging the points.
And if we use a sequence of such transformations, each involving certain non-
linearities, by “stacking” them between successive layers in the network, we can
entirely rearrange the similarity relations among the original input vectors.

Thus, a layered network can be viewed simply as a mechanism for transform-
ing the original set of input stimuli into a new similarity space with a new set of
distances among the input points. For example, it is possible to move the initially
distant “physical™ input representations of a and A so that they are very close to
one another in a transformed “psychological™ output representation space, and
simultaneously transform the distance between a and o output representations so
that they are rather distant from one another. (Generally, we seek to attain a
representation in the second-to-last layer which is sufficiently transformed that
we can rely on the principle that similar patterns yield similar outputs at the final
layer.) The problem is to find an appropriate sequence of transformations that
accomplish the desired input-to-output change in similarity structures.

The back-propagation learning algorithm can be viewed, then, as a procedure
for discovering such a sequence of transformations. In fact, we can see the role

1. BACKPROPAGATION: THE BASIC THEORY 33

of learning in general as a mechanism for constructing the transformations which
will convert the original physically based configuration of the input vectors into
an appropriate functional or psychological space, with the proper similarity
relationships between concepts for making generalizations and transfer of learn-
ing occur automatically and correctly.

CONCLUSION

In this chapter we have tried to provide a kind of overview and rationale for the
design and understanding of networks. Although it is possible to design and use
interesting networks without any of the ideas presented here, it is, in our expen-
ence, very valuable to understand networks in terms of these probabilistic inter-
pretations. The value is primarily in providing an understanding of the networks
and their behavior so that one can craft an appropnate network for an appropnate
problem. Although it has been commonplace to view networks as kinds of black
boxes, this leads to inappropriate applications which may fail not because such
networks cannot work but because the issues are not well understood.

REFERENCES

Cover, T. H. (1965). Geometrical and statistical propertics of systems of linear inequalities with
applications in pattern recognition. /EEE Transactions on Electronic Computers, 14. pp. 326-
334

Durbin, R., & Rumelhart, D. E. (1989). Product units: A computationally powerful and biolog-
ically lausible extension to backpropagation networks. Newral Computarion, 1, 133-142.

Durbin, R., & Willshaw, D. (1987). An analogue approach to the travelling salesman problem using
an elastic net method. Narure, 326, 689-691.

Homik, K., Stinchcombe, M., & White, H. (1989). Multilayer Feed-forward Networks are Univer-
sal Approximators, Neural Networks, 2, pp. 359-366.

Jacobs, R. A., Jordan, M. L., Nowlan, 5. I., & Hinton, G. E. (1991). Adaptive mixtures of local
experts. Newral Computation, 3(1).

Jordan, M. L., & Rumelhart, D. E. (1992). Forward models: Supervised leaming with a distal
teacher. Cognitive Science, 16, pp. 307-354.

Keeler, J. D., Rumelhant, D. E.. & Loew, W. (1991). Integrated segmentation and recognition of
hand-printed numerals. In R. P. Lippmann, J. E. Moody, and D. 5. Tourctzky (Eds.), Neural
information processing systems (Vol. 3). San Mateo, CA: Morgan Kaufmann,

Kolmogorov, A. N. (1991). Selected Works of A. N. Koelmogorov, Dordrecht; Boston; Kluwer Aca-
demic.

Le Cun, Y., Boser, Y. B., Denke, J. 5., Henderson, R. D., Howard, R. E., Hubbard, W., & Jackel,
L. D. (1990). In D. 5. Touretzky (Ed.), Handwritien digit recognition with a back-propagation
network (Vol. 2). San Mateo, CA: Morgan Kaufmann.

McCullagh, P. & Nelder, J. A. (1989). Generalized linear models. London: Chapman and Hall.

Mitchison, G. J., & Durbin, R. M. (1989). Bounds on the learning capacity of some multi-layer
networks. Biological Cybernetics, 60, 345-356.

Mowlan, 5. 1. (1991). Soft Competitive Adaptation: Neural Network Learning Alporithm based on

34 RUMELHART, DURBIN, GOLDEN, CHAUVIN

Firting Stavistical Mixiures. Ph.D. thesis, School of Computer Science, Camegie Mellon Univer-
sity, Pittsburgh, PA.

Parker, D. B. (1982). Learning-logic (Invention Report 581-64, File 1). Stanford, CA: Office of
Technology Licensing, Stanford University.

Pogio, T., & Girosi, F. (1989). A rtheory of networks for approximation and learning. A. 1. Memo
No. 1140, Anificial Intelligence Laboratory, Massachusetts Institute of Technology.

Rosenblatt, F. (1962). Principles of neurodynamics. New York: Spartan.

Rumelhart, D. E. (1990). Brain style computation: Learning and generalization. In 5. F. Zometzer,
J. L. Davis, and C. Lau (Eds.), An introduction to neural and electronic nerworks. San Diego:
Academic Press.

Rumelhart, D. E., Hinton, G. E., & Williams, R. 1. (1986). Learning internal representations by
error propagation. In D. E. Rumelhart and J. L. McClelland (Eds.), Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition (Vol. 1). Cambridge, MA: Bradford Books.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., & Lang, K. (1989). Phoneme recognition
using time-delay neural networks. JEEE Transactions on Acoustics, Speech and Signal Process-
ing. 37, 328-338.

Weigend, A. 5., Huberman, B. A., & Rumelhart, D. E. {1990). Predicting the future: A connec-
tuonst approach. Imternational Journal of Neural Systems, 1, 193-2009.

Weigend, A. 5., Rumelhart, D. E., & Huberman, B. (1991). Generalization by weight-elimination
with application to forecasting. In R. P. Lippman, J. Moody, and D. 5. Touretsky (Eds.),
Advances in newral information processing (Yol. 3, pp. 875-882). San Mateo, CA: Morgan
Kaufman.

Werbos, P. (1974). Beyvond regression: New tools for predicrion and analysis in the behavioral
sciences. Unpublished dissertation, Harvard University.

