Gradient-Based Learning
Algorithms for Recurrent
Networks and Their
Computational Complexity

432 BALDI, CHAUVIN, HORNIK

Willi R. J. (1985). Feature discovery through error-correction leaming. Institute for Cognitive
illiams, R. J. .

i . No. 8501, UCSD, La Jolla, California. -
X s;l‘"r];qg‘;‘*[;::::’ me:n square error reconstruction principle for self-organising neural nets.
u, L. .

Neural Networks 6, 627-648.

Ronald J. Williams
College of Computer Science, Northeastern University

David Zipser
Department of Cognitive Science, University of California,
San Diego

INTRODUCTION
Learning in Recurrent Networks

Connectionist networks having feedback connections are interesting for a num-
ber of reasons. Biological neural networks are highly recurrently connected, and
many authors have studied recurrent network models of various types of percep-
tual and memory processes. The gencral property making such networks interest-
ing and potentially useful is that they manifest highly nonlinear dynamical behav-
ior. One such type of dynamical behavior that has received much attention is that
of settling to a fixed stable state, but probably of greater importance both biolog-
ically and from an engineering viewpoint are time-varying behaviors.

Here we consider algorithms for training recurrent networks to perform tem-
poral supervised learning tasks, in which the specification of desired behavior is
in the form of specific examples of input and desired output trajectories. One
example of such a task is sequence classification, where the input is the sequence
to be classified and the desired output is the correct classification, which is to be
produced at the end of the sequence, as in some of the work reported by Mozer
(1989; Chapter 5, this volume). Another example is sequence production, as
studied by Jordan (1986), in which the input is a constant pattern and the corre-
sponding desired output is a time-varying sequence. More generally, both the
input and desired output may be time-varying, as in the prediction problems
investigated by Cleeremans, Servan-Screiber, and McClelland (1989; Chapter 9,
this volume) and the control problems studied by Nguyen and Widrow (Chapter
6, this volume). While limited forms of time-varying behaviors can be handled
by using feedforward networks and tapped delay lines (e.g., Waibel et al., 1987),

434 WILLIAMS AND ZIPSER

recurrent networks offer a much richer set of possibilities for representing the
necessary internal state. Because their internal state representation is adaptive
rather than fixed, they can form delay line structures when necessary while also
being able to create flip-flops or other memory structures capable of preserving a
state over potentially unbounded periods of time. This point has been empha-
sized in (Williams, 1990) and similar arguments have been made by Mozer
(1988; Chapter S, this volume).
There are a number of possible reasons to pursue the development of learning
algorithms for recurrent networks, and these may involve a variety of possible
constraints on the algorithms one might be willing to consider. For example, one
might be interested in understanding how biological neural networks learn to
store and reproduce temporal sequences, which requires that the algorithm used
be “biologically plausible,” implying that the specific implementation of the
algorithm map onto known neural circuitry in a reasonable way. Or, one might
seek an algorithm which does not necessarily conform to known biological
constraints but is at least implementable in entirely local fashion, requiring
essentially no additional connectivity beyond that already present in the network
to be trained. A still weaker constraint on the algorithm is that it allow a reason-
able implementation in parallel hardware, even if that requires certain additional
mechanisms within the overall system beyond those present in the network to be
trained. These last two constraints are of some importance for attempts to create
special-purpose hardware realizations of networks with on-line adaptation capa-
bilities. Another possible constraint on the algorithm is that it be efficient when
implemented in serial hardware. This constraint may be important for off-line
development of networks which are useful for certain engineering applications,
and it can also be important for cognitive modeling studies which are designed to
examine the internal representations necessary to perform certain sequential

tasks.

Overview of This Chapter

In this chapter we describe several gradient-based approaches to training a recur-
rent network to perform a desired sequential behavior in response to input. In
characterizing these approaches as *“gradient-based” we mean that at least part of
the learning algorithm involves computing the gradient of some form of perfor-
mance measure for the network in weight space, either exactly or approximately,
with this result then used in some appropriate fashion to determine the weight
changes. For the type of task investigated here, the performance measure is a
simple measure of error between actual and desired output.

Because we deal here only with gradient-based learning algorithms, our pri-
mary focus will be on techniques for computing this exact or approximate gradi-
ent information. It is to be understood that there may be various alternative ways
to use this gradient information in a particular learning algorithm, including

A s A e . [

13. GRADIENT-BASED LEARNING 435

si i
mple proportlonal_ df:scent along the error gradient or the use of “momentum”
or other more sophisticated acceleration techniques.

ti(mWe discuss several appro.af:hes to performing the desired gradient computa-
» Some based on the familiar backpropagation algorithm and some involving

CONTINUAL VERSUS EPOCHWISE OPERATION

Itis i istingui
e C1:‘npor:ant to distinguish between two approaches to operating (and training)
rent network. In epochwise operation the network is run from some

traini .
: :rlrrlmllgt a feedforward network, weight changes are performed only after a
plete cycle of pattern presentations; in the incremental approach, weight

436 WILLIAMS AND ZIPSER

changes are made after each pattern is presented. In the current terminology, a
single epoch for the recurrent network corresponds to one training pattern for a
feedforward network. so a network which operates epochwise may be trained
using an incremental approach, in which weight changes are made at the end of
each epoch, or a batch approach, in which weight changes are performed after
several epochs.

In contrast, a network is considered to operate continually if neither “manual”
state resets nor other such artificial credit-assignment barriers are available to a
trainer of the network. The concept of a continually operating network would
appear to be more appropriate for situations when on-line learning is required,
although this introduces some subtleties when attempting to formalize the overall
objective of leamning. These subtletics are not present in the epochwise case
because onc can imagine that each epoch involves a potentially repeatable event,
like the presentation of a single pattern to a feedforward network, with these
individual events considered independent of one another. An additional subtlety
in the continual operation case is due to the need to make weight changes while
the network runs. Unlike the epochwise case, the continual operation case offers
no convenient times at which to imagine beginning anew with different weight
values.

As an example of the use of this distinction, consider the task of training a
network to match the input-output behavior of a given finite state machine
through observation of this behavior. A number of the training algorithms to be
described in this chapter have been used for just such tasks. If one assumes that
there is a distinguished start state and a set of distinguished final states in the
machine to be emulated by the network, then it seems reasonable to train the
network in an epochwise fashion. In this approach, whenever the machine being
emulated is restarted in its start state after arriving in a final state, the network is
reset to its start state as well. However, one might also consider trying to emulate
finite state machines having no such distinguished states, in which case letting
the network operate continually is more appropriate. In general, resetting the
network to match a particular state of the machine being emulated is an addition-
al mechanism for giving training information to the network, less informative
than the extreme of giving complete state information (which would make the
task casy), but more informative than giving only input-output information. In
this case the training information helps learning during the time period shortly
after the reset. There is also another difference between the continual operation
case and the epochwise case which may be important. If transitions are added
from the final states to the start state in the finite state machine emulation task, an
epochwise task is turned into a continual-operation task. Note that a network
trained to perform the epochwise version of the task is never required to make the
transition to this distinguished state on its own, so one would not expect it to
perform the same on the continual-operation version of the task as a network
actually trained on that version. In particular, it may not be able to “reset itself”
when appropriate.

13. GRADIENT-BASED LEARNING 437

While we include discussion of learning algorithms for networks which oper-
ate epochwise, much of our emphasis here is on algorithms especially appropri-
ate for training continually operating networks.

FORMAL ASSUMPTIONS AND DEFINITIONS

Network Architecture and Dynamics

All the algorithms presented in this chapter are based on the assumption that the
network consists entirely of semilinear units. More general formulations of these
algorithms are possible, and it is straightforward to use thc same approach to
deriving them. Another assumption we make here is the use of discrete time.
There are continuous-time analogs of all the approaches we discuss, some of
which are straightforward to obtain and others of which involve more work.

Let the network have n units, with m external input lines.2 Let y(r) denote the
n-tuple of output of the units in the network at time 7, and let x"e(¢) denote the
m-tuple of external input signals to the network at time 1. We also define x(r) to
be the (m + n)-tuple obtained by concatenating x"'(¢) and y(#) in some conve-
nient fashion. To distinguish the components of x representing unit outputs from
those representing external input values where necessary, let U denote the set of
indices k such that x,, the kth component of x, is the output of a unit in the
network, and let / denote the set of indices k for which x, is an external input.
Furthermore, we assume that the indices on y and x"t are chosen to correspond
to those of x, so that

X ifkel

X0 = {yk(t) ifkE U. (n

For example, in a computer implementation using zero-based array indexing, it is
convenient to index units and input lines by integers in the range [0, m + n), with
indices in [0, m) corresponding to input lines and indices in [m, m + n) corre-
sponding to units in the network. Note that one consequence of this notational
convention is that x,(¢) and y,(?) arec two different names for the same quantity
when k € U. The general philosophy behind our use of this notation is that
variables symbolized by x represent input and variables symbolized by y repre-
sent output. Since the output of a unit may also serve as input to itsclf and other
units, we will consistently use x, when its role as input is being emphasized and
¥, when its role as output is being emphasized. Furthermore, this naming con-
vention is intended to apply both at the level of individual units and at the level of
the entire network. Thus, from the point of view of the network, its input is
denoted x™! and, had it been it necessary for this exposition, we would have

2What we call inpur lines others have chosen to call input units. We avoid this terminology
because we believe that they should not be regarded as units since they perform no computation.
Another reasonable alternative might be to call them input terminals.

438 WILLIAMS AND ZIPSER

Input

Input

Figure 1. Two representations of a completely connected recurrent
network having three units and two input lines. One input line might
serve as a bias and carry the constant value 1. Any subset of these
three units may serve as output units for the net, with the remaining
units treated as hidden units. The 3 x 5 weight matrix for this network
corresponds to the array of heavy dots in the version on the right.

denoted its output by y"t and chosen its indexing to be consistent with that of y
and x.

Let W denote the weight matrix for the network, with a unique weight
between every pair of units and also from each input line to each unit. By
adopting the indexing convention just described, we can incorporate all the
weights into this single n X (m + n) matrix. The element w,; represents the
weight on the connection to the ith unit from either the jth unit, if j € U, or the
Jth input line, if j € /. Furthermore, note that to accommodate a bias for each unit
we simply include among the m input lines one input whose value is always 1;
the corresponding column of the weight matrix contains as its ith element the bias
for unit . In general, our naming convention dictates that we regard the weight
w; as having x; as its “presynaptic” signal and y; as its “postsynaptic” signal.
Figure | shows a fully connected network having 3 units, 2 input lines, and a 3 x
5 weight matrix.

For the semilinear units used here it is convenient to also introduce for each k
the intermediate variable 5,(1), which represents the net input to the kth unit at
time 1. Its value at time 7 + | is computed in terms of both the state of and input
to the network at time ¢ by

st + 1) = E wy (1) + Z WX = 2 wyx,(1). (2)

ey el leyul

We have written this here in two equivalent forms; the longer one clarifies how
the unit outputs and the external inputs are both used in the computation, while
the more compact expression illustrates why we introduced x and the correspond-
ing indexing convention. Hereafter, we use only the latter form, thereby avoiding
any explicit reference to x"t or its individual coordinates.

13. GRADIENT-BASED LEARNING 439

The output of such a uni i
. umit at time ¢+ + | jg ad
input by ¢+ s then expressed in terms of the net

it + 1) = Llsi e + 1)), 3

the various units j
o (hm:l: Ul’l‘l[S in the netwqu, except that we require them to be differentiable
requ,‘réd i::s»‘es?”w:en: a specific assumption about these squashing functions xs
- 1L Wil be assumed that all units use the logistic functi o
s e o su tha S us € togistic function.
e diq:;;y:;;m C(l)f bqu.allonfs 2and 3, where £ ranges over U/, constitute the
s >-time dynamics of the network where th ‘ ‘
' , ¢ x, values are defi
i : | « etined b
f:y unnnul .t.i\k?te that the external Input at time ¢ does not influence the output o)ti
ooy uni : 1l nn;e ‘1 + 1. We are thus treating CVery connection as having a one-
Wheu; y ;;r elay. It is nof difficult to extend the analyses presented here situations
Hlerent connections have different delays. Later we make soie observ .
s a-

call I ive f

¢ liz;t;?ntxonf to the use of alt_ematlve formulations obtained specifically from
pp tion o Euler discretization to continuous-time networks For d le, i
we begin with the dynamical equations? N e 1t

T = — W)+ fi(s(0)),)

Wt + Ar) = (A1) L A
k) 1 T '\,,k(l) + Eﬁ(ﬁk(l)) (5)
Defining Bi = At/ and alteri i .
equations & & altering the time scale so that Ar = 1, we then obtain the
N+ 1= - Bov(r) + Brfelsi (1)), 6)

tential a ing s i
(;));)lagk madvsfltage of using such dynamics where Bi <€ 1 is that certain classes
Tsun:g g 3/0)3 r’pore readxly learned by such Systems, as has been observed ;“
- The particular advantage possessed by such systems i‘s that thy
systems i e
—_—
]N l g P 1 N
ote that these particular €quations are of essentially the same form as those considered b
s s¢ considered by

Ineda (Cha ter this vo ume CXCCP that we assume tha €xterna nput t € unit nmus B
p s)
’ v pass
P Cl 4, th | t th that t ! t to th t must py

440 WILLIAMS AND ZIPSER

gradient computation used in the learning algorithms to be described here falls
off more gradually over time, which means that “credit assignment” is more

readily spread over longer time spans than when 8 = 1.

Network Performance Measure
Assume that the task to be performed by the network is a sequential supervised
learning task, meaning that certain of the units’ output values are to match
specified target values (which we also call teacher signals) at specified times.
Once again, this 1s not the most general problem formulation to which these
approaches apply, but it is general enough for our purposes here.

Let 7(1) denote the set of indices k € U for which there exists a specified
target value d,(r) that the output of the kth unit should match at time ¢. Then
define a time-varying n-tuple e by

d(t) =y ifkETQ))
0 otherwise. ’

ety = {

Note that this formulation allows for the possibility that target values are spe-
cified for different units at different times. The set of units considered to be

*“visible” can thus be time varying. Now let

K= =3 3 lenp ®)

kEU

denote the negative of the overall network error at time ¢. A natural objective of
learning might be to maximize’ the negative of the total error

Joal' gy = > J(r) (9)

T=r'+1

over some appropriate time period (¢, t}. The gradient of this quantity in weight

space is, of course,

t
ijmlal(t"t) = 2 VWJ(T) (10)

T=1"+1

In general, we let 1, denote some starting time at which the network has its
state initialized. For a continually running network there are no other times at

which the state is ever reinitialized in this way, but with epochwise training there

will be other such times ¢, ¢,, 15, . . . marking epoch boundaries. Alternatively,

"The problem of minimizing error is treated here as a maximization problem because it eliminates
the need for annoying minus signs in many of the subsequent formulas.

- tiitniessstgnn

13. GRADIENT-BASED LEARNING 441

one might cons;j i in g

epoch‘f,‘sc ap;:g::l:lrr%i:o behgm anew at £, whenever the state is reinitialized in a

network opermrs e. OChou_g out this .chapter, whether considering the case of a

which a oper® pochwise or continually, we et Iy denote the last time at
eset occurred. In the epochwise case we also use ¢, to indicate thde

network ; is ;
Compmesnémjfgzrg' nsl)an interval (', 1] containing T such that the algorithm
are fixed. Al‘lvy such e’xaci:t tm:je- f: under the assumption that the network weights
a network operating in ¢ gﬁ;} ient algor.lthm is called epochwise if it is applied to
the end of the epoch. It ; pochwise fﬂS_thr.] e?nd it computes Yy, Jioui(y 1) at ¢
: poch. It is called req/ time if it computes V,.J(¢) at eacl;)’tinlw t Ilf‘

ak the Welght Ch $ i g d C(Hlsld“l Slllve
: T to m € ange 18 a'on d 3¢ iti
|IlUlllp]C O‘ the pel‘(" mance meaSUIC gl adlent SO thal ‘

_ adJ total t'
= n¢

.

vb 1t re 0 e { ”""g O‘ the Welgl" Changeh, it 1S natural W“h a C()"“"u
g

a"y ()lbla"" ||elwl)|k to d(lllls‘ "Ie WelghlS at “Ie l)()"lt th“ “le dp])l()pllalﬁ

442 WILLIAMS AND ZIPSER

gradient has been computed, but, as already noted, for the cpochwnschcas; 1; msz
be appropriate to make weight adjustments only after m.ultIpie epo}::nsio :))e ;:my
poses of this chapter, we consider an eporhw:;e learning a g(;]nt. 1 Lo pe iy
learning algorithm appropriate for networks which operate epoc vi/;]si and whic!
has the property that weight updates are perf(.)rmedlonly a't epoc oundar bé
while a real-time learning algorithm is one in which weight updates

{ 1l time steps. . -
perltto:.:nfr?v?;la(lo ohservep(hat any algorithm Capabl'e of Compuupg thftnl:e.s:a:-
taneous performance gradient V,.J(r) Foqld be used in anﬁp(?chv)v\ll:i tr:::nw tha)t'
simply accumulating these values until time 7, but we will disce

this is not an efficient strategy.

Notation and Assumptions Used
for Complexity Analyses

Here we summarize notation to be used in analyses of the computational clo?:
plexity of the various algorithms to be discussed in this chapter. For comple
ness, we include some introduced earlier.

n = number of units

m = number of input lines

w,, = number of nonzero weights between units

w, = number of adjustable weights '

A, = number of time steps between target prcscnfatlons

ny = average number of units given a target per time step and

L = total number of time steps

We ulso use the standard notation for describing the ordcltr of magmt‘gde otf‘t/l::
computational complexity of algorithhms. lwhertch (:](«f)(:)e)q:falthteo Sf:,r::e ;;(()):Sntam
i -Ve ‘unctions of n which are less tha s !
;:::ﬁic‘;v::::i?p:::cf ¢(n), e(n)) is the set of positive-int.e_gervallugdl funfctl(onr;s
of n which are greater than or equal to some constant posn.tlvc multip ebo rc:j O,;
and O(e(n)) = O(e(n) N Q@(n)). Thus O is used to Flescnbe an uppetr) (;ulower
the order of magnitude of a quantity of Vinterest, Qs usgd to descri :: ower
bound on this order of magnitude, and © is used to describe the exact or
maf:lz;rld;scs, we analyze the space complexity in terms of the numt()e.r r(])f rc:fil
numbers stored and the time complexity in terms of the number _"f d:l(rr:c :ﬁ
operations required. For all the algorithms to be :'malyzed, the domlggr}t' coq :nd
tation is a form of inner product, so the operations counted arc‘ a :j lgn‘ ne
multiplications, in roughly equal numbers. For the analyses';‘)res?nttg nfe:trjvork
ignore the computational effort required to run the dynamics of the

e

13. GRADIENT-BASED LEARNING 443

(which, of course, must be borne regardless of the learning algorithm used), and
we also ignore any additional computational effort required to actually update the
weights according to the leamning algorithm. Our measurement of the complexity

is based solely on the computational requirements of the particular exact or

Wa = n(n+ m)and w, = n2, I ali cases below where we perform an analysis of
the worst case behavior we restrict attention to classes of nctworks for which m
€ O(n) just to make the resulting formulas a little simpler. This assumption
applies, for example, to the situation where a variety of networks are to be taught
to perform a particular fixed task, in which case m € O(1), and it also applies
whenever we might imagine increasing the number of units in a network in
proportion to the size of the input pattern representation chosen. For our worst-
Case analyses, then, we will use the fact that w,, and w,, are both in O(n2).

Note that expressing the complexity in terms of the quantities w, and Wy,
assumes that the details of the particular algorithm are desi gned to take advantage
of the limited connectivity through the use of such techniques as sparse matrix
storage and manipulation. Alternatively, one could regard multiplication by zero
and addition of zero as no-cost operations. A similar remark applies to the use of
Arand n,. All the complexity results derived throughout this chapter are summa-
rized in Tables | and 2, which appear near the end of this chapter.

BACK PROPAGATION THROUGH TIME

Here we describe an approach to computing exact error gradient information in
recurrent networks based on an extension of the standard back-propagation algo-
rithm for feedforward nets. Various forms of this algorithm have been derived by
Werbos (1974), Rumelhart, Hinton, and Williams (1986), and Robinson and
Fallside (1987), and continuous-time versions have been derived by Pearlmutter
(1989) and Sato (1990a; 1990b). This approach is called back propagation
through time (BPTT) for reasons that should become clear,

Unrolling a Network

Let N denote the network which is to be trained to perform a desired sequential
behavior. Recall that we assume that N has n units and that it is to run from time
Iy up through some time ¢ (where we take ¢ = 1, if we are considering an
epochwise approach). As described by Rumelhart et al. (1986), we may “unrol]”
this network in time to obtain a feedforward network N* which has a layer for
each time step in the interval [y,] and n units in each layer. Each unit in N has a

444 WILLIAMS AND ZIPSER

Time Input Unit Activities

Figure 2. The unrolled version of the network shc‘)wn. in Figure 1 a: .Ist
operates from time ¢, through time t. Each connection in the network i
assumed to have a delay of one time step.

copy in each layer of N*, and each cgnpgction from unit j to }Jhmt IE‘T,N,;MZ::
copy connecting unit j in layer T to u.mt fin Ia.\yervr + 1, f()rhea; Tva]ug.of. An
example of this unrolling mapping is given in Figure 2. T ef tcy.nin or s
conceptualization 1s that it allows one to regarq t.he problem o r(;n tgork o
rent network as a comresponding problem of ';rslnlngta ge:cdsfuol:wd::\dzz ;/‘ o
certat nstraints imposed on its weights. The central res !
;:)::(ZZCChO is that to cI:)(r)nputc aJweel(t’, 1)/dw,; in N one simply comr[::stei: ‘t}?i
partial derivatives of Jwtal(t'|) with respect to each of the 1 — tfo weig e in
corresponding to w,; and adds them up. Thus the problem o fo;fn?educiq e
necessary negative error gradient infom@tlon n thc recurrent ‘rixe .t o ft;Cd_
the problem of computing the corresponding negative error gradien 13
forward network N*, for which one may use standard back'propaga ;on.'thmS
Straightforward application of this idea .leads to two different : go;’(t) ! m,
depending on whether an epochwise or continual operation approach is sought.

e - e SN e

13. GRADIENT-BASED LEARNING 445

Detailed mathematical arguments justifying all the results described may be
found in the Appendix.

Real-Time Back Propagation through Time

To compute the gradient of J(1) at time 1, we proceed as follows. First, we
consider 1 fixed for the moment. This allows us the notational convenience of
suppressing any reference to f in the following. We compute values €,(1) and
S(Mforke Uandr € (5, 1] by means of the cquations

€(1) = (1), (12)
BuT) = filsi(T)e (7). (13)
and
&1 = 1) = 2 w,8,n). (14)
ey

These equations represent the familiar backpropagation computation, The
process begins by using Equations 12 to determine the €.(r) values. We call this
Step injecting error, or, if we wish to be more precise, injecting e(1), at time .
Then the & and € values are obtained for successively earlier time steps (i.e..
successively earlier layers in N *), through the repeated use of Equations 13 and
14. Figure 3 gives a schematic representation of this process.

When each unit in the network uses the logistic squashing function, the
relation

S5 (7)) = vl - V()] (15)

may be substituted in Equation 13. A corresponding observation applies to all the
algorithms to be discussed throughout this chapter.

As described in the Appendix, €(7) is just a mathematical shorthand for
3j(1)/dy,(7) and &,(7) is just a mathematical shorthand for dJ(1)/ ds,(7). Thus €,(7)
represents the sensitivity of the instantaneous performance measure J(¢) to small
perturbations in the output of the kth unit at time 7, while () represents the
corresponding sensitivity to small perturbations to that unit’s net input at that
time.®

Once the back-propagation computation has been performed down to time
Iy + 1, the desired gradient of instantaneous performance is computed by

446

WILLIAMS AND ZIPSER

Time Input Unit Activities Targets

©)
D
vy @

t /3
} v
t -1 t_:('%
v
t-2 :;Y;:@
v
t-3 ——m (O

to+1 ———
7 4
tO c—

Fi 3. A schematic representation of the storage an.d procgf:;::;
oired for real-time BPTT at each time step t. The h'nstory ' t
feq'U"ed o :) one layer at each time step, contains at time ¢t all mp;:d
g oot rvalues for every time step from t, through t.‘The fsco i
e Un'f O‘fmre how each set of unit output values is determined from
aff({WS ':d:;unit outputs on the previous time step. A bfrckward pa;:si;
th'm‘::di)y the dashed arrows, is performed to determln(:‘sefpa:e;tep
value h unit and for each time step back to ¢, + 1. The firs .
Y8|Ues_f0_f e;:"Qn of external error based on the target values for t!me
op s mleC“:D' maining steps determine virtual error for earller time
oo, Ca):geath;ebackward pass is complete the partial denvat:vet o(: the
:nf;ast.ive error with respect to each weight can then be computed.

A) (16)

dw‘:/ T=I“+l

l } Su arze atgor ltl“" w w¢e (,d“ real-time ba ,\ ”()’7“ ation
mmariz thls lg . thh € l C] g
O .

”” ugh time])le()lllls tllc l(’”()wl“g S tepS at ed(,h time ¢ l) the current statc Of
(
. . . .
ﬂlConC(W()lk a”d thC current III])Ut patte"l IS dddCd toa hlstoly bu“el Whlch stores

Sto 0 lletW()Ik input a"d aC(IVlly imnce tume (. (€rror 1(“‘ h
lhc cntire lllu p [§]

i J p a" ‘he Ek() and
curr 1 .S m ropagation us Cd O compu
urrent time 1s lnjCL(Cd and |)aCk p p g { t te l.

[; 'J(l)/aw,
s for 1, < 1 < 1; (3) all the a Aw;; va :
?:;T\:/c\i]z::isarcoch;ngcd accordingly. Because this algorithm makes use of poten

N , o

13. GRADIENT-BASED LEARNING 447

tially unbounded history storage, we will also sometimes denote it BPTT ().
This algorithm is of more theorctical than practical interest, but later we discuss
more practical approximations to it.

Epochwise Back Propagation through Time

An epochwise algorithm based on back propagation through time can be orga-
nized as follows. The objective s computc the gradient of Jiewl(y, 1), which can
be obtained after the network has been run through the interval Ity #;]. Essen-
tially as before, we compute values €(1) and &,(t) for k € [/ and 7 € (1, 1,1, this
time by means of the equations

€(1) = et)), (17
S,(1) = [ilsi(The (1), (18)
and
“T-D=ea@-D+ 3 w5, (19)
ey

These equations represent the familjar back-propagation computation applied
to a feedforward network in which target values are specified for units in other
layers than the last. The process begins at the last time step, using Equations |7
to determine the €,(1) values, and proceeds to earlicr time steps through the

sum when computing ék(T). The back-propagation computation for this case is
essentially the same as that for computing the 8 values for the real-time version,

network, but the errors committed by the network are also taken into account in
reverse order. Figure 4 gives a schematic representation of this process.

Itis useful to regard the sum on the right-hand side of Equation 19 as a virmuar
error for unit k at time 7 — | We might also say that this unit has bheen given a
virtual target value for this time step. Thus, in epochwise BPTT, virtual error 18
added to external error, if any, for each unit at each time step in the backward
Pass. Note that in real-time BPTT the only contribution to each € is either
external error, at the most recent time step, or virtual error, at all earlier time
steps.

As with real-time BPTT, €,(7) is just a mathematical shorthand, this time for
oJ 1, 1)/ 3y, (7): similarly, §,(t) is just a mathematical shorthand for arotai(y
1)/ ds.(1). Thus €,(7) represents the sensitivity of the overall performance
JUa(g, 1)) to small perturbations in the output of the kth unit at time T, while
8,(7) represents the corresponding sensitivity to small perturbations to that unit's
net input at that time.

448 WILLIAMS AND ZIPSER
Time Input Unit Activities Targets

<D

t ——3

t0
Figure 4. A schematic representation of the storage and processing
required for epochwise BPTT. All input, unit output, and target values
for every time step from t, and t, are stored in the history buffer. The
solid arrows indicate how each set of unit output values is determined
from the input and unit outputs on the previous time step. After the
entire epoch is complete, the backward pass is performed as indicated
by the dashed arrows. Each even-numbered step determines the vir-
tual error from later time steps, while each odd-numbered step corre-
sponds to the injection of external error. Once the backward pass has
been performed to determine separate § values for each unit and for
each time step back to t, + 1, the partial derivative of the negative error
with respect to each weight can then be computed.

Once the back-propagation computation has been performed down to time
t, + 1. the desired gradient of overall performance is computed by

1
(?J“““'(IOJI) — Z dAnx(t — 1) 20)
ow,; ' !

y =4]

Epochwise BPTT thus must accumulate the history of activity in (and input
to) the network over the entire epoch, along with the history of target values (or,
equivalently, the history of errors) over this epoch, after which the following
steps are performed: (1) the back-propagation computation is carried out to

- - . ..M‘ i _ o

13. GRADIENT-BASED LEARNING 449

obtain all the €,() and §,(t) values for ly <7 = 1,;(2) all the aJwai(y, 1)/ aw
’ 11

'valut.as‘a'rc ‘computed; and (3) weights are changed accordingly. Then the network
1s remnitialized and this process repeated.

Epochwise BPTT Applied to Settling Networks

Although our main interest here is in the general problem of training networks to
pgrfonn time-varying behaviors, the BPTT formulation leads to a simple algo-
rithm ‘f()r training settling networks with constant input, whenever certain as-
(sjump.ttl)ons hold. Thi§ algorithm, which is a discrete-time version of the algorith;ll
ozf;rrllezda:)a;?owslda (1987) and Pineda (1987; chapter 4. this volume) is
Flr.st: suppose that a network is to be driven with constant input and that we
fgave initialized it to a state which represents a fixed point for its dynamics
Suppose futher that we intend to observe this state at the end of the epoch {1,,, 1]
tg compare it with some desired state. If we were to use epochwise BPTT fo;);h;s
Situation, the appropriate equations would be |

€(1) = e, (1)), 21
8/((7) = f;((sk(tl))ék(’l'), (22)
and
©(T = 1) = 2 w,d,(), (23)
13X

with weight changes determined by

(’j_](otal(to,tl) B ! !
0w,-/ - ; \ 8'(”"‘/(7 - h= Z 8,’(7)1‘!(!‘)
=t T:I”* i
= xj('|) Z 3.'(7)- (24)

T=r +1
0

(I;Jot.c that this last result takes into account the fact that all states and all input
uring the epoch are equal to their values af the end of the epoch. Thus there is no

p al’ld n tw()lk activit nt S
et stor t ut c tiv 1 I"S case.

!

X = D) (25)

T=r+

and

450 WILLIAMS AND ZIPSER

f
I (26)
SHy = 2 B(1).
T=1t+1}
Then Equation 24 becomes
Wt = x5, @)
I k

i

Furthermore, it is easy to check by induction that

(28)
€2(1)) = ey, 9
29)
(T = filsp () ek(T), (
and .) .
€T — 1) = elty)) + 2 wudf (7).

el

; i 5 and e values
y i ted as representing the .

5 &* and €* values may be interpre o and e valos
T:‘u“[::(j from performing epochwise BPTT from't, b:ck to t(;1 w:‘c::-i]lgjf o fsua]
(‘) ‘:ltam error e(1,) at each time step, while Equation ‘.'7 has the orm of e e
;0“(-” rward backpropagation computation for determining the p

eedforwa :

ith respect to any weight. o A e In
o Ie\lr«r)(:\r/ :::nside:)fxfhat happens in the limit as the epoch flsEmzilcifozzr2)18~3(%can
his case, the computation of the §}(¢) value§ by' means o qul:S o
L:L‘ .we’d as a settling computation, assuming it con}'ergc?s. / :7_|,21 e

V: sh()an that the BPTT computation give.n. by Equauons()Wi_“ will e
can. f(\mcaning that the backpropagated quantities 8,(7) and €, Tt il decrease
dw"'zro) exponentiafly fast as long as the network has reachhefi;:*.:ta) Vah:]es o

o Ltmle which implies that the settling computation for the (¢,
um state,
i nverge in this case. . . 987 Pineda.
md,erf:i Cf(;('urrfm back-propagation (SB'P) algz::hnr?i:::tn::::i}m of applyine
i const: Sists .
training settling networks having . ot applying
I:SZ)I{(?;&:; slc;s: (1) the network is allowed to settle (with thtcattixcgiven by
:cft:tli(,:v has completed regarded as 1); (2) thc BP l'.ll ;onggli/ o e
» tiins 28-30 is performed for as long as necded unti t. edf alues comveree
e;])uaa” th; aJwwal(y,, 1)/ dw; values are computed usmg ﬁ?ﬁg algomh,m e
(;1) weights are changed accordingly. The appez'ilmg feat}lresl 0 em‘ ey
ihal it dgoes not require the storage of any past hls'toqu, t(t) 1tn::)n ;;rilcmy ndisenty
\ i ires no history storage 1s that 1 ‘ -
local. The reason it requires n : st nies. This lgorithen
i to their curren '
t past states and input are equa : s g
?“t:ld: \:::;)liiablc only to situations where both the desired and actua
is thus \
imi ling. ‘
d k are limited to stable sett e thin
o ne“:ll(:rr\cm presented so far shows that RBP would compute t]hensai3 o iﬁ
;l;lzel;iprgl I' computation given by Equations 21-23 over a very long epo
as

—_ . = - - ~ediatinadiii N

13. GRADIENT-BASED LEARNING 451

which the network state is held constant at a stable equilibrium. Now, continue to
assume that the input to the network is constant throughout the entire epoch, but

Some other starting state by the end of the epoch, at time 1,. Assume further that
it has reached this equilibrium state long before 7,. Because the BPTT computa-
tion resulting from injecting error only at time ¢, dics away, as described earljer,
even in this case RBP and this BPTT computation yicld essentially the same
result. That is, if error is injected only long after the network has arrived at its
steady-state behavior, the ful] BPTT computation will also give the same result as
RBP, because the BPTT computation dies away before reaching the transient
portion of the network’s behavior. This shows clearly that not only is RBP
limited to training settling networks, but it is really only designed to directly
influence their fixed points and cannot control their transient behaviors. In gener-

transient behavior.

These observations concerning the inability of even ful] BPTT to reach back
into the transient behavior if error is injected too long after steady-state behavior

continually operating networks. which we describe below when we discuss the
teacher forcing strategy.

Computational Requirements of BPTT Algorithms

Itis clear that to store the history of m-dimensional input to and n-dimensional
activity of a network over 4 time steps requires (m + mh numbers. In addition,
the number of target values over these 4 time steps is no greater than nk. Thus the
gradient computation performed for epochwise BPTT has Space complexity in
O((m + n)n), where h represents the epoch length. However, for BPTT (%) this

To determine the number of arithmetic operations required for these algo-
rithms, note that Equation 13 requires an evaluation of fi(s()) plus one multi-
plication for each k in / For the logistic Squashing function this amounts to two
multiplications per unit for determining the § values from the corresponding e
values. In general, the number of operations required for this part of the back-
propagation computation s in 8(n). Application of Equation 14 forall k € at
each fixed 7 clearly requires w,, multiplications and Wy — 1 additions, while

—_—

"However, as we discuss later, Pineda (1988; chapter 4., thig volume) has shown that new
equilibrium points can be created by combining RBP with the teacher forcing technigue.

452 WILLIAMS AND ZIPSER

application of Equation 19 for all k € U at each fixed 7 requires the same number
of multiplications and up to n more additions and subtractions, depending on
how many units have target values for that time step. As long as we assume w,, €
Q(n). it follows that each stage of the back-propagation computation has time
complexity in ©(w,,), regardless of whether error is injected at all time steps
during the backward pass, as in epochwise BPTT, or just at the last time step, as

in real-time BPTT.
Now let h = t — 1, where 1 represents the time at which BPTT is performed

for either real-time or epochwise BPTT. (In the latter case, 1 = 1, .) It is clear that
Equation 16, which must be cvaluated once for cach adaptable weight, requires h
multiplications and A — | additions, leading to a total of &(w,h) operations.
Thus the total number of operations required to compute the gradient for one
epoch in epochwise BPTT is in @(w,H + w,h).8 Amortized across the h time
steps of the epoch. the gradient computation for epochwise BPTT requires an
average of ®(w, + w,) operations per time step. For real-time BPTT, a back-
propagation computation all the way back to ¢, must be performed any time a
target is specified. Thus the total number of operations required over the entire
training interval of length L is in O((w, + w4)T2/A;), which is an average of
O((w,T + w,)T/A;) operations per time step. These complexity results are
summarized in Table 1.

The worst case for either of these algorithms for any fixed n is when the
network is fully connected, all weights are adaptable, and target values are
supplied at every time step, so that Ay = 1. In this case, epochwise BPTT has
space complexity in ©(nh) and average time complexity per time step in €(n?),
while real-time BPTT has space complexity in ©(nL) and average time complex-
ity per time step in ®(n2L), as shown in Table 2.

Note that when weights are changed throughout the course of opcrating the
network. a variant of real-time BPTT is possible in which the history of weight
values are saved as well and used for the backpropagation computation, by
replacing wy by wy(7) in Equation 14. For this algorithm, the storage require-
ments are in &((m + n + w,)T) in the general case and in ®(n27) in the worst
case.

While real-time BPTT could be used to train a network which is operated in
epochwise fashion, it is clearly inefficient to do so because it must duplicate
some computation which need only be performed once in epochwise BPTT.
Epochwise BPTT computes VyJ©tl(r,, 1)) without ever computing any of the
gradients VyJ(1) for individual time steps 1.

%This assumes that there is some error to inject at the last time step. In general, it is also assumed
throughout this analysis that the number of units given targets and the connectivity of the network are
such that backpropagation “reaches™ every unit. If this is not true, then the time complexity could be
lower for an algorithm designed to take advantage of this.

THE REAL-TIME RECURRENT LEARNING ALGORITHM

z:’rl(l)lrle ZE”I;I‘ tus::s 't?e bac!(ward propaggtion of error information to compute the
‘ fg nt, an alternative apprqach 18 to propagate activity gradient informa-
on forward. This leads to a learning algorithm which we have called real-tim
recurrent learning (RTRL). This algorithm has been independently derived n
various forms py Robinson and Fallside (1987), Kuhn (1987) Bact)x,rach (;:98;;
Chaptf:r 11, this volume), Mozer (1989; chapter 35, this‘ VO]UI';IC) and Willia ?
a.nd Zipser (1989a), and continuous-time versions have been pro‘ sed b (“h::mS
nity (1989), Doya and Yoshizawa (1989), and Sato (1990a; I‘)‘)(;:))\ Yo

The Algorithm

Foreachk€ U, i€ U, je U U and Ihy =t =1, we detine

ke — N0
1210 FTE (31)

i

IhlS quantity measures the sensitivity of the value of the output of the kth unit at
ime ! to a small increase in the value of Wy, taking into account the effect of such

a change in the weight over the enti j

ach entire trajectory from 1, to ¢ but assumi

initial state of the network, the input over [1 t s
not altered. >

From Equations 7 and 8 and use of the chain rule, we find that

1), and the remaining weights are

aJ(t) :
B = 2 eDphn (32)

y kev

l()l eaCll i E U andj E U U [. Alb(), dl”ele tia q <
N n tmg h uations 2 a"d ; I(" the

)) ,
pilt + 1) = fils, (1 + 1)) [E 1s'k,p:j(l) t S,k_rj(t)J, (33

17
where 8, denotes the Kronecker delta. Furthermore

ke y = INlty) _
pl](tﬂ) V - 0 (34)

if

since we assume that the initial state of the network has no functional dependence

on ,tp; weights. These equations hold forallk € U, | € UjelUUIL andr=
. Su; ;)ve m:ay use Efqu:nons 33 and 34 to compute the quantities {Pln} at eacnl;

In terms of their prior values and other i i i

e ste ! s information depending on
22::;vf|ty 1: thc- network a(' that time. Combining these values with the S:ror vfctor
or that time step via Equations 32 then yields the negative error gradient

e

454 WILLIAMS AND ZIPSER
13. GRADIENT-BASED LEARNING 455
havin n uni , : .
i clgear t:::[stﬁnd w, adjustable weights is nw,,. Furthermore, from E uation 3
; © update o the number of multiplications and the number of,addilior?s :eIOI} ;
’ computation is ;gz val:;es are each essentially equal to w,w Noté th:tu't:]e'
: o ormed on every time ste ; + s
are specified for that time step . regardless of whether target values
In addition ~ .
addition) at ea;ﬁuatlon 32 requires one multiplication (and approximatel
adjustable wein, ime 'step for each unit given a target on that time ste andy f)nf,
step. Thus theggt'v Thls amouqts to an average of (")(”IWA) Opcrationg r tc.ac
space con?plexny of the gradient computation for RTI?E l\lnl]:;

YA AR A4

cated in Tabl is fi

I thi:a:éoz:f: hthe network is fully connected and all weights are

_ » th as space complexity in @} ime «
Ple;(‘llthy' per time step in O(nd), ag shownpin Tayble .'(l)(n o sverage time con-

ile this time complexity i i .
Y IS quite severe for serial i i

e n ‘) i or serial implementation. p;
@(n-;;)[;emc:;(t)hls algorithm is that it can run in O(n) timepper time s?e, pdr‘t' "
qane o \f;g pr;i::]ow.ever,' this raises the question of its communicagozmrl;g
S, es Y 1n relation to the network bej i _

e €SP . work being trained. Int i
! he p% values can be carried out using a completely local COZ;:""S'Y’
unica-

p RArray

Network
Figure 5. The data structures that must be updated on each time step

to run the RTRL algorithm with the network of Figure 1. In addition to
updating the three unit activities within the network itself on each time
step (along with the 15 weights, if appropriate}, the 3 x 5 x 3 array of
pz values must also be updated. It is assumed here that all 15 weights
in the network are adjustable. In general, a pf; value for each combina-
tion of adjustable weight and unit in the network must be stored and

updated on each time step for RTRL.

VwJ(1). Because the pi(r) values are available at time ¢, the computation of this
gradient occurs in real time. Figure 5 depicts the data structures that must be

.) . which passg S
updated on each time step to run the RTRL algorithm with the network of Figure 1. Pass not only their activations around, but also thee P* vectors. How
S. ever,

l‘hC aCtUa' €O p y
N mputati n W { l, means ()1 Equdtl()" J2 Ulllllldtel lequ"eS
g v
g t
~» lth()u‘ ivin de allS, we note tha["le ell(ll‘e Rll{L alg("ld"“ C()U]d l)e
Cal“ed out mna more COIIVCH[IUH&' Sca‘al‘value‘pas S |"g "e[“‘()lk havl"g m addl‘
]

Computationai Requirements
tion to the n uni

nits of the network to be trained, an additional unit for each pk

i

The computational requirements of the RTRL algorithm arise from the need to
store and update all the p¥ values. To analyze these requirements, it is useful to
view the triply indexcd set of quantities pk as forming a matrix, each of whose
rows corresponds to a weight in the network and each of whose columns corre-
sponds to a unit in the network. Looking at the update equations it is not hard to
see that, in general, we must keep track of the values p% even for those &
corresponding to units that never receive a teacher signal. Thus, we must always
have n columns in this matrix. However, if the weight w; is not to be trained (as
would happen, for example, if we constrain the nctwork topology so that there is
no connection from unit j to unit i), then it is not necessary to compute the value
pt for any k € U. This means that this matrix need only have a row for each
adaptable weight in the network, while having a column for each unit. Thus the
minimal number of p% values needed to store and update for a general network

456 WILLIAMS AND ZIPSER

continually running network more efficiently than any othcr method we know.
The mathematical derivation of this algorithm is provided in thg Appendix. nge
we describe the steps of the algorithm and analyze its computational complexity.

The Algorithm

This algorithm involves a segmentation of time into disjoint intervals e:ch 0;;
length A = ¢ — ', with weight changes performed (?nly at theT end of each ;ucl
interval. By our definition, then, this is not a real-time algorithm when e]
Nor is it an epochwise algorithm, since it does not depend on the arti icia
imposition of credit-assignment boundaries and/or state res.cts. The segment;:on
into intervals is purcly arbitrary and need have no relatlpq to the task ing
performed. Over cach such interval [1', 1] the history of acuvnt.y of (and m‘pu.t to)
the network is saved; at the end of this time period, a Cf)mputatl(‘)n to be dc.scnb;d
is performed. Then the process is begun anew, beginning with collecl:tmgfl'e
history of the network activity starting at time t (which beccl)mes the new va 11‘1; E tf).
This algorithm depends on having all the values pf(1'), as used in R : ,blor
the start of each time period. For the moment, we assume that these are avai able;
later we describe how they are updated by this algorithm. Then the equations

e (1) fT=1t (35)
& = {e:(-r) + D owdr 1) ifr <t
ey
and
(1) = frlsi(1))eT) (36)

are used to compute all the values (1) fori' = 1 <71 ar.1d &%) forr’ < 1; T L.
This computation is essentially identical to an epochwise BPTT com;’)u a 10<n
over the interval {¢', 1}. In particular, note that each error vector e(t), for ¢ < T (T
t, is injected along the backward pass. Once all thesc € and 3 values are ot?tamc i
the gradient of Jwwl(¢' 1), the cumulative Vneganve error over the time interva
(t', 1}, 1s computed by means of the equations

-1

GUNILD = T el + 2 B + Do), (37)
aw,; 1ev A =t

forl\?g:: tlh:tn ?hi second sum on the right-hand side is what wouid .be computefl
for this partial derivative if one were to truncate the BPTT computation :}t (lf?CR L ,
while the first sum represents a correction in terms of thep values used’mn R .
There are two special cases of this algorithm worth noting. When ¢ =1 t}%\g
second sum in Equation 37 vanishes and we recover the RTRL Equatlo\;h.

expressing the desired partial derivatives in terms of the current p values. When

13. GRADIENT-BASED LEARNING 457

t' = t,, the first sum in Equation 37 vanishes and we recover Equation 16 for the
BPTT (=) algorithm.

Thus far we have described how the desired error gradient is obtained, assum-
ing that the p values are available at time t'. In order to repeat the same process
over the next time interval, beginning at time r, the algorithm must also compute
all the values pi{1). For the moment, consider a fixed r in U, Suppose that we
were to inject error e’(¢) at time t, where e4(1) = &, (the Kronecker delta), and
use BPTT to compute aJ(1)/dw,. It is clear from Equation 32 that the result
would be equal to pi{1). Thus this gives an alternative view of what these
quantities are. For each r, the set of numbers Pi{1) represents the negative error
gradient that would be computed by BPTT if unit r were given a target | greater
than its actual value. Furthermore, we may use the same approach just used to
compute the partial derivatives of an arbitrary error function to compute the
partial derivatives of this particular imagined error function. Thus, to compute

Pi(0) for all i and j, the algorithm first performs a BPTT computation using the
equations®

() {8[(,. ift = I, (;8

€,(1T) = R

* 2 W/kal(T + 1) if 1< 1,)
ey

together with Equations 36, to obtain a set of values'® ¢, (1) for ¢’ < 7 < ¢ and
8,(T) for t' < 1 =< 1. These values are then used to compute Pi1) for each i and j
by means of the equations

1

P = 2 &pl(t') + 2 Bv + Dx;(7). (39)

v =y

In other words, to compute pi(r), a | is injected at unit r at time 1 and BPTT
performed back to time ', and the results substituted into Equation 39.

This process is repeated for each r in U in order to obtain all the p values for
time 7. Thus this algorithm involves a total of n + 1 different BPTT computa-
tions, one to compute the error gradient and n to update the p values. Because
this algorithm involves both a forward propagation of gradient information (from
time 7' to time f) and backward propagation through time, we will denote this

“The reader is wamed to avoid confusing the singly subscripted (and time-dependent) quantities
denoted 8, which are obtained via back propagation, with the doubly subscripted Kronecker deita,
such as §,,. Both uses of the symbol & appear throughout the equations presented in this and the next
section.

'9The reader should understand that, although we are denoting the result of several different
BPTT computations in the same way, the various sets of 8 and € values obtained from each BPTT
computation are unrelated to each other. We have resisted introducing additional notation here which
might make this clearer, on the grounds that it might clutter the presentation. A more precise
formulation may be found in the Appendix.

458 WILLIAMS AND ZIPSER

t+h

C D <4--(__)
tv
/() 4-- ()
]
C)<)
A7 A
CCD —" -,
4
'==/'C J4--C D History Buffer at Time t+h p fAirray
C) «-- ()
tv
e =’

i i firray
History Buffer at Time t p '
Figure 6. A schematic representation of the storage ar\d proce«iis;rr\‘g
re?]uired‘ for the FP/BPTT{(A) algorithm for tvyo consecutcvg f::(;‘\;n s
of the error gradient computation, one at nr:ci.stepsttes:)nr | the next o
i i t — h through time
e step t + h. From time step ' : "
:;\mput ac‘:ivity and target values are accumulated (Ijﬂ thc:ht:sbt:s?/s l:f‘f;ne
irv , i dient is computed on .
t time ¢ the cumulative error gra i ne
IE?PTT pass through this buffer, also using the p vah;es s;z;egnfi(t)ri:the
iti te BPTT passes, one for e
tep t — h. In addition, n separa . inhe
zetsvork are performed to compute the p vaf’ues fcir time t E?:unit "
BPTT pa'ss begins with the injection of 1 as "error at 1S|895is 2t
the top level. Once the weights have been adjusted on tde ha of the
cumulative error gradient over the inter.val (t — h, f‘] an tt) eiﬁs alues
have been updated at time t, accumulation of the history beg

over the interval [¢t, t + A).

i ast states which are
=t — ' is the number of past states whic
i P/BPTT(h), where h =t — ' 1s ' - . N
alg():ilt?:]tlljc history buffer. Figure 6 gives a schematic representation of the
save s , : .
storage and processing required for this algorithm.

Computational Requirements

{ 5, i RL, and
This hybrid algorithm requires ©(nw,) storage for thg P valuc.s,.:lkealzz o
@((;11 + n)h) storage for the history of network input, ac:ily} y, e
signals over the interval [¢', 1], like epochwise BPTT. In addition,

13. GRADIENT-BASED LEARNING 459

computation requires Q(nk) storage for all the 3 and € values. but this space may
be reused for each of the n + | applications of BPTT. Thus its overall storage
requirements are in O(aw, + (m + njh).

To determine the number of arithmetic operations performed, note that each
BPTT computation requires O((w,, + w4)h) operations, and, for each such
BPTT computation, equation 37, requiring @(n + h) operations, must be used
for each adjustable weight, or w, times. Thus the number of operations required
for each of the n + | applications of BPTT requires QO(w, h + 2wih + nwy) =
O(w, h + wah + nw,), giving rise to a total number of operations in Otnw, b +
nw.h + n2w.) Since this computation is performed every A time steps. the
average number of operations per time step is in O(nw, + nw, + n?w,/h). When
the network is fully connected and all weights are adaptable, FP/BPTT (1) has
space complexity in ®(n® + nh) and average time complexity per time step in
O(n* + n%/h). Thus, by making # proportional to n, the resulting algorithm has
worst-case space complexity in @(n?) and time complexity per time step in
O(n?). Thee complexity results are summarized in Tables | and 2.

This means that of all exact gradient computation algorithms for continually
operating networks, FP/ BPTT(cn), where ¢ is any constant, has superior asymp-
totic complexity properties. Its asymptotic space complexity is no worse than
that of RTRL, and its asymptotic time complexity is significantly better. The
reduction in time complexity in comparison to RTRL is achieved by only per-
forming the update of the Pl values after every cn time steps. The improvement
in both time and space complexity over real-time BPTT over long training times
is achieved because there is no need to apply BPTT further back than to the point
where these Pk values are available.

SOME ARCHITECTURE-SPECIFIC APPROACHES

relax this assumption. In particular, a number of researchers have proposed
specific mixed feedforward/feedback architectures for processing temporal data.
In almost all of these architectures the feedforward connections are assumed to
have no delay while the feedback connections are assumed to incorporate a delay
of one time step. After briefly considering the case of arbitrary (but fixed) delays,
we then focus in this section on exact gradient algorithms for certain classes of
network architectures where all delays are 0 or 1.

Connection-Dependent Delays

To handle the general case in which various connections in the network have
different delays, Equation 2 for the network dynamics must be replaced by

460 WILLIAMS AND ZIPSER

sl1) = 2wt = Ay, (40)

tetul

where A, represents the delay on the connection from unit (or input line) / to unit
k. In general, we may allow each delay to be any nonnegative integer, as long as
the subgraph consisting of all links having delay 0 is acyclic. This condition is
necessary and sufficient to guarantee that there is a fixed ordering of the indices
in U such that, for any r and &, s5,(r) depends only on quantities x,(¢') having the
property that 1 < 1 or | comes before k in this ordering.

As an alternative to allowing multiple delays, one could instead transform any
such setup into a form where all delays are 1 .by adding “delay units” along paths
having a delay larger than 1 and repeating computations along paths having delay
0, but this is generally undesirable in simulations. Because holding a value fixed
in memory is a no-cost operation on a digital computer, it is always more
efficient to simulate such a system by only updating variables when necessary.
For example, in a strictly layered network having h layers of weights, although
they both lead to the same result, it is clearly more efficient to update activity one
layer at time than to run one grand network update a total of 4 times. A similar
observation applies to the backward pass needed for back propagation. Figure 7
illustrates a case where all links have delay 0 or 1 and shows a useful way to
conceptualize the unrolling of this network.

Watrous and Shastri (1986) have derived a generalization of BPTT to this more
general case, and it is straightforward to extend the RTRL approach as well. Witha
little more effort, the hybrid algorithm described here can also be generalized to
this casc. Rather than give details of these generalizations, we confine attention in
the remainder of this section to some particular cases where all delays are O or 1 and
describe some exact gradient computation algorithms for these involving both
backward error propagation and forward gradient propagation. These cases repre-
sent modest generalizations of some specific mixed feedforward/feedback archi-
tectures which have been considered by various researchers.

Some Special Two-Stage Architectures

The architectures to be investigated here involve limited recurrent connections
added to what would otherwise be a feedforward net. We regard these architec-
tures as consisting of two stages, which we call a hidden stage and an output
stage. The output stage must contain all units given targets, but it need not be
confined to these. The hidden stage contains all units not in the output stage. As a
minimum, each architecture has feedforward connections from the hidden stage
to the output stage, and there may be additional feedforward connections within
each stage as well. Thus, in particular, each stage may be a multilayer network.
Let U, denote the set of indices of units in the output stage, and let U, denote the
set of indices of units in the hidden stage.

Here we restrict attention to three classes of recurrent net which consist of this

13. GRADIENT-BASED LEARNING 461

Time Input Unit Activities

tg+ 2
to+ 1

to
Input

Fagurg 7. Anetwork having connections with delays of 0 and 1 and i
unroII!ng from time ¢, to t. The feedforward connections, indicated ;)ts
the thinner arrows !n the network itself, all have a dela’y of Thes:
;:or(r;:)spond to the.wnhi.n-l?vel connections in the unrolled versi;m The
aneh ack connections, indicated by the thicker arrows in the netv;/ork
o 'ave a delay of 1. These cqrrfespond to the connections from eachl
g to the next level above it in the unrolled version. Other del

beside 0 and 1 are possible and would be represented b.y connect'.ays
that skip levels. In the unrolled network, updating of activity i oy
sumed to occur from left to right within each level and then uva;dats-
tt_le next_ level. Thus a sequence of operations is performed within e z
single time step when computing the activity in the network W:C
errors are back-propagated, processing goes in the reverse di;ectioenn

from higher leveis to |
ower i ithi
rom levels and from right to left within each

minim ivi iti
um feedforward connectivity plus some additional recurrent connections

In all cases, we assume that the feedforward connections have delay 0 and th

added feedback connections have delay 1. For any given network whiZh f: alll‘ 't ;
one of these categories there may be many ways to decompose it into :tih o
stages, and particular recurrent networks may be viewed as b;:longing tocn::;(e)

462 WILLIAMS AND ZIPSER

Targets Output Targets Output Targets Qutput
...... A ey
Output Output Qutput
Stage Stage Stage
\ Y
Hidden Hidden Hidden
Stage Stage Stage
\ \ A
Input Input Input
A B C

Figure 8. Three special architectures where all connections have de-
lays of 0 or 1 time step. In each case the hidden stage and the output
stage have only O-delay feedforward connections within them. They
may each consist of multilayer networks, for example. it is also as-
sumed that there is no delay on the input connections or the feedfor-
ward connections from units in the hidden stage to units in the output
stage. The output stage must contain all units which receive target
values. input may optionally feed directly to the output stage, as indi-
cated. The feedback connections, indicated by the heavier arrows, ali
have a delay of 1 time step. The three possible feedback configurations
are where {a) all feedback is confined to the hidden stage; (b) all feed-
back goes from the output stage to the hidden stage; and (c} all feed-
back is confined to the output stage. A specialized mixture of back
propagation and RTRL is applicable to each of these architectures.

than one category, depending on which units are assigned to which stage. We
consider feedback connections confined to one of threc possibilitics: internal
feedback within the hidden stage, feedback from the output stage to the hidden
stage, and internal feedback within the output stage. Figure 8 depicts these three
architectures. In this section we omit discussion of the computational complexity
of the algorithms described.

Hidden-to-Hidden Feedback Only

Figurc 8a illustrates a general architecture in which all feedback connections
arc confined to the hidden stage. One example of this architecture is provided by
the work of Elman (1988), who has considered a version in which the hidden
stage and the output stage are each one-layer networks, with feedback connec-
tions provided between all units in the hidden stage. Cleeremans, Servan-
Screiber. and McClelland (1989; Chapter 9, this volume) have also studied this

13. GRADIENT-BASED LEARNING 463

architecture extensively. One approach to creating an real-time, exact gradient
algorithm for this architecture is to use a hybrid strategy involving both RTRL
and back propagation. In this approach, the p¥; values need only be stored and
updated for the hidden units, with back propagation used to determine other
necessary quantities. Mathematical justification for the validity of this approach
is based on essentially the same arguments used to derive the hybrid algorithm
FP/BPTT(h).
The error gradient is computed by means of

“n

l:'.l(t) - {8,(’)x,(t) lfl (&S U().

Iw, enplin. ifi € U,
/GUH

where ,(¢) is obtained by back propagation entirely within the hidden stage.
The‘p{-‘, values, for k € U,,. are updated by mcans of the equations

p,,(l) Ji(s: (D) { E wk,pf,('l =D+ d,x(r — l)], (42)

If{l/”

which are just the RTRL Equations 33 specialized to take into account the fact
that wy, is 0 if / € U,,

One noteworthy special case of this type of architecture has been investigated
by Mozer (1989; chapter 5, this volume). For this architecture, the only connec-
tions allowed between units in the hidden stage arc self-recurrent connections. In
this case. p¥ is 0 except when & = i. This algorithm can then be implemented in
an entirely local fashion by regarding cach pi; value as being stored with w,
because the only information needed to update pi; is locally available at unit 1
The algorithm described here essentially coincides with Mozer's algorithm ex-
cept that his net uses a slightly different form of computation within the self-
recurrent units.

Output-to-Hidden Feedback Only

Figure 8b illustrates a general architecture in which all feedback connections g0
from the output stage to the hidden stage. One example of this architecture is
provided by the work of Jordan (1986), who has considered a version in which
the hidden stage and the output stage are each one-layer networks. with feedback
connections going from all units in the output stage to all units in the hidden
stage. As in the preceding case, we consider a hybrid approach for this architec-
ture involving both RTRL and back propagation. In this case, the p% values are
only stored and updated for the output units. Mathematical Justlﬁcatlon for the
validity of this approach is based on essentially the same arguments used to
derive the hybrid algorithm FP/BPTT(h).
The error gradient is computed by means of the equation

464 WILLIAMS AND ZIPSER

(1) _

aw,

> ednphn, (43)

ket
o

which is just the RTRL Equation 32 specialized to take into account the fact that
e, is always O for k € Uy.

The updating of the p values for units in the output stage is based on perform-
ing a separate backpropagation computation for each k € Uy, in a manner very
much like that used in the hybrid algorithm FP/BPTT(h). To compute p{-‘j(t), for k
€ U,, inject a 1 as “error” at the kth unit and back-propagate all the way from
the output stage, through the hidden stage, and through the feedback connec-
tions, right back to the output stage at the previous time step. Then compute

phin = 2 et = Dpltr = 1) + 305l = 4y), (44)

ey,

where A is 1if j € Up and 0 otherwise. The relevant 8,(1) and €,(r — 1) values
are obtained from the back-propagation computation, with a new set obtained for
each k.

Output-to-Output Feedback Only

Figure 8c illustrates a general architecture in which all feedback connections are
confined to the output stage. Just as in the previous cases, we consider a hybrid
approach in which the p values need only be stored and updated for the output
units, with back propagation used to determine other necessary quantities. As
before, the error gradient is computed by means of Equation 43.

Updating of the p¥ values is performed using a slightly different mix of back
propagation and forward gradient propagation than in the previous case. To
derive this, we write the equation computing net input for a unit in the output
stage as

s (1) = 2 wyx (1) + 2 wix (¢ = Ay), (45)

e UHUI e Uo

where A, is 0 if the connection from unit / to unit k is a feedforward connection
within the output stage and 1 if it is a feedback connection. Singling out the first
sum on the right-hand side of this equation, we define

sE@) = 2w, (46)

IEU"UI

It then follows that

asFn
aw

+ fl'((sk(t))[Z Wupﬁ,-(l) + 8ik'xj(t - Aq‘)]~ 47)

ij €u,,

Pt = filsi(n)

13. GRADIENT-BASED LEARNING 465

If i € U, the first term on the right-hand side of this equation is zero and the
updating of p thus proceeds using a pure RTRL approach. That is, for k and i in
Uy, p% is updated by means of the equation

P = flsi(D) [2 wpl0) + Bux(t - A"’)]' “s

ev

If i € U,,, however, the first term on the right-hand side of Equation 47 is not
necessarily zero, but it can be computed by injecting a 1 as “error” at the output
of the kth unit and back-propagating directly into the hidden stage to the point
where 8, is computed. This backpropagation computation begins at the output of
the kth unit and proceeds directly into the hidden stage, ignoring all connections
to the kth unit from units in the output stage. Specifically, then, for each fixed k
€ U,,, one such back-propagation pass is performed to obtain a set of d1) values
for all i € U,,. Then the p values for this particular k are updated using

ph(n) = 8,(0x(n) + f;(skm)[> waph() + Buxtr - A,,)]. (49)

el

One special case of this architecture is a network ﬁaving a single self-recurrent
unit as its only output unit, with a feedforward network serving as a preprocess-
ing stage. In this case, there is a single value of p; to associate with each weight
w;;, and we may imagine that it is stored with its corresponding weight. Then
only local communication is required to update these p values, and a single
global broadcast of the error e, (1) (where k is the index of the output unit) is
sufficient to allow error gradient computation. This may be viewed as a general-
ization of the single self-recurrent unit architecture studied by Bachrach (1988).
One of the algorithms he investigated coincides with that described here.

APPROXIMATION STRATEGIES

Up to this point we have confined our attention to exact gradient computation
algorithms. However, it is often useful to consider algorithms which omit part of
the computation required to fully compute the exact gradient. There are actually
several reasons why this can be advantageous, some of which we discuss later.
The primary reason is to simplify the computational requirements.

Truncated Back Propagation through Time

A natural approximation to the full real-time BPT I computation is obtained by
truncating the backward propagation of information to a fixed number of prior
time steps. This is, in general, only a heuristic technique because it ignores

466 WILLIAMS AND ZIPSER

d dencies in the network spanning durations longer than this fixed number. of
e step Nevertheless, in those situations where the actual back-propaggnon
com S‘CP§- Ie ds to ex,ponential decay in strength through (backwar.d) t|m§,
COWPU“’“ "0"‘ in tworks whose dynamics consist of settling to fixed points, .tws
Whlch - are. m::ble approximation to the true error gradient. Eveq when this is
ot the o reas'(:s use may still be justified when weights are 'f\djustcd as the
ok rome : ly because the computation of the “‘exact” gradlent'overa long
"e‘?"ork tin S““I; ybc misleading since it is based on the assumpupn that the
Pef.‘Od e oo “t‘ar)l,t We call this algorithm truncated back propagation thr(?ugh
"f’e‘ghts f": }C"";S resc;nting the number of prior time steps saved, this algomhrlr:
:"i,;le.be“g::note:i %P’I’T (h). Note that the discrepancy betwe:n tbehlt}l:g (;hg)i(r;;sz ‘
i to the first sum on the right- s
giai?sn%:[;g‘wt)hge;‘;’l/thxl algorithm. The processing performed by the
: ithm is depicted in Figure 9. o
BmTvlféhc)o‘:rlli?x?;tional corlx)lplexity of this algorithm is quntehreai(;r::blena: nllct);:f isf
h is small. Its space complexity ist 'in:ﬁi’;i:i :)(gi(a::i i c:v :)h//fr). pumber o
1 i ions i r time s
2:::: ?:)erutf]i(s)‘;elrgz:::tr;:nr?g: ::3 gied n is when the network is fully connected, all

CD«-CD
t+1 /v *Q
t C D «--) C)
Av
.___=/rc: : :
. : r——j
* *+
/C_—)
t-h+1 C >)
/
t-h C)

History Buffer at Time t History Buffer at Time t+1
Figure 9. A schematic representation of the storagg and pro::.es:‘s;r:)gf
reg uired' for the BPTT(h) algorithm for two consecutive execut u: s of
thg error gradient computation, one at time stgp tt:nd;:ﬁ:r:atxnzmork
i lways contains the
step t + 1. The history buffer a t X
inp‘:n activity, and target values, along with ;::e ;:!;J:Sc :.—:-, ;:::;; -
’ ivi ior time steps. The

input and activity for the A prior . ration
rezuires injection of error only for the current time step and is p

formed anew at each subsequent time step.

- ettt

13. GRADIENT-BASED LEARNING 467

weights are adaptable, and target values are supplied at every time step, so that
Ar = 1. In this case the algorithm requires @(nk) space and ©(n2h) time. These
complexity results are summarized in Tables 1 and 2.

A number of researchers (Watrous & Shastri, 1986; Elman, 1988; Cleere-
mans, Servan-Schreiber, & McClelland, 1989, chapter 9, this volume) have
performed experimental studies of learning algorithms based on this approximate
gradient computation algorithm. The architecture studied by Elman and by
Cleeremans et al. is an example of the two-stage type described earlier with
hidden-to-hidden feedback only, but the learning algorithm used in the recurrent
hidden stage is BPTT(1).

A More Efficient Version of Truncated
Back Propagation through Time

Interestingly, it is possible to devise a more efficient approximate gradient com-
putation algorithm for continually operating networks by combining aspects of
epochwise BPTT with the truncated BPTT approach, as has been noted in Wil-
liams, (1989). Note that in the truncated BPTT algorithm, BPTT through the
most recent h time steps is performed anew each time the network is run through
an additional time step. More generally, one may consider letting the network run
through A’ additional time steps before performing the next BPTT computation.
In this case, if ¢ represents a time at which BPTT is to be performed, the
algorithm computes an approximation to Vawdwewle — p7 gy by taking into ac-
count only that part of the history over the interval [t = h, 1]. Let us denote this

h) is the epochwise BPTT algorithm, which, of course, is not an exact gradient
algorithm unless there are state resets at the appropriate times. Figure 10 depicts
the processing performed by the BPTT(h; k') algorithm.

In general, whenever it can be assumed that backpropagating through the
mostrecenth — A’ + | time steps gives a reasonably close approximation to the
result that would be obtained from back-propagating all the way back 1o #,, then
this algorithm should be sufficient. The storage requirements of this algorithm
are essentially the same as those of BPTT(h), but, because it computes the
cumulative error gradient by means of BPTT only once every A’ time steps, its
average time complexity per time step is reduced by a factor of 4’. Thus, its
average time complexity per time step is in O((wy, + w,)h/h') in general and in
G(nzh/h’) in the worst case, as indicated in Tables | and 2. In particular, when 4’
is some fixed fraction of h, the worst-case time complexity per time step for this
algorithm is in O(n?2). Furthermore, it is clear that making h/h’" small makes the
algorithm more efficient. Thus, a practical approximate gradient computation
algorithm for continually operating networks may be obtained by choosing 4 and
k' so that h — &' js large enough that a reasonable approximation to the true
gradient is obtained and so that h/h’ is reasonably close to 1.

t+h
t C DO« CDO
A v
PN
CC - D
A Ay
t-h ()
t-h+h' ’
P
t-h >

History Buffer at Time t

Figure 10. A schematic rep
required for the BPTT(h; h')
of the error gradient comput
time stept + h'.
network input and activity fo
prior time steps. it also cont

i i The
i . including the current time step.)
s recuis . f error only at the A’ uppermost levels in

ates a case where b’ < hi2, but it is also

thus requires the injection o
the buffer. This figure illustr
possible to have h’ = h/2.

O«
‘v
/
_——>
’
/7

. ins th
The history buffer always contains
r the current time step as well as for the h

ains target values for the most recent h'

History Buffer at Time t+h'

resentation of the storage and proces§ing
algorithm for two consecutive executions
ation, one at time step t and the next at

e values of the

BPTT computation

13. GRADIENT-BASED LEARNING 469

Subgrouping in Real-Time Recurrent Learning

The RTRL approach suggests another approximation strategy which is designed
to reduce the complexity of the computation and which also has some intuitive
Justification. While truncated BPTT achieves a simplification by ignoring long-
term temporal dependencies in the network’s operation, this modification to
RTRL, proposed in Zipser (1989), achieves its simplification by ignoring certain
structural dependencies in the network’s operation.

This simplification is obtained by viewing a recurrent network for the purpose
of learning as consisting of a set of smaller recurrent networks all connected
together. Connections within each subnet are regarded as the recurrent connec-
tions for learning, while activity flowing between subnets is treated as external
input by the subnet which receives it. The overall physical connectivity of the
network remains the same, but now forward gradient propagation is only per-
formed within the subnets. Note that this means that each subnet must have at
least one unit which is given target values.

More precisely, in this approach the original network is regarded as divided
into g equal-sized subnetworks, each containing n/ £ units (assuming that n is a
multiple of g, as we will throughout this discussion). Each of these subnetworks
needs to have at least one target, but the way the targets are distributed among the
subnetworks is not germane at this point. Then Equations 33 and 32 of the RTRL
algorithm are used to update the pl; values and determine the appropriate error
gradient, except that the value of p¥; is regarded as being fixed at zero whenever
units ¢ and k belong to different subnetworks. If we regard each weight w;; as
belonging to the subnetwork to which unit i belongs, this amounts to ignoring
9y,/dw,; whenever the kth unit and weight w,; belong to different subnets. The
computational effect is that RTRL is applied to g decoupled subnetworks, each
containing n/g units. We denote this algorithm RTRL(g). Clearly, RTRL(1) is the
same as RTRL. Figure 11 illustrates how RTRL is simplified by using the
subgrouping strategy.

The number of nonzero p# values to be stored and updated for this algorithm is
nw,/g. To analyze its time requirements, we assume for simplicity that every
subnetwork has the same number of adjustable weights and that every unit
receives input from the same number of units, which implies that each subnet-
work then contains w,/g adjustable weights and wy/g* within-group weights.
But then Equation 33 for updating the Pk values requires O((w,/g2)(w,/g))
operations within each subnetwork on each time step, or a total of O(w,w,/g2)
operations on each time step. In addition, the average number of operations
required for Equation 32 per time step is n,w,/g. Altogether, then, the time
complexity of this algorithm per time step is in O(w w,/g2 + npw,/g).

To examine the worst-case complexity, assume that the network is fully con-
nected, all weights are adaptable, and ny is in ©(n). In this case RTRL(g) has
space complexity in ©(n3/g) and average time complexity per time step in
O(n4/g2 + nd/g) = O(n*/g2) (since ¢ < n). In particular, note that if ¢ i«

470 WILLIAMS AND ZIPSER

Figure 11. A network divided into two subpetworks f:)rhsubgnr:insig
RTRL. The full RTRL algorithm requires keeping tra'ck o ’t :se S
of each unit in the network with respect to each weight'm the Qe sensi:
When subgrouping is used, each unit .onlY pays attention t:) |;hiCh .
tivity to weights on connections termunapng in the grou|p 3, en v
belongs. Thus, among the four connectn.ons shown, only ct>.n we
indicated with the heavy lines are consvdere.d when C(.)n’?pu i ig e
sensitivity of the unit indicated by the shading to variations

weights.

increased in proportion to n, which keeps the size of t'he subnetls Cﬁnstanrt.[i:::
resulting algorithm has, in the worst case, space and tlme ZompTe;lc); ;l)eand .
step both in ©(n?). These complexity results are su.mmanze‘fm a oS | ond t(;

One strategy which avoids the need for assigning speciiic t'ar‘ge . O_délay
units from each subgroup is to add a scpara:(etlathc;s(e)fo (l)ll:;;l)‘:nu 1;:1:5 :r:ich -delay
connections from the entire recu'rrent network to oup _Su; ,e hich are the
only units given targets. This is then an example o a two gh architechre

i hidden-to-hidden recurrence, and the tralqlng metho
:::lii?f f(())'rﬂZuch networks, involving both back propagation anﬁ]?;*};Rl; cz:(r)la:;
modified so that the full RTRL is replaced'by subgrouped RTRL. ! t1)sc Ep oach
amounts to giving the recurrent network virtual targets by means of back prop.

ion from the output units. .
gat:l):tc also that ttﬁs subgrouping strategy coiuld be used t_o advantzllage ::VEEZ
hybrid algorithm FP/BPTT(h). Such an approximation algon.th‘r)n wou d;; iy
an interesting blend of aspects of both truncated BPTT and subgroupe .

TEACHER FORCING

An interesting strategy that has appeared implicitly or explicitly in the wor::(,(:th
number of investigators studying supervised learning tasks for recurre

13. GRADIENT-BASED LEARNING 471

(Doya & Yoshizawa, 1989; Jordan, 1986; Narendra & Parthasarathy, 1990; Pine-
da, 1988; Rohwer & Renals, 1989; Williams & Zipser, 1989a; 1989b) is to
replace, during training, the actual output y,(1) of a unit by the teacher signal d,(r)
in subsequent computation of the behavior of the network, whenever such a
target value exists. We call this intuitively sensible technique teacher Jorcing.

Formally, the dynamics of a teacher-forced-network during training are given
by Equations 2 and 3, as before, but where x(¢) is now defined by

xPe() ifkel,
(0 = | dy1) if k € T(1), (50)
yil(t) itk € U\T(1)

rather than by Equation 1. Because i (t)/dw,; = 0 for all k € T(r) and for all 1,
this leads to very slight differences in the resulting gradient computations, giving
rise to slightly altered algorithms. It is an easy exercise (o rework the computa-
tions given earlier for BPTT and RTRL using these modified dynamics. We omit
the details and content ourselves here with a description of the results.

The one simple change necessary to incorporate teacher forcing into any
version of BPTT is that the back-propagation computation from later times must
be “blocked” at any unit in the unrolled network whose output has been set to a
target value. Equivalently, any unit given an external target value at a particular
time step should be given no virtual error for that time step. More precisely, for
real-time BPTT or any of its variants, Equation 14 must be replaced by

€r— D=0 (ShH

whenever k € T(t — 1) for any 7 = 1. Similarly, for cpochwise BPTT, Equation
19 must be replaced by

€T — 1D =efr - 1) (52)

whenever k € T(r — 1) for any T < ¢,.

In the case of RTRL, the one simple change required to accommodate teacher
forcing is to treat the value of Pl(1) as zero for any | € T(1) when computing p(t
+ 1) via Equation 33. Equivalently, Equation 33 is replaced by

pi(t + 1) =ﬂ(sk(t))[> wupl(1) + s,kxj(x)}. (53)

1ENT()

There seem to be several ways that teacher forcing can be useful. For one
thing, one might expect that teacher forcing could lead to faster learning because
it enables leaming to proceed on what amounts to the assumption that the net-
work is performing all earlier parts of its task correctly. In this way, all learning
effort is focused on the problem of performing correctly at a particular time step
given that the performance is correct on all earlier time steps. When teacher
forcing provides this benefit, one would expect that its absence wonld cmnt.

472 WILLIAMS AND ZIPSER

slow down learning but not prevent it altogether. It may also play a useful, or
even critical, role in situations where there is some approximation involved. For
example, when using subgrouping in RTRL, it has sometimes been found to
make the difference between success and failure.

Beyond these potential benefits of teacher forcing is what we now recognize
as its sometimes essential role in the training of continually operating networks.
One such situation we have studied involves training networks to oscillate auton-
omously using RTRL. If the network starts with small enough weights, its
dynamical behavior will consist of settling to a single point attractor from any
starting state. Furthermore, assuming that the learning rate is reasonably small, it
will eventually converge to its point attractor regardiess of where it was started.
Once it has stayed at this attractor sufficiently long the task can never be learned
by moving along the negative error gradient in weight space because this error
gradient information only indicates what direction to move to alter the fixed
point, not what direction would change the overall dynamical properties. This is
the same phenomenon described earlier in our discussion of the relationship
between BPTT and the recurrent back-propagation algorithm for training settling
networks. The gradient of error occurring long after the transient portion has
passed contains no information about the overall dynamics of the network.
Applying BPTT or RTRL to such a network is then equivalent to applying RBP;
the only effect is that the point attractor is moved around. A network being
trained to oscillate will thus simply adjust its weights to find the minimum error
between its constant output and the desired oscillatory trajectory without ever
becoming an oscillator itself.

We believe that this is a particular case of a much more general problem in
which the weights need to be adjusted across a bifurcation boundary but the
gradient itself cannot yield the necessary information because it is zero (or
moving arbitrarily close to zero over time). The information lost when the net-
work has fallen into its attractor includes information which might tell the
weights where to move to perform the desired task. As long as the network is
moving along a transient, there is some gradient information which can indicate
the desired direction in which to change the weights; once the network reaches its
steady-state behavior, this information disappears.

Another example of this justification for the use of teacher forcing is provided
by the work of Pineda (1988; chapter 4, this volume), who has combined it with
RBP as a means of attempting to add new stable points to an associative memory
network. Without teacher forcing, RBP would just move existing stable point
around without ever creating new ones.

Still another class of examples where teacher forcing is obviously important is
where the weights are correct to perform the desired task but the network is
currently operating in the wrong region of its state space. For example, consider
a network having several point attractors which happens to be currently sitting on
the wrong attractor. Attempting to get it onto the right attractor by adjusting the

13. GRADIENT-BASED LEARNING 473

weights alone is clearly the wrong strategy. A similar case is an oscillator net-
work faced with a teacher signal essentially identical to its output except for
being 180° out of phase. Simulation of such problems using RTRL without
teacher forcing leads to the result that the network stops oscillating and produces
constant output equal to the mean value of the teacher signal. In contrast, teacher
forcing provides a momentary phase reset which avoids this problem.

The usefulness of teacher forcing in these situations is obviously related to the
idea that both the network weights and initial conditions determine the behavior
of the network at any given time. Error gradient information in these learning
algorithms allows control over the network weights, but one must also gain
control over the initial conditions, in some sense. By using desired values to
partially reset the state of the net at the current time one is helping to control the
initial conditions for the subsequent dynamics.

There are situations for which teacher forcing is clearly not applicable or may
be otherwise inappropriate. It is certainly not applicable when the units to be
trained do not feed their output back to the network, as in one of the special two-
stage architectures discussed earlier. Furthermore, a gradient algorithm using
teacher forcing is actually optimizing a different error measure than its unforced
counterpart, although any setting of weights giving zero error for one also gives
zero error for the other. This means that, unless zero error is obtained, the two
versions of a gradient algorithm need not give rise to the same solutions. In fact,
it is easy to devise examples where the network is incapable of matching the
desired trajectory and the result obtained using teacher forcing is far different
from a minimum-error solution for the unforced network.

A simple solution is the problem of attempting to train a single unit to perform
a sequence consisting of n zeros alternating with n ones. It is not hard to see that
when n = 2 the best least-squares fit to this training data is achieved when the
unit produces the constant output 0.5 at all times. This is the behavior to which a
gradient algorithm will essentially converge for this problem if teacher forcing is
not used. Such a solution is achieved by setting the unit’s bias and recurrent
weight to zero. Note that this actually makes 0.5 a global attractor for this
dynamical system; if the output were somehow perturbed to some other value
momentarily, it would converge back to 0.5 (in one time step, in this case).

However, when teacher forcing is used, the behavior tends toward creating
point attractors for the output of the unit at 1/n and | — 1/n. When n = 2 this is
identical to the solution obtained without teacher forcing, but for n = 3 it is quite
different. When n = 3, the weights obtained using teacher forcing lead to
bistable behavior, with an output of 0.5 representing an unstable critical point
separating the two basins of attraction for the system.

Teacher forcing leads to such a result because it emphasizes transitions in the
training data. According to the training data, a correct output of either 0 or 1 is
followed by that same value 1 — 1/n of the time and by the opposite value 1/n of
the time; the result obtained using teacher forcing simply represents the mini-

474 WILLIAMS AND ZIPSER

mum mean-square error for such transition data. In this particular problem only
the transitions between successive output values are relevant because th_ere are no
other state variables potentially available to record the effgct of earlier oultlput
values. More generally, teacher forcing attempts to fit transitions from the ;o te;:(;
tions of all prior correct output values to the n(:).(t .corr‘ect o'utp.ut value, ;u J:C-t
the ability of the net to capture the relevant dlstl.nctlons in its state of ac 1v1.y.l
Pineda (1980; chapter 4, this volume) has pomtcd.out some other Potent}a
problems with teacher forcing. One of these is that it may create‘ trajectm:\es
which are not attactors but repellers. One potentia.] way aroun.d tt.us a.nd 0;,'6}:
difficulties with teacher forcing is to consider a slight generahzagon inw 1c‘
x(1) is set equal to y, (1) + Bey(r) for k € U, whe.re B €[0, I]is ahcons;la:c;
Teacher forcing uses B = 1 while B = 0 represents .1ts absenc.e. But other \:) lues
of B represent a mix of the two strategies. Fo.r this generalization, t e; Z et
gradient computation involves attenuating the v1@a| error black-prolpa_ga (J o
later times by the factor 1 — B in BPTT or multiplying p(r) by Bq betore
propagating the activity gradient forward in RTRL..A related strategy 1; o use
teacher forcing intermittently rather than on every time step when tal;ge o
are available. This has been tested by Tsung (1990) an(.i found useful or. ea lpg
with the somewhat different but related problem of training network trajectories
xtremely slowly. .
tha;:i‘:;rl)lly? we not)é that l{ohwer (1990) has e).(panded on this lqia o{’ tea;h:;
forcing to develop an interesting new epoch»ynse learning algont m | aseather
computation of the gradient of performance with respect to unit activities r

than network weights.

EXPERIMENTAL STUDIES

The important question to be addressed in §tudies of recurrent nem.lortllc leammﬁ
algorithms, whatever the constraints to which lhex must confqrm, is fow r;:xcc:e
total computational effort must be expended to achu?ve the desired perf orm um;
For many of the algorithms described here an analysis gf the amount ob'cor:i)pw“h
tion required per time step has been prescntgd, but this must be C(Ln’} .mz .
knowledge of the number of time steps requxred and success rate o :;une_ v;'mm
training particular networks to perform panlcplar task§. Any lspt?c ga‘1tn from
performing a simplified computation on each time step 1s Qf little interest un
it allows successful training without inordinately prolonging the training tm;i:.
To examine the relative performance of some of the.more compu(tianon_zl\)e 311
attractive approximation algorithms for continually operating network§ CbS(;l’tl -
here. both subgrouped RTRL and truncated Bm were testeq for lhelrfa 1[{] Zin
train fully recurrent networks to emulate the finite state rpachme partof a bg
machine for balancing parentheses, a task that had prevnqusly been shown t‘?
learnable by RTRL (Williams & Zipser, 1989b). For this task the network re

13. GRADIENT-BASED LEARNING 475

ceives as input the same tape mark that the Turing machine “sees,” and is trained
to produce the same outputs as the Turing machine for each cell of the tape that it
visits. There are four output lines in the version of the problem used here. They
code for the direction of movement, the character to be written on the tape, and
whether a balanced or unbalanced final state has been reached. It had previously
been found that a fully recurrent network with 12 units was the smallest that
learned the Turing machine task. Although this could be formulated as an epoch-
wise task by resetting the network every time the Turing machine halts and
begins anew, the network was allowed to run continually, with transitions from a
halt state to the start state being considered part of the state transition structure
which the network had to infer.

To test the subgrouping strategy on this task, a 12-unit fully connected net-
work was divided for léaming into four subnets of 3 units each, with one unit in
each subnet designated as an output unit. The full RTRL algorithm allowed the
network to learn the task with or without teacher forcing about 50% of the time
after seeing fewer than 100,000 cells of the Turing machine tape. The RTRL(4)
algorithm also allowed the network to learn the task about 50% of the time in
fewer than 100,000 Turing machine cycles, but only in the teacher forcing mode.
The subdivided network never learned the task without teacher forcing.

To test the truncation strategy on this task, BPTT(h) was tried, with various
values of h.!'' No teacher forcing was used. It was found that with h < 4,
BPTT(h) was successful in training the network only about 9% of the time, while
BPTT(9) succeeded more than 80% of the time. The fact that BPTT(9) suc-
ceeded more often than the various RTRL algorithms, including the version with
no subgrouping, may indicate that the error committed in computing an exact
gradient as if the weights had been constant throughout the past may outweigh
the error committed by discarding all effects of activity and input in the distant
past. On the other hand, it might also represent a beneficial effect of failing to
follow the exact gradient and thereby avoiding becoming trapped at a local
optimum.

The relative actual running times of the these algorithms on a single-processor
machine were also compared. It was found that BPTT(9) ran 28 times faster on
this task than RTRL, while RTRL(4) ran 9.8 times faster than RTRL.

In another set of studies (Williams & Peng, 1990), BPTT(16:8) was found to
succeed as often as BPTT(9) on this task, while running twice as fast.!2 Note that
BPTT(16;8) is thus well over 50 times faster than RTRL on this task.

"'For these studies the variant in which past weight values are stored in the history buffer was
used.

"?Careful analysis of the computational requirements of BPTT(9) and BPTT(16;8), taking into
account the fixed overhead of running the network in the forward direction that must be borne by any
algorithm, would suggest that one should expect about a factor of 4 speedup when using BPTT(16;8).
Because this particular task has targets only on every other time step, the use of BPTT(9) here really
amounts to using BPTT(9;2), which therefore reduces the speed gain by essentially one factor of 2.

476 WILLIAMS AND ZIPSER

TABLE 1 | DISCUSSION
Order of Magnitude of Space and Time Requirements
for the Various General-Purpose Algorithms Discussed Here In this chapter we have described a number of sradient based leaming algorthms

for recurrent networks, all based on two different approaches to computing the

Average Time

rcorith Space Per Time Step gradient of network error in weight space. The existence of these various tech-
Algorithm niques, some of them quite reasonable in terms of their computational require-
Epochwise BPTT 8{(m + mh) Blw, + WA))L/A \ ments, should make possible much more widespread investigation of the capa-
BPTT (=) B((m + n)t) g:a’/vt:” +)w‘ 4 bilities of recurrent networks.
RTRL &lnw,) UTA + n2w,/h) In the introduction we noted that investigators studying learning algorithms

PTT(h) Blnw, + (m + nih) Blnw,, + nw,s o :) o0 o e
FP/8 A Blnw,, + nw, + nw,/c) for such networks might have various objectives, each of which might imply
FP/BPTT(cn) Blnw, + cnim + n)) u T Wa :) : :) :
Ollw, + wilh/Ag) different constraints on which algorithms might be considered to meet these

BPTT(h) ((m + nih) fipe B S MigAt be) .

BPTT(H: ') olim + n)h) Ollwy + walhih') objectives. Among the possible constraints one might wish to impose on a
BPTT(h:ch) A(lm + n)h} gt‘xu‘; /‘;;L nwalg) learning algorithm are biological plausibility and locality of communication.

T . - . . - .

2::&2) 2:"’7‘:’;‘/ 9 e(waj /en? + nypwaln) Feedforward back propagation is generally regarded as biologically implausible,

but its requirement for reverse communication along only the connections al-
ready in place allows it to be considered a locally implementable algorithm, in
the sense that it does not require a great deal of additional machinery beyond the
network itself to allow implementation of the algorithm. Except in very restricted
cases involving severely limited architectures or extreme approximations, the
algorithms described here cannot be considered biologically plausible as learning
algorithms for real neural networks, nor do they enjoy the locality of feeforward
back propagation.

However, many of the algorithms discussed here can be implemented quite
reasonably and efficiently in either vector parallel hardware or special-purpose
parallel hardware designed around the storage and communication requirements
of the particular algorithm. Several of these algorithms are quite well suited for
efficient serial implementation as well. Thus one might expect to see these
algorithms used especially for off-line development of networks having desired
temporal behaviors in order to study the properties of these networks. Some of

Here ¢ denotes a constant and the meaning of all the other §vmb9|:use(:
is summarized in the third section. For the variant of QPTT(h) ,17n which pas
weight values are saved, the space requirements are in G(w,).

TABLE 2
Worst-Case Complexity for the Various
General-Purpose Algorithms Discussed t-!ere
Expressed in Terms of the Number of Units n

Average Time

Algorithm Space Per Time Step these techniques have already been used successfully to fit models of biological
neural subsystems to data on the temporal patterns they generate (Amold &
Epochwise BPTT 6(nh) 8}"?“ Robinson, 1989; Lockery, Fang, & Sejnowski, 1990; Tsung, Cottrell, & Sel-
BPTT(=) g:"ﬁ)’ 6(2‘) verston, 1990; Anastasio, 1991) and a number of studies have been undertaken to
E;/RBLPTT(h) 9(7,3 + nh) &(n? + n¥h) apply these methods to develop networks which carry ou.t variou§ langu§ge
FP/BPTT(cn) a(n3) a(n3) processing or motor control tasks as a means of understanding the information
BPTT(A) 8(nh) 8(nzh) processing strategies involved (Elman, 1988; Jordan, 1986; Mozer, 1989, chap-
BPTT(A:H') B(nh) gg’,:;’/ h') ter 5, this volume; Cleeremans, Servan-Screiber, and McClelland, 1989, chapter
BPTT(h;ch) g:ng/)) 6(n4/g?) 9, this volume; Smith & Zipser, 1990). One might also expect to see specific
glgt:gr)r) G(Zz)g 8(n?) cngl:neering applications of recurrent networks developed by these methods as
well.

These results are based on the assumption that m, the
number of input lines, is in O(n). Here ¢ dgnotes a constant. F‘:
the variant of BPTT{A) in which past we!ght values are saved,
the worst-case space requirements are in &(nzh).

Thus there is much that can be done with the currently available algorithms for
training recurrent networks, but there remains a great deal of room for further
development of such algorithms. It is already clear that more locally implement-

478 WILLIAMS AND ZIPSER

able or biologically plausible algorithms remain to be found, and algorithms with
improved overall learning times are always desirable. !t seems rea_sonable to
conjecture that such algorithms will have to be more architecture specific or task
specific than the gencral-purpose algorithms studied here. . .

Of particular importance are learning algorithms for cgntmually 'opcratmg
networks. Here we have described both “exact” and approximate gradient algo-
rithms for training such networks. However, by our deﬁnition,. the exact algo-
rithms compute the true gradient at the current value of the welght§ only ur}der
the assumption that the weights are held fixed, which cannot be true in a conthu-
ally operating learning network. This problem need not occur in a network which
operates epochwise; when weight changes are only performed between emhs,
an exact gradient algorithm can compute the true gradient of some appropnate
quantity. .

Thus all the algorithms described here for continually oPeratmg netwo.rks are
only capable of computing approximate gradient informau.on to hflp gu’l‘de the
weight updates. The degree of approximation involved with the cxgct _algo—
rithms depends on the degree to which past history of ne?work opera.non influ-
ences the gradient computation and the degree to Wh](.:h the' weights have
changed in the recent past. Truncated BPTT alleviates this pamculgr pfoblem
because it ignores all past contributions to the gradient beyond a c_ertanp flxstance
into the past. Such information is also present in RTRL,'albelt 1mpllcqu, an_d
Gherrity (1989) has specifically addressed this issue by mcorporgtmg into his
continuous-time version of RTRL an exponential decay on the conmbu_thns frqm
past times. For the discrete-time RTRL algorithm describefl here, this is easily

implemented by multiplying all the pj; values by an attenuation factor less than .l
before computing their updated values. Unlike truncated BP’I'T , however, this
does not reduce the computational complexity of the algorithm. ‘

Another way to attempt to alleviate this problem is to use a very low learning
rate. The effect of this is make the constant-weight approximation more accurfltc,
although it may slow learning. One way to view this issue is in terms of t¥me
scales, as noted by Pineda (chapter 4, this volume). The accuracy of the gradient
computation provided by an exact algorithm in our sense depends on Fhe extent to
which the time scale of the learning process is decoupled from the time gcale of
the network's operation by being much slower. In general, with the leammg rate
set to provide sufficiently fast learning, these time scales may over.lap.-Thls can
result in overall dynamical behavior which is determined by a combl.natlon of the
dynamics of the network activation and the dynamics of the weight changes

brought about by the learning algorithm. At this point.one lgaves the realm of
gradient-based learning algorithms and enters a realm in which a more general
control-theoretic formulation is more appropriate. A particular issue he're of
some importance is the overall stability of such a system, as er.npham;ed in the
theory of adaptive control (Narendra & Annaswamy, 1989). It is to be expectgd
that satisfactory application of the techniques described here to situations requir-

13. GRADIENT-BASED LEARNING 479

ing on-line adaptation of continually operating recurrent networks will depend on
gaining further understanding of these questions.

It is useful to recognize the close relationship between some of the techniques
discussed here and certain approaches which are well known in the engineering
literature. In particular, the specific backward error propagation and forward
gradient propagation techniques which we have used here as the basis for all the
algorithms investigated turn out to have their roots in standard optimal-control-
theoretic formulations dating back to the 1960s. For example, leCun (1988) has
pointed to the work of Bryson and Ho (1969) in optimal control theory as
containing a description of what can now be recognized as error back propaga-
tion when applied to multilayer networks. Furthermore, it is also clear that work
in that tradition also contains the essential elements of the back-propagation-
through-time approach. The idea of back-propagating through time, at least for a
linear system, amounts to running forward in time what is called in that literature
the adjoint system. The two-point boundary-value problems discussed in the
optimal control literature arise from such considerations. Furthermore, the idea
of propagating gradient information forward in time, used as the basis for RTRL,
was proposed by McBride and Narendra (1965), who also noted that use of the
adjoint system may be preferable when on-line computation is not required
because of its lower computational requirements. The teacher forcing technique
has its counterpart in engineering circles as well. For example, it appears in the
adaptive signal processing literature as an “equation error” technique for synthe-
sizing linear filters having an infinite impulse response (Widrow & Stearns,
1985).

In work very similar in spirit to that we have presented here, Piche (1994) has
shown how various forms of back propagation through time and forward gradient
computation may be derived in a unified manner from a standard Euler-Lagrange
optimal-control-theoretic formulation. Furthermore, he also discusses the com-
putational complexity of the various algorithms described. Included among the
algorithms covered by his analysis are some of those we have described in
Section 7 for special architectures.

Finally, we remark that the techniques we have discussed here are far from
being the only ones available for creating networks having certain desired proper-
ties, We have focused here specifically on those techniques which are based on
computation of the error gradient in weight space, with particular emphasis on
methods appropriate for continually operating networks. As described earlier in
the discussion of the teacher forcing technique, Rohwer (1990) has proposed an
epochwise approach based on computation of the error gradient with respect to
unit activities rather than network weights. Also, another body of techniques has
been developed by Baird (1989) for synthesizing networks having prescribed
dynamical properties. Unlike the algorithms discussed here, which are designed
to gradually perturb the behavior of the network toward the target behavior as it
runs, these algorithms are intended to be used to “program in” the desired

480 WILLIAMS AND ZIPSER

dynamics at the outset. Another difference is that these techniques are currently
limited to creating networks for which external input must be in the form of
momentary state perturbations rather than more general time-varying forcing
functions.

ACKNOWLEDGMENT

R. J. Williams was supported by Grant IRI-8703566 from the National Science
Foundation. D. Zipser was supported by Grant 1-R01-M445271-01 from the
National Institute of Mental Health and grants from the System Development
Foundation.

REFERENCES

Almeida. L. B. (1987). A learning ruie for asynchronous perceptrons with feedback in a combina-
torial environment. Proceedings of the IEEE First International Conference on Neural Networks.
11 (pp. 609-618).

Anastasio. T. J. (1991). Neural network models of velocity storage in the horizontal vestibuloocular
reflex. Biological Cybernetics, 64, 187-196.

Arnold, D. & Robinson, D. A. (1989). A leaming neural-network model of the oculomotor integra-
tor. Society of Neuroscience Abstracts, 15, part 2, 1049.

Bachrach, J. (1988). Learning to represent state. Unpublished master’s thesis. University of Massa-
chusetts, Amherst, Department of Computer and Information Science.

Baird, B. (1989). A bifurcation theory approach to vector field programming for periodic attractors.
Proceedings of the International Joint Conference on Neural Networks. | (pp. 381-388).

Bryson. A. E., Jr. & Ho, Y-C. (1969). Applied optimal control. New York: Blaisdell.

Cleeremans, A., Servan-Schreiber, D., & McClelland, J. L. (1989). Finite-state automata and
simple recurrent networks. Neural Computation, I, 372-381.

Doya, K. & Yoshizawa, S. (1989). Adaptive neural oscillator using continuous-time back-
propagation learning. Neural Networks, 2. 375-385.

Elman, J. L. (1988). Finding structure in time (CRL Technical Report 8801). La Jolla: University of
California, San Diego, Center for Research in Language.

Gherrity, M. (1989). A learning algorithm for analog, fully recurrent neural networks. Proceedings
of the International Joint Conference on Neural Networks. I (pp. 643-644).

Jordan, M. 1. (1986). Attractor dynamics and parallelism in a connectionist sequential machine.
Proceedings of the Eighth Annual Conference of the Cognitive Science Society (pp. 531-546).

Kuhn, G. (1987). A first look at phonetic discrimination using a connectionist network with recur-
rent links (SCIMP Working Paper No. 4/87). Princeton, NJ: Communications Research Division,
Institute for Defense Analyses.

1eCun, Y. (1988). A theoretical framework for back-propagation (Technical Report CRG-TR-88-6).
Toronto: University of Toronto, Department of Computer Science.

Lockery., S., Fang, Y., & Sejnowski, T. (1990). Neural network analysis of distributed representa-
tions of dynamical sensory-motor transformations in the leech. In Advances in neural information
processing systems, 2. San Mateo, CA: Morgan Kaufmann.

McBride. L. E., Jr.. & Narendra, K. S. (1965). Optimization of time-varying systems. IEEE
Transactions on Automatic Control, 10, 289-294.

13. GRADIENT-BASED LEARNING 481

Mozer, M. C. (1989). A focused back-propagation algorithm for temporal pattern rccognition.
Complex Systems, 3, 349-381.

Narendra, K. S., & Annaswamy, A. M. (1989). Stable adaptive svstems. Englewood Cliffs, NI:
Prentice-Hall.

Narendra, K. S.. & Parthasarathy, K. (1990). ldentification and control of dynamic systems using
neural networks. IEEE Transactions on Neural Networks, 1,4-27.

Pearlmutter, B. A. (1989). Learning state space trajectories in recurrent neural networks. Newral
Compuiation, 1, 263-269.

Piche, S. W. (1994). Steepest descent algorithms for neural network controllers and filters. IEEE
Transactions on Neural Networks, 5.

Pineda, F. J. (1987). Generalization of backpropagation to recurrent neural networks. Physical
Review Letters, 18, 2229-2232.

Pineda, F. J. (1988). Dynamics and architecture for neural computation. Journal of Complexity, 4,
216-245.

Pineda, F. 1. (1989). Recurrent backpropagation and the dynamical approach to adaptive neural
computation. Neural Computation, 1, 161-172.

Robinson, A. J., & Fallside, F. (1987). The utilirv driven dvnamic error propagation network
(Technical Report CUED/F-INFENG/TR.1). Cambridge, England: Cambridge University Engi-
neering Department.

Rohwer, R. (1990). The “moving targets™ training algorithm. In L. B. Almeida & C. J. Wellekens
(Eds.), Proceedings of the EURASIP Workshop on Neural Networks, Sesimbra, Portugal. Lecture
Notes in Computer Science (vol. 412, p. 100). New York: Springer- Verlag.

Rohwer, R., & Renals, S. (1989). Training recurrent networks. In L. Personnaz & G. Dreyfus
(Eds.), Neural networks from models to applications. Paris: LD.E.S.T.

Rumelhart, D. E., Hinton, G. E.. & Williams, R. J. (1986). Learning internal representations by
error propagation. in D. E. Rumelhart, J. L. McClelland, & the PDP Research Group, Parallel
Distributed Processing: Explorations in the Microstructure of Cognition. Vol. |: Foundations.
Cambridge: MIT Press/Bradford Books.

Sato. M. (1990a). A real time leamning algorithm for recurrent analog neural networks. Biological
Cybernetics, 62, 237-241.

Sato, M. (1990b). A leamning algorithm to teach spatiotemporal patterns to recurrent neural net-
works. Biological Cvbenertics, 62, 259-263.

Schmidhuber, J. (1992). A fixed size storage O(n?) time complexity learning algorithm for fully
recurrent continually running networks. Neural Computation 4, 243248,

Smith, A. W., & Zipser, D. (1990). Learning sequential structure with the real-time recurrent
learning algorithm. International Journal of Neural Systems. 1, 125-131.

Tsung, F. S. (1990). Learning in recurrent finite difference networks. In D. S. Tourtetzky. J. L.
Elman, T. J. Sejnowski, & G. E. Hinton (Eds.), Proceedings of the 1990 Connectionist Models
Summer School. San Mateo, CA: Morgan Kaufmann.

Tsung, F. S., Cottrell, G. W., & Selverston, A. (1990). Some experiments on learning stable
network oscillations. Proceedings of the International Joint Conference on Neural Networks, San
Diego, CA.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., & Lang, K. (1987). Phoneme recognition
using time-delay neural networks (Technical Report TR-1-0006). Japan: Advanced Telecom-
munications Research Institute.

Watrous, R. L., & Shastri, L. (1986). Learning phonetic features using connectionist networks: An
experiment in speech recognition (Technical Report MS-CIS-86-78). Philadeiphia: University of
Pennsylvania.

Werbos, P. J. (1974). Beyond regression: new tools for prediction and analysis in the behavioral
sciences. Unpublished doctoral dissertation. Harvard University.

482 WILLIAMS AND ZIPSER

Werbos. P. J. (1988). Generalization of backpropagation with application to a recurrent gas market

model. Neural Networks, 1, 339-356.
Widrow, B.. & Stearns, S. D. (1985). Adaptive signal processing. Englewood Cliffs, NJ: Prentice-

Hall.
Williams. R. J. (1990). Adaptive state representation and estimation using recurrent connectionist

networks. In: W. T. Miller, R. S. Sutton. & P. }. Werbos (Eds.) Neural Networks for Control.

Cambridge: MIT Press/Bradford Books.
Williams. R. J. (1989). Complexitv of exact gradient compuiation algorithms for recurrent neural
networks (Technical Report NU-CCS-89-27). Boston: Northeastern University, College of

Computer Science.
Willaims. R. J., & Peng, J. (1990). An efficient gradient-based algorithm for on-line training of

recurrent network trajectories. Neural Computation, 2. 490-501.
Williams, R. J., & Zipser. D. (1989a). A learning algorithm for continually running fully recurrent

neural networks. Neural Computation, 1, 270-280.
Williams, R. ., & Zipser. D. (1989b). Experimental analysis of the real-time recurrent learning

algonithm. Connection Science, 1, 87-111.
Zipser, . (1989). A subgrouping strategy that reduces complexity and speeds up leamning in recur-

rent nctworks. Neural Computation, 1. 552-558.

A. APPENDIX

A.1. Preliminaries

For completeness, we first summarize some of the definitions and assumptions
from the main text. Given a network with n units and m input lines, we define an
(m + n)-tuple x(¢) and index sets U and / such that x,(f), the kth component of
x(t), represents either the output of a unit in the network at time ¢, if k € U, or an
external input to the network at time 1, if k € /. When k € U, we also use the
notation y,(t) for x,(¢). Foreachi € Uandj € U U we have a unique weight w;;
on the connection from unit or input line j to unit i.

Letting T(/) denote the set of indices k € U for which there exists a specified
target value d,(1) that the output of the kth unit should match at time 7, we also
define a time-varying n-tuple e(r) whose kth component is

_ 1d(t) — y (1) if k € T(1),
eln = {0 otherwise. (A1)

We then define the two functions

=3 2 le®p (A2)
ket
and
!
Jowi(ity = O J(T), (A.3)
T=1"+1

where 1, < 1’ < 1. with 1, denoting some fixed starting time.

Rt P o it

13. GRADIENT-BASED LEARNING 483

For purposes of analyzing the backpropagation-through-time approach, we
replace the dynamical Equations 2 and 3 by the equations

S+ D= 2w, (A.4)
letyul
Wt + 1) = filsy + 1), (A.5)
and
wilt) = wy, (A.6)

forallk€ U,i € U, j€ U U, which give rise to equivalent dynamics for the s
and y, Vi‘llUCS. These equations can be viewed as representing the multilayc:
computation performed in the unrolled version N* of the original arbitrary net N
where ¢ represents a layer index in N* rather than a time index in N. ’

Now suppose we are given a differentiable function F expressed in terms of
{yi(Mlk € U, ' < 1 =<1}, the outputs of the network over the time interval ', 1.
Note that while F may have an explicit dependence on some vi(T), it may a;lso
havg an implicit dependence on this same value through later butput values. To
?VOld the resulting ambiguity in interpreting partial derivatives like 9F/ v (), we
introduce variables y}() such that yf(1) = y (1) forallk € Uand 7 € (-to. 1] and
treat F as if it were expressed in terms of the variables {y¥(7)} rather than the
variables {y,(1)}.13 '

Then, for all k € U, define

oF
for all T € |1, 1] and define
s OF
d(T;F) = 35, (A.8)
for all T € (1,, 1]. Also, define
e aF
C’k(T,F) = W (Ag)

forallrt € (tO,. t!. Note that e,(1; F) = 0 whenever 1 < 1’ because we assume that
f has no ?xpllcnt'dependence on the output of the network for times outside the
interval (¢, f]. Finally, for i EU, jEUUI, k€ U, and 1 € [t, t], define

' ¥To see why this is necessary, consider, for example, the two possible interpretations of AF/dx
given that F(xr, y) = x + y and y = x. The confusion occurs because the variable named “x”
represents two different function arguments according to a strict use of the mathematical chain rule. a
problem easily remedied by introducing additional variable names to eliminate such duplicalio‘n
Werbos (1974, 1988), in addressing this same problem, uses the standard partial derivative notatior;
to re_fer to explicit dependencies only, introducing the term ordered derivative. denoted in a different
fashion, for a partial derivative which takes into account all influences. Our use of partial derivatives
here corresponds to this latter notion. ‘

484 WILLIAMS AND ZIPSER

Ay(T) (A.10)
PO =
with
Piito) = O (A.11)

initi rk haS no
Or all sk s Js > ‘
functional depcndence on the Welghts.

A.2 Derivation of the Back-Propagation-through-
Time Formulation

i + 1), asl
Since F depends on y,(7) only through y}(7) and the variables s/(7)

ranges over U, we have

OF _dyp) oF 5 dstrt D) ai —an
) aym ayEm S, ow(3s(r

from which it follows that

ift =1, 13)
e(t:F) ! (A.
a(mF) = {e:(‘r;F) + D wed(r+ LF) ifr <t
ey
Also, forall T =1,
aF _ dyi(r) 9F , (A.14)
A5 (1) dsi(7) ay(7)
s0 that s
31 F) = filsi(MedT; F). (A.15)
In addition, for any appropriate i and j,
R awy(T) _ aF , (A.16)
a—w;- - =, ow(1) dwy vy dw;(7)
and, for any T,
oF _ oF asi(T + l) — 8,-(1' + l,F)xj(T) (Al7)

Iw;(7) Casrt 1) dwym)

Combining these last two results yields

-1

- 2 81 + LF)ix(r). (A.18)
aw,

iy -r—‘—lﬂ

the hybrid FP/BPTT algorithm described i
Equation A.20 a total of n + | times, first
for reach k € U, That is,
', is performed n + 1 different times. When F = Jrotal(y'
yields the desired gradient of Jtowal(y')
appropriate i, j, and k, are available. Performi
Yi(t) yields the values p¥; for all appropriate i

anew for each k to yield the entire set o
interval.

BPTT and RTRL formulations. In
the special case where 1’ = Iy
the second sum vanishes and the result is

- At iSRS AN

13. GRADIENT-BASED LEARNING 485

Equations A.13, A.15, and A.18 represent the back-propagation-through-
me computation of 3F /9w, for any differentiable function F expressed in terms
of the outputs of individual units in a network of semilinear units. With F = J,
these specialize to the real-time BPTT Equations 12-16 because elt; J(n) =
e(t) and e,(v; J(1) = O for 1 < 1. Similarly, Equations 17-20 for epochwise

BPTT are obtained by setting ¢ = ¢, and F = Jtal(y, ¢,) and observing that e, (T;
Jwal(g,, 1)) = e(7) for all T < L.

ti

A.3. Derivation of the Hybrid Formulation

Continuing on from Equation A. 16, we may write

-~ —1

oF oF oF

—_—= — + —_—

T, § YR) (A.19)

T=r

But the first sum on the right-hand side of this equation may be rewritten as

=1 -1

-1
S LS S) s ok S oy
=1, awij('r) T=t, €U dy,(¢") awij(T) rev ay (1) = GWU(T)
oF dy(1")
= YIS —_ = € ’,,F { ,! .
ev V") ow,; lg/ i P’y

Incorporating this result and equation A.17 into Equation A.19 yields

£—1
F
% =2 &t F)ph(t') + > 5,(r + 1LF)x(7). (A.20)

i ev =,

This last result, together with equations (66) and (68), represents the basis for

n the text. For that algorithm we apply
to F = Joal(y' 1) and then to F = (@
back propagation through time, terminating at time step
»), this computation
, assuming that the values pf}(t’), for all
ng the back propagation with F =
and j, so this must be performed
f p values for use in the next time

Not surprisingly, this hybrid formulation can be s hown to subsume both the

particular, the purc BPTT Equation A.18 is

Likewise, if we let = J(f) and ¢ = t, we see that

-~ -

486 WILLIAMS AND ZIPSER
I2 = 2 e npi),
ij 1=

while letting F = v and ¢" =t — 1 yields
paD = 2 wfisdonplt = D)+ Bufils(Dxg(t = D

euv

=f;(.vk<r))[2 waplt = D)+ Bl = ‘)]-

v

(A.21)

(A.22)

g

When Neural Networks Play
Sherlock Holmes

Pierre Baldi
Jet Propulsion Laboratory and Division of Biology, California
Institute of Technology, Pasadena, California

Yves Chauvin
Net-ID, Inc., San Francisco, California

ABSTRACT

After collecting a data base of fingerprint images, we first design a neural network
algorithm for fingerprint recognition. When presented with a pair of fingerprint
images, the algorithm outputs an estimate of the probability that the two images
originate from the same finger. In one experiment, the neural network is trained
using a few hundred pairs of images from the data basc and its performance is
subsequently tested using several thousand pairs. The error rate currently achieved
is less than 0.5%. We then describe preliminary classification experiments. Addi-
tional results, extensions and possible applications are also briefly discussed.

INTRODUCTION

The fast, reliable, and computerized classification and matching of fingerprint
images is a remarkable problem in pattern recognition which has not yet received
a complete solution. Automated fingerprint recognition systems could have an
extremely wide range of applications, well beyond the traditional domains of
criminal justice. Such systems could in principle be used in any situation where
identification, verification, and/or access control are paramount. A few exam-
ples include all identification cards systems, such as driver licenses, computer
security systems, entitlement systems (such as welfare). access control systems
(for instance, in airports or hospitals), and credit card (as well as several other
types of financial transactions) validation systems. Automated fingerprint recog-
nition systems could also render the use of locks and keys obsolete and be
installed in cars, homes, and hotels. Although it is beyond our scope to discuss

