Marr (1982)

Computational theory
What is the goal of the computation, why is it appropriate, and what is the logic of the strategy by which it can be carried out?

Representation and algorithm
How can this computational theory be implemented? What is the representation for the input and output, and what is the algorithm for the transformation?

Hardware implementation
How can the representation and algorithm be realized physically?
Notation

- i, j indices of units (i sending, j receiving)
- a_j activation of unit j
- n_j summed net input to unit j
- w_{ij} weight on connection from unit i to unit j
- θ_j threshold for unit j
- e_j external input to unit j
- b_j bias (tonic input) to unit j

Types of units

Binary threshold unit

- $n_j = \sum_i a_i w_{ij} + e_j$
- $a_j = \begin{cases} 1 & \text{if } n_j > \theta_j \\ 0 & \text{otherwise} \end{cases}$

If “bias” $b_j = -\theta_j$, this is the same as

- $n_j = \sum_i a_i w_{ij} + e_j + b_j$
- $a_j = \begin{cases} 1 & \text{if } n_j > 0 \\ 0 & \text{otherwise} \end{cases}$

Will generally omit b_j and e_j in equations
- Bias b_j can be treated as weight w_{ij} from special unit with fixed activation $a_i = 1$.
- External input e_j can be treated as incoming activation a_i across connection with fixed weight $w_{ij} = 1$.

Linear units

- $a_j = n_j = \sum_i a_i w_{ij}$

Rectified linear units (ReLUs)

- $a_j = \max(0.0, n_j)$

Sigmoidal (“logistic”, “semi-linear”) units

- $a_j = \sigma(n_j) = \frac{1}{1 + \exp(-n_j)}$

Binary stochastic units

- $p(a_j = 1) = \frac{1}{1 + \exp(-n_j)}$

Continuous time-averaged (cascaded) units [two alternatives]

- $n_j[t] = \tau \sum_i a_i[t-1] w_{ij} + (1 - \tau) n_j[t-1]$
- $a_j[t] = \tau \sigma(n_j[t]) + (1 - \tau) a_j[t-1]$

Interactive activation

(Jets & Sharks model; Schema model; McClelland & Rumelhart letter/word model)

- $n_j[t] = \sum_i a_i[t-1] w_{ij} + e_j[t]$
- $a_j[t] = (1 - \text{decay}) a_j[t-1] + \begin{cases} n_j[t] (\max - a_j[t-1]) & \text{if } n_j[t] > 0 \\ n_j[t] (a_j[t-1] - \min) & \text{otherwise} \end{cases}$

where $\text{decay} = 0.1$, $\max = 1.0$, $\min = -0.2$.

5 / 8

7 / 8

6 / 8

8 / 8