Marr (1982)

Computational theory
What is the goal of the computation, why is it appropriate, and what is the logic of the strategy by which it can be carried out?

Representation and algorithm
How can this computational theory be implemented? What is the representation for the input and output, and what is the algorithm for the transformation?

Hardware implementation
How can the representation and algorithm be realized physically?
Notation

- **Indices of units** (i sending, j receiving)
- **Activation** of unit j (a_j)
- **Summed net input** to unit j (n_j)
- **Weight** on connection from unit i to unit j (w_{ij})
- **Threshold** for unit j (θ_j)
- **External input** to unit j (e_j)
- **Bias** (tonic input) to unit j (b_j)

Linear units

\[a_j = n_j = \sum_i a_i w_{ij} \]

Rectified linear units (ReLUs)

\[a_j = \max(0.0, n_j) \]

Sigmoidal (“logistic”, “semi-linear”) units

\[a_j = \sigma(n_j) = \frac{1}{1 + \exp(-n_j)} \]

Binary stochastic units

\[\rho(a_j = 1) = \frac{1}{1 + \exp(-n_j)} \]

Continuous time-averaged (cascaded) units [two alternatives]

\[n_j^{[t]} = \tau \sum_i a_i^{[t-1]} w_{ij} + (1 - \tau) n_j^{[t-1]} \]

\[a_j^{[t]} = \tau \sigma(n_j^{[t]}) + (1 - \tau) a_j^{[t-1]} \]

Interactive activation

(Jets & Sharks model; Schema model; McClelland & Rumelhart letter/word model)

\[n_j^{[t]} = \sum_i a_i^{[t-1]} w_{ij} + e_j^{[t]} \]

\[a_j^{[t]} = (1 - \text{decay}) a_j^{[t-1]} + \begin{cases} n_j^{[t]} (\max - a_j^{[t-1]}) & \text{if } n_j^{[t]} > 0 \\ n_j^{[t]} (a_j^{[t-1]} - \min) & \text{otherwise} \end{cases} \]

\[\text{decay} = 0.1 \quad \max = 1.0 \quad \min = -0.2 \]
Constraint satisfaction

- Units represent **hypotheses** about parts of a problem
- Weights code **constraints** on how hypotheses can combine (i.e., the degree to which they are consistent or inconsistent)
- Possible **solutions** correspond to particular patterns of active units
- External input introduces **bias** to favor one possible solution over others

Example: Map coloring

Assign colors to regions so that no adjacent regions have the same color.

- **Hypotheses**
 - An assignment of a color to a region

- **Constraints**
 - Adjacent regions must be assigned different colors
 - Only one color can be assigned to each region
 - Each region must be assigned a color

- **Biases**
 - Initial color preference for a given region

Necker Cube
Maximizing Goodness (= minimizing Energy)

Global measure of degree to which activations satisfy weight constraints

\[G (\text{Goodness} = -\text{Energy}) = \sum_{i<j} a_i a_j w_{ij} \]

How should unit \(k \) behave locally so as to increase global Goodness?

- Set \(a_k = 1 \) if \(G_{a_k=1} > G_{a_k=0} \) (or, equivalently, \(G_{a_k=1} - G_{a_k=0} > 0 \))

\[G_{a_k=1} = \sum_i a_i w_{ik} + \sum_{i<j \neq k} a_i a_j w_{ij} \]

\[G_{a_k=0} = \sum_{i<j \neq k} a_i a_j w_{ij} \]

\[G_{a_k=1} - G_{a_k=0} = \sum_i a_i w_{ik} \]

- Set \(a_k = 1 \) if \(\sum_i a_i w_{ik} > 0 \) (= binary threshold unit)

\textit{Sigmoid units:} increase activation as net input increases (monotonicity)