Understanding complex information-processing systems

Marr (1982)

Computational theory
What is the goal of the computation, why is it appropriate, and what is the logic of the strategy by which it can be carried out?

Representation and algorithm
How can this computational theory be implemented? What is the representation for the input and output, and what is the algorithm for the transformation?

Hardware implementation
How can the representation and algorithm be realized physically?
Notation

- i, j indices of units (i sending, j receiving)
- a_j activation of unit j
- n_j summed net input to unit j
- w_{ij} weight on connection from unit i to unit j
- θ_j threshold for unit j
- e_j external input to unit j
- b_j bias (tonic input) to unit j

Types of units

Binary threshold unit

\[n_j = \sum_i a_i w_{ij} + e_j \]
\[a_j = \begin{cases}
1 & \text{if } n_j > \theta_j \\
0 & \text{otherwise}
\end{cases} \]

If “bias” $b_j = -\theta_j$, this is the same as

\[n_j = \sum_i a_i w_{ij} + e_j + b_j \]
\[a_j = \begin{cases}
1 & \text{if } n_j > 0 \\
0 & \text{otherwise}
\end{cases} \]

Will generally omit b_j and e_j in equations
- Bias b_j can be treated as weight w_{ij} from special unit with fixed activation $a_i = 1$.
- External input e_j can be treated as incoming activation a_i across connection with fixed weight $w_{ij} = 1$.

Linear units

\[a_j = n_j = \sum_i a_i w_{ij} \]

Sigmoidal (“semi-linear”) units

\[a_j = \sigma(n_j) = \frac{1}{1 + \exp(-n_j)} \]

Binary stochastic units

\[p(a_j = 1) = \frac{1}{1 + \exp(-n_j)} \]

Continuous time-averaged (cascaded) units [two alternatives]

\[n_j[t] = \tau n_j[t-1] + (1 - \tau) \sum_i a_i[t-1] w_{ij} \]
\[a_j[t] = \tau a_j[t-1] + (1 - \tau) \sigma(n_j[t]) \]

Interactive activation

(Jets & Sharks model; Schema model; McClelland & Rumelhart letter/word model)

\[n_j[t] = \sum_i a_i[t-1] w_{ij} + e_j[t] \]
\[a_j[t] = a_j[t-1] (1 - \text{decay}) + \begin{cases}
 n_j[t] \left(\text{max} - a_j[t-1] \right) & \text{if } n_j[t] > 0 \\
 n_j[t] \left(a_j[t-1] - \text{min} \right) & \text{otherwise}
\end{cases} \]

\[\text{decay} = 0.1 \]
\[\text{max} = 1.0 \]
\[\text{min} = -0.2 \]
Constraint satisfaction

- Units represent hypotheses about parts of a problem.
- Weights code constraints on how hypotheses can combine (i.e., the degree to which they are consistent or inconsistent).
- Possible solutions correspond to particular patterns of active units.
- External input introduces bias to favor one possible solution over others.

Example: Map coloring

Assign colors to regions so that no adjacent regions have the same color.

Hypotheses
- An assignment of a color to a region

Constraints
- Adjacent regions must be assigned different colors
- Only one color can be assigned to each region
- Each region must be assigned a color

Biases
- Initial color preference for a given region
Maximizing Goodness (= minimizing Energy)

Global measure of degree to which activations satisfy weight constraints

\[G (\text{Goodness} = -\text{Energy}) = \sum_{i<j} a_i a_j w_{ij} \]

How should unit \(k \) behave locally so as to increase global Goodness?

- Set \(a_k = 1 \) if \(G_{a_k=1} > G_{a_k=0} \) (or, equivalently, \(G_{a_k=1} - G_{a_k=0} > 0 \))

\[G_{a_k=1} = \sum_i a_i w_{ik} + \sum_{i<j\neq k} a_i a_j w_{ij} \]

\[G_{a_k=0} = \sum_{i<j\neq k} a_i a_j w_{ij} \]

\[G_{a_k=1} - G_{a_k=0} = \sum_i a_i w_{ik} \]

- Set \(a_k = 1 \) if \(\sum_i a_i w_{ik} > 0 \) (= binary threshold unit)

Sigmoid units: increase activation as net input increases (monotonicity)