Learning associations in connectionist networks

Association by contiguity, generalization by similarity (James, 1890)

- Represent items as patterns of activity, where similarity is reflected by overlap or correlation between patterns
- Represent contiguity as simultaneous presence of patterns over two groups of units (A and B)
- Adjust weights on connections between A and B so that the pattern on A tends to cause the corresponding pattern on B
- As a result, when the same or similar pattern is presented on A, it tends to produce the corresponding pattern on B (perhaps somewhat weakened or distorted)

Correlational learning: Hebb rule

What Hebb actually said:

When an axon of cell A is near enough to excite a cell B and repeatedly and consistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A’s efficacy, as one of the cells firing B, is increased.

The minimal version of the Hebb rule:

When there is a synapse between cell A and cell B, increment the strength of the synapse whenever A and B fire together (or in close succession).

The minimal Hebb rule as implemented in a network:

$$\Delta w_{ij} = \epsilon a_i a_j$$

Correlation

If $w_{ij} = 0$ initially, after a set of n training trials on patterns (indexed by p) where $\Delta w_{ij} = \epsilon a_i a_j$,

$$w_{ij} = \epsilon \sum_{p=1}^{n} a_i^{[p]} a_j^{[p]}$$

Suppose a_i and a_j take on values of $+1$ or -1

- If a_i and a_j are perfectly correlated (always the same), $a_i^{[p]} a_j^{[p]} = 1$, so $w_{ij} = \epsilon n$
- If a_i and a_j are perfectly anticorrelated (always differ), $a_i^{[p]} a_j^{[p]} = -1$, so $w_{ij} = -\epsilon n$
- If a_i and a_j are uncorrelated (differ as often as same)
 $$w_{ij} = \epsilon \left(\frac{n}{2} (+1) + \frac{n}{2} (-1) \right) = 0$$
- If a_i and a_j are partially correlated (e.g., 3/4 same and 1/4 different)
 $$w_{ij} = \epsilon n \left(\frac{3}{4} (+1) + \frac{1}{4} (-1) \right) = \frac{1}{2} \epsilon n$$
- Thus $w_{ij} \propto \text{correlation}(a_i, a_j)$

Correlation (cont.)

A statistical correlation is defined as

$$\frac{\sum_{p=1}^{n} (a_i^{[p]} - \bar{a}_i^{[p]}) (a_j^{[p]} - \bar{a}_j^{[p]})}{\sqrt{\left(\sum_{p=1}^{n} (a_i^{[p]} - \bar{a}_i^{[p]})^2 \right) \left(\sum_{p=1}^{n} (a_j^{[p]} - \bar{a}_j^{[p]})^2 \right)}}$$

where $\bar{a}_i^{[p]}$ is the mean of $a_i^{[p]}$

- Subtraction “takes out the mean”
- Denominator normalizes with respect to the variance of a_i and a_j

Hebb rule often includes “reference” values r_i and r_j

$$\Delta w_{ij} = \epsilon (a_i - r_i) (a_j - r_j)$$

- Ordinarily do not use denominator
- Both issues go away with ± 1, zero-mean patterns
Vector similarity: Dot product

- Inner (dot) product: Measure of similarity between two vectors/patterns (e.g. \(\mathbf{p} \) and \(\mathbf{p}' \))

 Let \(a_j^{[p]} \) be the elements of activity pattern \(\mathbf{p} \)

 \[
 dp(p, p') = \mathbf{p} \cdot \mathbf{p}' = \sum_i a_i^{[p]} a_i^{[p']}
 \]

 \[\cos \theta_{pp'} = \frac{\mathbf{p} \cdot \mathbf{p}'}{||p|| ||p'||}\]

 - \(\mathbf{p} \) and \(\mathbf{p}' \) are orthogonal if \(dp(p, p') = 0 \)

 - Note that \(n_j = \sum_i a_i w_{ij} = dp(a, w_j) \)

 A unit’s net input is a measure of the similarity between the input pattern and the unit’s “optimal” input (as defined by its weights)

How training patterns influence unit activations

If \(w_{ij} = 0 \) initially, after training on a set of patterns \(\mathbf{p} \) using \(\Delta w_{ij} = \epsilon a_j a_i \),

\[
w_{ij} = \epsilon \sum_p a_j^{[p]} a_i^{[p]} \quad \text{(note: indexing over patterns \(p \))}
\]

After training, response of linear unit to test pattern \(\mathbf{p}' \):

\[
a_j^{[p']} = \sum_i a_j^{[p']} w_{ij} = \sum_i a_j^{[p']} \left(\epsilon \sum_p a_j^{[p]} a_i^{[p]} \right) = \epsilon \sum_p a_j^{[p']} \sum_i a_i^{[p]} a_j^{[p]} = \epsilon \sum_p a_j^{[p]} dp(p', p) = \epsilon \sum_p a_j^{[p]} \text{ similarity}(p', p)
\]

Response of output unit \(j \) to pattern \(\mathbf{p}' \) is combination of its response to known patterns \(\mathbf{p} \), weighted by their similarity to \(\mathbf{p}' \)

Limitations of Hebbian learning

If test pattern \(\mathbf{p}' \) is orthogonal to all training patterns \(\mathbf{p} \), \(dp(p', p) = 0 \) for all \(p \), so

\[
a_j^{[p']} = \epsilon \sum_p a_j^{[p']} dp(p', p) = \epsilon \sum_p a_j^{[p]} 0 = 0
\]

If all training patterns are orthogonal to each other (and assuming \(\epsilon = 1 \)), then

- If \(\mathbf{p}' \) is one of the training patterns (say \(\mathbf{p}^* \)), recall is perfect:

\[
a_j^{[p]} = a_j^{[p']} dp(p', p^*) + \sum_{p \neq p^*} a_j^{[p]} dp(p', p) = a_j^{[p']} + \sum_{p \neq p^*} a_j^{[p]} 0 = a_j^{[p']}
\]

- If \(\mathbf{p}' \) is similar to only one training pattern (\(\mathbf{p}^* \)) and orthogonal to the rest, the output is \(a_j^{[p']} \) scaled by the degree of similarity:

\[
a_j^{[p]} = a_j^{[p']} dp(p', p^*) + \sum_{p \neq p^*} a_j^{[p]} dp(p', p) = a_j^{[p']} dp(p', p^*)
\]

In general, the output to any input pattern is a weighted combination of the outputs of all trained patterns, scaled by their similarity to the input.

- If the combination agrees with \(a_j^{[p']} \), this is facilitation (or generalization if \(\mathbf{p}' \) is novel)
- If the combination disagrees with \(a_j^{[p']} \), this is interference (or poor generalization)