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Abstract
A formulation of learning in dynamic decision-making tasks is
developed, building on the application of control theory to the
study of human performance in dynamic decision making and
a connectionist approach to motor control. The formulation is
implemented as a connectionist model and compared with hu-
man subjects in learning a simulated dynamic decision-making
task. When the model is pretrained with the prior knowledge
that subjects are hypothesized to bring to the task, the model’s
performance is broadly similar to that of subjects. Furthermore,
individual runs of the model show variability in learning much
like individual subjects. Finally, the effects of various manip-
ulations of the task representation on model performance are
used to generate predictions for future empirical work. In this
way, the model provides a platform for developing hypotheses
on how to facilitate learning in dynamic decision-making tasks.

Introduction
In business-related decision-making tasks, such as managing
production output, decision makers make multiple recurring
decisions to reach a target, and they receive feedback on the
outcome of their efforts along the way. This type of dy-
namic decision-making task can be distinguished from one-
time decision-making tasks, such as buying a house, by the
presence of four elements (Brehmer, 1990a, 1992; Edwards,
1962): (1) The tasks require a series of decisions rather than
one isolated decision; (2) The decisions are interdependent;
(3) The environment changes both autonomously and as a
result of decision makers’ actions; (4) Decisions are goal-
directed and made under time pressure, thereby reducing the
decision maker’s opportunities to consider and explore op-
tions. Given that dynamic decision-making tasks take place
in changing environments, research to explain performance
in these environments must account for the ability of the de-
cision maker to adapt or learn while performing (Hogarth,
1981). With the emphasis on learning as a means for improv-
ing performance, the mechanism by which learning occurs
becomes of central concern.

Dynamic Decision Making and Control Theory
Brehmer (1990a, 1992) uses control theory as a framework
for analyzing decision makers’ goal-directed behavior in dy-
namic decision-making environments. He hypothesizes that
decision makers’ ability to learn in dynamic decision-making
tasks depends critically on the sophistication of their under-
standing or model of the environment. In particular, subjects
who appear to be using less sophisticated environment mod-
els are able to learn to improve their performance only when
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Figure 1: A connectionist framework for control tasks, based on
Jordan and Rumelhart (1992). Ovals represent groups of units and
arrows represent sets of connections between groups. The unlabeled
groups are hidden units that learn internal representations. The
dashed arrow is not part of the network, but depicts the physical
process whereby actions produce outcomes.

feedback is timely and continuous (Brehmer, 1990a, in press).
However, Brehmer fails to specify how decision makers form a
model of the environment, how the model of the environment
evolves with experience, and how decision makers use this
model to learn to improve their performance when interacting
with the environment.

Casting dynamic decision making in terms of control theory
allows for the transfer of insights from other related domains
(Hogarth, 1986). In motor learning, Jordan and Rumelhart
(1992; Jordan, 1992, in press) address issues very similar to
those addressed by Brehmer. The key to applying their ap-
proach to dynamic decision making is to divide the learning
problem into two interdependent subproblems: (1) learning
how actions affect the environment, and (2) learning what ac-
tions to take to achieve specific goals, given an understanding
of (1). These two subproblems are solved simultaneously by
two connectionist networks joined in series (see Figure 1).

The task of the action model is to take as input the current
state of the environment and the specific goal to achieve, and
to generate as output an action that achieves that goal. This
action then leads to an outcome which can be compared with
the goal to guide behavior. Unfortunately, when the outcome
fails to match the goal—as it generally will until learning is
complete—the environment does not provide direct feedback
on how to adjust the action so as to improve the corresponding
outcome’s match to the goal.
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Such� feedback can, however, be derived from an internal
model of the environment, in the form of a forward model.
This network takes as input the current state of the envi-
ronment and an action, and generates as output a predicted
outcome. This predicted outcome can be compared with the
actual outcome to derive an error signal. A gradient-descent
procedure, such as back-propagation (Rumelhart, Hinton, &
Williams, 1986), can then be used to adjust the parameters
(i.e., connection weights) of the forward model to improve its
ability to predict the effects of actions on the environment.
Notice that learning in the forward model is dependent on the
behavior of the action model because it can learn environmen-
tal outcomes only over the range of actions actually produced
by the action model.

To the extent that the behavior of the forward model ap-
proximates that of the environment, it can provide the action
model with feedback for learning in the following way. The
actual outcome produced by the action is compared with the
goal to derive a second error signal. Back-propagation can
again be applied to the forward model (without changing its
own parameters) to determine how changing the action would
change the error. This information corresponds to the error
signal that the action model requires to determine how to ad-
just its parameters so as to reduce the discrepancy between
the goal and the actual outcome produced by its action.

Jordan and Rumelhart’s (1992) framework provides an
explicit formulation of the points left unclear in Brehmer’s
(1990a, 1992) original assertion that the environment model
plays a central role in learning in dynamic decision-making
tasks. In Jordan and Rumelhart’s formulation, an internal or
forward model of environment is formed and revised on the
basis of goal-directed interaction with the environment. Fur-
thermore, the importance of this forward model resides in its
role of interpreting outcome feedback as the decision maker
attempts to learn what actions to take in order to achieve given
goals in an evolving context.

A Test Case: The Sugar Production Factory
In order to evaluate Jordan and Rumelhart’s (1992) computa-
tional framework in the context of dynamic decision making,
a version of the model depicted in Figure 1 was implemented
to learn a computer-simulated dynamic decision-making task
that has received significant attention in the experimental
literature, the Sugar Production Factory (Berry & Broad-
bent, 1984, 1988; Brehmer, 1992; Stanley, Mathews, Russ, &
Kotler-Cope, 1989). In one version of the task (the origi-
nal learners condition from Experiment 1 of Stanley et al.,
1989), subjects manipulate the workforce of a hypothetical
sugar factory to attempt to achieve a particular goal produc-
tion level. At every time step

�
, subjects are presented with a

display screen depicting the current workforce (measured in
hundreds of workers), the current production level (measured
in thousands of pounds of sugar), and a graph of all past pro-
duction levels. Subjects must indicate the workforce for time���

1 and are limited to 12 discrete values ranging from 1 to
12 (representing hundreds of workers). Similarly, the output
of the factory is bounded between 1 and 12 thousand tons
in discrete steps, and is governed by the following equation
(which is unknown to subjects):

��� ���
1 ��	 2 
 � ���

1 ��� ��� � � ��
 �
1 �

where
��� ���

1 � represents the new production at time
���

1 (in
thousands), 
 � ���

1 � is the specified workforce at
���

1 (in
hundreds), and



is a random error term of � 1, 0, or 1. Over a

series of such trials within a training set, subjects repeatedly
specify a new workforce and observe the resulting production
level, attempting to achieve a prespecified goal production.

Stanley et al. (1989) report on the performance of eleven
subjects trained on this task in three sessions taking place over
three weeks. Each session was divided into twenty sets of 10
trials or time steps during which the subjects attempted to
reach and maintain a goal level of 6 thousand tons of sugar
production. At the start of each set of trials, initial workforce
was always set at 9 hundred and initial production was allowed
to vary randomly between 1 and 12 thousand. Subjects were
told to try to reach the goal production exactly. However, due
to the random element in the underlying system, Stanley et
al. scored subject performance as correct if it ranged within�

1 thousand tons of the goal. In addition, at the end of each
set of 10 trials, subjects attempted to write down a set of
instructions for yoked naive subjects to follow. The relative
initial success of these yoked subjects compared with that of
purely naive subjects was taken as a measure of the degree of
explicit knowledge developed by the original subjects. The
instruction writing also had a direct beneficial impact on the
performance of the original subjects.

The Sugar Production Factory task contains all of the el-
ements of more general dynamic decision-making environ-
ments, with the exception of time pressure. In this regard,
Brehmer (1992) has observed that, although removing time
pressure may lead to improved performance, the relative ef-
fects of other factors on performance are the same. Fur-
thermore, although the task appears fairly simple, it exhibits
complex behaviors that are challenging to subjects (Berry &
Broadbent, 1984, 1988; Stanley et al., 1989). In particular,
due to the lag term

��� � � , two separate, interdependent in-
puts are required at times

�
and

���
1 to reach steady-state

production. In addition, also due to the lag term, maintain-
ing steady-state workforce at non-equilibrium values leads to
oscillations in performance. Finally, the random element al-
lows the system to change autonomously, forcing subjects to
exercise adaptive control. The random element also bounds
the expected percentage of trials at goal performance to be-
tween 11% (for randomly selected workforce values; Berry &
Broadbent, 1984) and 83% (for a perfect model of the system;
Stanley et al., 1989).

Implementation of the Model
Jordan and Rumelhart’s (1992) framework, depicted in Fig-
ure 1, was instantiated in the following way to interactively
learn to control the Sugar Production Factory. The goal pro-
duction value was indicated as a real value on a single goal
unit. The current production and the current workforce were
each represented as real values on separate input units. The
graph of past production values was represented as a series of
real values on separate input units, one for each value. All
of these inputs were scaled linearly to between 0 and 1. Fi-
nally, the hidden layers in both the forward and action models
each contained 30 hidden units with sigmoidal output ranging
between

�
1. The number of hidden units was established em-

pirically based on series of simulation experiments intended
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to determine� the minimum hidden units required to learn a
slightly more complex version of the task.

As described earlier, the network used two different error
signals to train the forward and action models. The predicted
outcome generated by the forward model was subtracted from
the actual (scaled) production value generated by Equation 1
to produce the error signal for the forward model. The error
signal for the action model was generated by subtracting the
actual production generated by Equation 1 from the goal level
and multiplying the difference by the scale factor.

One training trial with the model occurred as follows. The
initial input values, including the goal, were placed on the
input units. These then fed forward through the action model
hidden layer. A single action unit took a linear weighted sum
of the action hidden unit activations, and this sum served as the
model’s indication of the workforce for the next time period.
This workforce value was used in two ways. First, conforming
to the bounds stipulated in Stanley et al.’s original experiment,
the value was used to determine the next period’s production
using Equation 1. Second, the unmodified workforce value
served as input into the forward model, along with all of the
inputs to the action model except the goal. These inputs fed
through the forward hidden layer. A single predicted outcome
unit computed a linear weighted sum of the forward hidden
unit activations, and this sum served as the model’s prediction
of production for the next period. It is important to note that
the forward and action models were trained simultaneously.

The model was trained under two conditions correspond-
ing to different assumptions about the prior knowledge and
expectations that subjects bring to the task. In the first con-
dition, corresponding to no knowledge or expectations, the
connection weights of both the forward and action models
were set to random initial values sampled uniformly between�

0 � 5. However, using the same task but a different train-
ing regimen, Berry and Broadbent (1984) observed that naive
human subjects appear to adopt an initial “direct” strategy
of moving workforce in the same direction that they want to
move production. To approximate this strategy, in the second
training condition, models were pretrained for two sets of ten
trials on a system in which production was commensurate to
size of workforce without lagged or random error terms.

For both initial conditions, the regimen of training on the
Sugar Production Factory task exactly mimicked that of Stan-
ley et al. (1989) for human subjects, as described above, ex-
cept that no attempt was made to model instruction writing for
yoked subjects. In the course of training, back-propagation
(Rumelhart et al., 1986) was applied and the weights of both
the forward and action models were updated after each trial
(with a learning rate of 0.1 and no momentum). To get an ac-
curate estimate of the abilities of the network, 200 instances
(with different initial random weights prior to any pretraining)
were trained in each experiment.

Comparison of Model and Human Performance
Aggregate Comparison with Stanley et al. (1989). Fig-
ure 2 shows a comparison of the average performance of the
model under the two different initial conditions (with or with-
out pretraining) and Stanley et al.’s (1989) eleven original
learners. Performance is measured based on number of tri-
als correct out of ten using the performance criterion of goal
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Figure 2: A comparison of the average learning performance across
training sessions of Stanley et al.’s (1989) human subjects and models
with and without pretraining.

production
�

1 thousand. As is clear in the figure, the per-
formance of the randomly initialized models is far below that
of human subjects. This difference is unlikely to be due to
explicit knowledge, unavailable to the network, that subjects
were able to acquire early on in the task: Stanley et al. (1989)
found that the instructions written by the original subjects
were useful to yoked naive subjects only near the end of the
third training session.

By contrast, the pretrained models perform equivalently to
human subjects in the first training session, and actually learn
somewhat more quickly than do subjects over the subsequent
two sessions. This advantage may be due to the fact that the
model is not subject to forgetting during an intervening week
between each training session. The findings of the current
modeling work suggest that the prior knowledge and expecta-
tions that subjects bring to the task are critical in accounting
for their ability to learn the task as effectively as they do. Ac-
cordingly, the remainder of the paper presents data only from
models with pretraining.

Why should pretraining, particularly on a system that dif-
fers in important aspects from the Sugar Production Factory,
improve performance in learning to perform in the task? Pre-
training provides the model with a coherent set of initial pa-
rameter estimates describing system performance. Although
the initial model parameters do not describe the true system
well, the model is systematic in applying them in attempting
to control the system. By contrast, models with no pretrain-
ing do not have the benefit of a coherent (albeit incorrect) set
of parameter estimates describing system performance when
starting the Sugar Production Factory task. Thus, their initial
attempts to control the system do not show the same sys-
tematicity and their learning does not have the advantage of
adjusting an already coherent set of parameters.

Single-Subject Comparison across Training Sets. In ad-
dition to aggregate data, Stanley et al. (1989) provide two
examples of individual subject performance for each set of
trials, over the full 60 sets. Figure 3 shows a comparison be-
tween the learning performance of one such subject and that
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Figure 3: The performance over 60 training sets of a single human
subject (Stanley et al., 1989, Subject 10) and a single model.

of an example (pretrained) model over the course of the 60
training sets.

Although there is substantial variability over the course
of training, the subject appears to show a breakpoint around
training set 30,when the improvement in performance is much
more dramatic than at any prior or subsequent time. There
is no apparent breakpoint for the model (and other models
are broadly similar). One possibility is that the subject (but
not the model) acquired an explicit insight into the behav-
ior of the underlying system at the time of the breakpoint.
To test this possibility, Stanley et al. (1989) analyzed the
performance of the original subjects for breakpoints. They
hypothesized that instructions that these subjects wrote for
their naive yoked partners immediately after these breakpoints
would have a significant positive impact on the naive yoked
partners’ performance, thereby indicating a link between ex-
plicit understanding of the system and performance. How-
ever, this hypothesis was not confirmed; instructions written
just after breakpoints were no more effective than those writ-
ten just prior to breakpoints in guiding yoked subjects. Thus,
it appears that the breakpoints do not represent a measurable
increase in subjects’ verbalizeable knowledge about control-
ling the task. Furthermore, not all subjects exhibited clear
breakpoints in learning. Nonetheless, the contrast between
subject and model performance suggests that human learning
may be more subject to rapid transitions than model learning
(but see McClelland, 1994; McClelland & Jenkins, 1990, for
examples of staged learning in connectionist networks).

Within-Set Performance for the Model Learner. As men-
tioned earlier, Berry and Broadbent (1984) found that, at the
beginning of training, subjects attempt to increase workforce
to increase production and vice versa. Furthermore, they
noted that subjects’ performance initially shows large oscil-
lations and that these oscillations decrease as the subjects
gain experience with the system. Figure 4 shows three de-
tailed sets of trials in which the example model whose overall
performance is depicted in Figure 3 attempts to control the
system. Like human subjects, the model starts with highly
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Figure 4: The sugar production generated by the actions of a single
model across the ten trials within training sets 1, 20, and 60.

oscillatory performance and reduces those oscillations as it
becomes more adept at controlling the system.

The initial over- and under-correction is a hallmark of the
model’s systematic application of its pretrained conceptual-
ization of the system. Attempting to bring about a change
in production by a commensurate change in the workforce
has the effect of increasing oscillation in production at non-
equilibrium values. As training progresses, the model slowly
revises its internal model of the system, as represented in
its parameter estimates. By training set 60, the model has
overcome its tendency to over- and under-correct.

Forward and Action Model Learning Over Time. The
importance of the network’s internal model of the system can
be clarified by separately examining the time course of learn-
ing in the forward and action models. Figure 5 shows the
total error across training sets for the forward and action mod-
els, averaged over 40 models. Two observations are relevant.
First, the difference in squared error between the forward and
action models decreases over time. Second, in the early stages
of learning, the error for the forward model drops more steeply
than that of the action model. These two observations illus-
trate how the improvement in the model’s understanding of the
environment precedes and guides its increasing effectiveness
in taking action.

Summary of Comparisons with Human Performance.
The performance of the model presented here is broadly sim-
ilar to that of human subjects, given the available data. Al-
though models without pretraining performed more poorly
than human subjects, pretrained models outperformed sub-
jects in performance measures aggregated over sets. Pre-
training gives the model an edge because it has a coherent
model of a system instantiated in its parameters that it applies
and revises systematically. Consistent with this observation
is the model’s conformance to Berry and Broadbent’s (1984)
observation that human subjects tend to reduce oscillations in
performance as they became more experienced. However, un-
like the model, some human subjects show breakpoints in their
learning performance across training sets, although these do
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Figure 5: Reduction in error of the forward and action models over
training sets.
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Figure 6: Effects of various manipulations of the task environment
on model performance.

not appear to be due to an increase in explicit knowledge about
the underlying system. Finally, Figure 5 characterizes the evo-
lution of model performance in terms of improvements in the
forward model guiding improvements in the action model for
this task.

Effects of Manipulating Task Environment
An important benefit of developing an explicit computational
formulation of dynamic decision making is that it provides a
platform for evaluating factors that influence the effectiveness
of learning in such tasks. In general, many of the relevant fac-
tors have not been studied extensively in the existing empirical
literature. Nonetheless, we can use the implemented model to
generate predictions of how various manipulations will affect
the performance of subjects. As a first step, we performed
a number of simulation experiments to evaluate how model
performance depends on certain aspects of the task represen-
tation. The results from these experiments are presented in
Figure 6. Empirical studies to evaluate these predictions are
currently being planned.

Representing Values as Deviations. In the first experiment,
the model is used to predict how two different representations

of task quantities might affect human performance. In the
deviations representation, the goal and new workforce which
the model sets are represented as deviations (differences) from
the current production and current workforce, respectively. In
addition, the production history is also presented as deviations
from the goal.

As can be seen in Figure 6, model performance in the
deviations condition starts out slightly better than base in the
first session and slowly diverges over the next two sessions
until it is almost a full point below in the third session. The
reason for the divergence in performance appears to be as
follows. The size of the error term relative to the action the
model is trying to modify is larger in the deviations condition
than in the base condition. At the beginning of learning,
models in both conditions are trying to produce relatively
large modifications in workforce (i.e., size of error term is
large for both conditions), so the difference in conditions is not
apparent. However, later in learning, the modifications that
both models are trying to produce in the workforce levels they
are learning to set become finer. It is here that the difference
in size of the error term relative to the action to be modified
becomes significant and affects learning performance.

Similar effects of feedback magnitude have been found
in human learning. In a repeated prediction task, Hogarth,
McKenzie, Gibbs, and Marquis (1991) found that subject per-
formance was influenced by the absolute scale of the feed-
back they received. In particular, subjects receiving feed-
back with low-magnitude variance tended to undercorrect,
whereas those receiving feedback with high-magnitude vari-
ance tended to overcorrect.

Reducing the Number of Presented Relations. The sec-
ond experiment involved manipulating the number of variable
relationships with which the model is presented. In particular,
a model was trained without presenting the history graph of
past production values. As mentioned earlier, this graph is
represented in the base model as additional input values. As
such, the representation has the effect of providing the model
with a greater number of possible relationships between vari-
ables to sort through as it attempts to control the system.
However, as learning progresses and the model learns which
relationships are relevant to performance, the difference in
performance between the base model and the one trained with
no history graph lessens.

Eliminating Random Variability. In the final experiment,
performance on learning the original system was compared
with learning an equivalent deterministic system (i.e., with-
out the random component



in Equation 1). In the original

system, the model attempts to adapt to the random element.
By definition, this random element cannot be learned, so, as
would be expected in Figure 6, performance for the model in
the original system is degraded relative to the deterministic
system. Additionally, the model’s attempts to adapt to the
random element appear to be responsible for slowing the rate
of learning in the original system. By showing a decrease in
the long term rate of adaptation due to the learning mecha-
nism itself, this result conforms with and extends Brehmer’s
(1990b) observation that random elements in system perfor-
mance present a limit to human adaptation.

516



Conclusion
This paper presents a connectionist model that builds on the
previous application of control theory to psychological studies
of dynamic decision making and a connectionist formulation
of motor control. The model provides a broad approximation
to existing data on human learning performance in the Sugar
Production Factory, an example dynamic decision-making
task. In addition, the model makes a number of untested
predictions for future empirical work.

This model’s approach may be contrasted with alternatives
that rely on explicit hypothesis testing or sequences of training
trials to initiate learning. Explicit hypothesis testing would
imply that improved verbal knowledge of the task would co-
occur with improved performance. However, the results of
Stanley et al. (1989) indicate that improved verbal knowledge
occurs well after improved performance.

Two sets of authors present theories that require sequences
of attempts at controlling the system to initiate learning. First,
Mitchell and Thrun (1993) present a learner implemented as a
neural network that attempts to pick the best action based on
its existing model of the environment. This model is updated
based on its assessed accuracy in predicting the outcome of a
sequence of trials once that sequence has occurred. Second,
Stanley et al. (1989) conjecture that performance in the Sugar
Production Factory depends on the learner’s ability to make
analogies between the current situation and prior (successful)
sequences of examples. Thus, in this scheme, knowledge
can be said to increase every time a successful sequence is
encountered and retained. The model proposed here differs
fundamentally from these two approaches in that it is able to
use information from both successful and unsuccessful single
control trials to alter its parameters (connection weights) to
reduce the error in its performance. In particular, this prop-
erty of the model is critical in producing a relatively rapid
decrease in production oscillations as training progresses. If
implemented to perform the Sugar Production Factory task,
it seems unlikely that either Mitchell and Thrun’s or Stanley
et al.’s approach would produce similarly rapid decreases in
oscillations.

Clearly, the model presented here has several limitations. It
does not account for meta-strategies such as planning how to
learn in the task. It also does not account for how verbalize-
able knowledge is acquired during learning. Finally, it does
not account for how relevant information presented across
multiple time steps might be integrated while learning to per-
form in dynamic decision-making tasks. Empirical validation
of the predictions made so far and this last limitation are the
focus of ongoing research. Even with its limitation, the model
constitutes one of the first explicit computational formulations
of how subjects develop and use an internal model of the en-
vironment in learning to perform dynamic decision-making
tasks.
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