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Abstract

We developa connectionisepproacho processingn quasi-reguladomains,
asexemplifiedoy Englishwordreading.A consideratiorof the shortcomings
of apreviousimplementatior(Seidenbeg & McClelland,1989,Psych. Rev.)
in readingnonworddeadsto thedevelopmenbf orthographi@andphonologi-
calrepresentationthatcapturebettertherelevantstructureamongthewritten
andspokerformsof words. In anumberof simulationexperimentspetworks
usingthe new representationigarnto readbothregularandexceptionwords,
including low-frequencyexceptionwords,andyet are still ableto readpro-
nounceableonwordsaswell asskilled readers.A mathematicahnalysisof
the effectsof word frequencyandspelling-soundonsistencyn arelatedbut
simplersystenservedo clarify thecloserelationshipof thesefactorsin influ-
encingnamingatencies.Thesédnsightsareverifiedin subsequergimulations,
includinganattractometworkthatreproducethenaminglatencydatadirectly
in its time to settleon a responseFurtheranalyse®f the network’s ability to
reproducedataon impairedreadingin surfacedyslexiasupporta view of the
readingsystenthatincorporatesgradeddivision-of-laborbetweersemantic
andphonologicalprocessesSucha view is consistentvith themoregeneral
Seidenbay and McClelland framevork andhassomesimilarities with—but
alsoimportantdifferencegrom—thestandardiual-routeaccount.

Mary aspectsof languagecan be characterizedas quasi-
regular—the relationshipbetweeninputs and outputsis sys-
tematicbut admitsmary exceptions. One suchtaskis the
mappingbetweenthe written and spokenforms of English
words. Most words are regular (e.g., GAVE, MINT) in that
their pronunciationsadhereto standardspelling-soundtorre-
spondences.There are, however, mary irregular or excep-
tion words (e.g., HAVE, PINT) whosepronunciationsviolate
the standardcorrespondencesio makemattersworse,some
spelling patternshave a rangeof pronunciationswith none
clearly predominatinge.g., _OWN in DOWN, TOWN, BROWN,
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CROWN VS. KNOWN, SHONN, GROWN, THROWN, Of _OUGH in
COUGH, ROUGH, BOUGH, THOUGH, THROUGH). Nonethelessn
the faceof this compleity, skilled readergpronouncewritten
words quickly andaccurately and can also usetheir knowl-
edgeof spelling-soundorrespondencés readpronounceable
nonwordge.g.,MAVE, RINT).

An importantdebatewithin cognitive psychologyis how
bestto characteriz&nowledgeandprocessingn quasi-rgular
domaingn orderto accounfor humanlanguageerformance.
Oneview (e.g.,Pinker 1984,1991)is thatthe systematias-
pectsof languagererepresentedndprocesseth theform of
anexplicit setof rules. A rule-base@pproacthasconsiderable
intuitiveappeabecausenuchof humarlanguagdehaior can
be characterizedta broadscalein termsof rules. It alsopro-
vides a straightforwardaccountof how languageknowledge
canbeappliedproductively to novel items(Fodor& Pylyshyn,
1988). However, asillustratedabore, mostdomainsareonly
partially systematicaccordingly a separatenechanismis re-
quiredto handlethe exceptions. This distinction betweena
rule-basednechanismandanexceptionmechanismeachop-
eratingaccordingto fundamentallydifferentprinciples,forms
thecentraltenetof so-called'dual-route”theorief language.

An alternatve view comesout of researclon connectionist
or paralleldistributedprocessingetworksjn whichcomputa-
tion takestheform of cooperatre andcompetitveinteractions
amonglarge numbersof simple,neuron-likeprocessinginits
(McClelland, Rumelhart,& the PDP researchgroup, 1986;
Rumelhart,McClelland, & the PDP researchgroup, 1986).
Suchsystemdearnby adjustingweightson connectionde-
tweenunits in a way that is sensitve to how the statistical
structureof theervironmentinfluenceshebehaior of thenet-
work. As a result,thereis no sharpdichotomybetweenthe
itemsthat obey the rulesandthe itemsthat do not. Rather
all itemscoeist within a singlesystemwhoserepresentations
andprocessingeflecttherelative degreeof consistency in the
mappingsfor differentitems. The connectionisapproachs
particularlyappropriatefor capturingthe rapid, online nature
of languageause,aswell asfor specifyinghow suchprocesses
mightbelearnedandimplementedn thebrain(althoughstill at
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asomeavhatabstraclevel; seeSejnavski,Koch,& Churchland,
1989, for discussion).Perhapsnorefundamentally connec-
tionist modelingprovidesa rich setof generalcomputational
principlesthat canleadto new and usefulways of thinking

abouthumanperformancen quasi-rgulardomains.

Much of the initial debatebetweernthesetwo views of the
languagesystenfocusedon therelatively constrainedlomain
of Englishinflectionalmorphology—specificallyforming the
past-tensef verbs. Past-tensdormationis a rathersimple
qguasi-rgular task: thereis a single regular “rule” (add —
ed; e.g., wALK =-"walked”) and only about100 exceptions,
groupedinto several clustersof similar itemsthat undego a
similar change(e.g., SING=-"sang”, DRINK =-"drank”) along
with a very small numberof very high-frequeny, arbitrary
forms(e.g.,Go="went”; Bybee& Slobin,1982). Rumelhart
andMcClelland(1986)attemptedo reformulateheissueaway
from asharpdichotomybetweerexplicit rulesandexceptions,
andtowarda view thatemphasizethe gradedstructurerelat-
ing verbsandtheirinflections.They developedaconnectionist
modelthatlearneda directassociatiometweerthephonology
of all typesof verbstemsandthephonologyof theirpast-tense
forms. PinkerandPrince(1988)andLachterandBever(1988),
however, pointedoutnumerougleficienciesn themodelsac-
tual performanceandin someof its specificassumptionsand
amguedmore generallythat the applicability of connectionist
mechanismsn languageis fundamentallylimited (also see
Fodor& Pylyshyn,1988). However, mary of the specificlim-
itations of the Rumelhartand McClelland model have been
addressedn subsequensimulationwork (Cottrell & Plun-
kett, 1991; Daugherty& Seidenbeg, 1992; Hoeffner, 1992;
MacWhinng & Leinbach,1991;Marchman1993;Plunkett&
Marchman,1991,1993). Thus,the possibility remainsstrong
thataconnectionisiodelcouldprovide afull accounbf past-
tenseinflection. Furthermoresomerecentapplicationgo as-
pectsof languagedisorders(Hoefner & McClelland, 1993;
Marchman 1993)andlanguagehanggHare& Elman,1992,
in pressdemonstratéheongoingextensionof theapproacho
accountor awider rangeof languaggphenomena.

Very similar issuesarise in the domain of oral reading,
wherethereis a muchricher empirical databasevith which
to makecontact. As in the domainof inflectional morphol-
ogy, mary researcherassumehataccountingfor the wealth
of existing dataon both normal and impairedword reading
requirespostulatingmultiple mechanismsln particular dual-
routetheorists(e.g.,Besner& Smith,1992; Coltheart,1978,
1985; Coltheart,Curtis, Atkins, & Haller, 1993; Coltheart&
Rastle,1994; Marshall& Newcombe,1973; Meyer, Schvan-
eveldt, & Ruddy 1974;Morton & Patterson,1980; Paap &
Noel, 1991) have claimedthat pronouncingexceptionwords
requiresa lexical lookup mechanisnthatis separatérom the
subleical spelling-sounctorrespondenceulesthat apply to
regular words and nonwords(also seeHumphreg/s & Evett,
1985,andthe accompaying commentariesor discussiorof
thepropertieof dual-routeheories).Theseparatiomf lexical

andsubleical proceduress motivatedprimarily by evidence
that they canbe independentlympaired,eitherby abnormal
readingacquisition(developmentalyslexia) or by braindam-
agein a previously literate adult (acquireddyslexia). Thus,
phonological dyslexics,whocanreadwordsbut notnonwords,
appeato have a selectve impairmentof the subleical proce-
dure,whereassurface dyslexics, who canreadnonwordsbut
who “regularize” exceptionwords(e.g.,SEw=-"sue”), appear
to have a selectve impairmentof thelexical procedure.
Seidenbeay and McClelland (1989, hereafterSM89) chal-
lengedthe centralclaim of dual-routetheoriesby developing
aconnectionissimulationthatlearnedo maprepresentations
of thewritten formsof words(orthography}o representations
of their spokenforms (phonology). The network success-
fully pronouncesoth regular and exception words and yet
is not an implementationof two separatemechanismgsee
Seidenbag & McClelland,1992,for a demonstratiorof this
last point). The simulationwas put forward in supportof a
more generalframeavork for lexical processingn which or-
thographic,phonological,and semanticinformation interact
in gradually settling on the bestrepresentationfor a given
input (seeStone& Van Orden, 1989, 1994; Van Orden &
Goldinger 1994;Van Orden,Pennington& Stone, 1990, for
a similar perspectie on word reading). A major strengthof
theapproachs thatit providesa naturalaccounbf thegraded
effectsof spelling-soundonsisteng amongwords(Glushko,
1979;JaredMcRae & Seidenbag, 1990)andhow thisconsis-
teng interactswith word frequeny (Andrews, 1982;Seiden-
bewg, 1985; Seidenbeay, Waters,Barnes,& Tanenhausl1984;
Taraban& McClelland,1987; Waters& Seidenbag, 1985)!
Furthermore SM89 demonstratedhat undertrainedrersions
of the modelexhibit someaspectof developmentalsurface
dyslexia, and Patterson(1990, Patterson Seidenbey, & Mc-
Clelland,1989)shaved how damaginghe normalmodelcan
reproducesome aspectsof acquiredsurfacedyslexia. The
SM89modelalsocontritutesto thebroaderenterpriseof con-
nectionistmodelingof cognitive processesin which a com-
monsetof generatcomputationaprinciplesarebeingapplied
successfullyacrossa wide rangeof cognitive domains.
However, the SM89work hasa seriousempiricallimitation
thatunderminests role in establishinga viable connectionist
alternatve to dual-routetheoriesof word readingin particu-
lar, andin providing a satisfactoryformulationof the nature
of knowledgeand processingn quasi-rgular domainsmore
generally Specifically theimplementednodelis significantly
worsethanskilled readersat pronouncingnonwords(Besney
Twilley, McCann,& Seegobin, 1990). This limitation has
broadimplicationsfor therangeof empiricalphenomenahat
can be accountedor by the model (Coltheartet al., 1993).
Poornonwordreadings exactly whatwould bepredictedrom
the dual-routeclaim that no single system—connectionigir
otherwise—cameadbothexceptionwordsandpronounceable

1Thefindingsof thesestudieshave oftenbeencastaseffectsof regularity
ratherthanconsistency—wavill addresshis distinctionin the nextsection.
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nonwordsadequately Under this interpretation,the model
hadsimply approximated lexical look-upprocedureit could
readbothregularandexceptionwords,but hadnot separately
masteredhe sublical rulesnecessaryo readnonwords.An
alternatve interpretationhowever, is thatthe empiricalshort-
comingsof the SM89simulationstemfrom specificaspect®f
its designandnot from inherentlimitations on the abilities of
connectionishetworkdn quasi-rgulardomains.In particular
Seidenbeg andMcClelland(1990)suggestethatthemodel’s
nonwordreadingmight be improved—withoutadwerselyaf-
fecting its other properties—byusing eithera larger training
corpusor differentorthographiandphonologicakepresenta-
tions.

A secondlimitation of the SM89 work is thatit did not
provide avery extensve examinationof underlyingtheoretical
issues. SM89's main emphasisvas on demonstratinghat a
networkwhich operatedaccordingto fairly generalconnec-
tionist principlescould accountfor a wide rangeof empiri-
calfindingson normalanddevelopmentally-impairedeading.
Relatively little attentionwaspaidin thatpaperto articulating
the generalprinciplesthemseles or to evaluatingtheir rel-
ative importance. Thus, muchof the underlyingtheoretical

ing low-frequeny exceptionwords,andyetis still ableto read
pronounceableonwordsaswell asskilledreadersTheresults
openuptherangeof possiblearchitectureghatmightplausibly
underliehumanword reading.A mathematicaanalysisof the
effectsof word frequeng andspelling-sounatonsisteng in a
simplerbut relatedsystemsenesto clarify the closerelation-
ship of thesefactorsin influencingnaminglatencies. These
insightsareverifiedin a secondsimulation. Simulation3 de-
velopsanattractometworkthatreproduceshenaminglateny
datadirectly in its time to settleon a responsegphbviating the
needto useerrorasa proxy for reactiontime. The implica-
tion of the semanticcontribution to readingis consideredn
the fourth andfinal simulation,in the context of accounting
for theimpairedreadingbehaior of acquiredsurfacedyslexic
patientswith braindamage.Damageto the attractornetwork
providesonly a limited accountof the relevantphenomenaa
betteraccounts providedby the performancef anetworkthat
learnsto maporthographyto phonologyin the context of sup-
portfrom semanticsThefindingsleadto aview of thereading
systemthat incorporatesa gradeddivision-of-laborbetween
semanticand phonologicalprocessesSucha view is consis-
tent with the more generalSM89 frameavork and hassome

foundationof thework remainedmp"cit_ Despitesubsequent similarities with—but also important differencesfrom—the

effortsin explicatingtheseprinciples(Seidenbey, 1993) there
remainsconsiderableonfusionwith regardto therole of con-
nectionistmodelingin contributingto atheoryof wordreading

standarddual-routeaccount. The GeneralDiscussionartic-
ulatesthesedifferencesand clarifiesthe implicationsof the
currentwork for a broaderangeof empiricalfindings,includ-

(or of ary othercognitive process). Thus, someresearchers ing thoseraisedby Coltheartetal. (1993)aschallengeso the

(e.g.,Forster 1994; McCloskey, 1991) have claimedthat the
SM89 demonstrationwhile impressve in its own right, has
not extendedour understanding of word readingbecausehe
operationof the modelitself—andof connectionisnetworks
moregenerally—igoo complex to understandConsequently
“connectionishetworksshouldnotbeviewedastheorieof hu-
mancognitive functions,or assimulationsof theoriespr even
asdemonstrationsf specifictheoreticalpoints” (McCloskey,
1991, p. 387; also seeMassaro,1988; Olsen& Caramazza,
1991). Althoughwe rejectthe claim that connectionismod-
elingis atheoretica(seeSeidenbey, 1993),andthatthereare
no basedor analyzingandunderstandingetworks(see.e.g.,
Hanson& Burr, 1990), we agreethat the theoreticalprinci-
plesandconstructdor developingconnectionisexplanations
of empiricalphenomenarein needof furtherelaboration.

Thecurrentwork developsaconnectimistaccountf knowl-
edgerepresentatioandcognitive processindn quasi-rgular
domainsjn the specificcontext of normalandimpairedword
reading. Thework dravs on an analysisof the strengthsand
weaknessesf the SM89work, with the dualaim of providing
amoreadequat@ccounpf therelevantempiricalphenomena,
and of articulatingin a more explicit andformal mannerthe
theoreticalprinciplesthat underliethe approach.We explore
theuseof alternatve representationthatmaketheregularities
betweenwritten and spokenwordsmoreexplicit. In the first
simulationexperiment,a network using the new representa-
tionslearnsto readboth regular andexceptionwords,includ-

connectionisapproach.

We bagin with a brief critique of the SM89model,in which
we try to distinguishits centralcomputationapropertiedrom
lesscentralaspectwf its design. An analysisof its repre-
sentationdeadsto the designof new representationthatare
employedin a seriesof simulationsanalogougo the SM89
simulation.

The Seidenberg and M cClelland M odel

The General Framework

Seidenbeag and McClelland’s (1989) generalframevork for
lexical processings shavn in Figurel. Orthographicphono-
logical, and semanticinformationis representedn termsof
distributed patternsof actiity over separategroupsof sim-
ple neuron-likeprocessinginits. Within eachdomain,similar
wordsarerepresentedy similar patternsof actvity. Lexical
tasksinvolvetransformationbetweertheserepresentations—
for example,oral readingrequiregheorthographigatternfor
awordto generatehe appropriatgphonologicabattern.Such
transformationareaccomplishediathecooperatreandcom-
petitive interactionsamongunits, including additionalhidden
unitsthatmediatébetweertheorthographicphonologicaland
semanticunits. Unit interactionsare governedby weighted
connectiondetweerthem,which collectively encodehesys-
tem’s knowledgeabouthow the differenttypesof information
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Phonology

Orthography
}

MAKE

ImAK/

Figure 1. Seidenbeay and McClelland’s (1989) general
framavorkfor lexical processingEachoval representagroup
of unitsandeacharraw representagroupof connectionsThe
implementednodelis shavn in bold. (Adaptedfrom Seiden-
belg & McClelland,1989,p.526)

arerelated. The specificvaluesof theweightsarederived by
an automaticlearningprocedureon the basisof the systems
exposureto written words,spokenwords,andtheir meanings.

TheSM89framaworkis broadlyconsistentvith amoregen-
eralview of informationprocessinghathasbeerarticulatedy
McClelland(1991,1993)in the context of GRAIN networks.
Thesenetworksembodythe following generalcomputational
principles:

¢ Graded: Propagatiorof activationis not all-or-nonebut
ratherbuilds up graduallyover time.

¢ Random:Unit activationsaresubjecto intrinsic stochas-
tic variability.

e Adaptive: The systemgradually improves its perfor
mancey adjustingveightsonconnectionbetweennits.

e |Interactve: Informationflows in a bidirectionalmanner
betweergroupsof units, allowing their activity levelsto
constraineachotherandbe mutually consistent.

¢ Nonlinear: Unit outputsaresmooth,nonlinearfunctions
of theirtotal inputs,significantlyextendingthe computa-
tional power of the entirenetworkbeyond thatof purely
linearnetworks.

Theacrorym GRAIN is alsointendedo corvey thenotionthat
cognitive processesareexpressedt a finer grain of analysis,

in termsof interactinggroupsof neuron-likeunits, thanis typ-
ical of most“box-and-arrev” informationprocessingnodels.
Furthercomputationaprinciplesthatarecentralto the SM89
framewvork but not capturedoy theacrorym are:

¢ DistributedRepresentationdtemsin thedomainarerep-
resentedy patternsof actvity over groupsof unitsthat
participaten representingnary otheritems.

¢ DistributedKnowledge: Knowledgeaboutthe relation-
ship betweenitemsis encodedacrosslarge numbersof
connectionweightsthat also encodemary other map-

pings.

Much of thecontrosersysurroundinghe SM89framework,
and the associatedmplementation stemsfrom the fact that
it breakswith traditionalaccountsf lexical processinde.g.,
Coltheart,1985;Morton & Patterson;1980)in two fundamen-
tal ways. Thefirst is in the representationadtatusof words.
Traditionalaccountsassumehatwordsarerepresenteth the
structureof the readingsystem—inits architecture. Morton’s
(1969) “logogens” are well-known instanceof this type of
wordrepresentationBy contrastwithin the SM89framework
the lexical statusof a string of lettersor phonemess not re-
flectedin the structureof the readingsystem. Rather words
are distinguishedfrom nonwordsonly by functional proper
ties of the system—thevay in which particularorthographic,
phonological,and semanticpatternsof activity interact(also
seeVanOrdenetal., 1990).

The SM89 framavork’s secondmajor breakwith tradition
concernsthe degree of uniformity in the mechanism(spy
which orthographic,phonological,and semanticrepresenta-
tionsinteract. Traditionalaccountsassumehat pronouncing
exception words and nonwordsrequire separatdexical and
subleical mechanismsgespectrely. By contrastthe SM89
frameavork employsfar morehomogeneouprocesse oral
reading. In particulay it eschevs separatemechanismdor
pronouncingnonwordsand exceptionwords. Rathey all of
the system$ knowledge of spelling-soundcorrespondences
is broughtto bearin pronouncingall typesof letter strings.
Conflictsamongpossiblealternatie pronunciation®f a letter
string are resolhed, not by structurallydistinct mechanisms,
but by cooperatie andcompetitive interactiondhasedn how
the letter string relatesto all known wordsandtheir pronun-
ciations. Furthermorethe semantiaepresentationf a word
participatedn oral readingin exactly the samemannerasdo
its orthographicand phonologicalrepresentationsalthough
the framework leaves openthe issueof how importantthese
semantidnfluencesarein skilled oral reading.

Regularity versus Consistency. An issuethat is inti-
mately relatedto the tensionbetweenthe SM89 framevork
andtraditionaldual-routeheoriesconcernghedistinctionbe-
tweenregularity andconsisteng. Broadlyspeakingawordis
regular if its pronunciationcanbe generatedby rule” andit
is consistent if its pronunciatioragreewith thoseof similarly
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speltwords. Of courseto be usefulthesedefinitionsmustbe
operationalizedn more specificterms. The mostcommonly
proposedbronunciatiorrulesare basedon the mostfrequent
grapheme-phonengerrespondencésthelanguagealthough
suchGPCrulesmustbeaugmentedavith considerableontext-
sensitvity to operateadequatelyseeColtheartet al., 1993;
Seidenbay, Plaut,PetersenMcClelland,& McRae,1994,for
discussion)Consisteng, ontheotherhand hastypically been
definedwith respecto the orthographidbody andthe phono-
logical rime (i.e., the vowel plus ary following consonants).
This choicecanbepartly justifiedonthe groundsof empirical
data: for example, Treiman, Mullennix, Bijeljac-Babic,and
Richmond-Vélty (in press)have recentlydemonstratedhat,
in namingdatafor all 1329 monosyllabicwordsin English
with a CVC pronunciationthe consisteng of the body (VC)
accountgor significantlymorevariancen naminglateng than
the consisteng of the onsetplus vowel (CV). Therearealso
pragmaticreasondor restrictingconsideratiorto body-level
consisteng—bodiesconstitutea manageablenanipulationn
designingexperimentalists. If experimenterdadto consider
consisteng acrosorthographimeighborhoodsatall possible
levels, from individual graphemesip to the largestsub-word
sizedchunks,their selectionof stimuluswordswould be an
even moreagonizingprocesghanit alreadyis. Nonetheless,
the generalnotion of consisteng is broaderthan a specific
instantiationin termsof body consisteny, just asthe general
notionof regularity is broadethanthatdefinedby ary partic-
ular setof spelling-sounatorrespondenceiles.

Basedon the frequentobsenation (e.g., Coltheart,1978;
Parkin,1982;Waters& Seidenbag, 1985)thatwordswith reg-
ular or typical spelling-sounaorrespondencgsuchasMiINT)
produceshorternaminglatenciesand lower error ratesthan
wordswith exceptionalcorrespondencgsuchasPINT), regu-
larity wasoriginally consideredo bethe critical variable. In
1979, however, Glushkoamuedthat consisteng provided a
betteraccountof empiricalresults. AlthoughMINT may be a
regular word accordingto GPCrules,its spelling-soundela-
tionshipis inconsistentith thatof its orthographimeighbor
PINT. To the extent that the processof computingphonol-
ogy from orthographyis sensitie to the characteristicef the
neighborhoodperformancenaregularbutinconsistentvord
like MINT may also be adwerselyaffected. Glushko (1979)
did indeeddemonstratéongernaminglatenciedor regularin-
consistentvordsthanfor regularwordsfrom consistenbody
neighborhoodghoughthis resultwasnot alwaysobtainedn
subsequergxperimentge.g.,Stanhop&& Parkin, 1987).

In 1990,Jared McRae,and Seidenbeg offereda more so-
phisticatechypothesighat capturesaspect®f resultsnothan-
dledby previous accountgeferringsolelyto eitherregularity
or consisteng. Accordingto Jaredand colleaguesthe mag-
nitude of the consisteny effect for a givenword dependn
the summedfrequeny of that word’s friends (wordswith a
similar spelling patternand similar pronunciation)and of its
enemies (wordswith asimilarspellingpatternbut adiscrepant

pronunciation).For example,aninconsistentvord like MINT
hasanumberof friends(e.g.,LINT, TINT, PRINT, etc.) andjusta
singleenemy PINT. Againstthe strengthof friends,the single
enemycannotexert a markedinfluence(especiallywhen,as
is true of PINT, the enemyis of relatively low frequeng); its
negative impacton computingthe pronunciatiorof MINT will

thus be small and perhapsundetectable.By contrast,an in-
consistentvord like GowN, with mary enemiege.g.,BLOWN,
SHONN, GROWN, etc.) aswell asfriends(e.g.,DOWN, BROWN,
TOWN), givesrise to a more substantiakffect. Suchwords,
with roughlybalancedupporfrom friendsandenemieshave
beentermedambiguous (with respecto the pronunciatiorof
theirbody;BackmanBruck, Hebert& Seidenbey, 1984;Sei-
denbeg etal., 1984).

The commonly obsered effect of regularity also finds a
naturalexplanationwithin Jaredet al.’s (1990) account,be-
causamostregularwords(asdefinedoy GPCrules)have mary
friendsandfew if ary enemieswhereasvordswith irregular
spelling-soundcorrespondencesuchas PINT or SEW) typi-
cally have mary enemiesandfew if ary friends. Giventhis
correspondencand following Glushko(1979) and Taraban
and McClelland (1987), we will refer to words with mary
enemiesandfew if ary friendsasexception words,acknavl-
edgingthat this definition excludesmary words that would
be consideredxceptionalaccordingo GPCrules(e.g.,mary
ambiguouswords). Jaredet al’s hypothesisand supporting
dataalsomeshwell with otherresultsdemonstratingheinad-
equag of a simple regular/irregular dichotomy suchasthe
“degreesof regularity” effect obsered in acquiredsurface
dyslexia (Shallice,Warrington,& McCarthy 1983, also see
Plaut, Behrmann,Patterson,& McClelland, 1993, for more
directevidenceof consisteng effectsin surfacedyslexia).

It mustbekeptin mind, however, thatadefinitionof consis-
teng/ basedsolelyon bodyneighborhoodsvenif frequeng-
weighted canprovide only a partialaccounbf theconsisteng
effectsthat would be expectedto operateover the full range
of spelling-soundcorrespondencesThus, for example, the
word CHEF could not be considerednconsistenbn a body-
level analysisas all the wordsin Englishwith the body EF
(i.e., CLEF, REF agreewith its pronunciation. On a broader
definition of consisteng, however, CHEFis certainlyinconsis-
tent, sincethe overwhelminglymost commonpronunciation
of cH in Englishis the one appropriateto CHIEF, not CHEF.
This broadview of consisteng is alsoimportantwhen con-
sideringwhatmight becalledirregularconsistenwords—that
is, wordssuchaskIND, BOLD, andTOOK thathave highly con-
sistentbody neighborhood$ut that are nonethelesgregular
accordingo GPCrulessuchasthoseof Coltheartetal. (1993).
The processingf suchitemswould be expectedto be sensi-
tive to the conflict betweerconsisteng atthe body-rimelevel
andinconsisteng at the grapheme-phonenievel. In all of
what follows, therefore,althoughwe will adoptthe standard
practiceof usingbody-level manipulationgor empiricaltests,
this shouldbeinterpretedasproviding only anapproximation
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of thetruerangeof consisteng effects.

Relationship toOther Approaches. A cursoryinspection
of Figure1l mightsuggesthatthe SM89framavork s, in fact,
adual-routesystem:orthographycaninfluencephonologyei-
therdirectlyor via semanticsTo clarify this possiblesourceof
confusionwe mustbemoreexplicit abouttypicalassumptions
in dual-routetheoriesconcerningthe structureand operation
of the differentprocedures.As describedearlier the central
distinctionin suchtheoriesis betweenlexical and subleical
procedures. The subleical procedureappliesGPC rulesto
producecorrectpronunciationgor regular words,reasonable
pronunciationgor nonwordsandincorrect, regularized”pro-
nunciationsfor exceptionwords. The lexical procedureoro-
ducescorrectpronunciationgor all words,andnoresponséor
nonwords Whentheoutputsof thetwo proceduresonflict,as
they dofor exceptionwords,somemodels(e.g.,Paap& Noel,
1991) assumea “horse race” with the faster (typically lexi-
cal) proceduregeneratingthe actualresponse.Others(e.g.,
Monsell, Patterson,Graham,Hughes,& Milroy, 1992) sug-
gestthat output from the two procedureds pooleduntil a
phonologicalrepresentatiosufiicient to drive articulationis
achieved (althoughthe specificmeansby which this pooling
occursis rarelymadeexplicit). Thelexical procedurés often
subdvidedinto adirect routethatmapsorthographiavordrep-
resentationslirectly onto phonologicalword representations,
andanindirect route that mapsvia semantics.In thesefor-
mulations,the “dual-route” modelis in a sensea three-route
model,althoughresearchenypically assuméhattheindirect,
semanticroute would be too slow to influenceskilled word
pronunciationColtheart,1985;Patterson& Morton,1985).

By contrast,the nonsemantigortion of the SM89 frame-
workdoesnotoperateby applyingGPCrules,butby thesimul-
taneousnteractionof units. It is alsocapableof pronouncing
all typesof input,includingexceptionwords,althoughthetime
it takego dosodepend®nthetypeof input. Furthermorethe
semantigortionof theframevork doesnotoperaten termsof
whole-wordrepresentationgut ratherin termsof interacting
units, eachof which participatesin the processingdf mary
words. In addition,nonwordsmay engagesemanticto some
degree,althoughthe extentto which this occursis likely to be
minimal (seethe discussiorof lexical decisionin the General
Discussion). Thus, the structureand operationof the SM89
framewvork is fundamentallydifferentfrom existing dual-route
theories.

It mayalsohelpto clarify therelationshiphetweertheSM89
framavork and approacheso word readingotherthandual-
routetheories. Thetwo main alternatvesarelexical-analogy
theoriesand multiple-levels theories. Lexical-analogytheo-
ries (Henderson1982; Marcel, 1980)dispenseawith the sub-
lexical procedureandproposethatthe lexical procedurecan
pronouncenonwordsy synthesizinghepronunciation®f or-
thographicallysimilarwords. Unfortunatelythewayin which
thesepronunciationsare generatedind synthesizeds rarely
fully specified.Multiple-levelstheoriegShallice& McCarthy

1985; Shalliceet al., 1983)dispensawith the (direct) lexical
route (or rather incorporateit into the subleical route) by
assuminghatspelling-soundorrespondenceserepresented
for sggmentsof all sizes,rangingfrom singlegraphemesnd
phonemeso word bodiesandentiremorphemes.

In away, the SM89framewvork canbethoughtof asaninte-
grationandmoredetailedspecificatiorof lexical-analogyand
multiple-level theories(also seeNorris, 1994, for a connec-
tionist implementatiorof the latter). The pronunciationsof
nonwordsaregenerate@nthebasisof thecombinednfluence
of all known word pronunciationswith thosemost similar
to the nonwordhaving the strongeseffect. In orderfor the
systemto pronounceexceptionwords as well as nonwords,
the hiddenunits mustlearnto be sensitve to spelling-sound
correspondencesf a rangeof sizes. The framework is also
broadlyconsistenwvith VanOrdenetal.’s (1990)proposathat
orthographyand phonologyare strongly associatedvia co-
variantlearning,althoughthe SM89 framewvork incorporates
directinteractionbetweenorthographyand semanticswhich
VanOrdenandcolleagueslispute.

The Implemented Model

The SM89 framework clearly represents radical departure
from widely held assumptionsaboutlexical processingbut
is it plausible asanaccountof humanword reading? In the
serviceof establishingheframevork’s plausibility, SM89im-
plementedspecificconnectionishetworkthat,they implicitly
claimed,embodieghe centraltheoreticakenetsof the frame-
work.

Thenetwork,highlightedin boldin Figurel, containghree
groupsof units: 400 orthographiainits,200 hiddenunits,and
460 phonologicalunits. The hiddenunitsreceve connections
from all of the orthographicunits and,in turn, sendconnec-
tionsto all of the phonologicalunits aswell asbackto all of
the orthographiaunits. The networkcontainsno semanticor
contet information.

Orthographi@andphonologicaformsarerepresentedspat-
ternsof activity over the orthographi@ndphonologicalnits,
respectiely. Thesepatternsare definedin termsof context-
sensitve triples of lettersand phonemegWickelgren,1969).
It wascomputationallyinfeasiblefor SM89 to include a unit
for eachpossibletriple, sothey usedrepresentationthat re-
quire fewer units but presere the relative similaritiesamong
patterns.In orthographythe letter triples to which eachunit
respondsaredefinedby atableof 10 randomlyselectedetters
(or a blank)in eachof threepositions. In the representation
of a letter string, an orthographicunit is active if the string
containsoneof thelettertriplesthancanbegeneratedy sam-
pling from eachof the threepositionsof thatunit'stable. For
example, GAVE would activate all orthographicunits capable
of generating GA, GAv, AVE, Or VE_.

Phonologicalrepresentationare derived in an analogous
fashion,exceptthata phonologicalunit’stableentriesat each
position are not randomly selectedphonemeshput ratherall
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phonemesontainingaparticularphonemideature(asdefined
by Rumelhar& McClelland,1986).A furtherconstrainisthat
thefeaturedor thefirst andthird positionsmustcomefrom the
samephoneticdimension(e.g., placeof articulation). Thus,
eachunit in phonologyrepresents particularorderedtriple
of phonemicfeaturestermeda Wickelfeature. For example,
thepronunciatiorigAv/ wouldactivatephonologicalinitsrep-
resentinghe Wickelfeaturegback, vowel, front], [stop, long,
fricative], and mary others(giventhat/g/ hasback andstop
amongits features/A/ hasvowel andlong, and/v/ hasfront
andfricative). Onaverage aword activates81 (20.3%)of the
400 orthographiaunits,and54 (11.7%)of the 460 phonolog-
ical units. We will returnto an analysisof the propertiesof
theserepresentationafter summarizinghe SM89 simulation
results.

Theweightson connectiondetweerunits wereinitialized
to small randomvalues. The network then was repeatedly
presentedvith the orthographyof eachof 2897monosyllabic
words,andtrainedbothto generatéhephonologyof theword
andto regeneratets orthography(seeSeidenbeay & McClel-
land, 1989 for details).Duringeactsweeghroughthetraining
set, the probability that a word was presentedo the network
was proportionalto a logarithmic function of its frequeng
(Kucera& Francis,1967).Processingword involvedsetting
thestatef theorthographianits(asdefinedabore), comput-
ing hiddenunit stateshasen statesof the orthographiainits
andthe weightson connectiongrom them,andthencomput-
ing statesof the phonologicabndorthographiainitsbasedn
thoseof the hiddenunits. Back-propagatioiRumelhartHin-
ton, & Williams, 1986a,1986b)wasusedto calculatehow to
adjusttheweightsto reducehedifferencedetweerthecorrect
phonologicabndorthographieepresentationsf thewordand
thosegeneratedy the network. Theseweightchangesvere
accumulatedluringeachsweephroughthetrainingset;atthe
end thechangesverecarriedoutandtheprocessvasrepeated.

Thenetworkwasconsideredo have namedawordcorrectly
whenthegenerategphonologicahctiity wasclosertotherep-
resentatiomf thecorrectpronunciatiorof thewordthanto that
of ary pronunciatiorwhich differedfrom the correctoneby a
singlephoneme.For the exampleGAVE =/gAv/, the compet-
ing pronunciationgreall thoseamong/xAv/, /gxv/, or /gAx/,
where/«/ is ary phoneme After 250trainingsweepghrough
the corpus,amountingto about150,000word presentations,
thenetworkcorrectlynamedall but 77 words(97.3%correct),
mostof which werelow-frequeng exceptionwords.

A considerableamountof empirical dataon oral reading
concernsthe time it takesto namewords of varioustypes.
A naturalanaloguden a modelto naminglateny in subjects
would be the amountof computingtime requiredto produce
an output. SM89 could not usethis measurebecauseaheir
networktakesexactlythesameamounbf time—oneupdateof
eachunit—tocomputephonologicabutputfor ary letterstring.
Instead,they approximatechaming lateny with a measure
of the accurag of the phonologicalactiity producedby the
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Figure 2. Mean phonologicalerror scoresproducedby the
Seidenbeag and McClelland (1989) network for words with
variousdegreesof spelling-soundconsisteng (listed in Ap-
pendix1) asa functionof frequeny. Regeneratedrom Fig-
ure 16 of Seidenbay andMcClelland(1989,p. 542).

network—thephonological error score. SM89shavedthatthe
network’s distribution of phonologicakrrorscoredor various
words replicatesthe effects of frequeng and consisteng in

naminglatenciefoundin awide variety of empiricalstudies
usingthesameawords. Figure2 presentparticularlyillustrative
resultsin this regard,usinghigh- andlow-frequenyg wordsat

four levelsof consisteng (listedin Appendix1 andusedin the
currentsimulations):

o Exception wordsfrom Experimentsl and?2 of Taraban
and McClelland (1987); they have an averageof 0.73
friendsin the SM89corpus(notcountingtheworditself),
and9.2enemies;

¢ Ambiguous wordsgeneratedy SM89to be matchedn
KuceraandFrancis(1967)frequeng with the exception
words;they averageB.6 friendsand8.0enemies;

¢ Regular inconsistent words, alsofrom Tarabanand Mc-
Clelland(1987),which average7.8 friendsandonly 2.1
enemies;

¢ Regular consistent wordswhich arethe controlitemsfor
theexceptionwordsin theTarabarandMcClellandstudy;
they have an averageof 10.7 friends and 0.04 enemies
(the foreign word coup for the item GrRoup, and one of
thepronunciation®f Bassfor theitem cLASS).

Therelevantempiricaleffectsin naminglateny exhibited by
the SM89modelare,specifically:

1. High-frequeng words are named faster than low-
frequeng words(e.g.,Forster& Chambers]1973;Fred-
eriksen& Kroll, 1976).
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2. Consistentvordsarenamedasteithaninconsistentvords
(Glushko,1979), and latenciesincreasemonotonically
with increasingspelling-soundnconsisteny (asapprox-
imatedby therelative proportionof friendsvs. enemies;
Jaredetal., 1990). Thus,regularinconsistentvordslike
MOTH (cf. BOTH) areslowerto benamedhanregularcon-
sistentwordslike MusT (Glushko,1979),and exception
wordslike PINT andsew aretheslowestto benamed Sei-
denbeg et al., 1984). Performancen ambiguousvords
like cowN (cf. GROWN) falls betweerthaton regularin-
consistentvordsandthat on exceptionwords, although
this hasbeeninvestigateddirectly only with respectto
readingacquisition(Backmaretal., 1984).

. Frequenyg interactswith consisteng (Seidenbeg, 1985;
Seidenbag et al., 1984; Waters& Seidenbay, 1985),
suchthat the consisteng effect is much greateramong
low-frequeng wordsthanamonghigh-frequeng words
(whereit mayevenbeabsentseeg.g.,Seidenbeg, 1985),
or equivalently, the frequeng effect decreasesvith in-
creasinglyconsistenyg (perhapseingabsenamongreg-
ularwords;see e.g.,Waters& Seidenbag, 1985).

In consideringheseempiricalandsimulationresultsit is im-
portantto keepin mindthattheuseof afour-way classification
of consisteny is not intendedto imply the existenceof four
distinct subtypeof words;rather it is intendedto helpillus-
tratetheeffectsof whatis actuallyanunderlyingcontinuumof
consisteng (Jarecdet al., 1990)2

The modelalso shavs analogouseffects of consisteng in
nonwordnaminglateng. In particulay nonwordslerivedfrom
regular consistentvords(e.g.,NUST from MUST) arefasterto
namehannonwordgderivedfrom exceptionwords(e.g.,MAVE
from HAVE; Glushko,1979; Taraban& McClelland, 1987).
As mentionedn the Introduction,however, the model's non-
wordnamingaccuracy is muchworsethanthatof skilledread-
ers. Besneret al. (1990)reportedthat, on nonwordlists from
Glushko(1979)andMcCannandBesne(1987),themodelis
only 59% and51% correct,whereasskilled readersare 94%
and 89% correct, respectiely. Seidenbey and McClelland
(1990) pointedout that the scoringcriterion usedfor the net-
work wasmorestrict thanthat usedfor the subjects.We will
returnto theissueof scoringnonwordreadingperformance—
for the presenpurposesit sufiicesto acknavledgethat,even

2This is particularlytrue with respectto the distinction betweenregular
inconsistentvordsandambiguousvords,which differ only in the degreeof
balancebetweerfriendsandenemies.In fact, a numberof previousstudies,
including Tarabanand McClelland (1987), failed to makethis distinction.
As aresult,someof the TarabanandMcClellandregularinconsistentvords
containbodiesthatwe categorizeasambiguouge.g.,DEAR, GROW). Thishas
theunfortunateonsequenddat,occasionallywordswith identicalbodiesare
assignednto differentconsistencylasses.However, in the currentcontext,
we arenot concernedvith individual itemsbut solelywith usingthe pattern
of meansacrosslassedo illustrateoverallconsistenceffects. In thisregard,
the word classediffer in the appropriatemannerin their average relatve
numbersof friendsandenemies.Thus, for continuitywith earlierwork, we
will continueto usethe TarabarandMcClellandstimuli.

taking differencesn scoringinto accountthe performancef
the SM89modelon nonworddgs inadequate.

The SM89 model replicatesthe effects of frequeng and
consisteng in lexical decision(Waters& Seidenbay, 1985)
whenresponsearebasedn orthographicerror scores, which
measurethe degreeto which the network succeedst recre-
ating the orthographyof eachinput string. Again, however,
the modelis not as accurateat lexical decisionundersome
conditionsasarenormalsubjectgBesneretal., 1990;Fera&
Besner1992).

Consisteng alsoinfluenceghe easeawith which word nam-
ing skills areacquired. Thus, lessskilled readers—whether
younger or developmentally dyslexic—show larger consis-
teng effectsthanmoreskilled readergBackmanetal., 1984;
Vellutino,1979). Themodelshavssimilareffectsbothearlyin
the courseof learningandwhentrainedwith limited resources
(e.g.,toofew hiddenunits).

Finally, damaginghe modelby removing units or connec-
tionsresultsin a patternof errorsthatis somavhat similar to
thatof brain-injuredpatientswith oneform of surfacedyslexia
(Patterson,1990; Pattersonet al., 1989). Specifically low-
frequeng exceptionwords becomeparticularly proneto be-
ing regularized(seePatterson Coltheart,& Marshall,1985).
Overall, however, attemptsto model surfacedyslexia by le-
sioningthe SM89 modelhave beenlessthansatisfactory(see
Behrmann& Bub, 1992;Coltheartetal., 1993,for criticism).
Wewill considethisandothertypesof developmentabndac-
guireddyslexia in moredetailafterpresentingnew simulation
resultson normalskilled reading.

Evaluation of the M odd

In evaluatingthe SM89resultsit is importantto bearin mind
therelationshipbetweertheimplementednodelandthemore
generalframeavork for lexical processingrom which it was
derived. In mary ways,theimplementedetworkis apoorap-
proximationto thegeneraframevork: it containgno semantic
representationsr knowledge,it wastrainedon a limited vo-
calulary, andits feedforwardarchitectureseverelyrestrictsthe
way in which informationcaninteractwithin the system. In
addition,asaworkingimplementationthe networkinevitably
embodiespecificrepresentationalndprocessingletailsthat
are not centralto the overall theoreticalframavork. Such
detailsincludethespecificorthographi@andphonologicatep-
resentatiorschemesthe logarithmic frequeng compression
usedin training, the useof error scoreso modelnamingla-
tencies,andthe useof a supervisederrorcorrectingtraining
procedurgbut seeJordan& Rumelhart1992). Nonetheless,
the implementednetwork is faithful to most of the central
theoreticaltenetsof the generalframevork (seealso Seiden-
beig, 1993): (a) the networkemploysdistributedorthographic
andphonologicatepresentationthatreflectthe similaritiesof
wordswithin eachdomain, (b) the computationof orthogra-
phy and phonologyinvolve nonlinearcooperatre and com-
petitiveinfluencegjovernedby weightedconnectiondetween
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units, (c) theseweightsencodeall of thenetwork'sknowledge
abouthow orthographyandphonologyarerelated.and(d) this
knowledgeis acquiredgraduallyon the basisof the network’s
exposureto written wordsandtheir pronunciations.It is im-

portantto notethattwo centralprinciplesarelacking in the
implementednetwork: interactvity and intrinsic variability.

We considettheimplicationsof theseprincipleslater.

Before we focuson the limitations of SM89's work, it is
importanto beclearaboutts strengthsFirstandforemostthe
generalframavork is supporteddy an explicit computational
modelthatactuallyimplementghemappingrom orthography
to phonology Of coursejmplementingamodeldoesnotmake
it ary morecorrect,but it does,amongotherthings,allow it
to be morethoroughlyandadequatelyevaluated(Seidenbaeg,
1993). Many modelsof readingarenomoreexplicit than“box-
and-arrev” diagramsaccompaniety descriptie text on how
processingvould occurin eachcomponenta notablerecent
exceptiontothisis theimplementatiorof Colthearetal.,1993;
Coltheart& Rastle 1994 ,whichis comparedn detailwith the
currentapproactby Seidenbegetal., 1994).In fact,theSM89
generalframavork amountgo sucha description. By taking
the further stepof implementinga portion of the frameavork
andtestingit ontheidenticalstimuli usedin empiricalstudies,
SMB89 enabledthe entire approachto be evaluatedin much
greatedetailthanhasbeerpossiblewith previous,lessexplicit
models.

Furthermore,it should not be overlooked that the im-
plementedmodel succeedsn accountingfor a considerable
amountof dataon normaland impairedword reading. The
model reproduceghe quantitatve effects found in over 20
empirical studieson normal reading,as well as somebasic
findings on developmentaland acquireddyslexia. No other
existing implementationcovers arything closeto the same
rangeof results.

Finally, it is importantto bearin mind thatthebasiccompu-
tational propertiesof the SM89 frameavork and implementa-
tion werenot developedspecificallyfor wordreading.Rathey
they derive from the muchbroaderenterpriseof connectionist
modelingin cognitive domains. The sameprinciplesof dis-
tributed representationgnteractvity, distributed knowledge,
andgradient-descerearningarealsobeingappliedsuccess-
fully to problemsin high-level vision, learningand memory
speechand language,reasoningand problem solving, and
motor planningand control (seeHinton, 1991; McClelland,
Rumelhart,& the PDPresearchgroup,1986;Quinlan,1991,
for examples). Two distinctive aspectf the connectionist
approachareits strongemphasion generallearningprinci-
ples,andits attemptto makecontactwith neurobiologicabs
well ascognitive phenomena.Neurally plausiblelearningis
particularly critical to understandingeadingasit is unlikely
thatthebrainhasdevelopednnate dedicateatircuitry for such
anevolutionarily recentskill. Thus,the SM89work not only
makesspecificcontributionsto the study of reading,but also

how cognitive processeare learnedandimplementedn the
brain.

The SM89implementatiordoes however, have serioudim-
itationsin accountingor someempiricaldata. Someof these
limitationsno doubtstemfrom thelack of unimplementegbor-
tionsof theframeavork—mostimportantly theinvolvementof
semantiaepresentationsut alsoperhaps/isualandarticula-
tory proceduresA full consideratiorof the rangeof relevant
empirical findings will be betterundertakenin the General
Discussionn the context of the new simulationresults. Con-
siderationof the poor nonword readingperformanceof the
SM89network,however, cannotbepostponedThislimitation
is fundamentahsnonwordreadingis unlikely to beimproved
by the addition of semantics. Furthermore,Coltheartet al.
(1993) have arguedthat, primarily asa resultof its poor pro-
cessingf nonwordsthemodelis incapableof accountingor
five of six centralissuesn normalandimpairedwordreading.
More fundamentallyby notreadingnonwordsadequatelythe
modelfails to refutetheclaimof dual-routeheoristghatread-
ing nonwordsand readingexceptionwords requiresseparate
mechanisms.

Seidenbay andMcClelland(1990)arguedthatthe models
poor nonwordreadingwas not a fundamentalproblemwith
thegeneraframeawork, but ratherwastheresultof two specific
limitationsin theimplementationThefirstisthelimited sizeof
thetrainingcorpus.Themodelwasexposedo only about3000
words,whereaghe skilled readerswith whomit is compared
know approximatelyentimesthathnumber Giventhattheonly
knowledgethatthe modelhasavailablefor readingnonwords
is whatit hasderivedfrom words,a limited training corpusis
aserioushandicap.

Coltheartet al. (1993) have arguedthat limitations of the
SMB89 training corpuscannotexplain the model’s poor non-
word readingbecause systemthat learnsGPC rules using
thesamecorpusperformsmuchbetter Thisamguments falla-
cious,however, becausehe effectivenesf atrainingcorpus
dependgritically on otherassumptionsuilt into thetraining
procedure. In fact, Coltheartand colleagues’procedurefor
learningGPCruleshasbuilt into it a considerablemountof
knowledgethat is specificto reading,concerningthe possi-
blerelationshipdetweergraphemesndphonemen various
contts. In contrast,SM89 applieda generallearningpro-
cedureto representationthat encodeonly orderedtriples of
lettersandphonemicfeaturesput nothingof their correspon-
dences. A demonstratiorthat the SM89 training corpusis
sufficient to supportgood nonwordreadingin the context of
strong, domain-specifi@assumptiongloesnot invalidatethe
claim that the corpusmay be insufficient in the context of
muchweakerassumptions.

The secondaspecbf the SM89 simulationthat contributed
to its poor nonwordreadingwasthe useof Wickelfeaturedo
represenphonology Thisrepresentationaichemehasknown
limitations,mary of which arerelatedto how well thescheme

fits within ageneratomputationaapproachor understanding couldbeextendedo morerealisticvocatularies(see achter&
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Bever, 1988;Pinker& Prince,1988,for detailedcriticism). In
thecurrentcontext, SeidenbayandMcClelland(1990)pointed
out thatthe representationdo not adequatelicapturephone-
mic structure. Specifically the featuresof a phonemeare
not boundwith eachothet but only with featuresof neigh-
boring phonemes. As a result, the surroundingcontect can
too easily introduceinappropriatefeatures,producingmary
single-featuresrrorsin nonwordpronunciationge.g., TIFE=
1tIvl).

Neitherthe specifictraining corpusnor the Wickelfeature
representatioarecentralto the SM89 generalframevork for
lexical processing.If Seidenbay andMcClelland(1990)are
correctin suggestinghatit is theseaspectof the simulation
thatareresponsibldor its poor nonwordreading,their more
generaframevork remainsviable. On the otherhand theac-
tual performanceof animplementatioris the main sourceof
evidencethatSM89putforwardin supporif theirview of the
readingsystem. As McCloske/ (1991) hasrecentlypointed
out, it is notoriouslydifficult bothto determinenvhetheraim-
plementatiors failings are due to fundamentalbr incidental
propertiesof its design,andto predicthow changego its de-
sign would affect its behaior. Thus, to supportthe SM89
connectionisframavork asa viable alternatie to rule-based,
dual-routeaccountsit is critical to developfurthersimulations
thataccountfor samerangeof findingsasthe original imple-
mentatiorandyet alsopronouncenonwordsaswell asskilled
readers.This paperpresentsuchsimulations.

Orthographic and Phonological
Representations

Wickelfeaturesand the Dispersion Problem

For the purposesof supportinggood nonword reading,the
Wickelfeaturephonologicalepresentatiomasa morefunda-
mentaldravback. Theproblemstemdrom thegeneralssueof
how to represenstructuredbjects suchaswordscomposedf
orderedstringsof lettersand phonemesin connectionishet-
works. Connectionistesearcheraouldlike their networksto
have threepropertiegHinton, 1990):

1. All theknowledgein a networkshouldbein connection

weightsbetweerunits.

. To supporigoodgeneralizationthenetwork'sknowledge
shouldcapturetheimportantregularitiesin thedomain.

. For processingp befast,themajorconstituent®f anitem
shouldbe processeih parallel.

The problemis thatthesethreepropertiesaredifficult to rec-
oncilewith eachother

Consideffirst the standardechniqueof using of position-
specific units, sometimescalled a slot-based representation
(e.g.,McClelland& Rumelhart,1981). Thefirst lettergoesin
thefirst slot,the secondetterin thesecondslot, etc. Similarly
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Tablel
The Dispersion Problem
Slot-basedepresentations
Left-justified Vowel-centered
1 2 3 4 5 -3 -2 -1 0 1
L O G S U N
G L A D S WA M
S P L I T s P L I T
Contet-sensitietriples (“Wickelgraphs”)
LOG _LO LOG OG.
GLAD: _G G,A LAD AD
SPLIT: _SP SPL PLI LIT IT_

for the output, thefirst phonemegoesin the first slot, andso
on. With enoughslots,wordsupto ary desiredengthcanbe
represented.

This schemesatisfiepropertieq1) and(3) but at a costto
property(2). Thatis, processinganbedonein parallelacross
lettersandphonemesisingweightedconnectionshut ata cost
of dispersingheregularitiesof how lettersandphonemesre
related. The reasonis thattheremustbe a separatecopy of
eachletter (andphonemejor eachslot, andbecause¢herele-
vantknowledgeis embeddedh connectionshatarespecificto
theseunits, this knowledgemustbe replicatedin the connec-
tionsto andfrom eachslot. To someextentthisis usefulin the
domainof oral readingbecausehe pronunciationof a letter
may dependon whetherit occursat the beginning, middle, or
endof aword. However, the slot-basedapproactcrarriesthis
to an extreme,with unfortunateconsequencesConsiderthe
wordsLoG, GLAD, andspPLIT. ThefactthattheletterL corre-
spondgo the phonemél/ in thesewordsmustbelearnedand
storedthreeseparatdimesin the system. Thereis no gener
alizationof whatis learnedaboutlettersin onepositionto the
sameletterin otherpositions. The problemcanbe alleviated
to somedagyreeby aligningtheslotsin variousways(e.g.,cen-
teredaroundthe vowel; Daugherty& Seidenbay, 1992)but it
is noteliminatedcompletely(seeTable1). Adequategeneral-
izationstill requiredearningtheregularitiesseparatehacross
several slots.

An alternative schemas to applythenetworkto asinglelet-
teratatime, asin SejnavskiandRosenbeay’'s (1987)NETtalk
model® Here,the sameknowledgeis appliedto pronouncing
a letter regardlessof whereit occursin a word, and words
of arbitrarylength canbe processed.Unfortunately proper
ties (1) and(2) arenow beingtradedoff againstproperty(3).
Processindgpecomeslow andsequentialywhich maybe satis-

3Bullinaria (1995)hasrecentlydevelopeda seriesof networksof thisform
thatexhibitimpressve performanceén readingnonwords althoughonly very
weakeffectsof word frequency Coltheartet al. (1993)alsotakea sequential
approacho solvingthedispersiorproblem,in thata correspondendearned
from a positionis appliedto all positionsunlessa differentcorrespondencis
learnedelsavhere.
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factoryin mary domainshut notin wordreading.Notethatthe
commonfinding of smallbut significanteffectsof wordlength
onnaminglateny (e.g.,Butler& Hains,1979;Frederikser&
Kroll, 1976;Richardson;1976)doesnot imply thatthe com-
putationfrom orthographyto phonologyoperatesequentially
over letters; a parallelimplementationof this mappingmay
also exhibit small length effects (aswill be demonstratedh
Simulation3).

Therepresentationgsedby SM89wereanattemptto avoid
the specificlimitations of the slot-basedapproachput in the
endturnoutto have aversionof the sameproblem.Elements
suchas letters and phonemesare representednot in terms
of their absolutespatialposition, or relative positionwithin
the word, but in termsof the adjacentelementsto the left
andright. This approachwhich originatedwith Wickelgren
(1969),makegherepresentationf eachelementontet sen-
sitive without being rigidly tied to position. Unfortunately
however, theknowledgeof spelling-sounatorrespondences
still dispersedcrossalarge numberof differentcontexts, and
adequategeneralizatiorstill requiresthat the training effec-
tively coversthemall. Returningto Table 1, althoughthe
wordsLOG, GLAD, andsPLIT sharethe correspondence=>/I/,
they have no triples of lettersin common. A similar property
holdsin phonologyamongtriples of phoneme®r phonemic
features. Thus, asin the slot-basedapproach althoughthe
samecorrespondencis presenin thesethreecasesdifferent
unitsareactivated.As aresult,theknowledgethatis learnedn
onecontxt—encodedsconnectiorweights—doesotapply
in othercontets, therebyhinderinggeneralization.

Noticethattheeffect of dispersingregularitiesis muchlike
theeffectof limiting thesizeof thetrainingcorpus.Thecontri-
butionthatanelemenimakesgo therepresentationf theword
is specificto the context in which it occurs. As a result,the
knowledgelearnedfrom oneitem is beneficialonly to other
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setof letterunits,onefor eacHetterin thealphabetandasingle
setof phonemaunits, onefor eachphoneme.Sucha scheme
satisfiesall threeof Hinton’s (1990)desiredoroperties:All of
thelettersin aword mapto all of its phonemesimultaneously
via weightedconnectiongand presumabhhiddenunits),and
thespelling-soundegularitiesarecondensetlecaus¢hesame
unitsandconnectiongreinvolvedwheneer aparticularletter
or phonemeis present. Unfortunately this approachhasa
fatalflaw: it doesnot preseretherelative order of lettersand
phonemesThus,it cannotdistinguishtop from pPCOT or SALT
from SLAT.

It turnsout, however, thata schemeanvolving only a small
amountof replicationis sufiicient to provide a uniquerep-
resentatiorof virtually every uninflectedmonosyllabicword.
By definition,amonosyllablecontainsonly a singlevowel, so
only onesetof vowel unitsis needed. A monosyllablemay
containboth an initial and a final consonantluster and al-
mostevery consonantanoccurin eithercluster so separate
setsof consonantinits arerequiredfor eachof theseclusters.
Theremarkableahingis thatthisis nearlyall thatis necessary
Thereasonis that, within aninitial or final consonantlustery
therearestrongphonotacticconstraintghatarisein large part
from the structureof the articulatorysystem. At both ends
of the syllable,eachphonemecan occuronly once,andthe
order of phonemess strongly constrained. For example, if
thephonemess/,/t/ and/r/ all occurin the onsetcluster they
must be in that order /str/. Given this, all thatis required
to specifya pronunciationis which phonemesre presentn
eachcluster—the phonotacticconstraintauniquelydetermine
the orderin which thesephonemesccur

Thenecessarphonotacticonstraint€anbeexpressedim-
ply by groupingphonemesnto mutually exclusive sets,and
orderingthesesetdrom left to rightin accordancwith theleft-
to-right orderingconstraintswithin consonantlusters.Once

itemswhich Shardhatspecificconte(t. Whenrepresentations thisis done’readingout a pronunciation'nvo|vessimp|y con-

disperseahe regularitiesin the domain,the numberof trained
mappingghatsupporta given pronunciatioris effectively re-

duced. As aresult,generalizatiorto novel stimuli, asin the
pronunciationof nonwords,is basedon lessknowledgeand
suffersaccordingly In a way, Seidenbay andMcClelland’s
(1990)two suggestiongor improving their model's nonword
readingperformance—enlgethetrainingcorpusandimprove

therepresentations—amouttt the samething. By usingim-

proved representationthat minimize the dispersiorproblem,
the effective sizeof thetrainingcorpusfor a givenpronuncia-
tionisincreased.

Condensing Spelling-Sound Regularities

Thehypothesigjuidingthe currentwork wasthe ideathatthe
dispersiorproblempreventedhe SM89networkfrom exploit-
ing the structureof the English spelling-to-soud systemas
fully ashumanreadersdo. We setout, therefore,to design
representationthatminimizethis dispersion.

Thelimiting caseof our approactwould beto have asingle

catenatinghe phonemeshatareactive in sequencérom left
to right,includingatmostonephonemeermutuallyexclusive
set(seeTable2).

Thereareafew casesn which two phonemeganoccurin
eitherorderwithin aconsonantluster(e.g.,/p/and/s/in CLASP
andLAPsE). To handlesuchcasesit is necessaryo addunits
to disambiguatehe order(e.g.,/ps/). The corventionis that,
if /s/and/p/ arebothactive, they aretakenin thatorderunless
the /ps/ unit is active, in which casethe orderis reversed.
To cover the pronunciationsn the SM89 corpus,only three
suchunitsarerequired:/ps/,/ks/ and/ts/. Interestingly these
combinationsare sometimeswritten with singleletters(e.g.,
English x, Germanz) and are closely relatedto other stop-
fricative combinationsJike /C/ (/tS/) and /j/ (/dz/), that are
typically consideredo be single phonemegalled affricates.
Infact,/ts/is oftentreatedasanaffricateand,acrosdanguages,
is amongthe mostcommon(seeMaddieson,1984),andpost-
vocalic/ps/and/ks/behae similarly to affricates(Lass,1984).

This representationachemeappliesalmostaswell to or-
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Table2
Phonological and Orthographic Representations Used in the Smulations
Phonology
onset sSC zZjfvTDpbtdkgmnh lrwy
vowel aeiou@AAEIOUWY
coda r I mnN bgd psksts sz fvpk t SZTDC]j
Orthography
onset YSPTKQCBDGFVJZLMNRWH CHGHGNPHPSRHSHTH TSWH
vowel EIOUAY Al AUAW AY EA EEEI EU EW EY IE OA OE Ol OO OU OW OY UE Ul UY
coda HRLMNBDGCXFVJSZPTK QBB CHCK DD DG FFGGGH GNKSLL NG

NN PHPPPSRRSHSLSSTCHTH TSTT ZZ U EESED

%Ja/in por, /@/in CAT, /e/in BED, /il in HIT, /o/ in DOG, /u/ in GooD, /A/ in MAKE, /E/ in KEEP, /Il in BIKE, /O/in

HOPE, /U/ in BooOT, /W/ in Now, /Y/ in BOY, /Al in cup, IN/ in RING, /S/in SHE, /C/in CHIN /Z/ in BEIGE, /T/ in

THIN, /D/ in THIS. All otherphonemesrerepresenteth the corventioralway (e.g.,/b/ in BAT). Thegroupings
indicatesetsof mutually exclusve phonemes.

Note: The notationfor vowelsis slightly differentfrom thatusedby Seidenbeg andMcClelland(1989). Also,

the representationdiffer slightly from thoseusedby Plautand McClelland (1993, Seidenbey et al., 1994).
In particular /C/ and/j/ have beenaddedfor /tS/ and/dZ/, the orderingof phonemess somevhat different,
the mutually exclusive phonemesetshave beenadded andthe consonantajiraphemes), Gu andQu have been
eliminated.Thesechangedettercapturaherelevantphonotacticonstraint&ndsimplify theencodingorocedure

for corvertingletterstringsinto activity patternsovergraphemainits.

thographyasit doesto phonologybecauseEnglishis an al-
phabeticlanguage(i.e., partsof the written form of a word
correspondo partsof its spokerform). However, thespelling
units that correspondo phonemesre not necessarilysingle
letters. Rather they are what Venezly (1970) termedrela-
tional units, sometimescalled graphemesthat can consist
of from oneto four letters(e.g.,L, TH, TCH, EIGH). As the
spelling-soundegularitiesof Englishareprimarily grapheme-
phonemecorrespondenceshe regularitiesin the systemare
mostelegantly capturedf theorthographiainitsrepresenthe
graphemegpresentn the stringratherthansimply the letters
thatmakeuptheword.

Unfortunately it is not alwaysclear what graphemesare
presentin a word. Considerthe word SHEPHERD In this
case thereis a P next to anH, sowe might supposehat the
word containsa PH grapheme put in fact it doesnot; if it
did it would be pronounced'she-ferd. It is apparenthat
theinput is ambiguousn suchcases.Becauseof this, there
is no simple procedurefor translatingletter stringsinto the
correctsequenceof graphemes. It is, however, completely
straightforwardo translatea letter sequencénto a patternof
actiity representingll possblegraphemem thestring. Thus,
whener a multiletter graphemeis present,its components
arealsoactivated. This procedures alsoconsistenwith the
treatmenbf /ps/,/ks/,and/ts/in phonology

To this point, the orthographicand phonologicalrepresen-
tationshave beenmotivatedpurely by computationatonsid-
erations: to condensespelling-soundegularitiesin orderto
improve generalization. Before turning to the simulations,
however, it is importantto be clear aboutthe empirical as-
sumptionghatareimplicit in theuseof theserepresentations.

Certainly a full accountof readingbehaior would have to
includea specificatiorof how the representationthemseles
develop prior to andduring the courseof readingacquisition.
Suchademonstratiolis beyondthescopeof the currentwork.
In fact, unlesswe areto modeleverythingfrom the eye to the
mouth,we cannotvoid makingassumptionaboutthereading
system$inputsandoutputs gventhough,n actuality theseare
learnedjnternalrepresentationsThebestwe candois to en-
surethattheserepresentationare at leastbroadly consistent
with therelevantdevelopmentabndbehaioral data.

Therelevantassumptionsiboutthe phonologicalrepresen-
tationsarethatthey aresegmental(i.e., they arecomposef
phonemesandthatthey arestronglyconstrainedby phonotac-
tics. We presumethat this phonologicalstructureis learned,
for the mostpart, prior to readingacquisition,on the basisof
speecltomprehensioandproduction.Thisis notto dery that
phonologicafepresentationmaybecomeurtherrefinedover
the courseof readingacquisition particularlyunderthe influ-
enceof explicit phoneme-basedstruction(seee.g.,Morais,
Cary, Alegria, & Bertelson,1979;Morais,BertelsonCary, &
Alegria, 1986). For simplicity, however, our modelingwork
usesfully developedphonologicalrepresentationfrom the
outsetof training.

Analogousassumptionsapply with regard to the ortho-
graphicrepresentationsWe assumethat they are basedon
lettersandletter combinationsandthat the orderingof these
obeys graphotacticonstraintgalthoughin Englishsuchcon-
straintsaregenerallyweakerthanthosein phonology).While
thesepropertiesarenotparticularlycontroversialper se, ortho-
graphicrepresentationswustdevelop concurrently with read-
ing acquisition.Thus,theuseof fully-articulatedorthographic



UnderstandingNormalandimpairedWord Reading

representationfom the outsetof readingacquisitionis cer
tainly suspect.

Again, a completeaccountof how orthographicrepresen-
tationsdevelop from more primitive visual representations
beyond the scopeof the currentwork. Herewe provide only
a generalcharacterizatiorof suchan account. We suppose
that childrenfirst learn visual representationfor individual
letters, perhapsmuch like thoseof other visual objects. In
learningto read, they are exposedto words that consistof
thesefamiliar lettersin variouscombinations.Explicit repre-
sentationgraduallydevelopfor lettercombinationghatoccur
oftenor have unusuaktonsequencgseeMozer, 1990). In the
contet of oral reading,mary of thesecombinationsare pre-
cisely thosewhosepronunciationsare not predictedby their
componentge.g.,TH, PH), correspondingo Venezly's (1970)
relationalunits. Of course,explicit representationmay de-
velopfor other regularly-pronouncedetter combinations.In
the limit, the orthographicrepresentatiormight containall
the letter combinationghat occurin the language. Expand-
ing our orthographicrepresentatiomvith multiletter units for
all of theseadditionalcombinationsvould have little conse-
guencebecauséherewould belittle pressurdor the network
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61 phoneme units

C )

100 hidden units

C
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Figure3. Thearchitecturefthefeedforwarchetwork.Ovals
represengroupsof units,andarrovs representompletecon-
nectvity from onegroupto another

105 grapheme units

Method

Network Architecture. Thearchitectureof the network,
shavn in Figure3, consistof threelayersof units. Theinput
layerof thenetworkcontainsl 05grapheme units,onefor each
graphemen Table 2. Similarly, the outputlayer contains61
phoneme units. Betweenthesetwo layersis anintermediate
layerof 100hidden units. Eachunit j hasareal-valuedactivity

to learnarything aboutthem, given thatthe correspondenceslevel or state s;, thatrangesetweer0 and1, andis asmooth,

of their componentarealreadylearned.In this way, the par
ticular setof multilettergraphemesve employcanbe viewed
asan efficient simplification of a more generalorthographic
representatiothat would develop throughexposureto letter
combinationsn words.

Tobeclearwedonotclaimthattheorthogaphicandphono-

nonlinear(logistic) functionof theunit’stotal input, z; .

Z Siwij + b;

K3

o(=;)

1)

zj

1

Tep(—z;) @

Sj

logicalrepresentationwe usearefully general.Someof their wherew;; is the weightfrom unit i to unit j, b; is thereal-
idiosyncrasiestemfrom the fact that their designtook into  valuedbias of unit j, andexp(-) is theexponentialfunction.
accountspecificaspectf the SM89 corpus. Nonetheless, Eachhiddenunit recevesaconnectiorfrom eachgrapheme
we do claim that the principleson which the representations unit, and in turn sendsa connectionto eachphonemeunit.
werederved—inparticular theuseof phonotacti@ndgrapho- In contrastto the SM89 network, the graphemeunits do not
tacticconstraintgdo condensespelling-soundegularities—are receive connectionsack from the hiddenunits. Thus, the

general.

Simulation 1: Feedforward Networ k

Thefirst simulationis intendedto testthe hypothesighatthe
use of representationsvhich condensedhe regularities be-
tweenorthographyandphonologywouldimprove thenonword
readingperformanceof a networktrainedon the SM89 cor

pusof monosyllabiowvords. Specifically the issueis whether
a single mechanismijn the form of a connectionisnetwork,
canlearnto reada reasonablyarge corpusof words,includ-

ing mary exceptionwords, andyet alsoreadpronounceable

nonwordsaswell asskilled readerslIf sucha networkcanbe
developed,it would underminethe claimsof dual-routetheo-
riststhatskilledwordreadingrequiregheseparatiorf lexical
andsubleical proceduregor mappingprint to sound.

networkonly mapsfrom orthographyto phonology not also
from orthographyto orthography(also seePhillips, Hay, &

Smith,1993). Weightson connectiongreinitialized to small,
randomvalues uniformly distributedbetweent 0.1. Thebias
termsfor the hiddenand phonemaeunits canbe thoughtof as
theweightonanadditionalconnectiorfrom aunit whosestate
is always1.0 (andso canbelearnedin the sameway asother
connectionweights).Including biasesthe networkhasatotal
of 17,061connections.

Training Procedure. The training corpusconsistsof the
2897monosyllabiovordsin the SM89corpus,augmentedy
101 monosyllabiovordsmissingfrom thatcorpusbut usedas
word stimuli in variousempiricalstudies,for a total of 2998
words? Amongtheseare 13 setsof homographge.g.,READ

4The Plautand McClelland (1993, Seidenbey et al., 1994) networkwas
alsotrainedon 103 isolatedgrapheme-phomee correspondencgasan ap-
proximationto the explicit instructionmany childrenreceve in learningto
read. Thesecorrespondencesere not includedin the training of any of the
networksreportedn this paper
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=/rEd/andREAD =/red/)—forthesepothpronunciationgre
includedin the corpus. Most of the words are uninflected,
althoughthereare a few inflectedforms that have beenused
in someempiricalstudies(e.g.,ROLLED, DAYS). Althoughthe
orthographi@andphondogical representaticgarenotintended
to handleinflectedmonosyllablesthey happento be capable
of representinghosein the training corpusandsothesewere
left in. It shouldbe keptin mind, however, thatthe network’s
exposureto inflectedformsis extremelyimpoverishedrelative
to thatof skilled readers.

A letter stringis presentedo the networkby clampingthe
statef thegraphemaeinitsrepresentingraphemesontained
in the stringto 1.0, andthe statesof all othergraphemaeunits
to 0. In processingheinput, hiddenunitscomputetheir states
basedn thoseof the graphemainitsandtheweightson con-
nectionsfrom them(accordingo Equationsl and2) andthen
phonemaunitscomputetheir stateshasedn thoseof the hid-
denunits. Theresultingpatternof activity over the phoneme
unitsrepresentthe network’s pronunciatiorof theinputletter
string.

After eachword is processedby the networkduring train-
ing, back-propagatio(RumelhartHinton,& Williams, 19864,
1986b) is usedto calculatehow to changethe connection
weightsso asto reducethe discrepang betweenthe pattern
of phonemeactiity generatedy the networkandthe correct
patternfor the word (i.e., the derivative of the error with re-
specto eachweight). A standardneasuref thisdiscrepany,
andthe oneusedby SM89, is the summedsquarederror, E,
betweerthe generate@ndcorrectoutput(phoneme}tates.

FE= Z (Si — tl')z (3)

wheres; is the stateof phonemaeunit: and¢; is its correct(tar

get)value. However, in the new representationf phonology
eachunit canbeinterpretecasanindependentypothesighat
a particularphonemes presentn the outputpronunciatior?

In this case,a more appropriateerror measurds the cross-

entropy, C, betweerthegenerate@ndcorrectactvity patterns
(seeHinton, 1989; Rumelhart,Durbin, Golden,& Chauvin,
in press) alsotermedtheasymmetrialivergenceor Kullback-
LeiblerdistancgKullback& Leibler, 1951).

C=- Zt log, (si) + (1 —ti)log, (1 —si)  (4)

Notice that the contribution to cross-entropyof a given unit
¢ is simply — log, (s;) if its tamgetis 1, and— log, (1 — s;) if
its targetis 0. From a practicalpoint of view, cross-entropy
hasan adwantageover summedsquarederrorwhenit comes

5Thisis not preciselytrue becausehe procedurdor determiningthe pro-
nunciationbasedon phonemeunit actvities, soonto be describeddoesnot
considertheseunitsindependentlyandtheir statesare not determinednde-
pendentlybut are basedon the samesetof hiddenunit states. Nonetheless,
theapproximations sufficientto makecross-entropg moreappropriaterror
measuréhansummedsquarecerror.
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to correctingoutput units that are completelyincorrect(i.e.,
on the oppositeflat portion of the logistic function). Thisis
a particularconcernin tasksin which outputunits are off for
mostinputs—thenetworkcaneliminatealmostall of its error
on thetaskby turningall of the outputunits off regardlessof
theinput, includingthosefew thatshouldbe on for thisinput.
Theproblemis that,whenaunit’'sstatefalls onaflat portionof
thelogisticfunction,verylargeweightchangesrerequiredto
changats statesubstantially As aunit'sstatedivergesfromiits
target, the changein cross-entropyncreasesnuchfasterthan
that of summedsquarederror (exponentiallyvs. linearly) so
that cross-entropys betterableto generatesuficiently large
weightchanges$.

During training, weightswerealsogivena slight tendeng
to decaytowardszero. This wasaccomplishedy augment-
ing the cross-entropyerror function with a term proportional
(with a constantof 0.0001in the currentsimulation)to the
sumof the squareof eachweight, ZK]. wizj . Although not
critical, weightdecaytendsto aid generalizatioy constrain-
ing weightsto grow only to the extentthatthey areneededo
reducethe erroron thetask(Hinton, 1989).

In the SM89 simulation, the probability that a word was
presentedo the networkfor training during an epochwas a
logarithmicfunctionof its written frequeng (Kucera& Fran-
cis, 1967). In the currentsimulation,the samecompressed
frequenyg valuesare usedinsteadto scaleerror derivatives
calculatedby back-propagationThis manipulatiorhasessen-
tially the sameeffect: morefrequentwords have a stronger
impactthanlessfrequentwordson the knowledgelearnedby
thesystem.In fact, usingfrequenciess this manneiis exactly
equialentto updatingheweightsaftereachsweephroughan
expandedrainingcorpusin whichthenumberof timesaword
is presenteds proportionalo its (compressedyequeng. The
new procedurewas adoptedfor two reasons. First, by pre-
sentingthe entiretraining corpusevery epoch,learningrates
on eachconnectioncould be adaptedndependently(Jacobs,
1988; but seeSutton,1992, for a recentlydevelopedon-line
version)! Secondpy implementingfrequenciesvith multi-
plication ratherthan sampling,ary rangeof frequenciesan
beused;aterwe will investigateéheeffectsof usingtheactual
KuceraandFrancis(1967)frequenciesn simulations.SM89
were constrainedo use a logarithmic compressiorbecause

6Thederivative of cross-entropyvith respecto anoutputunit'stotalinput
is simply the differencebetweertheunit’s stateandits tamget.

1-—¢ 13
= (1—]— i) sj(l=s;) =s;—t;
-5 53

“The procedurdor adjustingthe connection-specifiearningrates called
delta-bardelta(Jacobs1988),worksasfollows. Eachconnectionslearning
rateis initialized to 1.0. At the end of eachepoch,the error derivative for
thatconnectiorcalculatedoy back-propagatiors comparedvith its previous
weightchangelf theyarebothin thesamedirection(i.e.,havethesamesign),
theconnectionslearningrateisincremented@by 0.1in thecurrentsimulation);
otherwisejt is decreasednhultiplicatively (by 0.9in the currentsimulation).

aC  9C ds;
dx; - Jsj dx
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less-seere compressionsvould have meantthat the lowest
frequeng wordsmightnever have beenpresentedo their net-
work.

The actual weight changesadministeredat the end of
an epochare a combinationof the accumulatedrequeng-
weightederror derivatives and a proportionof the previous

weightchanges.
< ocC
= €65

A [t]
v awi]'

ij

+ o dult 1]) (5)
wheret is the epochnumber ¢ is the global learning rate
(0.001in thecurrentsimulation),¢;; is theconnection-specific
learningrate,C is thecross-entropgrrorfunctionwith weight
decayand« is thecontribution of pastweightchangessome-
timestermedmomentum (0.9 after the first 10 epochsin the
currentsimulation). Momentumis introducedonly after the
first few initial epochgo avoid magnifyingthe effectsof the
initial weightgradientswhichareverylargebecausefor each
word, ary activity of all but afew phonemeunits—thosehat
shouldbe actve—produces large amountof error (Plaut&
Hinton, 1987).

Testing Procedure. The network, as describedabore,
learngo takeactvity pattern®verthegraphemeinitsandpro-
ducecorrespondingctivity patternsover the phonemeunits.
The behaior of humansubjectsin oral reading,however, is
betterdescribedn termsof producingphonemestringsin re-
sponsdo letter strings. Accordingly, for a directcomparison
of thenetwork'sbehaior with thatof subjectsye needapro-
cedurefor encodingletter stringsasactiity patternsover the
graphemaunits, and anotherprocedurefor decodingactivity
patternsover the phonemaunitsinto phonemestrings.

Theencodingorocedureés theoneusedto generatéheinput
to the networkfor eachword in the training corpus. To con-
vert a letter string into an actvity patternover the grapheme
units, the string is parsednto onsetconsonantluster vowel,
andfinal (coda)consonantluster This involvessimply lo-
catingin the string the leftmost contiguousblock composed
of the lettersa, E, 1, 0, U, or (non-initial) Y. This block of
lettersis encodedusingvowel graphemedisted in Table2—
ary graphemecontainedin the vowel substringis activated;
all othersareleft inactive. The substringgo theright andleft
of the vowel substringare encodedsimilarly usingthe onset
and codaconsonangraphemesrespectiely. For example,
the word scHOOL activatesthe onsetunits s, C, H, and CH,
the vowel units 0 and 0o, andthe codaunit L. Notice that,
in wordslike GUEST, QUEEN, andSUEDE theu is parsedasa
vowel althoughit functionsasa consonanfcf. GUST, QUEUE,
andsug Venezly, 1970). Thisis muchlike theissuewith PH
in SHEPHERB—suchambiguityis left for the networkto cope
with. Theanalogougncodingprocedurgor phonemesised
to generatehe training patternsfor wordsis even simpleras
monosyllabigoronunciationgnustcontainexactly onevowel.

Thedecodingprocedurdor producingpronunciationgrom
phonemeactiities generatedby the network is likewise
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straightforward.As shavn in Table2, phonemesregrouped
into mutually exclusive sets,andthesesetsare orderedeft to

right (andtop to bottomin the Table). This groupingandor-

deringencodehe phonotacticonstraintghatarenecessaryo

disambiguat@ronunciations.The responsef the networkis

simply the orderedconcatenationf all active phonemegi.e.,

with stateabove 0.5)thatarethemostactivein theirset. There
areonly two exceptiongo thisrule. Thefirst is that,asmono-
syllabic pronunciationgnustcontaina vowel, the mostactive
vowel is includedin the network's responseegardlessof its

actity level. Thesecondxceptionrelatego theaffricate-like
units, /ps/, /ks/ and/ts/. As describedearlier if one of these
units is active alongwith its componentsthe order of those
componentén theresponsés reversed.

Thesimplicity of theseencodinganddecodingproceduress
asignificantadvantagef thecurrentrepresentationsverthose
usedby SM89. In thelattercasereconstructinguniquestring
of phonemesorrespondingo a patternof actiity overtriples
of phonemicfeaturess exceedinglydifficult, andsometimes
impossible(alsoseeRumelhart& McClelland,1986;Mozer,
1991). In fact, SM89 did not confrontthis problem—rather
they simply selectedhe bestamonga setof alternatve pro-
nunciationsbasedon their errorscores.Iln a sensethe SM89
modeldoesnot produceaxplicit pronunciationsit enablesan-
otherprocedurgo selectamongalternatves. In contrastthe
currentdecodingproceduredoesnot require externally gen-
eratedalternatves; every possiblepatternof actvity over the
phonemeunits correspondslirectly and unambiguouslyto a
particularstring of phonemesNonethelesst shouldbe kept
in mindthattheencodinganddecodingorocedureareexternal
to the networkand, hence,constituteadditionalassumptions
aboutthe natureof the knowledgeandprocessingnvolvedin
skilled readingasdiscusseearliet

Results

Word Reading. After 300epochf training,thenetwork
correctly pronouncesll of the 2972 nonhomographievords
in the training corpus. For eachof the 13 homographsthe
networkproduceneof the correctpronunciationsalthough
typically thecompetingphonemesor thealternatvesareabout
equallyactive. For example,the networkpronounceseaD as
/IEd/; the activation of the /E/ is 0.56 while the activation of
/elis 0.44. Thesddifferenceseflecttherelative consisteng of
the alternatveswith the pronunciation®f otherwords.

Giventhenatureof thenetwork thislevel of performancen
thetrainingcorpuds optimal. As thenetworkis deterministic,
it alwaysproduceghe sameoutputfor a giveninput. Thus,in
fact, it is impossiblefor the networkto learnto produceboth
pronunciation®f ary of thehomographsNotethatthisdeter
minag is notanintrinsic limitation of connectionishetworks
(see,e.g.,Movellan & McClelland,1993). It merelyreflects
the fact that the generalprinciple of intrinsic variability was
notincludedin thepresensimulationfor practicalreasons—to
keepthecomputationatiemand®f the simulationreasonable.
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For the presentpurposesthe importantfinding is that the
trainednetwork readsboth regular and exceptionwords cor
rectly. Wearealsointerestedn how well thenetwak replicates
the effects of frequeng and consisteng on naminglateng.
However, we will returnto this issueafter we considerthe
more pressingssueof the network’s performancen reading
nonwords.

NonwordReading. Wetestedhenetworkonthreelistsof
nonwordgrom two empiricalstudies.Thefirst two lists come
from anexperimentby Glushko(1979),in whichhecompared
subjectsreadingof 43 nonwordsderivedfrom regularwords
(e.g., HEAN from DEAN) with their readingof 43 nonwords
derived from exceptionwords (e.g., HEAF from DEAF). Al-
thoughGlushkooriginally termedtheseregularnonwordsand
exceptionnonwordsyespectrely, they aremoreappropriately
characterizedh termsof whethertheir body neighborhoods
consistenbr not,andhencewe will referto themasconsistent
orinconsistent nonwords.Thethird nonwordist comesroma
studyby McCannandBesner(1987),in whichthey compared
performanceon a setof 80 pseudohomophonégs.g.,BRANE)
with asetof 80 controlnonwordge.g.,FRANE). We usedonly
their control nonwordsin the presentinvestigationaswe be-
lieve pseudohomophoreffectsaremediatedy aspect®f the
readingsystemsuchassemanticandthearticulatorysystem,
that are not implementedn our simulation(seethe General
Discussion).

As nonwordsare,by definition, novel stimuli, exactly what
countsasthe“correct” pronunciatiorof a nonwordis a matter
of considerablelebatgseee.g.,Masterson1985;Seidenbeay
etal.,1994). Thecompleity of thisissuewill becomepparent
momentarily For the purposef aninitial comparisonwe
will considethe pronunciatiorof anonwordto be correctif it
is regular, asdefinedby adheringo the GPCrulesoutlinedby
Venezly (1970).

Table3 presentghe correctperformancef skilled readers
reportedby Glushko(1979)andby McCannandBesnel(1987)
on their nonwordlists, andthe correspondingperformancenf
the network. Table4 lists the errorsmadeby the networkon
thesdlists.

FirstconsideiGlushkosconsistenhonwords.Thenetwork
makesonly a singleminor mistakeon theseitems,just failing
to introducethe transitional/y/ in MUNE. In fact, this inclu-
sionvariesacrosdialectsof English(e.g.,DUNE =/dUn/vs.
/dyuUn/). In thetrainingcorpusthefour wordsendingin _UNE
(DUNE, JUNE, PRUNE, TUNE) areall codedwithoutthe/y/. In
ary casepverallboththenetworkandsubjecthave nodifficult
ontheserelatively easynonwords.

The situationis ratherdifferentfor the inconsistenton-
words. Both the network and subjectsproducenon-reyular
pronunciationgor asignificantsubsebf thesdtems,with the
networkbeingslightly moreproneto do so. However, acloser
examinationof theresponsen thesecasegevealswhy. Con-
siderthe nonwordGrook. Thegraphemeoo mostfrequently
correspondgo /U/, asin BooT, and so the correct(regular)
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pronunciatiorof GRook is /grUk/. However, thebody_ook is
almostalwayspronouncedu/, asin TOOK. Theonly exception
to this amongthe 12 words endingin _ooK in the training
corpusis SPOOK=-/spUKk/. This suggestshat/gruk/shouldbe
the correctpronunciation.

Actually, theissueof whetherthe network’s pronunciation
is corrector not is lessrelevant than the issueof whether
the networkbehaes similarly to subjects. In fact, both the
subjectsandthe networkare sensitve to the context in which
vowels occur asevidencedby their muchgreatettendenyg to
producenon-rgularpronunciationgor inconsistenhonwords
ascomparedvith consistenhonwords.Glushko(1979)found
that 80% of subjects non-regyular responsedo inconsistent
nonwordswere consistentvith someother pronunciationof
the nonwords body that occursin the Kugera and Francis
(1967) corpus,leaving only 4.1% of all responsess actual
errors. In the network, all of the non-regular responsego
inconsistenhonwordamatchsomeotherpronunciationin the
training corpusfor the samebody, with half of thesebeing
the most frequentpronunciationof the body None of the
network'sresponset inconsistenhonwordsareactualerrors.
Overall,thenetworkperformsaswell if notslightly betterthan
subjecton the Glushkononwordlists. Appendix2 lists all of
thepronunciationgcceptedscorrectfor eachof the Glushko
nonwords.

Boththesubjectandthenetworkfind McCannandBesners
(1987)controlnonwordamoredifficult to pronouncewhichis
notsurprisingasthelists containanumberof orthographically
unusuaihonwords(e.g.,JINJE VAwX). Overall, the network's
performancas slightly worsethanthatof subjects.However,
mary of the network’s errorscanbe understoodn termsof
specificpropertiesof thetraining corpusandnetworkdesign.
First, althoughthereis noword in thetraining corpuswith the
body _owT, medialow is often pronouncedO/ (e.g.,BOWL
=/bOl/) and so kowT =/kOt/ should be considereda rea-
sonableresponse.Secondtwo of the errorsareon inflected
forms, SNocksandLOKES, andaspreviously acknavledged,
the network has minimal experiencewith inflectionsandis
not intendedto applyto them. Finally, thereareno instances
in the training corpusof wordscontainingthe grapheme in
the coda, and so the network cannotpossibly have learned
to mapit to /j/ in phonology In a way, for a nonwordlike
JINJE, the effective input to the networkis JINE, to which the
network'sresponsdlin/ is correct.Thisalsoappliego thenon-
word FAIJE. Excludingtheseandtheinflectedformsfrom the
scoring, and consideringkowT =/kOt/ correct,the network
performscorrectlyon 69/76(90.8%)of the remainingcontrol
nonwordswhich is slightly betterthanthe subjects.Most of
the remainingerrorsof the networkinvolve correspondences
thatareinfrequentor variablein thetraining corpus(e.g.,PH
=Ifl, u=IyU/).

It mustbe acknavledgedthat the failure of the modelon
inflectedforms andon thosewith Jin the codaarereal short-
comingsthatwould have to be addresseth a completelyade-
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Table3
Percent of Regular Pronunciations of Nonwords
Glushko(1979) McCannandBesner(1987)
Consistent Inconsistent Control
Nonwords Nonwords Nonwords
Subjects 93.8 78.3 88.6
Network 97.7 72.1 85.0

Table4
Errors by the Feedforward Network in Pronouncing Nonwords
Glushko(1979) McCannandBesner(1987)
Nonword Correct Response Nonword Correct Response
ConsistenNonwords(1/43) ControlNonwords(12/80)
MUNE /myUn/ /m(y 0.43)Un/ *PHOYCE  [fYs/ /(f 0.42)Y(s0.00)/
InconsistenNonwords(12/43) *TOLPH [tolf/ NtOI(f 0.12)/
BILD /bild/ /blld/ *ZUPE /zUp/ /zyUp/
BOST /bost/  /bOst/ SNOCKS  /snaks/ /snhask(k€.31)/
COSE /kOz/ /kOs/ LOKES /IOks/  /10sk(ks0.02)/
GROOK /gruk/  /gruk/ *YOWND lywnd/  /(y 0.47)and/
LOME nom/ Niam/ KOWT TkWt/ /kOt/
MONE /mOn/  /mAn/ FAIJE v [fA(j 0.00)/
PILD /pild/ Iplld/ *ZUTE /12Ut [zyUt/
PLOVE /plov/  Iplav/ *VEEZE IVEz/ /(v 0.40)Ez/
pPoOT /pUt/ /put/ *PRAX Ipr@ks/ /pr@sk(ks0.33)/
SO0D /sud/ /sud/ JINJE fjinj/ /jin(j 0.00)/
SOST [sost/  [sAst/
WEAD wEd/  /wed/

Note: /a/in por, /@/in CAT, /el in BED, /i/ in HIT, /o/ in DOG, /u/ in GooD, /A/ in MAKE, /E/ in KEEP, /I/ in BIKE,
/O/in HOPE /U/ in BOOT, /W/ in Now, /Y/ in BOY, /A in CUP, /N/ in RING, /S/in SHE, /C/in CHIN /Z/ in BEIGE, /T/
in THIN, /D/ in THIS. Theactuity levelsof correctbut missingphonemesrelistedin parenthesedn thesecases,
theactualresponsés whatfalls outsidethe parenthesedNords markedwith “*” remainerrorsafterconsidering

propertieof thetrainingcorpus(asexplainedn thetext).

17
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guateaccounif word reading.Our purposen separatingput
thesdtemsin theabove analysissimplyacknavledgeghatthe
model’s limitations are easily understoodn termsof specific
propertieof thetrainingcorpus.

Is it a Dual-Route Model? One possibility, consistent
with dual-routetheories,is that the network has partitioned
itself into two sub-networkspnethatreadsegularwords,and
anothetthatreadsexceptionwords. If thiswerethecasesome
hiddenunits would contribute to exceptionwords but not to
nonwordswhile otherswould contribute to nonwordsbut not
to exceptionwords. To testthis possibility, we measuredhe
contributiona hiddenunit makego pronouncingletterstring
by theamountof increasan cross-entropgrrorwhentheunit
is removedfrom thenetwork. If thenetworkhadpartitionedt-
self, therewould be a nggative correlationacrosshiddenunits
betweenthe numberof exceptionwords and the numberof
nonwordsto which eachhiddenunit makesa substantiaton-
tribution (definedasgreaterthan0.2). In fact, for the Taraban
and McClelland (1987) exceptionwords and a setof ortho-
graphicallymatchednonwords(listed in Appendix 1), there
is amoderatepositive correlationbetweerthe numbersof ex-
ceptionwordsandnonwordsto which hiddenunitscontribute
(r = 25,198 = 2.59, p = .011; seeFigure4). Thus,some
unitsaremoreimportantfor the overall taskandsomeareless
important,but the networkhasnot partitioneditself into one
systemthatlearnstherulesandanothersystenthatlearnsthe
exceptions.

Frequency and Consistency Effects. It is importantto
verify that, in additionto producinggood nonwordreading,
the new modelreplicatesthe basiceffects of frequeng and
consisteng in naminglateng. Like the SM89 network,the
currentnetworktakesthe sameamountof time to computethe
pronunciatiorof ary letterstring. Hence we mustalsoresort
to usingan error scoreas an analogueof naminglateng. In
particularwewill usethecrossentropybetweerthenetwork’s
generatedronunciationof a word andits correctpronunci-
ation, asthis is the measurehat the networkwastrainedto
minimize. Later we will examine the effects of frequeng
andconsisteng directly in the settlingtime of anequialently
trainedrecurrentnetworkwhenpronouncingvarioustypesof
words.

Figure 5 showvs the meancrossentropy error of the net-
work in pronouncingwords of varying degreesof spelling-
soundconsisteng asa function of frequeng. Overall, high-
frequeng wordsproducdesserrorthanlow-frequeng words
(F1,184=17.1,p<.001). However, frequeny interactssignifi-
cantlywith consisteng (#3 1845.65,p=.001). Post-hoaom-
parisonswithin eachwordtypeseparatelyevealthattheeffect
of frequeny reachessignificanceat the 0.05 level only for
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exceptionwords (althoughthe effect for regular inconsistent Figure5. Meancross-entropgrrorproducedy thefeedfor

wordsis significantat 0.053). The effect of frequeny among
all regularwords(consistenandinconsistentjustfailstoreach
significance( £y 94=3.14,p=.08).

Thereis alsoa maineffect of consisteng in theerrormade

wardnetworkfor wordswith variousdegreeof spelling-sound
consisteng (listedin Appendix1) asafunctionof frequeng.
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by the networkin pronouncingwords(F3 18:~24.1,p<.001).
Furthermore,collapsedacrossfrequeng, all post-hocpair
wise comparison®f word typesaresignificant. Specifically
regularconsistentvordsproducdesserrorthanregularincon-
sistentwords,whichin turnproducdesserrorthanambiguous
words,whichin turn producelesserrorthanexceptionwords.
Interestingly the effect of consisteng is significantconsid-
ering only high-frequeng words (F39,=12.3, p<.001). All
pairwisecomparison@realsosignificantexceptbetweenex-
ceptionwordsandambiguouswvords. This contrastswith the
performancenf normalsubjectswho typically shaw little or
no effect of consisteng amonghigh frequeng words (e.g.,
Seidenbay, 1985;Seidenbeag etal., 1984).

Summary

A feedforwardconnectionisnetworkwas trainedon an ex-
tendedversionof the SM89 corpusof monosyllabicwords,
usingorthographiandphonologicakepresentatiorthatcon-
densethe regularities betweenthesedomains. After train-
ing, the networkreadsregular andexceptionwordsflawlessly
andyet alsoreadspronounceabl@onwords(Glushko,1979;
McCann& Besner1987)essentiallyaswell asskilled read-
ers. Minor discrepanciesn performancecanbe ascribedto
nonessentiahspectsof the simulation. Critically, the net-
work hadnot seyregateditself over the courseof traininginto
separatemechanismdor pronouncingexception words and
nonwords. Thus, the network directly refutesthe claims of
dual-routetheoristghatskilled word readingrequireshesep-
arationof lexical andsubleical procedure$or mappingprint
to sound.

Furthermorethe error producedy the networkon various
types of words, as measuredy the crossentropy between
the generatedind correctpronunciationsreplicateshe stan-
dardfindingsof frequeng, consisteng, andtheir interaction
in the naminglatenciesof subjects(Andrews, 1982; Seiden-
bewg, 1985; Seidenbey et al., 1984; Taraban& McClelland,
1987;Waters& Seidenbag, 1985). A notableexception,how-
ever, is that, unlike subjectsandthe SM89 network,the cur
rentnetworkexhibits asignificanteffect of consisteng among
high-frequeng words.

Analytic Account of Frequency and
Consistency Effects

The empirical finding that naming latenciesfor exception
words are slower and far more sensitve to frequeng than
thosefor regularwordshasoftenbeeninterpretedasrequiring
explicit lexical representationand grapheme-phonemeor-

respondenceules. By recastingegularity effectsin termsof

spelling-soundonsisteng (Glushko,1979;Jarecetal., 1990),
theSM89networkandtheonepresentedh theprevioussection
reproducehe empiricalphenomenavithout theseproperties.
What, then, are the propertiesof thesenetworks(and of the
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humanlanguagesystem,on our account}hatgive rise to the
obsenedpatternof frequeng andconsisteny effects?

The relevant empirical patternof resultscan be described
in the following way. In general,high-frequeng wordsare
namedasterthanlow-frequeng words,andwordswith greater
spelling-soundtonsistenyg are namedfasterthanwordswith
lessconsisteng. However, the effect of frequeng diminishes
asconsisteng is increasedandthe effect of consisteng di-
minishesasfrequeng isincreasedA naturalinterpretatiorof
this patternis thatfrequeng andconsisteng contributeinde-
pendentlyto naminglateng, but thatthe systemasa whole
is subjectto what might be termeda gradualceiling effect:
the magnitudeof incrementsn performancealecreaseasper
formanceimproves. Thus,if eitherthe frequeng or the con-
sisteny of a setof wordsis suficiently high on its own to
producefastnaminglatenciesjncreasinghe otherfactorwill
yield little furtherimprovement.

A closeanalysisof the operationof connectionishetworks
revealsthattheseeffectsareadirectconsequencef properties
of theprocessin@ndlearningin thesenetworks—specifically
theprinciplesof Nonlinearity Adaptivity,andDistributedRep-
resentationsnd Knowledgereferredto earlier In a connec-
tionist network,theweightchangesnducedby aword during
training sene to reducethe erroron thatword (andhence py
definition, its naminglateny). The frequenyg of a word is
reflectedin how oftenit is presentedo the network(or, asin
the previous simulation,in the explicit scalingof the weight
changest induces). Thus,word frequeng directly amplifies
weightchangeshatarehelpful to theword itself.

The consisteng of the spelling-sounctorrespondencesf
two wordsis reflectedn the similarity of theorthographiand
phonologicalunitsthatthey activate. Furthermoretwo words
will inducesimilarweightchangedo theextentthatthey acti-
vatesimilar units. Giventhatthe weight changesnducedby
a word aresuperimposedn the weightchangedor all other
words,awordwill tendto behelpedby theweightchangegor
words whosespelling-soundcorrespondenceare consistent
with its own (and,conversely hinderedby theweightchanges
for inconsistentvords). Thus,frequeng andconsisteng ef-
fectscontributeindependentlyo naminglateny becaus¢hey
both arisefrom similar weightchangeghatare simply added
togetheruringtraining.

Overthecourseof training,themagnitude®f theweightsin
the networkincreaséan proportionto the accumulatedveight
changes. Theseweight changegesultin correspondingn-
crease$n thesummednput to outputunitsthatshouldbeac-
tive,anddecreasem the summednputto unitsthatshouldbe
inactive. However, dueto the nonlinearityof the input-outpu
function of units, thesechangeglo not translatedirectly into
proportionalreductionsn error. Rathey asthe magnitudeof
the summednputsto outputunitsincreasestheir stateggrad-
ually asymptoteowards0O or 1. As aresult,agivenincreasen
thesummednputto aunityieldsprogressiely smallerdecre-
mentsin error over the courseof training. Thus, although
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0.0 input

Figure6. A simplenetworkfor analyzingrequeng andcon-
sisteny effectsandthe sigmoidalinput-outputfunction of its
units.

frequeng andconsisteng eachcontrituteto theweights,and
henceto the summedinput to units, their effect on error is
subjectedo a gradualceiling effect as unit statesare driven
towardsextremalvalues.

The Frequency-Consistency Equation

To seeheeffectsof frequeng andconsisteng in connectionist
networksmoredirectly, it will helpto considera networkthat
embodiesomeof thesamegeneraprinciplesastheSM89and
feedforwardchetworks but whichis simpleenoughto permita
closed-formanalysigfollowing AndersonSilversteinRitz, &
Jones1977,alsoseeStone,1986). In particular considera
nonlinearnetwork without hidden units and trained with a
correlational(Hebbian)ratherthan errorcorrectinglearning
rule (seeFigure6). Sucha networkis a specificinstantiation
of VanOrdenetal.’s (1990)covariant learning hypothesis. To
simplify the presentationye will assumeéhatinput patterns
arecomposedf 1's and0's, output patternsare specifiedin
termsof +1'sand—1's,connectiorweightsareall initializedto
zero,andunitshave no biasterms.We will derive anequation
that expressedn conciseform the effects of frequeng and
consisteng in this networkon its responseo ary giveninput.

A learningtrial involvessettingthe statesof theinput units
to theinput pattern(e.g.,orthography¥or a word, settingthe
outputunitsto the desiredoutputpattern(e.g.,phonology)for
theword,andadjustingheweightfrom eachinputunitto each
outputunit accordingto

(6)

wheree is alearningrateconstantsg; is the stateof inputunit
i, s; is the stateof outputunit j, andw;; is the weight on

Aw;; = €8; 8;
j j
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theconnectiorbetweerthem. After eachinput-outputraining
patternis presentecbncein this manner the value of each
connectionweightis simplythesumof theweightchangegor
eachindividual pattern:

W;5 = € Z SEP] SEP]
P

wherep indexesindividualtraining patterns.

After training, the network’s performanceon a given test
patternis determinedy settingthe statesof the input unitsto
the appropriaténput patternandhaving the networkcompute
the statesof the outputunits. In this computationthe stateof
eachoutputunit is assumedo be a nonlinear monotonically
increasingunctionof thesum,overinputunits,of the stateof
theinputunit timestheweighton the connectiorfrom it:

wheret is the testpatternandof-) is the nonlinearinput-unit
function. An exampleof sucha function,the standardogistic
functioncommonlyusedin connectionishetworks,is shavn
in Figure6. Theinput-outpufunctionof theoutputunitsneed
not be this particularfunction, but it musthave certainof its
properties:it mustvary monotonicallywith input,andit must
approachts extremalvalues(here,+1) at a diminishingrate
asthemagnitudeof the summednputincreasegpositively or
negatively). We call suchfunctionssigmoid functions.

We cansubstitutehederivedexpressiorfor eachweightw;;
from Equation? into Equation8, andpull the constanterme
out of thesummatiorover : to obtain

o, ( Ty Sgpl)
P

)

(7)

[l _

Sj =0

(8)

9)

This equationindicatesthatthe activation of eachoutputunit
reflectsasigmoidfunctionof thelearningrateconstant times
a sumof terms,eachconsistingof the activationof oneof the
input unitsin the testpatterntimesthe sum, over all training
patternspf theactvationof theinput unit timestheactivation
of theoutputunit. In our presenformulation,wheretheinput
unit'sactivationis 1 or 0, this sumreflectsthe extentto which
the outputunit’s activation tendsto be equalto 1 whenthe
input unit’s activation is equalto 1. Specifically it will be
exactly equalto the numberof timesthe outputunit is equal
to 1 whenthe input unit is equalto 1, minusthe numberof
times the outputunit is equalto —1 whenthe input unit is
equalto 1. We canseefrom Equation9 thatif, over anentire
ensembleof training patterns,thereis a consistentvalue of
the activation of an outputunit whenan input unit is active,
thentheconnectiorweightsbetweerthemwill cometo reflect
this. If thetraining patternscomefrom a completelyregular
ervironment, suchthat eachoutput’s activation dependson
only oneinput unit andis completelyuncorrelatedwith the
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activationof every otherinputunit, thenall theweightsto each
outputunit will equal0 exceptthe weightfrom the particular
input unit on which it depends. (If the training patternsare
sampledandomlyfrom a larger spaceof patternsthe sample
will notreflectthetruecorrelationgxactly, butwill bescattered
approximatelynormally aroundthe true value.) Thus, the
learning procedurediscorers which output units dependon
which input units, and setsthe weightsaccordingly For our
purpose$n understandinguasi-rgulardomainsjn whichthe
dependenciearenot sodiscretein charactertheweightswill
cometo reflectthe dggreeof consisteng betweereachinput
unit andeachoutputunit, over the entireensemblesf training
patterns.

Equatiord canbewrittenadifferentwayto reflectarelation-
shipthatis particularlyrelevantto theword readingliterature,
in which the frequeng of a particularword andthe consis-
teng of its pronunciationwith the pronunciationsof other
similarwordsareknown to influencetheaccurag andlateny
of pronunciation.Therearrangemerexpresses very reveal-
ing relationshipbetweertheoutputattestandthesimilarity of
thetestpatternto eachinput pattern:

=g (6 L IE 5£;])
P i

This expressionshaws the relationshipbetweenthe stateof
an outputunit at testas a function of its statesduring train-
ing andthe similarity betweerthe testinput patternandeach
traininginput pattern,measuredn termsof their dot product,

i sz[.p] 5571. For input patternsconsistingof 1's andQ’s, this
measuremountgo thenumberof 1’sthetwo patternshave in

common,which we referto asthe overlap of training pattern
p andtestpatternt anddesignate??!]. Substitutinginto the
previous expression,we find that the stateof an outputunit

at testreflectsthe sumover all training patternsof the unit’'s
outputfor thatpatterntimesthe overlapof the patternwith the

testpattern.

(10)

(11)

5?] =0 (6 E sgp] (9[’”])
p

Notice that the products%]OLPf] is a measureof the input-
outputconsi stency of thetrainingandtestpatterns.To seethis,
suppos¢hattheinputsfor thetrainingandtestingpatterndave
considerableoverlap. Thenthe contribution of the training
patterndependson the sign of the outputunit’s statefor that
pattern.If thissignagreesith thatof theappropriatestatefor
thetestpattern(i.e.,thetwo patternsareconsistent)hetraining
patternwill helpto move the stateof the outputunit towards
theappropriatextremalvaluefor thetestpattern.However, if
thesignsof thestatedor thetrainingandtestpatternglisagree
(i.e., the patternsare inconsistent) performanceon the test
patternis worsefor having learnedhetrainingpattern.As the
inputfor thetrainingpatternbecomesesssimilarto thatof the
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testpatternreducing®!r*l, theimpactof their consisteng on
testperformancealiminishes.

To clarify theimplicationsof theabove equationjt will help
to considersomesimplecasesFirst, supposéhatthenetwork
is trainedon only one pattern,and testedwith a variety of
patterns.Thenthestateof eachoutputunit duringtestingwill
beamonotonidunctionofitsvalueinthetraining paterntimes
the overlapof the training andtestinput patterns.As long as
thereis ary overlapin thesepatternsthetestoutputwill have
the samesign as the training output, and its magnitudewill
increasewith the overlapbetweerthetestpatternandtraining
pattern.Thus,theresponsef eachoutputunit varieswith the
similarity of thetestpatternto the patternusedin training.

As a secondexample,supposeve testonly on the training
patternitself, but vary the numberof training trials on the
pattern.In thiscasethesummatioroverthep trainingpatterns
in the abore equationreducesto a countof the numberof
training presentation®f the pattern. Thus, the stateof the
outputunit on this patternwill approacthits correctasymptotic
valueof +1 asthenumberof training presentationscreases.

Finally, considethemoregeneratasein which severaldif-
ferentinput-outputpatternarepresenteduringtraining,with
eachonepresentedomenumberof times. Then,elaborating
Equationl1,thestateof anoutputunit attestcanbewrittenas

sgt] =0 (e E F[p]sgp](’)[m])
P

whereF!*] is thenumber(frequeng) of training presentations
of patternp.

We will referto Equation12 asthe frequeng-consistenyg
equation. Relatingthis equationto word and nonwordread-
ing simply involvesidentifying the input to the networkwith
a representatiomf the spelling of a word, andthe outputof
the networkwith arepresentationf its pronunciation.Given
the assumptiorthat strongeractivationscorrespondo faster
naminglatencieswe canusethefrequeng-consisteng equa-
tionto derive predictionsabouttherelatve naminglatencieof
differenttypesof words. In particular the equationprovides
a basisfor understandingvhy naminglateny depend®nthe
frequeny of aword, F", andthe consisteng of its spelling-
soundcorrespondencesith thoseof otherwords,sgp] okt it
alsoaccountdor thefactthatthe effect of consisteng dimin-
ishesasthe frequeng of the word increasegandvice versa),
sincehigh-frequeng wordspushthevalueof the sumoutinto
thetail of theinput-outpu function,whereinfluencef other
factorsarereducedseeFigure7).

(12)

Quantitative Resultswith a Simple Cor pus

To makethe implicationsof the frequeng-consisteng equa-
tion moreconcretesuppose givenoutputunit shouldhave a
valueof +1 if aword’spronunciatiorcontainghevowel/l/ (as
in DIVE) and—1 if it containghe vowel /i/ (asin GIVE). Sup-
posefurtherthatwe have trainedthe networkon a setof words
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Figure7. A frequeng-by-consistenginteractionarisingout

of applyingan asymptotingoutputactiation function to the

additive input contributions of frequeng (solid arravs) and
consistenyg (dashedrrons). Noticein particularthattheiden-

tical contribution from consisteng hasa muchweakereffect

on high-frequeng wordsthanon low-frequeng words. Only

thetop half of thelogistic activationfunctionis shovn. HF =

highfrequeng; LF = low frequeny; RC = regularconsistent;
E = exception.

endingin _IVE which all containeither/l/ or /i/ asthe vowel.

Thenthefrequeng-consistenyg equatiortells usimmediately
thatthe responséo a giventestinput shouldreflectthe influ-

enceof every oneof thesewordsto somedegree. Holding all

elseconstantthe higherthe frequeng of the word, the more
closelytheoutputwill approachhedesiredvalue.Holdingthe
frequeng of the word itself constantthe more other similar
wordsagreewith its pronunciation(andthe highertheir fre-

gueng), themorecloselytheoutputwill approactihecorrect
extremalvalue. The distancerom the desiredvaluewill vary
continuouslywith thedifferencebetweerthetotalinfluenceof

the neighborghatagreewith theword andthe neighborghat
disagreewith the contribution of eachneighborweightedby

its similarity to the word andits frequeng. Whenthe word
itself hasa high frequeng, it will tendto pushthe activation
closeto the correctextreme. Near the extremes,the slope
of the function relating the summedinput to the stateof the
outputunit becomeselatively shallaw, sotheinfluenceof the
neighborgs diminished.

To illustratetheseeffects,Figure8 shaws the cross-entropy
error for a particularoutputunit aswe vary the frequeng of
theword beingtestedandits consisteng with 10 other, over
lappingwords(alsoseeVan Orden,1987). For simplicity, we
assumehatall tenwordshave afrequeng of 1.0andanover
lapof 0.75with thetestword—thiswouldbetrue,for example,
if inputunitsrepresentetettersandwordsdifferedin asingle
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Figure 8. Theeffectsof frequeng andconsisteng in anet-
workwithouthiddenunitstrainedwith correlationa{Hebbian)
learning(¢ = 0.2in Equation12).

letter out of four. Four degreesof consisteng are examined:
(a) exceptionwords(e.g.,GIVE), for which all but one of the

ten neighborsdisagreewith the testword on the value of the

outputunit; (b) ambiguousvords(e.g.,PLow), for which the

neighborsare split evenly betweerthosethatagreeandthose
that disagreej(c) regular inconsistenwords (e.g., DIVE), for

whichmostneighboragreebuttwo disagreg€namelyGive and
LIVE); and(d) regularconsistentvords(e.g.,busT), for which

all neighborsagreeon valueof the outputunit. In the present
analysisthesedifferentcasesarecompletelycharacterizedh

termsof asinglevariable:theconsisteng of thepronunciation
of the vowel in the testword with its pronunciationin other
wordswith overlappingspellings.Theanalysisclearlyreveals
a gradedeffect of consisteng thatdiminisheswith increasing
frequeng.

Error Correction and Hidden Units

It shouldbe notedthat the Hebbianapproachdescribechere
doesnot, in fact, provide an adequatenechanisnfor learn-
ing the spelling-soundcorrespondencaa English. For this,
we requirenetworkswith hiddenunitstrainedusinganerror
correctinglearningrule suchasback-propagationn this sec-
tion we takesomestepsn thedirectionof extendingthe anal-
ysesto thesemorecomplex cases.

First we consider the implications of using an error
correcting learning rule rather than Hebbianlearning, still
within a network with no hiddenunits. Back-propagation
is a generalizatiorof one suchrule, known asthe delta rule
(Widrow & Hoff, 1960). The first obserationis that, when
usingthedeltarule, thechangen weightw;; duetotrainingon

patterrp is proportionato thestateof theinputunit, st ,times

)

the partial derivative of the error on patternp with respecto
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thesummaednputto the outputunit j, 6][791, ratherthansimply

timesthe correctstateof unit 7, s&p] (cf. Equation6). As a
result,Equation12 becomes

=g <e > F[p]éj[-p](OW]) (13)

P

Mattersare more comple herebecausesj[p] dependon the
actualperformancef thenetworkoneachtrial. However, 6][.”]

will alwayshave thesamsignaSSE.p], becausanoutputunit’s
erroralwayshasthesamesignasits targetaslongasthetarget
is anextremalvalueof the activationfunction (+1 here),and
becausenlyunitj is affectedby achangeoitsinput. Thus,as
in the Hebbiancase trainingon awordthatis consistentvith
thetestwordwill alwayshelpunit i to be correct,andtraining
on aninconsistentvord will alwayshurt, therebygiving rise
to theconsisteng effect.

The main differencebetweenthe Hebbrule and the delta
ruleis that,with thelatter, if asetof weightsexiststhatallows
the network to producethe correctoutput for eachtraining
patternthelearningprocedureawill eventuallycorvemeto it.8
This is generallynot the casewith Hebbianlearning,which
oftenresultsin responsefor somecaseghatareincorrect. To
illustratethis, we considerapplyingthe two learningrulesto
atraining setfor which a solutiondoesexist. The solutionis
foundby thedeltarule andnot by the Hebbrule.

Theproblemis posedwithin theframavork we have already
beenexamining. The specificnetwork consistsof 11 input
units (with valuesof 0 and 1) representindettersof a word.
Theinputunits senddirectconnectiongo a singleoutputunit
thatshouldbe +1 if thepronunciatiorof theword containghe
vowel /I/ but —1 if it containghevowel /i/. Table5 shovsthe
inputpatternsaandthetamgetoutputfor eachcaseaswell asthe
netinputs andactivationsthat resultfrom training with each
learningrule. Thereare10 itemsin the training set, six with
thebody_INT andfour with thebody_INE. The_INE wordsall
takethevowel /l/, sofor thesethevowel hasatargetactivation
of +1; five of the_INT wordstake/i/, sothevowel hasatarget
of —1. The _INT wordsalsoincludethe exceptionword PINT
thattakesthe vowel /I/. For this analysis,eachword s given
anequalfrequeng of 1.

Table6 lists the weightsfrom eachinput unit to the output
unit that are acquiredafter training with eachlearningrule.
For the Hebbrule, this involved 5 epochsof training using
a learningratec = 0.1. The resultingweightsare equalto

8Actually, giventheuseof extremaltargetsandan asymptotingactivation
function, no setof finite weightswill reducethe errorto zero. In this case,
a“solution” consistof a setof weightsthat producesutputsthatarewithin
somespecifiedolerancge.g.,0.1) of thetarget valuefor every outputunitin
every training pattern. If a solutionexiststhat producesoutputsthatall have
the correctsign (i.e., toleranceof 1.0, giventargetsof +1), thena solution
alsoexistsfor any smallertolerancebecausenultiplying all theweightsby a
large enoughconstanwill pushthe outputof the sigmoidarbitrarily closeto
its extremevalueswithout affectingits sign.
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0.5 (the numberof epochgtimesthe learningrate)timesthe
numberof trainingitemsin which theletteris presentandthe
vowel is /I/, minusthe numberof itemsin which theletteris
presentandthe vowel is /i/. Specifically the lettersL andm

occuroncewith /I/ andoncewith /i/, sotheir weightis 0O; the
lettersi andN occurfive timeswith /I/ andfive time with /i/,

sotheirweightsarealsoO. Final E andfinal T have thelargest
magnitudeweights; E is strongly positive becauseét occurs
fourtimeswith /I/ andneverwith /i/, andT is stronglynegative
becausét occursfive timeswith /i/ andonly oncewith /I/. F
is weakly positive sinceit occursoncewith /I/, andb, H and
onsett areweakly nggative sinceeachoccursoncewith /i/. P
is moderatelypositive, sinceit occurstwice with /I/—oncein

PINE andoncein PINT. Thus,theseweightsdirectly reflectthe
co-occurrencesf lettersandphonemes.

Theoutputof thenetworkwhenusingtheweightsproduced
by theHebbrule, shavn in Table5, illustratethe consisteng
effect, both in netinputs andin activations. For example,
thenetinputfor FINE is strongeithanfor LINE, becauseINE is
moresimilarto theinconsistentINT; andthenetinputfor PINE
is strongetthanfor LINE, sincePINE benefitdfrom its similarity
with PINT, which hasthe samecorrespondencd-However, the
weightsdo not completelysolve thetask: For the word PINT,
thenetinputis —1.0 (1.0fromtheP minus2.0fromtheT), and
passinghisthroughthelogistic functionresulsin anactivation
of —0.46, whichis quitedifferentfrom thetargetvalueof +1.
Whathashappeneds thatPINT' s neighborshave castslightly
morevotesfor /i/ thanfor /I/.

Now considerthe resultsobtainedusingthe deltarule. In
this case we trainedthe networkfor 20 epochsagainwith a
learningrateof 0.1. The overall magnitudeof the weightsis
comparableo the Hebbrule casewith only 5 epochdecause,
with thedeltarule, theweightchangegietsmallerastheerror
getssmaller andsothe cumulative effect generallytendsto be
less. More importantly though,whenthe deltarule is used,
the samegenerakffectsof consisteng areobsered,but now
theresponseo PINT, thoughweakerthanotherresponsedias
theright sign. Thereasorfor thisis thatthecumulatve weight
changesausedy PINT areactuallylarger thanthosecaused
by otheritems,becausafterthefirst epochtheerroris larger
for PINT thanfor otheritems. Error-correctinglearningeven-
tually compensatef®r thisbut, beforelearninghascompletely
converged,the effectsof consisteng arestill apparent.

Theerrorcorrectingearningprocessausegnalterationin
therelative weightingof the effectsof neighborspy assigning
greaterrelative weight to thoseaspectof eachinput pattern
that differentiateit from inconsistentpatterns(seeTable 6).
This is why the weighttendsto accumulateon p, which dis-
tinguishesPINT from the inconsistenteighborsDINT, HINT,
LINT, MINT, andTINT. Correspondinglythe weightsfor b, H,
andT areslightly morenegative (relative to the Hebbweights)
to accentuaté¢he differentiationof DINT, HINT, andTINT from
PINT. Theeffectof consisteny, then,is still presenwvhenthe
deltarule is usedbut, preciselybecausat makesthe biggest
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Table5
Input Patterns, Targets, and Activations after Training with Hebb Rule and Delta Rule
LetterInputs HebbRule DeltaRule

Word D F H L M P T | N E T Tamget Net Act Net Act
DINT 1 0 000 00 1 1 0 1 -1 -25 -085 -235 -082
HINT 0O 01 0 OO0 O 1 1 012 -1 -25 -085 -229 -082
LINT 0O 001 0 0 O 1 1 012 -1 -20 -076 -170 -0.69
MINT 0O 0001 00 1 1 01 -1 -20 -076 -170 -0.69
PINT 0O 00O 01 01 1 012 +1 -10 -0.46 0.86 0.41
TINT 0O 00O OO1 1 1 0 1 -1 -25 -085 -225 -081
FINE 0 1. 00 0 OO 1110 +1 25 0.85 3.31 0.93
LINE 0O 001 00 O 1 1 10 +1 2.0 0.76 2.52 0.85
MINE 0O 0001 001 1 10 +1 2.0 0.76 2.52 0.85
PINE 0O 000 01 01110 +1 3.0 0.91 5.09 0.98
Note: “Net” is thenetinput of the outputunit; “Act” is its activation.

Table6

Weights from Letter Unitsto Output Unit after Training with Hebb Rule and Delta Rule

LetterUnits
D F H L M P T I N E T

HebbRule -0.50 0.50 -0.50 0.00 0.00 1.00 -0.50 0.00 0.00 2.00 -2.00
DeltaRule -0.84 059 -077 -0.19 -018 237 -073 024 024 223 -199
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changesvherethe errorsare greatestthe deltarule tendsto
counteractheconsisteng effect.

A relatedmplicationof usingerrorcorrectingearningcon-
cernsthe deggreeto which an outputunit comesto dependon
differentpartsof the input. If a particularinput-outputcor
respondencés perfectly consistent(e.g., onsets =/b/), so
thatthe stateof a given outputunit is predictedperfectly by
the statesof particularinput units, the deltarule will setthe
weightsfrom all otherinput unitsto 0, evenif they arepar
tially correlatedwith the outputunit. By contrast,whena
correspondencis variable(e.g.,vowel | =/i/ vs./l/), sothat
noinputunit onits own canpredictthestateof the outputunit,
the deltarule will develop significantweightsfrom the other
partsof theinput (e.g.,consonantshhatdisambiguatéhe cor-
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consistenteighborsn orderfor all of themto bepronounced
correctly Thus, by alteringthe effective similaritiesamong
input patternsa networkwith hiddenunits canovercomethe
limitations of onewith only inputandoutputunits. The pro-
cessof learningto be sensitve to relevantinput combinations
occursrelatively slowly, however, becauseét goesagainsthe
network'sinherenttendeng towardmakingsimilar responses
to similarinputs.

The fact that hiddenunits can be sensitie to higherorder
combination®f input unitshasimportantimplicationsfor un-
derstandingbody-lesel consisteng effects. In a one-layer
network without hidden units, the contribution of an input
unit to the total signal receved by an output unit summed
over all its input is unconditional;thatis the contritution of

respondencelhus,if thereis acomponentiatorrespondence, eachinput unit is independenbf the stateof the otherinput

asfor mostconsonantytherpartialcorrespondencesill not
be exploited; however, whencomponentialitypreaksdown, as
it often doeswith vowels, therewill be a greaterrelianceon
contet andthereforea greaterconsisteng effect.

For sometasks,including Englishword reading,no setof

units. As mentionedearlier however, the pronunciationof
vowelscannotypically be predictedrom individual lettersor
graphemesRatherthecorrelationdbetweervowel graphemes
and phonemesre highly conditionalon the presencef par
ticular consonangraphemeskor example,the mappingfrom

weightsin a two-layernetworkthatmapslettersto phonemes | to /i/ is inconsistentbut themappingfrom 1 to /i/ is perfectly

will work for all of the training patterns(seeMinsky & Pa-
pert, 1969). In such cases,hidden units that mediatebe-
tweenthe input and outputunits are neededo achieve ade-
quateperformancé. Thingsare considerablymore complex
in networkswith hiddenunits, but Equation13 still provides
someguidance.The compleity comesfrom thefactthat,for
an outputunit, O] reflectsthe similarities of the patterns
of activationfor training patternp andtestpatternt over the
hiddenunits ratherthanover the input units. Even so, hidden
units have the sametendenyg asoutputunitsto give similar
outputto similarinputs,asthey usethe sameactivationfunc-
tion. In fact, Equation13 appliesto themaswell if 6J[f’] is
interpretedasthe partialderivative of theerrorover all output
units with respectto the summedinput to the hiddenunit j.
The valuesof particularweightsand the nonlinearityof the
activation function canmakehiddenunitsrelatively sensitve
to somedimensionsf similarity andrelatively insensitie to
othersandcanevenallow hiddenunitsto respondo particular
combination®f inputsandnotto other similar combinations.
Thus, from the perspectie of the outputunits, hiddenunits
re-represent the input patternssoasto altertheir relative sim-
ilarities. This is critical for learningcomplex mappingslike
thosein the Englishspelling-to-soud system.Phonemainits
respondn the basisof hidden-layesimilarity, andthey must
respondquite differentlyto exceptionwordsthanto their in-

9An alternatve strategyfor increasingherangeof tasksthatcanbesolved
by a two-layernetworkis to add additionalinput units that explicitly code
relevantcombinationof the original input units (seeGluck & Bower, 1988;
Marr, 1969; Rumelhart,Hinton, & Williams, 1986a,for examples). In the
domainof word reading suchhigherorderunitshave beenhand-specifiethy
the experimenteas input units (Norris, 1994), hand-specifiedut actvated
from the input units as a separatepathway(Reggia,Marsland,& Berndt,
1988),0r learnedashiddenunitsin a separatgathway(Zorzi, Houghton,&
Butterworth,1995).

reliablein the context of a coda consisting only of the letter N
(e.g.,PIN, WIN, THIN, etc.). In English,the predictvenesof
vowels conditionalon codasis generallygreaterthanthat of
vowels conditionalon onsetgTreimanetal., in press).Con-
sequently a multi-layer network will be aidedin generating
appropriatevowel pronunciationsy developinghiddenunits
thatrespondo particularcombination®f orthographicowels
andcodaq(i.e.,wordbodies).Evenwhenthecodais takeninto
accounthowever, its correlationwith thevowel pronunciation
maybelessthanperfect(e.g.,l in thecontext of NT in MINT vs.
PINT). In thiscasethechoiceof vowel mustbeconditionedy
boththe onsetandcodafor the correspondenc® bereliable.
Becauseof the fact thathiddenunits tendto makesimilar re-
sponseso similarinputs,hiddenunitsthatrespondo anentire
inputpatternandcontributeto anonstandargowel pronuncia-
tion (e.g.,l =/I/ in thecontet of P_NT) will tendto bepartially
active whensimilar wordsare presentede.g.,MINT). These
will tendto produceinterferenceat the phonemdevel, giving
rise to a consisteny effect. It is importantto note, however,
thatamulti-layernetworkwill exhibit consisteng effectsonly
whentrainedon tasksthatareat leastpartially inconsistent—
thatis, quasi-rgular; asin one-layemetworksusingthe delta
rule, if the training environmentinvolvesonly componential
correspondencesiddenunits will learnto ignoreirrelevant
aspectof theinput.

In summaryabroadrangeof connectionishetworkswhen
trained in a quasi-rgular ervironment, exhibit the general
trendsthat have beenobsered in humanexperimentaldata:
robust consisteng effects that tend to diminish with experi-
ence,both with specificitems (i.e., frequeng) andwith the
entireensembleof patterng(i.e., practice). Thesefactorsare
amongthe mostimportantdeterminant®f the speedandac-
curay with which peoplereadwordsaloud.
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Balancing Frequency and Consistency

Theresultsof theseanalysegsoncurwith thefindingsin empir
ical studiesandin the SM89andfeedforwardhetworksimula-
tions: thereis aneffect of consisteng thatdiminisheswith in-
creasindgrequeng. Furthermoredetailsof theanalyticresults
arealsorevealing. In particular the extentto which the effect
of consisteng is eliminatedin high frequeny wordsdepends
on just how frequentthey arerelative to words of lower fre-
gueng. In fact,thiseffect mayhelpto explainthediscrepang
betweerthefindingsin the feedforwardnetworkandthosein
the SM89 network—namelythe existenceof consisteng ef-
fectsamonghigh-frequenyg wordsin theformerbut notin the
latter (andnot generallyin empiricalstudies).At first glance,
it would appearthatthe patternobsered in the feedforward
networkmatchesnein which the high-frequeng wordsare
of lowerfrequeng relative to thelow-frequenyg words(e.g.,a
frequeng of 10 in Figure8) thanin the SM89network(e.g.,
afrequeng of 20). Thisis notliterally true,however, because
thesame(logarithmicallycompressedyord frequenciesvere
usedin thetwo simulations.

A betterinterpretationis that, in the feedforwardnetwork,
theeffect of consistency is strongeithanin the SM89network
and,relativetothis, theeffectof frequeny appearsveaker As
describeckarliet theorthographi@andphonologicakepresen-
tationsusedby SM89,basedn context-sensitvetriplesof let-
tersandphonemesdisperseheregularitiesbetweerthe writ-
tenandspokenforms of words. This hastwo relevanteffects
in thecurrentcontext. Thefirstisto reduceheextentto which
the training on a given word improves performanceon other
words that sharethe samespelling-soundcorrespondences,
and impairs performanceon words that violate thosecorre-
spondencesAs illustratedearlierwith the wordsLOG, GLAD,
andspPLIT, eventhougha correspondenceay be the samein
a setof words, they may activate differentorthographicand
phonologicalunits. As mentionedabove, the weightchanges
inducedby oneword will helpanotheronly to the extentthat
they activate similar units (i.e., asa function of their overlap
o). Thiseffectis particularlyimportantfor low-frequeng
regular words, for which performancedependgrimarily on
supportfrom higherfrequeng wordsratherthanfrom train-
ing on the word itself. In contrast,the new representations
condenséheregularitiesbetweerorthographyandphonology
sothatweightchangegor high-frequeng wordsalsoimprove
performancen low-frequeng wordswith the samespelling-
soundcorrespondencds a greaterextent. Thus,thereis an
effect of frequeng amongregularwordsin the SM89network
but notin the feedforwardnetwork. For the samereason;in
the SM89 network,performanceon an exceptionword s less
hinderedy trainingonregularwordsthatareinconsistentvith
it. It is almostasif regularwordsin the SM89networkbehae
like regularinconsistentvordsin thefeedforwarchetwork,and
exceptionwordsbehae like ambiguousvords: the supportor
interferencehey receve from similar wordsis somavhatre-
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duced(seeFigure9).

The SM89 representationgalso reducethe effect of con-
sisteny in anindirectmannerby improving performancen
exceptionwords. This arisesbecausehe orthographiaepre-
sentationgontainunitsthatexplicitly indicatethe presencef
contet-sensitvetriplesof letters. Someof thesetriplescorre-
spondto onset-wwel combinationsandto word bodies(e.g.,
PIN, INT) that candirectly contribute to the pronunciationof
exceptionwords(PINT). In contrastalthoughthe new ortho-
graphicrepresentationsontainmultilettergraphemesjoneof
themincludebothconsonantandvowels,or consonantfrom
boththe onsetandcoda. Thus,for example,the orthographic
unitsfor P, I, N, and T contribute independently to the hidden
representationdt is only atthe hiddenlayerthatthe network
candevelop context-sensitve representations orderto pro-
nounceexceptionwordscorrectly andit mustlearnto do this
only onthebasisof its exposureo wordsof varyingfrequeng.

Nonethelesst remaindruethatthepatternof frequeng and
consisteng effectsin the SM89 networkbetterreplicateghe
findingsin empiricalstudieghandoesthe patternin the feed-
forward network. Yet the sameskilled readersxhibit a high
level of proficieny atreadingnonwordghatis not matchedn
the SM89network,but only in oneusingalternatve represen-
tationsthatbettercapturethespelling-soundegularities. How
cantheeffectof frequeng andconsisteng bereconciledwith
goodnonwordreading?

The answermay lie in the fact that both the SM89 and
the feedforwardnetworksweretrainedusingword frequeng
valuesthatarelogarithmicallycompresseftom theirtruefre-
guencief occurrencen the language.Thus,the SM89net-
workreplicategsheempiricalnaminglateny patterrbecausé
achievestheappropriatéalance betweertheinfluenceof fre-
gueny andthatof consisteny, althoughboth aresuppressed
relative to the effectsin subjects.This suppressiois revealed
whennonwordreadingis examined,becaus®n this taskit is
primarily the network’s sensitvity to consisteng thatdictates
performanceln contrastpy virtue of thenew representations,
the feedforwardnetworkexhibits a sensitvity to consisteng
thatis comparableéo thatof subjectsasevidencedoy its good
nonwordreading. But now, using logarithmic frequencies,
theeffectsof frequeny andconsisteng areunbalancedh the
networkandit fails to replicatethe precisepatternof naming
latenciesf subjects.

This interpretationeadsto the predictionthat the feedfor
ward networkshouldexhibit both goodnonwordreadingand
theappropriatérequeng andconsisteng effectsif it is trained
onwordsusingtheiractuaffrequenciesf occurrenceThenext
simulationteststhis prediction.

Simulation 2: Feedforward Network with
Actual Frequencies

Themostfrequentwordin the KugeraandFrancis(1967)list,
THE, hasa frequeng of 69971 per million, while the least



UnderstandingNormalandimpairedWord Reading

0.6 0 Ambiguous |
’ &O—< Regular Inconsistent
0.5 i
>
o
Soal i
b
@031 i
o
Oo2f ]
0.1 i
0.0 |- i
1 10
Frequency
14+ i
O—-CO Exception
12 L A—\Regular Consistent |
é 10+ i
2
c 08 i
%’ 0.6 |- i
go
@)
0.4 i
0.2 A\ J
0.0 - i
1 10
Frequency

Figure 9. Data from the frequeng-consisteng equation
(Equation12 and Figure 8) for testwords of frequenciesl
and10, plottedseparatelyor regularinconsistenandambigu-
ouswords(uppergraph)andregular consistenandexception
words(lowergraph). Theupperpatternis similarto thatfound
for regular and exceptionwords in the SM89 network (see
Figure2) while the lower oneis similar to the patternfor the
feedforwardnetwork(seeFigure5). Thecorrespondencese
only approximatedue to the simplifying assumption®f the
frequeng-consisteng equation.
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frequentwordshave afrequeny of 1 permillion. In thetrain-
ing procedurausedby SM89,the probabilitythata word was
presentedo the networkfor training wasproportionalto the
logarithmof its frequeng ratherthanits actuaffrequeng. This
compressetheeffective frequeng rangefrom about70000:1
to about16:1. Thus,the networkexperiencesnuchlessvari-
ationin thefrequeng of occurrencef wordsthando normal
readers.

SMB89 put forward a numberof argumentsin favor of us-
ing logarithmicallycompresseftequenciesatherthanactual
frequenciesn trainingtheir network. Beginningreadershave
yetto experienceenoughwordsto approximatehe actualfre-
gueng rangein thelanguage Also, low-frequeny wordsdis-
proportionatelysuffer from thelack of inflectionalandderiva-
tional formsin thetrainingcorpus.However, themainreason
for compressindhe frequeny rangewasa practicalconsid-
eration basedon limitations of the available computational
resources.If the highestfrequeng word was presentedv-
ery epoch thelowestfrequeny wordswould be presentean
averageonly aboutonceevery 70,000epochs. Thus, if ac-
tual frequenciesvereused,SM89 couldnot have trainedtheir
networklong enoughfor it to have hadsufficientexposureon
low-frequenyg words.

To compoundmatters,as SM89 point out, basicproperties
of the network and training procedurealreadysene to pro-
gressiely weakentheimpactof frequeng over the courseof
training. In an errorcorrectingtraining procedurdike back-
propagationyeightsarechangecnly to theextentthatdoing
so reducesthe mismatchbetweenthe generatedand correct
output. As high-frequeng wordsbecomeamasteredthey pro-
ducelessmismatchandsoinduceprogressiely smallemweight
changes.This effect is magnifiedby the fact that, dueto the
asymptoticnature of the unit input-outputfunction, weight
changeshave smallerand smallerimpact as units approach
their correctextremal values. As a result,learningbecomes
dominatednostlyby lowerfrequeng wordsthatarestill inac-
curate effectively compressingherangeof frequeng driving
learningin the network.

Thus,SM89 consideredt importantto verify thattheir re-
sults did not dependcritically on the use of sucha severe
frequeng compression. They traineda versionof the net-
work in which the probabilitythata word is presentediuring
an epochis basedon the square-roobdf its frequeng rather
than the logarithm (resultingin a frequenyg rangeof about
265:1ratherthan16:1). They found the samebasic pattern
of frequeng andconsisteng effectsin naminglateng for the
TarabanandMcClelland (1987)words, althoughtherewas a
larger effect of frequeny amongregular words,andvirtually
no effect of consisteng amonghigh-frequeng words even
earlyin training. This shift correspondpredictablyto a pat-
tern in which the influenceof frequeng is strongerrelative
to theinfluenceof consisteng. However, SM89 presentedho
dataonthenetwork'saccurag in readingwordsor nonwords.

In the currentsimulation,we train a versionof the feedfor
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ward network (with the new representations)singthe actual
frequencie®f occurrencef words. Thetrainingproceduren

thecurrenwork avoidstheproblemof samplingow-frequeny

wordsby using frequeng directly to scalethe magnitudeof

the weight changesnducedby a word—thisis equivalentto

samplingin the limit of a smalllearningrate, andit allows
ary rangeof frequenciedo be employed. The goalis to test
the hypothesighat, by balancingthe stronginfluenceof con-
sisteny thatarisesfrom the useof representationthatbetter
capturespelling-soundegularitieswith a realistically strong
influenceof frequeng, the networkshouldexhibit the appro-
priate patternof frequeng andconsistenyg effectsin naming
latengy while also producingaccurateperformanceon word
andnonwordpronunciation.

Method

Network Architecture. The architectureof the network
is thesameasin the Simulationl (seeFigure3).

Training Procedure. Theonly majorchangen thetrain-
ing procedurgrom Simulationl is that, asdescribedabove,
the valuesusedto scalethe error derivatives computedby
back-propagatioareproportionalto the actualfrequencie®f
occurrenceof thewords(Kugera& Francis, 1967)ratherthan
to alogarithmiccompressiorf their frequencies.Following
SMB89, the 82 wordsin the training corpusthatare not listed
in Kugceraand Francis(1967) were assigneda frequeny of
2, andall otherswereassignedheir listed frequeng plus 2.
Thesevalueswere then divided by the highestvalue in the
corpus(69973for THE) to generatethe scalingvaluesused
during training. Thus, the weight changegroducedby the
word THE areunscaled(i.e., scalingvalue of 1.0). For com-
parison AND, thewordwith thenext highestfrequeng (28860
occurrencepermillion), hasavalueof 0.412.By contrastthe
relative frequencie®f mostotherwordsis extremelylow. The
meanscalingvalueacrosgheentiretrainingcorpusis 0.0020,
while themedianvalueis 0.00015.TarabarandMcClelland’s
(1987)high-frequeng exceptionwordshave anaveragevalue
of 0.014 while the low-frequeny exception words average
0.00036.Wordsnotin theKugceraandFrancig(1967)list have
avaluejustunder3x10-5.

In addition,two parametersf the training procedurevere
modifiedto compensatéor the changesn word frequencies.
First, the globallearningrate,¢ in Equation5, wasincreased
from 0.001to 0.05,to compensatéor thefactthatthesummed
frequeng for theentiretraining corpusis reducedrom 683.4
to 6.05whenusingactualratherthanlogarithmicfrequencies.
Secondtheslighttendenyg for weightsto decaytowardszero
was removed, to prevent the very small weight changesn-
ducedby low-frequeny words(dueto theirvery smallscaling
factors)from being overcomeby the tendeng of weightsto
shrinktowardszero.

Otherthanfor thesemodificationsthe networkwastrained
in exactly thesameway asin Simulationl.

28

Testing Procedure. The procedurefor testing the net-
work’s procedureon words and nonwordsis the sameasin
Simulationl.

Results

Word Reading. As the weight changescausedby low-
frequeng wordsare so small, considerablymore training is
requiredio reachapproximatelythesamdevel of performance
aswhenusinglogarithmicallycompresseffequencies After
1300 epochsof training, the network mispronouncesnly 7
wordsin the corpus: BAS, BEAU, CACHE, CYST, GENT, TSAR,
andYEAH (99.8%correctwherehomographsvereconsidered
correctif they elicited either correctpronunciation). These
wordshaveratherinconsistenspelling-saindcorrespondences
andhaveverylow frequenciegi.e.,anaveragescalingvalueof
9.010~5). Thus,thenetworkhasmasteredill of theexception
wordsexcepta few of thevery lowestin frequeng.

Nonword Reading. Table7 lists the errorsmadeby the
networkin pronouncingthe lists of nonwordsfrom Glushko
(1979) and from McCannand Besner(1987). The network
produces'regular” responseso 42/43(97.7%)of Glushkos
consisteninonwords,39/43(67.4%)of the inconsistennon-
words, and 66/80 (82.5%) of McCannand Besners control
nonwords.Usinga criterionthatmorecloselycorrespondso
that usedwith subjects—considering responsecorrectif it
is consistentvith the pronunciationof a word in the training
corpus(andnot consideringnflectednonwordsor thosewith
J in the coda)—thenetwork achieves 42/43 (97.7%) correct
on both the consisteneaindinconsistennonwords,and 68/76
(89.5%)correcton the controlnonwords.Thus,the network’s
performancenn thesesetsof nonwordsis comparableo that
of subjectsandto that of the networktrainedon logarithmic
frequencies.

Frequency and Consistency Effects.  FigurelOshawsthe
meancrossentropyerrorof thenetworkin pronouncingvords
of varyingdegreesof spelling-sounatonsisteng asafunction
of frequeng. Thereisamaineffectof frequeny (71 184~22.1,
p<.001),a main effect of consistenyg (F3 184=6.49,p<.001),
andaninteractionof frequeng andconsisteng (/1 184~5.99,
p<.001). Posthoc comparisonshaw thatthe effect of fre-
gueng is significantat the 0.05 level amongwords of each
level of consisteng whenconsideredgeparately

Theeffectof consistengis significantamondow frequeny
words (F392=6.25, p=.001) but not among high-frequeng
words (F3 9,=2.48, p=.066). Posthoc comparisonsamong
low-frequeny wordsrevealedthatthe differencein error be-
tween exception words and ambiguouswords is significant
(F1,46=4.09,p=.049) thedifferencebetweemegularconsistent
andinconsistentwvordsis maginally significant(# 46=3.73,
p=.060),but thedifferencebetweerambiguousvordsandreg-
ularinconsistentvordsfails to reachsignificance( 71 46=2.31,
p=.135).

Overall, this patternof resultsmatchesthe one found in
empirical studiesfairly well. Thus, with a training regime
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Table7
Errors by the Feedforward Network Trained with Actual Frequencies in Pronouncing
Nonwords

Glushko(1979)
Nonword Correct Response
ConsistenNonwords(1/43)

McCannandBesner(1987)
Nonword Correct Response
ControlNonwords(14/80)

*WOSH /waS/  lwoS/ TUNCE ftans/  [tUns/
InconsistenNonwords(14/43) *TOLPH [tolf/ NtOI(f 0.13)/
BLEAD /blEd/  /bled/ *ZUPE /zUp/  /(z0.09)yUp/
BOST /bost/  /bOst/ SNOCKS  /snaks/ /snask(k®.31)/
COSE /kOz/  /kOs/ *GOPH /gaf/ /gaT/

GROOK /grUuk/  [gruk/ *VIRCK fvurk/ /(v 0.13)urk/
*HEAF /hEf/ h@f/ LOKES /IOks/  /10sk(ks0.00)/
HOVE /hov/  [hAav/ *YOWND /lywnd/ /(y 0.04)and/

LOME nom/  iam/ KOWT TkWt/ /kOt/

PILD /pild/ Iplld/ *FUES ffyUz/  [fyU(z 0.45)/
PLOVE /plovl IplAv/ *HANE /hAn/  /h@n/

pPoOT /pUt/ /put/ FAIJE [TAj/ /fA(j 0.00)/
POVE /pOv/  IpAv/ *ZUTE [zUt/ /(z 0.01)yUt/
SO0D /sud/  [sud/ JINJE fjinj/ /jin(j 0.00)/
WEAD /wEd/  Iwed/

WONE wOon/  lwan/

Note: /a/in por, /@/in CAT, /el in BED, /i/ in HIT, /o/ in DOG, /u/ in GooD, /A/ in MAKE, /E/ in KEEP, /I/ in
BIKE, /O/ in HOPE, /U/ in BOaT, /W/ in Now, /Y/ in BOY, /Al in CUP, N/ in RING, /S/in SHE, /C/in CHIN /Z/ in
BEIGE, /T/ in THIN, /D/ in THIS. Theactvity levelsof correctbut missingphonemesrelistedin parentheses.
In thesecasestheactualresponsés whatfalls outsidethe parenthesedNordsmarkedwith “*” remainerrors

after consideringoropertieof thetrainingcorpus(asexplainedn thetext).
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Figure 10. Meancross-entroperror producedby the feed-
forward networktrainedon actualfrequenciegor wordswith
variousdegreesof spelling-soundconsisteng (listed in Ap-
pendix1) asafunctionof frequeng.

that balanceghe influenceof frequeng and consisteny, the
networkreplicateghe patternof interactionof thesevariables
on naminglateny while alsoreadingwordsandnonwordsas
accuratelyasskilledreaders.

Training with a Moder ate Frequency Compres-
sion

As SM89amued trainingwith theactualfrequenciesf mono-
syllabic words might not provide the bestapproximationto
the experienceof readers.For example,sincemary multisyl-
labicwordshave consistenspelling-soun@dorrespondences—
bothin their baseformsandwith their variousinflectionsand
derivations—trainimg with only monosyllabicwordswill un-
derestimata readers exposureto spelling-soundegularities.
Trainingwith a compresseérequeng rangecompensatefor
this bias becausexceptionwordstend to be of higher fre-
gueny thanregular words and, thus, are disproportionately
affectedby the compression.

We have seenthata very severe (logarithmic)compression
reducesheeffectof frequeng to suchanextentthatanetwork
usingrepresentationthat amplify consisteng effectsfails to
exhibit the exact patternof naminglatenciesfoundin empir
ical studies. Nonethelessit would seemappropriateto test
whethera less serere compressionesultsin a bettermatch
to the empiricalfindings. As mentionedearlie; SM89found
that presentingvords during training with a probability pro-
portionalto the square-roobf their frequeng replicatesthe
basicfrequeny and consistenyg effectsin their network, but
they presentedio dataon the accurag of the network’s per
formance.Accordingly, it seemedvorthwhilefor comparison
purposego train a networkwith the new representationalso
usingasquare-rootompressiomf word frequencies.

30

Analogoudo theuseof actualfrequenciesthescalingvalue
for eachword wasthe square-roobf its Kuceraand Francis
(1967) frequeng plus 2, divided by the square-roobf the
frequeng of THE plus 2 (264.5). The valuefor AND is 0.642.
The meanfor the corpusis 0.023 and the medianis 0.012.
Tarabanand McClelland’s (1987) high-frequeng exception
wordsaveraged.097while thelow-frequeng exceptionwords
average0.017.Wordsnotin theKugceraandFrancig(1967)list
have a valueof 0.0053. Thus,the compressiorof frequeny
is muchlessseverethanwhenusinglogarithmsbut it is still
substantial.

The summedrequenyg of the training corpusis 69.8; ac-
cordingly; the global learningrate, ¢, was adjustedto 0.01.
Thetrainingprocedureés otherwisddenticalto thatusedvhen
trainingon theactualwordfrequencies.

Word Reading. After 400 epochs, the network pro-
nouncescorrectlyall wordsin the training corpusexcept for
the homographHousg for which the statesof both the final
/sl andthefinal /z/ justfail to be active (/s/: 0.48,/z/: 0.47).
Thus,the network'sword readingis essentiallyperfect.

Nonword Reading. The network makesno errors on
Glushkos (1979) consistentnonwords. On the inconsistent
nonwords,14 of the network’s responsesrenon-regular, but
all but one of these(PovE =/pav/) are consistentwith some
word in the training corpus(97.7% correct). The network
mispronounced 3 of McCannand Besners (1987) control
nonwords. However, only 7 of theseremainas errorswhen
usingthesamescoringcriterionaswasusedwith subjectsaand
ignoring inflectedforms andthosewith J in the coda(90.8%
correct). Thus,the networktrainedwith square-roofrequen-
ciespronouncesionwordsaswell, if not slightly better than
the networktrainedwith actualfrequencies.

Frequency and Consistency Effects.  Figurellshawsthe
meancrossentropyerrorof thenetworkin pronouncingvords
of varyingdegreesof spelling-sounatonsisteng asafunction
of frequeng. Overall,thereis asignificanteffect of frequeng
(F17]_84:47.7, p<001), consisteny:, (F17184:14.9, p<001),
and interactionof frequenyg and consisteng (F3 184=8.409,
p<.001). The effect of frequeny is also significantat the
0.05 level amongwords of eachlevel of consisteng when
consideredseparately Among high-frequeng words,regular
inconsistentambiguousandexceptionwordsaresignificantly
differentfromregularconsistentvordsbut notfrom eachother
Among low-frequeng words, the differencebetweenregu-
lar inconsistentvordsandambiguousvordsis not significant
(F1,46=1.18, p=.283)but all other pairwisecomparisonsare.
Thus,this networkalsoreplicateghe basicempiricalfindings
of theeffectsof frequeng andconsisteng on naminglateng.

Summary

The SM89 simulationreplicatesthe empirical patternof fre-
gueny andconsisteng effectsby appropriatelybalancinghe
relativeinfluenceof thesdwo factors.Unfortunatelybothare
reducedrelative to their strengthin skilled readers.The fact
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Figure 11. Meancross-entroperror producedby the feed-
forward networktrainedon square-roofrequenciegor words
with variousdegreesof spelling-soundconsisteng (listed in
Appendix1) asafunctionof frequeng.

thattheorthographi@andphonolodcal representatiordisperse
theregularitiesbetweerspellingandsoundsenesto diminish
therelative impactof consisteng Likewise,the useof alog-
arithmiccompressiomf the probability of word presentations
senesto diminishtheimpactof frequeng. As aresultof the
reduceceffectivenesof consisteny, nonwordreadingsuffers.

The currentwork usesrepresentationghat better capture
spelling-soundegularities,therebyincreasinghe relative in-
fluenceof consisteng. Oneeffectof thisistoimprovenonword
readingto alevel comparabléo thatof skilled readers How-
ever, if alogarithmicfrequeny compressiorcontinuesto be
used therelative impactof frequeny is too weakandthenet-
work exhibits consistenyg effectsamonghigh-frequeng words
notfoundin empiricalstudies.

The appropriaterelative balanceof frequeng and consis-
teng/ canberestoredwhile maintaininggoodnonwordread-
ing, by usingthe actualfrequencie®f wordsduringtraining.
Infact,asquare-rootrequeny compressiothatis muchmore
moderatethat a logarithmicone alsoreplicatesthe empirical
naminglateny pattern,althougha consisteng effect among
high-frequeng wordsbeaginsto emege. In thisway, thethree
networkspresentedhusfar—trainedon logarithmicfrequen-
cies,square-roofrequenciespr actualfrequencies—pnade
clearpointsof comparisorof the relative influencesof word
frequeng andspelling-sounctonsisteng on naminglateng.
Togethemwith theanalyticalresultsfrom the previous section,
thesefindings suggestthat the centralempirical phenomena
in word and nonwordreadingcanbe interpretednaturallyin
termsof the basicprinciplesof operatiorof connectionishet-
worksthatareexposedio anappropriatelystructuredraining
corpus.
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Simulation 3: Interactivity,
Componential Attractors, and
Generalization

Asoutlinedearlier thecurrentapproactio lexical processings
basednanumbeof generaprinciplesof informationprocess-
ing, loosely expressedy the acrorym GRAIN (for Graded,
Random Adaptie,|nteractve,andNonlinear). Togethemwith
the principlesof distributed representationand knowledge,
the approachconstitutesa substantialdeparturefrom tradi-
tional assumptionaboutthe natureof languageknowledge
andprocessinge.g.,Pinker 1991). It mustbenoted,however,
that the simulationspresentedso far involve only determin-
istic, feedforwardnetworks,and thusfail to incorporatetwo
importantprinciples: interactvity and randomnesgintrinsic
variability). In part, this simplification has beennecessary
for practical reasons;interactive, stochasticsimulationsare
far more demandingof computationakesources. More im-
portantly including only someof the relevant principlesin a
givensimulationenablesnoredetailedanalysisof the specific
contributionthateachmakego theoverall behaior of thesys-
tem. Thishasbeenillustratedmostclearlyin the currentwork
with regardto thenatureof thedistributedrepresentationssed
for orthographyandphonology andthe relative influencesof
frequeng and consisteng on networklearning (adaptvity).
Nonethelesseachsuchnetwork constitutesonly an approxi-
mationor abstractiomf amorecompletesimulationthatwould
incorporateall of the principles. The methodologyof consid-
eringsetsof principlesseparatelyeliesontheassumptiorhat
thereare no unforeseenproblematicinteractionsamongthe
principles,suchthat the findings with simplified simulations
would not generalizéo morecomprehense ones.

The currentsimulationinvestigateghe implicationsof in-
teractvity for the procesof pronouncingwritten wordsand
nonwords.Interactvity playsanimportantrolein connection-
ist explanationsf anumberof cognitive phenomen@McClel-
land& Elman,1986;McClelland& Rumelhart1981;McClel-
land,1987),andconstitute@majorpointof contentiorwith al-
ternative theoreticaformulations(Massaro1988,1989). Pro-
cessingin a networkis interactive when units can mutually
constraireachotherin settlingonthemostconsisteninterpre-
tation of theinput. For thisto be possible the architectureof
the networkmustbe generalizedo allow feedbackor recur-
rent connectionamongunits. For example,in the Interactve
Activationmodelof letterandword perceptior(McClelland&
Rumelhart,1981;Rumelhar& McClelland,1982) letterunits
andwordunitsarebidirectionallyconnectedgothatthepartial
activationof awordunit canfeedbackto supportheactivation
of letterunitswith whichit is consistent.

A commonwayin whichinteractvity hasbeenemployedn
networkss in makingparticularpatternsof actiity into stable
attractors. In an attractornetwork, units interactand update
their stategrepeatedlyn suchaway thattheinitial patternof
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actiity generatedy aninput graduallysettlesto the nearest
attractompattern.A usefulway of conceptualizinghis process
is in termsof a multidimensionalstate space in which the
actiity of eachunitis plottedalonga separateimension.At
ary instantin time, the patternof actwity over all of the units
correspondso a single point in this space. As units change
theirstatesn responséo agiveninput,thispointmovesin state
spaceeventuallyarriving atthe (attractorpointcorresponding
to the network’s interpretation.The setof initial patternghat
settleto this samefinal patterncorrespond$o aregionaround
the attractor calledits basin of attraction. To solve a task,
the networkmustlearnconnectionveightsthatcauseunitsto
interactin suchawaythattheappropriaténterpretatiorof each
inputis anattractorwhosebasincontaingheinitial patternof
actvity for thatinput.

In the domain of word reading, attractorshave playeda
critical role in connectionisaccountf the natureof normal
andimpairedreadingviameaning Hinton& Sejnavski, 1986;
Hinton & Shallice,1991;Plaut& Shallice,1993). According
to theseaccountsthe meaningsof words are representedh
termsof patternsof actwity over a large numberof semantic
features.Thesdeaturesansupporsstructuredframe-likerep-
resentationge.g. Minsky, 1975)if unitsrepresentonjunctions
of rolesandpropertief role-fillers (Hinton, 1981; Derthick,
1990). As only a smallfraction of the possiblecombinations
of featurescorrespondo the meaningf actualwords, it is
naturalfor a networkto learnto makethesesemantigatterns
into attractors.Then,in deriving the meaningof a word from
its orthographythe networkneedonly generataninitial pat-
tern of actvity that falls somavhere within the appropriate
semantiattractorbasin;thesettlingproceswill cleanup this
patterninto the exact meaningof the word® If, however,
the systemis damagedtheinitial actvity for a word mayfall
within a neighboringattractorbasin,typically corresponding
to a semantically-relatedvord. The damagedhetwork will
thensettleto the exactmeaningof thatword, resultingin ase-
manticerror (e.g.,CAT readas“dog”). In fact,theoccurrence
of sucherrorsis the hallmarksymptomof a type of acquired
readingdisorderknown as deep dyslexia (seeColtheart,Pat-
terson,& Marshall, 1980, for more detailson the full range
of symptomsof deepdyslexia, and Plaut & Shallice,1993,
for connectionissimulationsreplicatingthesesymptoms).In
this way, attractorsobviate the needfor word-specificunits
in mediatingbetweerorthographyandsemanticgseeHinton,
McClelland,& Rumelhart1986,for discussion).

Whenappliedto the mappingfrom orthographyto phonol-
ogy, however, theuseof interactvity to form attractorsvould

10This characterizatiof deriving word meaningss necessarilyoversim-
plified. Wordswith multiple, distinctmeaningsvould mapto oneof anumber
of separatsemanticattractors.Shade®f meaningacrosscontextscould be
expressedy semanticattractorsthat areregions in semanticspaceinstead
of single points. Notice that thesetwo conditionscanbe seenasendsof a
continuuminvolving variousdegree®f similarity andvariability amongthe
semantigatternggeneratedy a word acrosscontexts(alsoseeMcClelland,
St.John,& Taraban,1989).
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appeamproblematic.In particulat the correctpronunciatiorof

a nonwordtypically doesnot correspondo the pronunciation
of someword. If the network developsattractorsfor word

pronunciationspnemight expectthattheinputfor a nonword
would oftenbecapturedvithin theattractorbasinfor a similar

word, resultingin mary incorrectlexicalizations. More gen-
erally, attractorsvould seemto be appropriateonly for tasks,
suchassemanticategorizationor objectrecognitionjn which

the correctresponseo a novel inputis a familiar output. By

contrast;jn oral reading,the correctresponseo a novel input

is typically a novel output. If it is true that attractorscan-
notsupporthislattersortof generalizationtheirapplicability
in readingspecifically and cognitive sciencemoregenerally
would be fundamentallylimited.

Thecurrentsimulationdemonstratethattheseconcernsre
ill-founded, andthat, with appropriatelystructuredrepresen-
tations,theprinciple of interactvity canoperateeffectively in
the phonologicalpathwayaswell asin the semantigpathway
(seeFigurel). Thereasornis that,in learningto maporthog-
raphyto phonology the network developsattractorsthat are
componential—they have substructurehat reflectscommon
subleical correspondencédsetweerorthographyandphonol-
ogy. Thissubstructur@ppliesnotonly to mostwordsbut also
to nonwords,enablingthemto be pronouncedcorrectly At
the sametime, the networkdevelopsattractorsfor exception
wordsthat are far lesscomponential. Thus, ratherthan be-
ing a hindranceattractorsarea particularlyeffective style of
computatiorfor quasi-rgulartaskssuchasword reading.

A further advantageof an attractornetwork over a feed-
forward networkin modelingword readingis thatthe former
providesa moredirectanalogueof naminglateng. Thusfar,
we have followedSM89in usinganerrormeasurén afeedfor
wardnetworkto accounfor namingateng datafrom subgcts.
SMB89 offer two justificationsfor this approach. The first is
basedntheassumptiorthattheaccurag of thephonological
representationf awordwoulddirectlyinfluenceheexecution
speedof the correspondingarticulatory motor program(see
Lacouture,1989;Zorzi et al., 1995, for simulationsembody-
ing this assumption).This assumptioris consistentwith the
view thatthetime requiredby the orthography-tgshorology
computatioritself doesnotvary systematicallyith word fre-
gueng or spelling-sounatonsisteng. If thiswerethecasea
feedforwardchetworkof thesortSM89andwehave usedwhich
takesthesameamounbf timeto processary input,wouldbea
reasonableenditionof the natureof thephonologicapathway
in subjects.

An alternatve justification for the use of error scoresto
modelnaminglatenciesmentionedonly briefly by SM89, is
basedon the view that the actualcomputationfrom orthog-
raphyto phonologyinvolvesinteractize processingsuchthat
thetimeto settleonanappropriatgphonologicatepresentation
doesvarysystematicallyvith wordtype. Thenaminglatencies
exhibited by subjectsarea function of this settlingtime, per
hapsin conjunctionwith articulatoryeffects. Accordingly, a
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Figure 12. Thearchitectureof the attractornetwork. Ovals
represengroupsof units,andarrovs representompletecon-
nectvity from onegroupto another

feedforwardmplementatiorof themappingfrom orthography
to phonologyshouldbeviewedasanabstractiorof arecurrent
implementatiorthat would more accuratelyapproximatethe
actualword readingsystem.Studyingthe feedforwardmple-
mentationis still informative becausemary of its properties,
includingits sensitvity to frequeng andconsisteny, depend
oncomputationaprinciplesof operatiorthatwould alsoapply
to arecurrenimplementation—namejpdaptvity, distributed
representationandknowledge,andnonlinearity Theseprin-
ciplesmerelymanifestthemselesdifferently: influenceghat
reduceerrorin afeedforwardnetworksene to accelerateset-
tling in a recurrentnetwork. Thus, error in a feedforward
networkis a valid approximationof settlingtime in a recur
rentnetworkbecausé¢hey botharisefrom thesameunderlying
causesadditive frequeny andconsisteng effectsin the con-
text of a nonlineargradualceiling effect. Nonethelessgven
giventheseagumentsit is importantto verify thatarecurrent
implementatiorthat readswordsandnonwordsasaccurately
asskilled readersalsoreproduceghe relevant empirical pat-
ternof naminglatenciedirectly in thetimeit takesto settlein
pronouncingvords.

Method

Network Architecture. The architectureof the attractor
networkis shawvn in Figure12. The numbersof grapheme,
hidden,andphonemaunitsarethe sameasin thefeedforward
networks,but the attractornetwork hassomeadditionalsets
of connections. Eachinput unit is still connectedto each
hidden unit which, in turn, is connectedto eachphoneme
unit. In addition, eachphonemeunit is connectedo each
otherphonemaunit (includingitself), andeachphonemeunit
sendsa connectiorbackto eachhiddenunit. Theweightson
the two connectionsbetweena pair of units (e.g., a hidden
unit anda phonemeunit) aretrainedseparatelyandneednot
have identicalvalues. Including the biasesof the hiddenand
phonemaunits,the networkhasatotal of 26,582connections.

Thestateof unitsin thenetworkchangesmoothlyovertime
in responsdo influencesfrom otherunits. In particular the
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Figurel13. Thestateovertimeof acontinuousinit,initialized
to 0.5andgovernedby Equationl4,whenpresentedvith fixed
external input from other units of varying magnitude. The
cunesof statevaluesfor negative externalinput arethe exact
mirror imagesof thesecurves,approaching insteadof 1.

instantaneoushangeover time ¢ of the input z; to unit j is
proportionato thedifferencebetweerits currentinputandthe
summedcontributionfrom otherunits.

Zsiwij + bj - x;

K3

d:L‘]'
dt

(14)

The states; of unit j is ¢(z;), the standardogistic func-
tion of its integratedinput, that rangesbetween0 and 1 (see
Equation2). For clarity, we will call the summednput from
otherunitsi (plusthe bias)the external input to eachunit, to
distinguishit from theintegrated inputthatgovernsthe unit’s
state.

According to Equation 14, when a unit's integrated in-
put is perfectly consistentwith its externalinput (i.e., z; =
>, siwij + b;), thederivativeis zeroandthe unit'sintegrated
input, and henceits state,ceasedo change. Notice that its
activity atthispoint,o (>, s;w;; + b;), is exactly thesameas
it would beif it were a standardunit that computesdts state
from the external input instantaneouslyasin a feedforward
network; seeEquationsl and 2). To illustrate this, and to
provide somesenseof the temporaldynamicsof unitsin the
network,Figurel3shavstheactvity overtimeof asingleunit,
initialized to 0.5 andgovernedby Equationl4,in responseo
externalinput of varying magnitude. Notice that, over time,
the unit stategraduallyapproachean asymptoticvalueequal
to thelogistic functionappliedits externalinput.

For the purposeof simulationon a digital computer it is
convenientto approximatecontinuousunitswith finite differ-
enceequationsin whichtime s discretizednto ticks of some
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durationr:

K3

Al‘]’ =T (Z S;Ws5 + b]' — I‘J)

whereAz; = 2t — 2I'=7] Using explicit superscriptgor

discretetime, this canberewritten as

2 =7 (Z siwij + bj) + (1= r)al ]

K3

(15)

Accordingto this equationa unit’sinput at eachtime tick is
a weightedaverageof its currentinput and that dictatedby
other units, where r is the weighting proportion!! Notice
that,in thelimit (ast — 0) this discretecomputatiorbecomes
identicalto the continuousone. Thus,adjustmentso r affect
theaccurag with which the discretesystemapproximateshe
continuousone, but do not alter the underlyingcomputation
beingperformed.Thisis of considerabl@racticaimportance,
asthe computationatime requiredto simulatethe systemis
inverselyproportionalto r. A relatively larger r canbe used
duringthe extensive trainingperiod(0.2in thecurrentsimula-
tion), whenminimizingcomputatiortimeis critical, whereas
muchsmallerr canbeusedduringtesting(e.g.,0.01),whena
very accurateapproximatioris desired.As long ast remains
sufficiently smallfor theapproximationgo beadequatethese
manipulationsdo not fundamentallyalter the behaior of the
system.

Training Procedure. Thetrainingcorpusfor the network
is the sameas usedwith the feedforwardnetworktrainedon
actualword frequencies As in thatsimulation,the frequeny
valueof eachwordis usedto scaletheweightchangeénduced
by theword.

The networkis trainedwith a versionof back-propagation
designedor recurrentnetworks,known asback-propagation
through time (RumelhartHinton, & Williams, 1986a,1986b;
Williams & Peng, 1990), further adaptedfor continuous
units (Pearlmutter1989). In understandingpack-propagation
throughtime, it mayhelpto think of the computatiorin stan-
dardback-propagatiom athreelayerfeedforwarchetworkas
occurringover time. In the forward pass,the statesof input
unitsareclampedattime ¢ = 0. Hiddenunit statesarecom-
putedatt = 1 from theseinput unit states,and then output
unit statesarecomputedat¢ = 2 from the hiddenunit states.
In the backwardpass,error is calculatedfor the outputunits
basedon their states(t = 2). Error for the hiddenunits and
weight changedor the hidden-to-outputonnectionsarecal-
culatedbasedon the error of the outputunits (¢ = 2) andthe
statesof hiddenunits (¢t = 1). Finally, theweightchangegor

1Theseemporaldynamicsaresomavhatdifferentfrom thoseof the Plaut
and McClelland (1993, Seidenbey et al., 1994) network. In that network,
eachunit’s input was setinstantaneouslyo the summedexternalinput from
otherunits;the unit’s statewasa weightedaverageof its currentstateandthe
onedictatedby its instantaneoumput.
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the input-to-hiddenconnectionsare calculatedbasedon the
hiddenunit error (¢ = 1) andthe input unit states(z = 0).
Thus,feedforwardback-propagationanbe interpretedasin-
volving apasdorwardin time to computeunit statesfollowed
by a passbackwardn time to computeunit errorandweight
changes.

Back-propagatiothroughtime hasexactly the sameform,
except that, becausea recurrentnetwork can have arbitrary
connectvity, eachunit canreceve contributionsfrom ary unit
atary time,notjustfromthosen earlierlayers(for theforward
pass)or laterlayers(for the backwardpass). This meanghat
eachunit muststoreits stateand error at eachtime tick, so
thatthesevaluesareavailableto otherunitswhenneeded.In
addition thestateof non-inputunitsaffectthoseof otherunits
immediately so they needto be initialized to someneutral
value (0.5 in the currentsimulation). In all otherrespects,
back-propagatiothroughtime is computationallyequivalent
to feedforwardback-propagation.In fact, back-propagation
through time can be interpretedas “unfolding” a recurrent
networkinto a muchlargerfeedforwardnetworkwith alayer
for eachtimetick composef aseparateopyof all theunitsin
therecurrennetwork(seeMinsky & Papert,1969;Rumelhart,
Hinton, & Williams, 1986a,1986b).

In orderto apply back-propagatiothroughtime to contin-
uousunits,thepropagatiorof errorin the backwardpassmust
be madecontinuousaswell (Pearimuttgrl989). If we uses;
to designate¢hederivative of theerrorwith respecto theinput
of unit j, then,in feedforwardback-propagation:

oc
3—5]," (93])

8 =
whereC' is the cross-entropyerror functionando’(+) is the
derivative of thelogistic function. In the discreteapproxima-
tion to back-propagatiothroughtime with continuousunits,
this becomes
[t] _
6]'
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Thus,$; is aweightedaveragebackwardsn time of its current
valueandthecontritutionfrom the currenterrorof theunit. In
this way, asin standardack-propagatiors; in the backward
passs analogougo z; in theforward pasg(cf. Equationl5).

As outputunitscaninteractwith otherunitsoverthecourse
of processing stimulus,they canindirectly affect the error
for other outputunits. As a result, the error for an output
unit becomeghe sumof two terms: the errordueto the dis-
crepang betweenits own stateand its tamget, and the error
back-propagatetd it from otherunits. Thefirst termis often
referredto as error that is injected into the network by the
trainingervironment,while the secondermmight bethought
of aserrorthatis internal to the network.

Given that the statesof outputunits vary over time, they
canhave targetsthat specifywhat statesghey shouldbe in at
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particularpointsin time. Thus,in back-propagatiothrough
time, error canbe injectedat ary or all time ticks, not just at
thelastoneasin feedforwardback-propagationTargetsthat
vary over time definea trajectorythat the output stateswill
attemptto follow (seePearlmutter1989,for a demonstration
of this type of learning). If the targetsremainconstantover
time, however, the output units will attemptto reachtheir
targetsasquickly aspossibleandremainthere. In the current
simulation,we usethis techniqueo train the networkto form
stableattractordor the pronunciation®f wordsin thetraining
corpus.

It is possiblefor the statesof units to changequickly if
they receve a very large summednput from otherunits (see
Figure 13). However, even for ratherlarge summedinput,
units typically require someamountof time to approachan
extremal value, and may never completelyreachit. As a
result,it is practicallyimpossiblefor unitsto achieve targets
of 0 or 1immediatelyaftera stimulushasbeenpresentedFor
this reasonjn the currentsimulation,a lessstringenttraining
regime is adopted.Although the networkis run for 2.0 units
of time, erroris injectedonly for thesecondunit of time; units
receve no direct pressureto be correctfor the first unit of
time (althoughback-propagatethternal error causeswveight
changeghatencourageinitsto move towardstheappropriate
statesasearlyaspossible).ln addition,outputunitsaretrained
totargetsof 0.1and0.9ratherthan0 andl, althoughhoerroris
injectedif aunit exceedsts target(e.g.,reaches stateof 0.95
for atamgetof 0.9). This trainingcriterioncanbe achiezed by
unitswith only moderatelyjtarge summednput (seethecurve
for input=4in Figurel3).

As with the feedforwardnetworkusingactualfrequencies,
theattractometworkwastrainedwith agloballearningatec =
0.05 (with adaptie connection-specificates)andmomentum
« = 0.9. Furthermoreasmentionedabore, the networkwas
trainedusingadiscretizationr = 0.2. Thus,unitsupdateheir
stateslO times(2.0/0.2) in the forward pass,andthey back-
propagaterror10timesin thebackwardpass.As aresult,the
computationablemandof the simulationareabout10 times
that of oneof the feedforwardsimulations. In an attemptto
reducethe training time, momentumwas increasedo 0.98
after 200 epochs. To improve the accurag of the network’s
approximatiorto acontinuoussystemrmeartheendof training,
7 wasreducedfrom 0.2 to 0.05 at epoch1800, andreduced
furtherto 0.01at epoch1850for an additional50 epochsof
training. During this final stageof training,eachunit updated
its state200timesover the courseof processingachinput.

Testing Procedure. A fully adequateharacterizatiorof
responsegenerationin distributed connectionistnetworks
would involve stochastigprocessingseeMcClelland, 1991)
and, thus, is beyond the scopeof the presentwork. As an
approximationin a deterministicattractornetwork, we usea
measureof thetime it takesthe networkto computea stable
outputin responseo a giveninput. Specifically the network
respondsvhentheaveragechangen thestatef thephoneme
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unitsfalls below somecriterion(0.00005with - = 0.01for the
resultsbelan).!? At this point, the network’s naminglateny
is theamountof continuougime thathaspassedn processing
theinput, andits namingresponsés generatean the basisof
thecurrentphonemestatesisingthesameproceduresfor the
feedforwardnetworks.

Results

Word Reading. After 1900 epochsof training, the net-
work pronouncesgorrectlyall but 25 of the2998wordsin the
trainingcorpus(99.2%correct). About half of theseerrorsare
regularizationsof low-frequeny exceptionwords(e.g.,SIEVE
=/sEv/,SUEDE=-/swEd/,Tow =/tW/). Mostoftheremaining
errorswould be classifiedasvisual errors(e.g.,FALL =/folt/,
GORGE=/grOrj/, HASP=/h@ps/)althoughfour merely have
consonantshat failed to reachthreshold(ACHE=-/A/, BEIGE
=/bA/, TzAR =/ar/,woUND =-/Und/). All in all, thenetwork
hascomecloseto masteringthe training corpus,althoughits
performancas slightly worsethanthatof the equivalentfeed-
forward network.

Even thoughthe network settlesto a representatiomf the
phoneme®f awordin parallel,thetime it takesto do soin-
creasewith thelengthof theword. To demonstrat¢his, we
enteredhenaminglatencieof thenetworkfor the2973words
it pronouncesorrectlyinto amultiple linearregressionusing
aspredictors(a) orthographidength (i.e., numberof letters),
(b) phonologicalength(i.e., numberof phonemes)(c) loga-
rithmic word frequeny, and(d) a measureof spelling-sound
consisteng equalto thenumberof friends(includingtheword
itself) dividedby thetotalnumberof friendsandenemiesthus,
highly consistentvordshavevaluesearl andexceptionwords
have valuesnear0. Collectively, the four factorsaccountfor
15.9%of the variancein the lateny values(F#s 296=139.92;
p<.001). Moreimportantly all four factorsaccountor signif-
icantuniquevarianceafterfactoringout the otherthree(9.9%,
5.6%, 0.8%,and0.1%for consisteny, log-frequeng, ortho-
graphiclength,and phonologicallength, respectiely, p<.05
for each). In particular orthographidengthis positively cor
relatedwith naminglateny (semipartiak=.089)andaccounts
uniquelyfor 0.8%of its variance(F 296=40.0,p<.001). To
convert this correlationinto anincreasein RT per letter, the
network’s meanRTs for the Tarabanand McClelland (1987)
high- and low-frequeng exception words and their regular
consistentontrolswere regressedagainstthe subjectmeans
reportedby Tarabanand McClelland, resultingin a scaling
of 188.5msecper unit of simulationtime (with an intercept
of 257 msec). Given this scaling,the effect of orthographic
lengthin thenetworkis 4.56msec/lettebasednits semipartial
correlationwith RT (after factoringout the otherpredictors),
and 7.67 msec/lettetbasedon its direct correlationwith RT
(r=.139). Lengtheffectsof this magnitudeareat thelow end

12This specificcriterionwaschoserbecausét givesriseto meanresponse
timesthatarewithin the2.0unitsof time overwhichthe networkwastrained;
othercriteriaproducequalitatvely equivalentresults.
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of therangefoundin empiricalstudies althoughsucheffects
canvary greatlywith subjects’readingskill (Butler & Hains,
1979)andwith the specificstimuli andtestingconditionsused
(seeHenderson1982).

Nonword Reading. Table8 lists the errorsmadeby the
networkin pronouncingthe lists of nonwordsfrom Glushko
(1979)andfrom McCannandBesnef1987). Thenetworkpro-
duces'regular” pronunciationso 40/43(93.0%)of Glushko’s
consistennonwords,27/43(62.8%) of the inconsistennon-
words, and 69/80 (86.3%) of McCannand Besner$ control
nonwords. If we acceptascorrectary pronunciationthat is
consistentvith thatof a word in the training corpuswith the
samebody (and ignore inflectedwords and thosewith J in
thecoda),the networkpronouncesorrectly42/43(97.7%)of
the inconsistennonwords,and 68/76 (89.5%) of the control
nonwords. Although the performanceof the networkon the
consistenhonwordsis somavhatworsethanthat of the feed-
forwardnetworksit is aboutequatto thelevel of performance
Glushko (1979) reportedfor subjects(93.8%; seeTable 3).
Thus,overall,theability of theattractometworkto pronounce
nonwordds comparableo thatof skilled readers.

Frequency and Consistency Effects. Figure 14 shavs
the meanlatenciesof the networkin pronouncingwords of
varyingdegreesof spelling-sounaonsisteng asafunctionof
frequeng. One of the low-frequeny exceptionwordsfrom
the Tarabanand McClelland (1987) list was withheld from
this analysisasit is pronouncedncorrectly by the network
(sPook=/spuk/). Among the remainingwords, there are
significantmain effects of frequeng (F3183=25.0, p<.001)
and consisteng (£3 183=8.21, p<.001), and a significantin-
teractionof frequeny andconsisteng (F3 183=3.49,p=.017).
Theseeffectsalsoobtainin a comparisorof only regularand
exceptionwords(frequeng: Fi 91=10.2,p=.002;consisteng:
F101=22.0, p<.001; frequeng-by-consisteng: F4 9:=9.31,
p=.003). Consideringeachlevel of consisteng separately
the effect of frequeng is significant for exception words
(F1,45=11.9, p=.001) and for ambiguouswords (71 46=19.8,
p=.001) and maginally significant for regular inconsistent
words (#1,46=3.51,p=.067). Thereis no effect of frequeny
amongregularwords(F<1).

Thenaminglatencie®f thenetwork shav asignificanteffect
of consisteny for low-frequeng words(£3 91=6.65,p<.001)
butnotfor high-frequeng words(F3 ¢1=1.71,p=.170).Among
low-frequeng words, regular consistentwords are signifi-
cantly differentfrom eachof the otherthreetypesat p<.05,
but regular inconsistentambiguousandexceptionwordsare
not significantlydifferentfrom eachother(althoughthe com-
parisonbetweenregular inconsistentand exceptionwordsis
significantat p=.075). Amonghigh-frequeng words,noneof
thepairwisecomparisonss significantexceptbetweerregular
andexceptionwords(F1 46=4.87,p=.032). Thus,overall, the
naminglatenciesof the networkreplicatethe standardeffects
of frequeng andconsisteng asfoundin empiricalstudies.
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Figure14. Naminglateng of theattractometworktrainedon
actualfrequenciedor wordswith variousdegreesof spelling-
soundconsisteng (listedin Appendix1) asa function of fre-

queng.

Network Analyses

The network’s successat word reading demonstrateshat,
throughtraining, it hasdevelopedattractorsfor the pronun-
ciationsof words. How thenis it capableof readingnonwords
with novel pronunciationshy isn’t theinputfor anonword
(e.g.,MAVE) capturedby the attractorfor an orthographically
similar word (e.g., GAVE, MOVE, MAKE)? We carriedout a
numberof analyse®f thenetworkto gainabetterunderstand-
ing of its ability to readnonwords.Becausaonwordreading
involvesrecombiningknowledgederivedfrom word pronunci-
ation,we wereprimarily concernedvith how separat@artsof
theinputcontributeto (a) thecorrectnessf partsof theoutput,
and(b) thehiddenrepresentatiofor theword. Aswith naming
lateng, theitem spookwaswithheldfrom theseanalysessit
is mispronouncedy the network.

Componential Attractors. The first analysismeasures
the extent to which eachphonologicalcluster(onset,vowel,
coda)dependson the input from eachorthographiccluster
Specifically for eachword,theactvity of theactive grapheme
unitsin aparticularorthographiclusterwasgraduallyreduced
until, whenthenetworkwasrerun,thephonemeg aparticular
phonologicaklusterwereno longercorrect!® This boundary
actiity level measuresiow importantinput from a particular
orthographiclusteris to thecorrectnessf aparticularphono-
logical cluster;a valueof 1 meanghatthe graphemedn that
clustermustbe completelyactive; a valueof 0 meanghatthe
phonemesrecompletelyinsensitve to the grapheme# that
cluster In statespacethe boundarylevel correspondso the
radiusof theword’sattractotbasinalonga particulardirection
(assumingstatespaceincludesdimensiondor the grapheme

13Final E wasconsideredo be partof the orthographio/owel cluster
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Table8

Errors by the Attractor Network in Pronouncing Nonwords

Glushko(1979)

McCannandBesner(1987)

Nonword Correct

Response

Nonword Correct Response
ConsistenNonwords(3/43)
*HODE /hod/  /hOdz/
* SWEAL IswEl/  /swell
*WOSH /waS/  /wuS/
InconsistenNonwords(16/43)
BLEAD /blEd/  /bled/
BOST /bost/  /bOst/
COSE /kOz/ /kOs/
COTH /koT/ /kOT/
GROOK /gruk/  [gruk/
LOME /IOm/ /IAm/
MONE /mone/ /mAn/
PLOVE /plov/  [pluv/
ol /pUt/ /put/
*POVE /pOv/  [pav/
SOOD /sud/ /sud/
SOST /sost/ /sOst/
SULL IsAlf /sul/
WEAD /wEd/  /wed/
WONE won/  /wAn/
WUSH IWAS/  /wuS/

ControlNonwords(11/80)

*KAIZE
*ZUPE
* JAUL
*VOLE
*YOWND
KOWT
*VAWX
FAIJE
*ZUTE
*YOME
JINJE

/kAz/
/zUp/
fjol/
VOl

lyWwnd/

KWt/
/voks/
IfAj/
/zUt/
lyOm/
fjinj/

/skwAz/
/zyUp/
fjol/
NOIn/

/(y 0.04)Ond/
/kOt/
/voNks/
/fA(j 0.00)/
[zyUt/
lyam/

/jin(j 0.00)/

Note: /a/in por, /@/in CAT, /e/in BED, /il in HIT, /o/ in DOG, /u/ in GooD, /A/ in MAKE, /E/ in KEEP, /I/

in BIKE, /O/ in HOPE, /U/ in BooT, /W/ in Now, /Y/ in BOY, /Al in cUP, IN/ in RING, /S/in SHE, /C/ in

CHIN/Z/in BEIGE, /T/in THIN, /D/in THIS. Theactvity levelsof correctbut missingphonemesrelisted
in parenthesedn thesecasesthe actualresponsés whatfalls outsidethe parenthesesordsmarked
with “*” remainerrorsafterconsideringpropertief thetraining corpus(asexplainedn thetext).
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units).

This procedurewas appliedto the Tarabanand McClel-
land (1987) regular consistentyregular inconsistentand ex-
ceptionwords,aswell asto the correspondingetof ambigu-
ouswords(seeAppendix1). Wordswereexcludedfrom the
analysisif they lackedan orthographiconsetor coda(e.g.,
ARE, DO). Theresultingboundaryaluesfor eachcombination
of orthographicand phonologicalclusterswere subjectecto
an ANOVA with frequeng andconsisteng asbetween-item
factorsand orthographicclusterand phonologicalclusteras
within-itemfactors.

With regardto frequeng, high-frequeng wordshave lower
boundaryvaluesthanlow-frequeng words(0.188vs. 0.201,
respectrely; Fi 16=6.48,p=.012). However, frequeny does
not interactwith consisteng (#3 16=2.10, p=.102)nor with
orthographior phonologicatluster(£5 324=1.49,p=.227;and
F> 324=2.46, p=.087, respectiely). Thus, we will consider
high- and low-frequeng wordstogetherin the remainderof
theanalysis.

Therdsastrongeffectof consistengontheboundaryalues
(F3162=14.5,p<.001),andthiseffectinteractdothwith ortho-
graphiccluster(Fs 324=16.1,p<.001) and with phonological
cluster(Fs 324=20.3,p<.001). Figure15 presentshe average
boundaryvaluesof eachorthographiaclusterasa function of
phonologicatluster separatelyor wordsof eachevel of con-
sisteny. Thus,for eachtypeof word, the setof barsfor each
phonologicalclusterindicateshow sensitie that clusteris to
inputfrom eachorthographicluster Consideringegularcon-
sistenwordsfirst,thefigureshavsthateachphondogical clus-
ter dependsimostentirelyon the correspondingrthographic
clusterandiittle if atall ontheotherclusters.For instancethe
vowelandcodagraphemesanbecompletelyemoredwithout
affectingthe network’s pronunciatiorof the onset. Thereis a
slightinterdependencamongthe vowel andcoda,consistent
with the fact that word bodiescaptureimportantinformation
in pronunciatior(seeg.g.,Treiman& Chafetz1987;Treiman
etal., in press).Nonethelessneitherthe phonologicaivowel
nor codacluster dependson the orthographiconsetcluster
Thus,for aregularwordlike MUST, analternatve onset(e.g.,
N) canbesubstitutecandpronouncedvithoutdependingpn or
affectingthe pronunciatiorof the body (producingthe correct
pronunciatiorof the nonwordNusT).

Similarly, for regular inconsistentambiguousand excep-
tion words,the correctnessf thephonologicabnsetandcoda
is relatively independenbf non-correspondingparts of the
orthographicinput. The pronunciationof the vowel, how-
ever, is increasinglydependenbn the orthographicconso-
nantsas consisteng decreasegmain effect of consisteng:
F3166=47.7,p<.001; p<.05for all pairwisecomparisons)in
fact, most spelling-soundnconsisteng in English involves
unusualvowel pronunciations. Interestingly for exception
words,the vowel pronunciationis lesssensitve to the ortho-
graphicvowel itself thanit is to the surrounding(consonant)
context (orthographiconsetvs. vowel: F 41=8.39, p=.006;
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codavs.vowel: F 41=6.97,p=.012). This makessenseasthe
orthographicsowel in anexceptionword is a misleadingndi-
catorof the phonologicalvowel. Thus,in contrastto regular
consistentvords,wordswith ambiguousr exceptionalvowel
pronunciationglependon the entire orthographidnput to be
pronouncedtorrectly

Theseeffects canbe understoodn termsof the natureof
the attractorghatdevelop whentraining on differenttypesof
words. Therelatveindependencef theonsetyowel,andcoda
correspondencendicatesthatthe attractorbasinsfor regular
wordsconsistof threeseparategrthogonakub-basingonefor
eachcluster). Whenaword is presentedthe networksettles
intotheregionin statespacevherethesehreesub-basinsver-
lap,correspondingp theword’spronunciation However, each
sub-basircanapplyindependentlysothat“spurious”attractor
basinsexist wherethe sub-basindor partsof wordsoverlap
(seeFigure 16). Eachof thesecombinationscorrespondso
a pronounceableonwordthat the network will pronounce
correctlyif presenteavith theappropriateorthographidnput.
Thiscomponentialityarisesdirectly out of thedegreeto which
thenetwork'srepresentationmakeexplicit thestructureof the
task. By minimizing the extentto which informationis repli-
cated,the representationsondenseahe regularities between
orthographyandphonology Only small portionsof theinput
andoutputarerelevantto a particularregularity, allowing it to
operata@ndependentlyf otherregularities.

Theattractobasindor exceptionwords,by contrastarefar
lesscomponentiathanthosefor regularwords(unfortunately
this cannotbe depictedadequatelyin a two-dimensionati-
agramsuch as Figure 16). In this way, the network can
pronounceexception words and yet still generalizewell to
nonwords. It is importantto note, however, that the attrac-
tors for exceptionwords are noncomponentiabnly in their
exceptionalaspects—noin a monolithic way. In particular
while the consonantlustersin (most)exceptionwordscom-
bine componentiallythe correctvowel phonemedependn
the entire orthographicinput. Thus, a word like PINT is in
somesensehree-quartersegular, in thatits consonantorre-
spondencesontributeto the pronunciation®f regular words
and nonwordsjust like thoseof otheritems. The traditional
dual-routecharacterizatiorof a lexical “look-up” procedure
for exceptionwordsfails to do justiceto this distinction.

The Development of Componentiality in Learning. We
cangaininsightinto the developmentof this componentiality
by returningto the simple, two-layer Hebbiannetwork that
formedthe basisfor the frequeng-consisteng equation(see
Figure6; alsoseeVan Ordenet al., 1990, for relateddiscus-
sion). As expressedy Equation7, the value of eachweight
w;; in the networkis equalto the sumover training patterns,
weightedby the learningrate, of the productof the stateof
input unit 7 andthe stateof outputunit j. Patternsfor which
theinput stateis 0 do not contrituteto the sum,andthosefor
whichit is 1 contributethe valueof the outputstate whichis
either+1 or —1 in this formulation. Thus,the value of the

39

@ trained attractor (word)
€ spurious attractor (nonword

"bo" "by"

ndyu

Onset
@)
=

no ny

(@] Y
Vowel

Figure 16. A depictionof how componentiakttractorsfor
wordscanrecombinego supportpronunciation®f nonwords.
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distortedsomavhat (into dimensiondn statespaceotherthan
the onesdepicted).
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weightcanbere-expressedn termsof two counts:thenumber
of consistenpatterns N[, in whichthestatesof unitsi and
j areboth positive, and the numberof inconsistenipatterns,
Nl inwhichi is positive but j is negative.

wij = ( NlCul _ N[Iu])

If patternglifferin theirfrequeng of occurrencethesecounts
simply becomecumulative frequenciegseeEquation12); for
clarity of presentationyeleave thisouthere(seeReggiaetal.,
1988,for asimulationbasedirectly onthesefrequencies).

Now consideraword like PINT=/pInt/. Overtheentireset
of words,theonsetr and/p/typically co-occur(but notalways;
cf. PHONB), sothat N[€+] is largeand N'5] is small,andthe
weightbetweerthesewo unitsbecomestronglypositive. By
contrast,/p/ never co-occurswith, for example, an onsetk
(i.e., NI€s1 = 0 and NU7+] is large), leadingto a strongly
negative weight betweerthem. For onsetlettersthat canco-
occurwith /p/ and P, suchasL, Nl is positive and the
resultingweight is thus lessnegative. Going a stepfurther,
onset/p/ canco-occurwith virtually arny orthographicvowel
andcoda,so N1 for eachrelevantconnectionss largerand
theweightis closerto zero. Actually, giventhateachphoneme
is inactive for most words, its weights from graphemesn
non-correspondinglusterswill tendto becomemoderately
negative whenusingHebbianlearning. With errorcorrecting
learning, however, theseweightsremainnearzero because
the weights betweencorrespondinglustersare sufficient—
and more effective, due to the higher unit correlations—for
eliminatingtheerror. Thesesamepropertiedoldfor /n/and/t/
in thecoda.Thus,theunit correlationsacrosgheentirecorpus
give rise to a componentiapatternof weightsfor consonant
phonemesyith significantvaluesonly on connectiondrom
unitsin thecorrespondingrthographicluster(seeBrousseX
Smolensly, 1989 for additionalrelevantsimulations).

The situationis a bit more complicatedfor vowels. First
of all, thereis far more variability acrosswords in the
pronunciationof vowels as comparedwith consonantgsee
Venezly, 1970). Consequentlyfor connectionbetweervowel
graphemesand phonemesgenerally N (€] is smaller and
NUil s largerthanfor the correspondingnsetandcodacon-
nections. The morecritical issueconcernsxceptionalvowel
pronunciationsn wordslike PINT. Here,for the I—/I/ cor
respondencethe small N[€4] is overwhelmedby the large
NUis] that comesfrom the muchmore commoni—/i/ corre-
spondencéin which/l/ hasa stateof —1). Furthermorewith
Hebbianlearning,the correlationsof /i/ with the consonants
P, N, and T aretoo weakto help. Error-correctinglearning
cancompensat®o somedeggree by allowing theweightsfrom
theseconsonanunits to grow larger than dictatedby corre-
lation underthe pressureo eliminateerror.  Note that this
reduceshe componentialityof the vowel phonemeweights.
Suchcross-clusteweightscannotprovide a generalsolution
to pronouncingexceptionwords, however, becausejn a di-
versecorpus, the consonantsnust be able to co-exist with
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mary othervowel pronunciationge.g.,PUNT, PANT). In order
for a networkto achieve correctpronunciationf exception
words while still maintainingthe componentialityfor regu-

lar words(andnonwords) errorcorrectionmustbe combined
with the useof hiddenunitsin orderto re-representhe simi-

laritiesamongthewordsin awaythatreducesheinterference
from inconsistenheighborgasdiscusseearlier).

Internal Representations. The first analysisestablished
the componentialityof the attractordor regularwordsbeha-
iorally, andthesecondshavedhow it arisesrom the natureof
learningin asimplet relatedsystem.We know thatsimultane-
ouslysupportinghelesscomponentiaaspectef wordreading
in the samesystenrequireshiddenunitsanderrorcorrection,
but we have yetto characterizénow thisis accomplishedThe
mostobvious possibilitywould be the oneraisedfor the feed-
forward networks—thathe networkhaspartitioneditself into
two sub-networksafully componentiabnefor regularwords
(andnonwords) anda muchlesscomponentiabnefor excep-
tion words. As before,however, this doesnot seemto bethe
case.If we applythe criterionthata hiddenunit is important
for pronouncinganitem if its removal increaseghetotal er-
ror on the item by morethan0.1, thenthereis a significant
positive correlationbetweerthe numbersof exceptionwords
andthenumber®f orthographically-matchetbnwordglisted
in Appendix 1) for which hiddenunits are important(r=.71,
198=9.98, p<.001). Thus,the hiddenunits have not become
specializedor processingarticulartypesof items.

The questionsremains, then, as to how the attractor
network—asa singlemechanism—implementomponential
attractorsfor regular words (and nonwords)and less com-
ponentialattractorsfor exceptionwords. A secondanalysis
attemptgo characterizéhe degreeto which hiddenrepresen-
tationsfor regular versusexceptionwords reflect the differ-
encesin the componentialityof their attractors. Specifically
we attemptedo determingheextentto whichthecontribution
that an orthographicclustermakesto the hiddenrepresenta-
tion depend®nthecontet in whichit occurs—thishouldbe
lessfor wordswith more componentiakepresentationsFor
example,considerthe onsetp in anexceptionword like PINT.
Whenpresentedy itself, theonsetneedonly generatéts own
pronunciation. Whenpresentedn the contect of _INT, thep
mustalso contritute to alteringthe vowel from /i/ to /I/. By
contrast,in a regular word like PINE, the onsetp playsthe
samerolein thecontet of _INE aswhenpresentedh isolation.
Thus,if the hiddenrepresentationsf regularwordsaremore
componentiathanthoseof exceptionwords,the contribution
of anonset(P) shouldbe moregreatlyaffectedby thepresence
of anexceptioncontet (_INT) thanby aregularcontet (_INE).

We measuredhe contribution of anorthographialusterin
a particularcontet by first computingthe hiddenrepresenta-
tion generatedby the clusterwith the context (e.g.,PINT), and
subtractingfrom this (unit by unit) asa baselinecondition,
thehiddenrepresentatiogeneratedby the context alone(e.g.,
_INT). Thecontribution of a clusterin isolationwascomputed
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Figure 17. The similarity (correlations)of the contribution
thateachorthographicclustermakego the hiddenrepresenta-
tionin thecontet of theremainingclustersrersudn isolation,
for the TarabanandMcClelland (1987) exceptionwordsand
theirregular consistentontrolwords.

similarly, exceptthatthe baselineconditionin this caseis the
representatiogeneratedby the networkwhenpresentedvith
noinput(i.e., all graphemainitsaresetto 0). Thecorrelation
betweenthesetwo vector differencesvasusedasa measure
of the similarity of the contribution of the clusterin the two
conditions. A high correlationindicatesthat the contribution
of a clusterto the hiddenrepresentatiors independenof the
presencef otherclustersandhenceyeflectsa high degreeof
componentiality

Thesecontritution correlationswere computedseparately
for theonsetyvowel, andcodaclustersof the TarabarandMc-
Clelland(1987)exceptionwordsandtheir frequeng-matched
regularconsistentontrolwords. Wordslackingeitheranonset
or a codawere withheld from the analysis. The correlations
for the remainingwordswere subjectedo an ANOVA with
frequeng andconsisteng asbetween-itenfactorsandortho-
graphicclusteras a within-item factor Therewasno main
effect of frequeny (# gs, p=.143)nor ary significantinter-
actionof frequenyg with consisteng or orthographiccluster
(F<1 for both) so this factoris not consideredurther. Fig-
urel7shavstheaveragecorrelationdor regularandexception
wordsasa functionof orthographicluster

Thereis nosignificantinteractionof consisteng with ortho-
graphiccluster(F<1). Thereis, however, a significantmain
effect of cluster(F5170=16.1, p<.001), with the vowel clus-
ter producinglower correlationsthan either consonantlus-
ter (vowel vs. onset: F; gg=26.8, p<.001; vowel vs. coda:
F1 86=21.0,p<.001). More importantly regular words have
higher correlationsthan exception words [means(standard
deviations): 0.828(0.0506)vs. 0.795(0.0507),respectrely;
Fy g5=20.7,p<.001]. Thus,the contributionsof orthographic
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clustergo thehiddenrepresentationaremoreindependenof
contet in regularwordsthanin exceptionwords. In thissense,
the representationef regular words are more componential.
What is surprising,however, is that the averagecorrelations
for exceptionwords,thoughlowerthanthoseof regularwords,
arestill quite high, andthereis considerabl@verlapbetween
the distributions. Furthermorethe representationfor regu-
lar words are not completelycomponential given that their
correlationsaresignificantlylessthan1.0.

Apparently the hidden representationsof words only
slightly reflecttheir spelling-soundconsisteng. An alterna-
tive possibility is that theserepresentationsapturepredom-
inantly orthographic information acrossa rangeof levels of
structure(from individualgraphemeto combinationf clus-
ters;cf. Shallice& McCarthy 1985). If thiswerethecasethe
low-orderorthographicstructureaboutindividual graphemes
andclusterscould supportcomponentiahttractordor regular
words. Thepresencef higherorderstructurevould makethe
representatioof clustersn bothregularandexceptionwords
someavhat sensitve to context in which they occur More im-
portantly thishigherorderstructurevouldbeparticularuseful
for pronouncingxceptionwords,by overridingat the phono-
logical layer the standardspelling-soundcorrespondencesf
individual clusters. In this way, nhoncomponentiahspectof
theattractordor exceptionwordscould co-exist with compo-
nentialattractordor regularwords.

To provide evidence bearingon this explanation,a final
analysiswascarriedout to determinethe extentto which the
hidden representationare organizedon the basisof ortho-
graphic(asopposedo phonological)similarity. The hidden
representationfor a setof items are organizedorthographi-
cally (or phonologically)to the extentthatpairsof itemswith
similar hiddenrepresentationkave similar orthographic(or
phonological)representations.Put more generally the sets
representationsver two groupsof units have the samestruc-
tureto the extentthatthey inducethesamerelative similarities
amongitems.

To controlfor the contribution of orthographyasmuchas
possible the analysisinvolved 48 triples, eachconsistingof a
nonword,a regularinconsistentvord, andan exceptionword
that all sharethe samebody (e.g., PHINT, MINT, PINT; listed
in Appendix1). For eachitem in a triple, we computedthe
similarity of its hiddenrepresentatiomvith the hiddenrepre-
sentationsof all of the otheritems of the sametype (mea-
suring similarity by the correlationof unit actvities). The
similarities amongorthographicrepresentationand among
phonologicatepresentationserecomputedanalogouslyThe
orthographic,hidden,and phonologicalsimilarity valuesfor
eachitem were then correlatedin a pairwise fashion (i.e.,
orthographic-phonoldgal, hidden-orthograplai, andhidden-
phonological).Figure18 presentshe meansof thesecorrela-
tion valuesfor nonwordsyegularwords,andexceptionwords,
asafunctionof eachpair of representatiotypes.

First considerthe correlationbetweerthe orthographiand
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Figure18. Thecorrelation@mongorthographichidden,and
phonologicakimilaritiesfor body-matcheshonwordsyegular
inconsistentvords andexceptionwords(listedin Appendix1).

phonologicalsimilarities. Thesevaluesreflect the relative
amountsof structurein the spelling-soundnappingsfor dif-
ferenttypesof items. All of the valuesare relatively high
becausef the systematicityof Englishword pronunciations;
even within exceptionwords, the consonantlusterstendto
map consistently Nonethelessthe mappingsfor exception
wordsare lessstructuredthanfor nonwordsor regular words
(pairedt47=5.48,p<.001;andt47=5.77,p<.001,respectiely).
In otherwords,orthographicimilarity is lessrelatedo phono-
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Summary

Interactvity, andits usein implementingattractorsjs anim-
portantcomputationaprinciplein connectionisaccountof a
wide rangeof cognitive phenomenaAlthoughthetendeng of
attractorgo capturesimilarpaternsmightappeato makethem
inappropriatdor tasksin which novel inputsrequirenovel re-
sponsessuchas pronouncingnonwordsin oral reading,the
currentsimulationshows that using appropriatelystructured
representationgeadsto the developmentof attractorswith
componentiaktructurethat supportseffective generalization
to nonwords. At the sametime, the network also develops
lesscomponentiabttractorsfor exceptionwordsthat violate
theregularitiesin thetask. A seriesof analysesuggestshat
boththe componentiahndnoncomponentisdspect®f attrac-
torsaresupportedy hiddenrepresentationthatreflectortho-
graphicinformationat a rangeof levels of structure. In this
way, attractorsprovide an effective meansof capturingboth
theregularitiesandthe exceptionsin aquasi-rgulartask.

A further adwantageof an attractornetworkin this domain
is thatits temporaldynamicsn settlingto arespons@rovide a
moredirectanaloguef subjectshaminglatencieghanerrorin
afeedforwarchetwork. In fact,thetimeit takesthenetworkto
settleto astablepronunciatiorin responséo wordsof varying
frequeng andconsistengreplicateshestandargbatternfound
in empiricalstudies.

Simulation 4: Surface Dyslexia and the
Division of L abor Between the
Phonological and Semantic Pathways

A centralthemeof the currentwork is thatthe processingf

logical similarity for exceptionwordsthanfor the otheritems. words and nonwordscan co-exist within connectionistnet-
In asensethisis thedefiningcharacteristiof exceptionwords works that employappropriatelystructuredorthographicand
and, thus, the finding simply verifiesthat the representations phonologicalrepresentationand operateaccordingto certain

usedin the simulationshave the appropriatesimilarity struc-
ture.

Themoreinterestingcomparisonsirethosethatinvolve the
hiddenrepresentationsAs Figure 18 shaws, the similarities
amonghehiddenrepresentationsf all typesof itemsaremuch
morehighly correlatedvith theirorthographisimilaritiesthan
with their phonologicalsimilarities (p<.001 for all pairwise
comparisons). The representationsf nonwordsand regular

computationaprinciples. It mustbe keptin mind, however,

that SM89's generalexical framevork—onwhich thecurrent
work is based—containsvo pathwaydy which orthographic
informationcaninfluencephonologicalinformation: a phono-

logical pathwayanda semantic pathway(seeFigurel). Thus
far, we have ignoredthe semanticpathwayin orderto focus
ontheprinciplesthatgovernthe operatiorof the phonological
pathway However, onourview, thephonologicabndsemantic
pathwaysmustwork togetherto supportnormalskilled read-

wordsbehae equialentlyin thisregard. Therepresentations ing. For example,semantidnvolvementis clearly necessary
of exceptionwordsshaw theeffectevenmorestrongly having  for correctpronunciatiorof homographdike wiND andREAD.
significantly less phonologicalstructurethan the othertwo Furthermore,a semanticvariable—imageability—influences
item types(exceptionvs. nonword: pairedi47=2.81,p=.007; thestrengthof thefrequeng-by-consistenginteractionin the
exceptionvs. regular: pairedt47=3.22,p=.002). Thismaybe naminglatenciesanderrorsof skilled readerqStrain,Patter
dueto therelianceof thesewordson high-orderorthographic son,& Seidenbay, in press). Evenin traditionaldual-route
structurego overridestandardpelling-soundorrespondences.theories(see,e.g.,Coltheartet al., 1993; Coltheart& Rastle,
Overall, consistentwith the explanationoffered above, the 1994),the lexical procedurenustinfluencethe outputof the
hidden representationgare organizedmore orthographically subleical procedurdo accountor consisteng effectsamong
thanphonologically regularwordsandnonwordqGlushko,1979).
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The SM89framavork (andtheimplied computationaprin-
ciples) provides a natural formulation of how contributions
from both the semanticand phonologicalpathwaysmight be
integratedin determininghe pronunciatiorof awrittenword.
Critically, whenformulatedin connectionisterms,this inte-
grationhasimportantimplicationsfor the natureof learning
in thetwo pathways.In mostconnectionissystems|earning
is drivenby somemeasuref thediscrepang or errorbetween
the correctresponsandthe onegeneratedby the system.To
the extent that the contribution of one pathwayreducesthe
overall error, the otherpathwaywill experienceesspressure
tolearn.As aresult,onits own, it maymastemwonly thoseitems
it finds easiesto learn. Specifically if the semantigpathway
contributessignificantly to the pronunciationof words, then
the phonologicabathwayneednot masterall of thewordsby
itself. Rather it will tendto learnbestthosewordshigh in
frequeng and/orconsisteng; low-frequeny exceptionwords
may never be learnedcompletely This is especiallytrue if
thereis someintrinsic pressurewithin the networkto prevent
overlearning—folexample jf weightshaveaslightbiastoward
stayingsmall. Of coursethe combination of thesemantiand
phonologicalpathwayswill be fully competent.But readers
of equialentovert skill may differ in their division of labor
betweerthetwo pathwaygseeg.g.,Baron& Stravson,1976).
In fact,if thesemantiqathwaycontinuedo improve with ad-
ditional readingexperience the phonologicalpathwaywould
becomeincreasinglyspecializedor consistenspelling-sound
mappingsat the expenseof even higherfrequeng exception
words. At ary point, braindamagehatreducedor eliminated
thesemantipathwaywouldlay barethelatentinadequaciesf
thephonologicapathway In thisway, adetailedconsideration
of thedivision of labor betweerthe phonologicalndseman-
tic pathwayss critical to understandinghe specificpatterns
of impairedandpresered abilities of brain-damagegatients
with acquireddyslexia.

Of particularrelevancean thisconext is thefinding thatbrain
damagecanselectvely impair eithernonwordreadingor ex-
ceptionwordreadingwhile leaving theother(relatively) intact.
Thus,phonologicabyslexic patients(Beauwis & Derouesa,
1979) read words (both regular and exception) much better
thannonwordswhereasurfacedyslexic patientgMarshall&
Newcombe 1973;Pattersoretal., 1985)readnonwordamuch
betterthan(exception)words.

Phonologicatlyslexia hasanaturalinterpretatiorwithin the
SM89frameawvork in termsof selectve damageo the phono-
logical pathway(or perhapsvithin phorology itself;seePatter
son& Marcel,1992),sothatreadings accomplishegrimarily
(perhapseven exclusively in somepatients)by the semantic
pathway This pathwaycan pronouncewordshbut is unlikely
to provide muchusefulsupportin pronouncingnonwordsas,
by definition, theseitems have no semantics. Along these
lines, as mentionedin the previous section,Plautand Shal-
lice (1993, also seeHinton & Shallice,1991) useda series
of implementation®f the semanticroute to provide a com-
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prehensie accountof deepdyslexia (Coltheartet al., 1980;
Marshall & Newcombe,1966), a form of acquireddyslexia
similar to phonologicaldyslexia but also involving the pro-
ductionof semantieerrors(seeFriedmanjn pressGlosser&

Friedman;1990,for amumentshatdeepdyslexia is simplythe
mostsevere form of phonologicaldyslexia). The questionof
theexactnatureof theimpairmenthatgivesriseto readingvia
semanticsn phonologicablyslecia, andwhetherthisinterpre-
tation canaccountfor all of the relevantfindings,is takenup
in the GeneraDiscussion.

Surfacedyslexia, on the other hand, would seemto in-
volve readingprimarily via the phonologicalpathwaydueto
an impairmentof the semanticpathway It its purest,fluent
form (e.g.,MP, Behrmann& Bub, 1992;Bub, Cancelliere&
Kertesz,1985;KT, McCarthy& Warrington, 1986;HTR, Shal-
lice etal., 1983),patientsexhibit normalaccurag andlateny
in readingwords with consistentspelling-soundcorrespon-
dencesandin readingnonwords put often misreadexception
words,particularlythoseof low frequeng, by givingapronun-
ciation consistentwith more standardcorrespondence.g.,
SEw=-"sue”). Althoughwe ascribesucherrorsto influences
of consisteny, they arecorventionallytermedregularizations
(Coltheart1981)andwe haveretainedhisterminology Thus,
thereisafrequeng-by-consistenginteractionin accurag that
mirrorstheinteractionin lateng exhibited by normalskilled
readergAndrews, 1982;Seidenbay, 1985; Seidenbeg et al.,
1984; Taraban& McClelland, 1987; Waters& Seidenbay,
1985). Therelevanceof the semantidmpairmentin surface
dyslexia is supportedby the finding that, in somecasesof
semantiddementig GrahamHodgesg& Patterson1994;Pat-
terson& Hodges1992;SchwartzMarin, & Safran,1979)and
of AlzheimerstypedementigPattersonGraham & Hodges,
1994),the surfacedyslexic readingpatternemegesaslexical
semantidknowledgeprogressiely deteriorates.

Theprevioussimulationsof thephonologicapathwayalong
with that of SM89, are similar to surfacedyslexic patientsin
thatthey readwithout the aid of semantics.The simulations
do not provide a directaccountof surfacedyslexia, however,
as they all readexceptionwords as well as skilled readers.
Onepossibilityis that surfacedyslexia arisesfrom partialim-
pairmentof the phonologicalpathwayin additionto severe
impairmentof the semantigpathway A moreinterestingpos-
sibility, basedon the division-of-laborideasabove, is thatthe
developmentand operationof the phonologicalpathwayis
shapedn animportantway by the concurrentdevelopmeniof
the semanticpathway and that surfacedysleia ariseswhen
theintact phonologicapathwayoperate$n isolationdueto an
impairmentof the semantigathway

Two setsof simulationsareemployedo testtheadequag of
thesdwo account®f surfacalysleia. Thefirstsetinvestigates
the effects of damagein the attractornetwork developedin
the previous simulation. The secondnvolvesa new network
trainedin the context of supportfrom semantics.
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Phonological Pathway L esions

Pattersoret al. (1989)investigatedhe possibilitythatsurface
dyslexia mightarisefrom damageo anisolatedphonological
pathway They lesionedthe SM89 model, by remwing dif-
ferentproportionsof units or connectionsand measuredts
performanceon regular and exceptionwords of variousfre-
guencies. The damagecdhetwork’s pronunciationof a given
word wascomparedvith the correctpronunciationand with
aplausiblealternatve—for exceptionwords,this wasthereg-
ularizedpronunciation. Pattersonand colleaguedound that,
afterdamageregularandexceptionwordsproduceaboutequal
amountof error, andtherewasno effect of frequeng in read-
ing exceptionwords. Exceptionwordsweremuchmorelikely
thanregularwordsto producethealternatiie pronurciation but
a comparisorof the phonemideaturedn errorsrevealedthat
thenetworkshavedno greatetendenyg to produceegulariza-
tionsthanothererrorsthatdifferfromthecorrectpronunciation
by the samenumberof features.Thus,the damagedetwork
failed to shav the frequeng-by-consisteng interactionand
thehighproportionof regularizationerrorson exceptionwords
characteristiof surfacedyslexia.

Using a more detailedprocedurefor analyzingresponses,
Patterson(1990) found that remaving 20% of the hidden
unitsproducedetterperformancenregularversusexception
words and a (nonsignificant)trend towardsa frequeng-by-
consisteng interaction.Figure19 shavs analogousiatafrom
100instance®f lesionsto areplicationof the SM89network,
in whicheachhiddenunithadaprobabilityp of either0.20r0.4
of beingremaved. Plottedfor eachseverity of damages the
percentcorrecton the TarabarandMcClelland’s (1987)high-
andlow-frequeny exceptionwordsandtheir regular consis-
tentcontrolwords thepercenpf errorsontheexceptionwords
thatareregularizationsandthe percentcorrecton Glushkos
(1979)nonwords countingascorrectary pronunciationcon-
sistentwith that of someword with the samebody in the
training corpus. Also shavn in thefigure arethe correspond-
ing datafor two surfacedyslexic patients:MP (Behrmann&
Bub,1992;Bubetal.,1985)andKT (McCarthy& Warrington,
1986).

Themilderlesions(p = 0.2) producea goodmatchto MP’s
performanceon the Tarabanand McClelland words. How-
ever, the more severe lesions(p = 0.4) fail to simulatethe
moredramaticeffectsshavn by KT. Insteadwhile the dam-
agednetworkandKT performaboutequallywell onthehigh-
frequeng exceptionwords,the networkis notasimpairedon
thelow-frequeng exceptionwordsandis muchmoreimpaired
on both high- andlow-frequeng regular words. In addition,
with the less severe damageonly abouta third of the net-
work’s errorsto exceptionwordsareregularizationsandonly
justabore half of the nonwordsarepronouncecorrectly;for
moreseveredamagethesdiguresareevenlower. By contrast,
bothMP andKT produceregularizationratesaround85-90%
andarenearperfectat nonwordreading.Overall, the attempts
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Figure19. Performanceftwo surfacedyslexic patient{MP,
Behrmanr& Bub,1992;Bubetal.,1985;andKT, McCarthy&
Warrington, 1986) and of a replicationof the SM89 model
whenlesionedby remaving eachhiddenunit with probability
p = 0.2 or 0.4 (resultsare averagedover 100 suchlesions).
Correctperformances given for Tarabanand McClelland’s
(1987) high-frequeng (HF) and low-frequeng (LF) regular
consistentwords (Reg) and exceptionwords (Exc), and for
Glushkos (1979)nonwords.“Reg’s” is the approximateper
centageof errorson the exceptionwordsthatare regulariza-
tions.

to accounffor surfacedyslexia by damaginghe SM89model
have beenlessthansatisfactory(seeBehrmann& Bub,1992;
Coltheartetal., 1993, for further criticisms).

One possibleexplanation of this failing parallelsour ex-
planationof the SM89 models poor nonwordreading: it is
dueto theuseof representationthatdo not maketherelevant
structurebetweerorthographyandphonologysuficiently ex-
plicit. In essenceheinfluenceof spelling-sounaonsisteng
in the modelis too weak. This weaknesslso seemsto be
contributing to its inability to simulatesurfacedyslexia after
severe damage:regular word reading,nonwordreading,and
regularizationratesareall toolow. Thisinterpretationeadsto
the possibilitythata networktrainedwith moreappropriately
structuredepresentationsould, whendamagedsuccessfully
replicatethe surfacedyslexic readingpattern.

Method. Theattractometworkwaslesionedeitherby re-
moving eachhidden unit or eachconnectionbetweentwo
groupsof unitswith someprobabilityp, or by addingnormally-
distributednoiseto the weightson connectiondbetweentwo
groupsof units. In the latter case the severity of the damage
depend®nthestandardieviation sd of thenoise—ahighersd
constitute@amoresesereimpairment.Thisform of damagéas
theadwantageover the permanentemaoval of unitsor connec-
tions of reducingthe possibility of idiosyncraticeffectsfrom
lesionsto particularunits/connectionsAs Shallice(1988)has
pointedout, sucheffectsin a networksimulationareof little
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interestto the studyof the cognitive effectsof damageo the
brain giventhe vastdifferencein scalebetweenthe two sys-
tems(alsoseePlaut,in press).In general simulationstudies
comparingthe effectsof addingnoiseto weightswith the ef-
fectsof removing unitsor connectionge.g.,Hinton& Shallice,
1991) have foundthatthe two procedureyield qualitatively
equialentresultst4

Fifty instance®f eachtypeof lesionof arangeof severities
wereadministeredo eachof themainsetsof connectionén the
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As foundfor the SM89 network,however, moreseverele-
sionsdonotreplicatethepatterrshovn by KT. Lesionghatre-
ducecorrectperformancen high-frequeng exceptionwords
to equialentlevels (sd=1.0; network: 46%;KT: 47%)do not
impair low-frequeng exceptionwords sufficiently (network:
38%; KT: 26%) and, unlike KT, impair both high- andlow-
frequeng regularwords(network: 65% and60%; KT: 100%
and 89%, respectiely). Furthermoreandeven more unlike
KT, thereis a substantialrop in both the regularizationrate

attractometwork(graphemes-to-hiddehidden-to-phonemes, (network: 32%; KT: 85%) andin performanceon nonwords

phonemes-to-hiddeandphonemes-to-phonemesahdto the
hiddenunits. After agivenlesion,theoperatiorof thenetwork
whenpresentedavith aninputandthe procedurdor determin-
ing its responseareexactly the sameasin Simulation3.

To evaluatetheeffectsof lesions thenetworkwastestedon
TarabarandMcClelland’s(1987)high- andlow-frequeng reg-
ular consistentvordsand exceptionwordsandon Glushkos

(network: 60%;KT: 100%).

Lesionsto the other setsof connectiongroducebroadly
similar but evenweakermesults:thefrequeng-by-consisteng
interactionsaareweaker(especiallyfor severelesions) theim-
pairmenif regularwordsis moresevere(exceptfor phoneme-
to-hiddenlesions)andtheregularizationratesaremuchlower
(notethata differentrangeof lesionseveritieswasusedfor the

(1979) nonwords. For the words, in additionto measuring hidden-to-phonemesonnectionsisthey aremuchmoresen-

correctperformancewe calculatedthe percentagef errors
on the exceptionwordsthat correspondo a regularizedpro-
nunciation. The full list of responseshat were acceptedas
regularizationsis given in Appendix3. As the undamaged
network mispronounceshe word sPOOK this item was not
includedin the calculationof regularizationrates. For the
nonwords,a pronunciationwas accepteds correctif it was
consistentvith the pronunciatiorof somewordin thetraining
corpuswith thesamebody(seeAppendix2).

Results and Discussion. Figure 20 shavs the datafrom
theattractometworkaftertheweightsof eachof thefour main
setsof connectionsverecorruptedby noiseof varying se/er
ities. The milder lesionsto the graphemes-to-hiddezbnnec-

sitive to noise). Thus,in summary mild grapheme-to-hidden
lesionsin theattractometworkcanaccounfor MP’sbehaior,
but moresererelesionscannotreproduceKT’ s behaior.

Thesengyative findingsarenotspecificto theuseof noisein
lesioningthenetwork;remaving unitsor connectionproduces
gualitatvely equivalentresults,exceptthat the regularization
ratesareeven lower. To illustratethis, Table9 presentdata
for the two patientsandfor the attractornetworkafter either
mild or severelesionsof thegraphemes-to-hiddemnnections,
the hiddenunits,or thehidden-to-phonemennectionsThe
levelsof severity werechosero approximateheperformance
of MP andKT on low-frequeny exceptionwords.

In summarysometypesof lesionto a networkimplementa-

tions (on the top left of the Figure) produceclearinteractions tion of the phonologicabathwaymay be ableto approximate

of frequeng andconsisteng in correctperformancen word
reading. For instance,after adding noisewith sd=0.4, the
networkpronouncegorrectlyover 96% of regularwordsand
93%of high-frequeng exceptionwords,but only 77%of low-

frequeng exceptionwords. In addition,for thesdesions68%
of errorsonexceptionwordsareregularizationsand39%of the
nonwordsarepronouncedorrectly Comparedvith theresults
from lesionsof 20%of the hiddenunitsin the SM89 network,
theseshav a strongereffect of consisteng and are a better
matchto the performanceof MP (althoughthe regularization
rateis somavhatlow; seeFigure19). Thus,aspredictedthe
useof representationthatbettercapturespelling-soundtruc-
tureproduces strongefrequeng-by-consistenginteraction,
moreregularizationsandbetternonwordreading.

1470 seewhy this shouldbe the case,imaginea much larger networkin
which the role of eachweightin a smallernetworkis accomplishedy the
collective influenceof a large setof weights. Forinstancewe might replace
eachconnectionin the small networkby a setof connectionsvhoseweights
arebothpositveandnegatveandsumto theweightof theoriginalconnection.
Randomlyremovingsomeproportionof the connectionsn thelarge network
will shift the meanof eachsetof weights;this will have the sameeffect as
addingarandomamountof noiseto the valueof the correspondingveightin
thesmallnetwork.

the less-impairedpatternof performanceshovn by MP, but
are unableto accountfor the more dramatic patternof re-
sultsshovn by KT. Thesdindingssuggesthatimpairmentto
the phonologicalpathwaymay play a role in the behaior of
somesurfacedyslexic patientsput seemainlikely to provide a
completeexplanationof somepatients—particulathosewith
normalnonwordreadingandsererelyimpairedexceptionword
reading.

Phonological and Semantic Division of L abor

We now consideranalternatve view of surfacedyslexia: that
it reflectsthe behaior of an undamagedbut isolatedphono-
logical pathwaythat hadlearnedto dependon supportfrom
semanticsn normalreading. All of the previous simulations
of the phonologicalpathwayhave beentrainedto be fully
competenbn their own. Thus,if this explanationfor surface
dyslexia holds, it entailsa reappraisabf the relationshipbe-
tweenthosesimulationsandthe normalskilled word reading
system.

The currentsimulationinvolvestraining a new networkin
the context of anapproximatiorto the contribution of seman-
tics. Includinga full implementatiorof the semantigathway
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Figure 20. Performanceof the attractornetworkafter lesionsof variousseveritiesto eachof the main setsof connections,
in which weightsare corruptedby noisewith meanzeroand standarddeviation “sd” asindicated. Correctperformances
givenfor TarabanandMcClelland’s (1987)high-frequeng (HF) andlow-frequeng (LF) regular consistentvords(Reg) and
exceptionwords(Exc), andfor Glushkos(1979)nonwords.“Reg’s” is thepercentagef errorson theexceptionwordsthatare
regularizations.
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Table9
Performance of the Attractor Network after Lesions of Unitsor Connections
CorrectPerformance
HFRegg LFRe HFExc LFExc Rey's Nonwords
PatientMP* 95 98 93 73 90 95.5
PatientKT? 100 89 47 26 85° 100
AttractorNetworkLesions
Graphemes-to-Hidden
p=.05 95.8 94.4 88.9 75.8 65.6 89.6
p=.3 49.0 42.8 37.8 27.9 26.0 45.3
HiddenUnits
p=.075 93.9 935 85.6 75.8 51.4 85.6
p=.3 54,5 494 45.3 31.7 18.0 48.4
Hidden-to-Phonemes
p=.02 89.0 89.2 81.0 70.0 48.3 82.4
p=.1 36.3 31.8 26.4 24.8 13.3 355

Note: p is the probability that eachof the specifiedunits or connectionds removedfrom the network for a
lesion;resultsareaveragedver50 instance®f suchlesions. Correctperformances givenfor the Tarabarnand
McClelland’s (1987)high-frequency{HF) andlow-frequencyLF) regularconsistentvords(Reg)andexception
words(Exc),andfor Glushko5(1979)nonwords.“Reg’s” is thepercentagef errorsonthe exceptiorwordsthat

areregularizations.

¢ FromBub etal. (1985,seealsoBehrmann& Bub,1992).
b FromPattersor{1990,basedn McCarthy& Warrington,1986).

¢ Approximate(from Patterson1990).

is, of course beyond the scopeof the presentwork. Rather
we will characterizehe operationof this pathwaysolely in
termsof its influenceon the phonemaunits within the phono-
logical pathway Specifically to the extent that the semantic
pathwayhaslearnedto derive the meaningandpronunciation
of aword, it providesadditionalinput to the phonemeunits,
pushingthemtoward their correctactivations. Accordingly,
we canapproximateheinfluenceof the semantiqathwayon
the developmentof the phonologicalpathwayby trainingthe
latter in the presencedf someamountof appropriatesxternal
inputto the phonemaunits.

A difficult issuearisesimmediatelyin the context of this
approachconcerningthe time-courseof developmentof the
semantiacontribution during the training of the phonological
pathway Presumablythe mappingbetweensemanticsand
phonologydevelops,in largepart, prior to readingacquisition,
aspartof speectcomprehensioandproduction.By contrast,
the orthography-to-semantiamapping, like orthography-to-
phonologymapping,obviously candevelop only whenlearn-
ingtoread.In fact,it is likely thatthesemantigpathwaymakes
asubstantiatontributionto oral readingonly oncethe phono-
logicalpathwayhasdevelopedo somalegree—inpartbecause
of thephonologicahatureof typicalreadingnstruction,andin
partbecausein English,the orthography-tephanology map-

way is alsolikely to be sensitve to the frequeng with which
wordsareencountered Accordingly, asa coarseapproxima-
tion, we will assumehatthe strengthof the semanticcontri-
bution to phonologyin readingincreasegraduallyover time
andis strongeffor high-frequeng words.

It mustbeacknavledgedhatthischaracterizationf seman-
tics fails to capturea numberof propertieof the actualword
readingsystemthat arecertainlyimportantin somecontets:
otherlexical factors,suchasimageability that influencethe
contribution of semantic4o phonology interactvity between
phonologyandsemanticsandtherelative time-courseof pro-
cessingn the semantiandphonologicabathways.Nonethe-
less,the manipulationof externalinput to the phonemeunits
allows usto investigatethe centralclaim in the proposeds-
planationof surfacedyslexia: that partial semanticsupport
for word pronunciationslleviatesthe needfor the phonolog-
ical pathwayto masterall words,suchthat, whenthe support
is eliminatedby brain damage the surfacedyslexic reading
patternemeges.

Method. As will becomeapparentbelawn, the necessary
simulationrequires4—5 times moretraining epochsthanthe
correspondingrevioussimulation. Thus,anattractometwork
trainedon actualword frequenciegouldnotbedevelopeddue
tothelimitationsof availablecomputationatesourcesRather

ping is far morestructuredhanthe orthography-to-semanticsthesimulationinvolvedtrainingafeedforwarchetworkusinga

mapping. The dggree of learningwithin the semanticpath-

square-rootompressiolf wordfrequenciesSuchanetwork



UnderstandingNormalandimpairedWord Reading

produces patternof resultsn wordandnonwordreadingthat
is quite similar to the attractornetwork (see Simulation 2).
More importantly thereis nothing specific about the feed-
forwardnatureof the networkthatis necessaryo producethe
resultsreportedelan; anattractometworktrainedunderanal-
ogousconditionswould be expectedto producequalitatively
equialentresults.

Thenetworkwastrainedwith thesameearningparameters
as the correspondinghetwork from Simulation2 except for
onechange:asmallamounibf weight decay wasreintroduced,
suchthat eachweight experiencesa slight pressurdo decay
towardszero,proportional(with constan0.001)to its current
magnitude.As mentionedn the context of Simulation1, this
providesabiastowardssmallweightsthatpreventsthenetwork
from overlearningandtherebyencouragegoodgeneralization
(seeHinton,1989). Asisdemonstratetelow, theintroduction
of weight decaydoesnot alter the ability of the networkto
replicatethe patternsof normalskilled performanceon words
andnonwords.

Over the courseof training, the magnitudeS of the input
to phonemaeunits from the (putative) semantigpathwayfor a
givenword wassetto be

_log(f +2)t
~Tlog(f + 2)t +

where f is the Kugeraand Francis(1967) frequeng of the
word, andt is the training epoch. The parameterg and k

determingheasymptotidevel of inputandthetime to asymp-
tote,respectiely. Theirvaluesg = 5, = 2000in thecurrent
simulation),and,moregenerallythespecificanalyticfunction
usedto approximatehedevelopmenbf thesemantigpathway
affectthe quantitative but not the qualitative aspect®f there-
sultsreportedbelon. Figure21 shavs the meanvaluesof this
functionover trainingepochdor the TarabarandMcClelland
(1987) high- andlow-frequenyg words. If, for a givenword,
the correctstateof a phonemeunit was1.0, thenits external
input was positive; otherwiseit wasthe samemagnitudebut

negative.

For the purposesof comparisona secondversion of the
networkwastrainedwithoutsemanticsysingexactlythesame
learningparametersindinitial randomweights.

Resultsand Discussion. Learningin the networktrained
without semanticseachedsymptoteby epoch500, at which
point it pronounceccorrectlyall but 9 of the 2998 wordsin
thetrainingcorpus(99.7%ocorrect). Figure22 shavs the per
formanceof thenetworkon TarabarandMcClelland's (1987)
high- and low-frequeng exception words and their regular
consistentontrolwords,andon Glushkos (1979)nonwords,
overthecourseof training. Performancenregularwordsand
on nonworddmprovesquiterapidly over thefirst 100 epochs,
reaching97.9%for the words and 96.5% for the nonwords
atthis point. Performance®n high-frequeng exceptionwords
improvessomavhatmoreslowly. By contrastperformancen
thelow-frequeng exceptionwordsimprovesfar moreslowly,

(16)
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Figure 21. The magnitudeof the additional external input
suppliedto phonemeunits by the putative semantigpathway
asafunctionof trainingepochfor theTarabarandMcClelland
(1987)high- andlow-frequeng words.

only becomingperfectat epoch400. At this point, all of

the words are readcorrectly Even so, thereare significant
main effects of frequeny (F7,9,=35.9, p<.001) and consis-
teny (F1,00=64.3, p<.001), and a significantinteractionof

frequeng andconsisteng in thecross-entropgrrorproduced
by the words (means: HFR 0.031,LFR 0.057,HFE 0.120,
LFE 0.465; F1 9,=26.4,p<.001). Thus,the networkexhibits

thestandargbatternof normalskilledreaderstheuseof weight
decayduringtraininghasnotsubstantiallyalteredthebasicin-

fluencesf frequeng andconsisteng in the network.

In the currentcontet, the networktrainedwith a concur
rently increasingcontritution from semantics(as shawvn in
Figure 21) is the more direct analogueof a normal reader
Not surprisingly overall performancemproves morerapidly
in this case. All of the regularsandthe high-frequeng ex-
ceptionsare pronouncedcorrectly by epoch110, and low-
frequeng exceptionsare at 70.8% correct. By epoch200,
all of the low-frequeng exceptionsare correct,andnonword
readingis 95.4%correct(wherewe assumanonwordsreceve
no contritution from semantics). At this point, the network
with semanticexhibits the standarceffects of frequeng and
consisteng in cross-entropyerror (means:HFR 0.021,LFR
0.025HFEO0.102,LFE0.382;frequeng: F 9>=19.0,p<.001,;
consisteng: F4 9o=45.0, p<.001; frequeng-by-consisten:
F1 9,=17.8,p<.001). Even after a considerableamountof
additionaltraining (epoch2000), during which the division
of labor betweenthe semanticand phonologicalpathways
changesconsiderably(as shavn below), the overt behaior
of the normal“combined”networkshaws the samepatternof
effects (nonwordreading:97.7%correct;word cross-entropy
errormeans:HFR0.013,LFR 0.014,HFE 0.034,LFE 0.053;
frequeny: Fy95=13.6, p<.001; consisteng: F49,=125.1,
p<.001;frequeng-by-consisteng. F1 ¢,=9.66,p=.003).

This lastfinding may help explain why, asin previous sim-
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Figure22. Correctperformancef thenetworktrainedwith-
outsemanticsasa functionof trainingepoch,on Tarabarand
McClelland’s (1987)high-frequeng (HF) andlow-frequeny
(LF) regular consistentwords (Reg) and exception words
(Exc),andon Glushkos(1979)nonwords.

ulations, networksthat are trainedto be fully competenton

their own replicatethe effects of frequeng and consisteng

in naminglateng, eventhough,from the currentperspectie,

suchsimulationsarenotfully adequateharacterizationsf the
isolatedphonologicalpathwayin skilled readers.Thereason
is that, when performancds nearasymptote—dueitherto

extendedrainingor to semanticsupport—wordrequeng and
spelling-sounatonsisteng affect the relative effectivenessof

processinglifferentwordsin the sameway. This asymptotic
behaior followsfrom thefrequeng-consisteng equation(see
Equation12 andFigure8). Increasingraining (by increasing
eachN! in the equation)or addingan additionalsemantic
termto the sumsenesequallyto drive units further towards
their extremalvalues(alsoseethe GeneraDiscussion).

Figure 23 shaws the performanceof the network at each
point in training when the contribution from semanticsis
eliminated—thats, aftera completesemanticlesion?” These
datareflect the underlying competenceof the phonological
pathwaywhentrainedin thecontet of aconcurrentlydevelop-
ing semantigathway Firstnoticethatthe simulationinvolves
trainingfor 2000epochseventhoughthebulk of “overt” read-
ing acquisitionoccursn thefirst 100epochs.Thus,theeffects
in the network should be thoughtof as reflectingthe grad-
ual improvementof skill from readingexperiencethat, in the
humansystem spangerhapsnary decades.

Initially, performanceon nonwordsandall typesof words
improves as the phonologicalpathwaygains competencen
thetask,muchaswhenthe networkis trainedwithout seman-
tics (seeFigure22). But asthe semanticpathwayincreases
in strength(ascharacterizedby the curvesin Figure21), the
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Figure 23. Performancef the networktrainedwith seman-
ticsafterasemanticlesion; asafunctionof thetrainingepoch
atwhichsemanticss eliminatedfor TarabarandMcClelland’s
(1987) high-frequeng (HF) and low-frequeng (LF) regular
consistentwords (Reg) and exceptionwords (Exc), and for
Glushkos (1979) nonwords,andthe approximatepercentage
of errorson the exceptionwordsthatareregularizations.
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accurag of the combinednetwork’s pronunciation®f words
improvesevenfaster(recallthatthe combinednhetworkis per
fect on the Tarabanand McClelland words by epoch200).
The pressurego continueto learnin the phonologicalpath-
way is therebydiminished. Eventually at aboutepoch400,
this pressurds balancedby the bias for weightsto remain
small. At this point, mostof the error that remainscomes
from low-frequenyg exceptionwords. This erroris reduced
as the semanticpathwaycontinuesto increaseits contribu-
tion to the pronunciationof these(and other) words. As a
result,the pressurdor weightsto decayis no longerbalanced
by the error, and the weightsbecomessmaller This causes
a deterioration in the ability of the phonologicalpathwayto
pronouncdow-frequeng exceptionwordsby itself. With fur-
thersemantidmprovementthe processingf high-frequenyg
exceptionwordsin the phonologicalpathwayalso begins to
suffer.  Virtually all of the errors on exception words that
resultfrom this processare regularizations(plotted as aster
isksin Figure23). Largerweightsare particularlyimportant
for exceptionwordsbecausehey mustoverridethe standard
spelling-soundorrespondencekatareimplementedby mary
smallerweights. Furthermorehigh-frequeng wordsareless
susceptibléo degradatiorbecausary decremenin overtper

formanceinducesmuchlargerweightchangeso compensate.

By contrastthe processingf regularwordsandnonwordsis
relatively unafectedby the gradualreductionin weightmag-
nitudes.Low-frequeng regularwordsjustbeagin to beaffected
atepoch1900.

Thus, with extendedreadingexperience thereis a redis-
tribution of laborwithin the modelbetweerthe semanticand
phonologicalpathways. As the semanticpathwaygainsin
competencethe phonologicalpathwayincreasinglyspecial-
izesfor consistenspelling-soundtorrespondencest the ex-
penseof exceptionwords. Notice, however, that even with
extendedtraining, the phonologicalpathwaycontinuesto be
ableto readsomeexceptionwords—particularlyhoseof high-
frequeng. In thisway it is quite unlike the subleical proce-
durein a traditional dual-routetheory which canreadonly
regularwordsandno exceptionwords. It is alsoimportantto
keepin mindthatnormalovertperformance—asupportedy
thecombinatiorof the phonologicabndsemantigathways—
becomedully accuratevery earlyonandcontinuedo improve
in naminglateny (asreflectedndirectly by error).

Onthisinterpretatiorof surfacelyslexia, differencesamong
patientdn their ability to readexceptionwordsmaynotreflect
differencesn thesereritiesof theirbraindamage Ratheythey
mayreflectdifferencesn their premorbid division of laborbe-
tweenpathwayswith the patientsexhibiting the more severe
impairmentbeingthosewho hadreliedto a greaterextenton
semanticsupport. To illustrate this more directly, Figure 24
presentglatafrom MP andKT aswell asdatafrom the net-
work at two differentpointsin training, whensemanticsvas
eliminated.Overall,thenetworkatepoch400providesaclose
matchto MP’s performancewhile the networkat epoch2000
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Figure24. Performanceftwo surfacedyslexic patient{MP,
Behrmanr& Bub,1992;Bubetal.,1985;andKT, McCarthy&
Warrington,1986)andthe networkat differentpointsin train-
ing when semanticss eliminated. Correct performances
given for Tarabanand McClelland’s (1987) high-frequeng
(HF) andlow-frequeny (LF) regular consistentvords (Reg)
and exceptionwords (Exc), and for Glushkos (1979) non-
words. “Reg’s” is theapproximatepercentagef errorsonthe
exceptionwordsthatareregularizations.

matcheXKT’s performance The only substantiatiscrepang

is that,in bothconditionsthenetwork’srateof regularizations
is higherthanthat of the correspondingpatient(althoughthe

patientdataareonly approximateseePatterson;1990).

Thusfar, we have assumedhat surfacedyslexic patients,
at leastthoseof the fluenttype, have alesionthat completely
eliminatesary contribution of thesemantipathwayin reading.
This assumptiormay be reasonabldéor MP andKT, asboth
patientshadvery severeimpairmentsn written word compre-
hension.MP wasat chanceat selectingwhich of four written
wordswassemanticallyelatedo agivenwordor picture(Bub
etal.,1985,alsoseeBub, Black,Hampson& Kertesz,1988).
KT's severe word comprehensiodeficit preventedhim from
scoringon eitherthe VVocalulary or Similaritiessubtest®f the
WechslerAdult IntelligenceScale(WAIS) (e.g.,"bed, bed,|
do not know whata bedis;” McCarthy& Warrington,1986,
p.361).

However, some patientswith fluent surfacedyslecia ap-
pearto have only a partialimpairmentin the semanticpath-
way. In particulary amongpatientswith semanticdementia
whosereadinghasbeentestedin detail, the large majority
also exhibit a surfacedyslexic patternsuchthat severity of
the readingdisorderis correlatedwith the degree of seman-
tic deterioration(Grahamet al., 1994; Patterson& Hodges,
1992, but seeCipolotti & Warrington,1995). A similar find-
ing appliesamongpatientswith Alzheimers type dementia
(Pattersoret al., 1994). Suchcaseshave a naturalinterpreta-
tion in the currentcontet in termsof the performanceof the
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Figure25. Theeffectof gradualeliminationof semantic®n
the correctperformanceof the networkafter 2000 epochsof
trainingwith semanticsfor TarabarandMcClelland’s (1987)
high-frequeng (HF) andlow-frequeng (LF) regular consis-
tentwords(Reg) andexceptionwords(Exc),andfor Glushko’s
(1979)nonwordsandapproximatgercentagef errorsonthe
exceptionwordsthatareregularizations.

networkwith partial ratherthan completeelimination of the
contribution of the putatve semanticpathway To illustrate
this effect, Figure 25 shavs the performanceof the network
trainedwith semanticdo epoch2000, asthe strengthof the
semanticcontribution to the phonemaunits—theparametey
in Equationl6—isgraduallyreduced As semanticslegrades,
performancen thelow-frequenyg exceptionss thefirst to be
affected,followedby the high-frequeng exceptions.By con-
trast,performancen regularwordsandnonwordss relatively
unafectedby semanticdeterioration,althoughperformance
on low-frequeny regular wordsis somavhatimpairedasse-
manticsis completelyeliminated(for ¢ = 0.0, the dataare
identicalto thosein Figure 23 for epoch2000). In fact, se-
manticdementigatientsalsoexhibit adropin performancen
low-frequeng regularwordswhentheir semantidmpairment
becomesery severe(Pattersor& Hodges1992). Of coursea
patientwith progressre dementianayalsohave someamount
of deteriorationwithin the phonologicalpathwayitself. As
Figure20 andTable9 illustrate,suchimpairmentwould tend
to degradeperformanceon exceptionwordseven further, but
alsowouldaffect performancen regularwordsandnonwords
to somedagree.

The obsenation of surfacedyslexic readingin association
with eitherdegradedsemanticor a disruptedmappingfrom
semanticgo phonology(which, on our accountshouldhave
the sameeffect) is common,andindeedhasbeenreportedin
several language®therthan English,including Dutch (Dies-
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portantto note,however, thattherearecaseshatsuggesthere
may be individual differencesn the extentto which the pro-
nunciationof low-frequeny exceptionsdepend®n contribu-
tions from semantics. The first is patientWLP (Schwartz,
Safran, & Marin, 1980),oneof the mostthoroughlystudied
casef neurodgeneratie diseasen the history of cognitive
neuropsychologyAlthough WLP beganto makeregulariza-
tion errorsonlow-frequeny exceptionwordsatalaterstageof
herdiseasetherewasa periodof testingatwhichhersemantic
disorderwasalreadymarkedbut her exception-wordreading
was still largely intact. Even more dramatically Cipolotti
andWarrington(1995)have recentlyreporteda patient, DRN,
with a substantialoss of meaningfor low-frequeny words,
thoughhis comprehensionf high-frequeng words (asmea-
suredby thedifficult taskof producingword definitions)was
still intact. DRN’s performancen readinglow-frequeng ex-
ceptionwordswas,however, almostperfectlyintact,with only
two or threereportedregularizationerrors(CANOE ="kano”,
SHOE=-"show"). On our accounttheseobsenationssuggest
that,in thesendividuals,thephonologicapathwayhaddevel-
opedarelatively highdegreeof competenceithoutassistance
fromsemanticsbutthispost-hodnterpretatbnclearlyrequires
somefuture,independensourceof evidence.

Onefinal comment,with respecto phonologicaldyslexia,
seemappropriate Recallthat phonologicaldyslexic patients
areableto readwordsmuchbetterthannonwords.In thecur
rent simulation,the external input to the phonemeunits that
representshe contritution of the semanticpathwayis suffi-
cient, on its own, to supportaccuratenvord reading(but not
nonwordreading). On the otherhand,severe damageo the
phonologicabathwaycertainlyimpairsnonwordreading(see
Figure 20 and Table 9). In the limit of a completelesion
betweerorthographyandphonology nonwordreadingwould
beimpossible.Thus,alesionto the networkthatseverelyim-
pairedthephonologicapathwaywhile leaving thecontribution
of semanticgo phonology(relatively) intact would replicate
the basiccharacteristicef phonologicaldyslexia.

Summary

Thedetailedpatternof behaior of acquireddyslexic patients
provideimportantconstraint®nthenatureof thenormalword
reading system. The most relevant patientsin the current
contet are thosewith (fluent) surfacedyslexia, as, like the
networks they would seemto readwithout the aid of seman-
tics. Thesepatientsread nonwordsnormally, but exhibit a
frequeng-by-consisteng interactionin word readingaccu-
ragy/, suchthatlow-frequeny exceptionwordsareparticularly
errorproneandtypically produceregularizatiorerrors. Patter
sonetal. (1989;Patterson1990)wererelatively unsuccessful
in replicatingthe surfacedysleia readingpatternby damag-
ingtheSM89model. Althoughthecurrentsimulationemploy
moreappropriatelystructuredepresentationsyhendamaged,

feldt, 1992),Italian (Miceli & Caramazzal993)andJapanese they toofail to producesurfacedyslexia—particularlythemore

(Patterson Suzuki, Wydell, & Sasanuman press). It is im-

severeform exhibitedby KT (McCarthy& Warrington,1986).
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Thesefindingscall into questionthe interpretatiorof surface
dyslexia asarisingfrom a partialimpairmentof thephonologi-
calpathwayin additionto extensiveimpairmenpf thesemantic
pathway Ratherabettermatchto thesurfacalyslexic reading
pattern—irbothits mild andsevereforms—isproducedy the
normaloperatiorof anisolatedphonologicapathwaythathad
developedn thecontet of supportfromthesemantigpathway
Thisfindingsupportaview of thenormalwordreadingsystem
in which thereis a division of labor betweenthe phonologi-
cal and semanticpathways,suchthat neitherpathwayalone
is completelycompetentand the two mustwork togetherto
supportskilled word andnonwordreading.

General Discussion

Thecurrentwork developsaconnectimistapprachto process-
ing in quasi-rgulardomainsasexemplifiedby Englishword
reading.Theapproaclderivesfrom thegeneracomputational
principlesthatprocessings gradedrandomadaptve, interac-
tive,andnonlinearandthatrepresentationsndknowledgeare
distributed(McClelland,1991,1993). Wheninstantiatedn the
specificdomainof oral reading theseprinciplesleadto a view
in whichthereadingsystenlearnsgraduallyto be sensitve to
thestatisticalstructureamongorthographicphonologicaland
semantiaepresentationgndthattheserepresentationsimul-
taneouslyconstraineachotherin interpretinga giveninput.

In supportof this view, we have presented seriesof con-
nectionistsimulationsof normalandimpairedword reading.
A consideratiorof the shortcoming®f a previousimplemen-
tation (Seidenbag & McClelland,1989)in readingnonwords
led to the developmentof orthographiandphonologicakep-
resentationthatcapturebettertherelevantstructureamonghe
written and spokenforms of words. In Simulationl, a feed-
forward network employingtheserepresentationkarnedto
pronouncall of alargecorpusof monosyllabiovords,includ-
ing theexceptionwords,andyetalsopronouncechonwordsas
well asskilled readers.

An analysisof the effects of word frequeny andspelling-
soundconsisteng in arelatedbut simplersystemformedthe
basisfor understandinghe empiricalpatternof naminglaten-
ciesasreflectinganappropriatdal ance betweerthesdactors.
In Simulation2, a feedforwardnetwork trained with actual
word frequenciesxhibited goodword andnonwordreading,
andalsoreplicatedhefrequeng-by-consistenginteractionn
theamountof errorit producedor wordsof varioustypes.

In Simulation3, a recurrentnetworkreplicatedthe effects
of frequeny and consisteng on naminglateny directly in
the time requiredto settle on a stablepronunciation. More
critically, the attractorghat the networkdevelopedfor words
overthecourseof traininghadcomponentiastructurehatalso
supportedjoodnonwordreading.

Finally, in Simulation4, therole of thesemantigathwayin
oralreadingwasconsideredn the contet of acquiredsurface
dyslexia, in which patientsread nonwordswell but exhibit
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a frequeng-by-consisteng interactionin namingaccuracy,
typically regularizing low-frequeng exceptionwords. The
view that thesesymptoms—particularlyn their most severe
form—reflectthe operationof a partially impairedphonologi-
cal pathwaywasnotsupportedy the behaior of theattractor
networkafteravariety of typesof damage A furthersimula-
tion supportednalternatve interpretatiorof surfacedyslexia:
thatit reflectsthenormaloperatiorof a phonologicabathway
thatis notfully competenbnits own becausd learnedo rely
on supportfrom the semantiqathway(whichis subsequently
impairedby braindamage).

Alternative Per spectiveson Word Reading

We cannow raise,andthenconsiderin thelight of theresults
summarizedbore, severalissuesoncerninghe natureof the
readingprocessThereis generabhgreementhat(atleast)two
pathwayscontribute to readingwords and nonwordsaloud,
but this still leaves opena numberof fundamentafjuestions.
Whataretheunderlyingexplanatoryprinciplesthatdetermine
the existenceandthe characterof thesedifferentpathways?
How doesthe operationof eacharisefrom the fundamental
principles,andwhataretheparticularprinciplesto whicheach
pathwayadheres™How do the differentpathwaysombineto
contribute to word and nonwordreading? We considerhere
two very differentapproacheto thesequestions.

One view—the so-calleddual-routeview—holds that the
fundamentaéxplanatoryprinciplein thedomainof wordread-
ing is that distinctly differentmechanismsre necessaryor
readingnonwordsontheonehandandexceptionwordsonthe
other Thetwo mechanismsperatan fundamentallydifferent
ways. Oneassemblepronunciationgrom phonemegener
atedby theapplicationof grapheme-phonenmerrespondence
rules. The othermapswhole (orthographic)inputsto whole
(phonological)outputs, using either a lexical lookup proce-
dureor, in morerecentformulations,an associatie network
(Pinker 1991) or McClelland and Rumelharts (1981) Inter-
active Activation model (Coltheartet al., 1993; Coltheart&
Rastle,1994).

The alternatve view—our connectionistapproach—holds
that the fundamentalkexplanatoryprinciple in the domainof
wordreadings thattheunderlyingmechanisnemploysanon-
linear, similarity-basedactivationprocessn conjunctionwith
a frequeng-sensitve connectionweight adjustmentprocess.
Two pathwaysare necessaryn reading,not becausaifferent
principlesapply to items of differenttypes, but becausedif-
ferenttasksmustbe performed. One pathway—hergermed
the phonologicapathway—performshe taskof transforming
orthographicepresentationsto phonologicatepresentations
directly. Theother—thesemantipathway—actuallperforms
two tasks. Thefirst is specificto reading;namely the trans-
formationof orthographiaepresentationimto semantiaepre-
sentations.The seconds a moregeneralaspecof language;
namely the transformationof semanticrepresentationmto
phonologicakepresentations.
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At first glance thesetwo views may appearso similar that
decidingbetweenthem hardly seemsaworth the effort. After
all, boththe lexical proceduren the dual-routeaccountand
the semanticpathwayin the connectionistaccountcanread
words but not nonwords,and both the subleical procedure
andthephonologicapathwayarecritical for nonwordreading
andwork betterfor regular wordsthanfor exceptionwords.
It is temptingto concludethatthesetwo explanatoryperspec-
tivesarecorvergingonessentiallfhesameprocessingystem.
Suchaconclusionhowever, ngglectssubtlebut importantdif-
ferencedn thetheoreticalandempiricalconsequencesf the
two approaches.

Asacasdn point,thesubleical GPCproceduren thedual-
routeaccountannot besensitve to whole-wordfrequeng, as
it eschevs storageof whole lexical items. By contrast,in
the connectionisiapproachthe phonologicalpathwaymain-
tainsanintrinsic andincontrovertible sensitvity to bothword
frequeng and spelling-soundctonsisteng (also seeMonsell,
1991). This sensitvity is capturedin approximateform by
the frequeng-consisteng equation(Equation12), which ex-
presseshe strengthof therespons@f a simpletwo-layernet-
work to a given test patternin termsof the frequeny and
overlapof thetraining patterns. The connectionistipproach,
asreflectedby this equationpredictsthattherecannever bea
completealissociatiorof frequeny andconsisteng effects;the
phonologicabathwaymustalwaysexhibit sensitvity to both.
This sensitvity takesa specificform, however: Itemsthatare
frequentconsistenbr bothwill have anadvantageoveritems
thatareneitherfrequentnor consistentput itemsthatarefre-
guentandconsistentmaynat enjoy alargeadditionaladvantage
over thosethatare only frequentor only consistentaseither
frequeng or consisteng increasessensitvity to differences
in theotherdecrease¥.

This relationship,aswe have previously discussedis ap-
proximatelycharacterizethy thefrequeng-consisteng equa-
tion, which we reproduceherein a form thatis elaboratedo
include a term for the contribution of the semanticpathway
and by separatingout the contributions of training patterns
whoseoutputsareconsistentvith that of thetestpattern(i.e.,
so-calledriends; Jarecetal., 1990)from thosewhoseoutputs
areinconsisten(i.e., enemies). Accordingly, the statesgt] of
anoutput(phoneme)nit j thatshouldbe onin testpatternt

15Recently Balotaand Ferraro(1993) have reportedan apparentdissoci-
ation of frequencyand consistencyin the naminglatenciesof patientswith
Alzheimers type dementiapverincreasingevels of severity of impairment.
However, thesepatientsmake substantiahumbersof errors,and the usual
relationshipof frequencyand consistencyholdsin their accuracydata(also
seePattersoret al., 1994). Furthermorethe dissociationwas not found in
naminglatencieof youngeror older normalsubjects.
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in which thelogistic activationfunctiono(-) is appliedto the
contribution of the semantigpathway S{*!, plusthe contritu-
tion of the phonologicalpathway which itself is the sum of
threeterms(scaledby thelearningrate,c): (1) thecumulative
frequeng of training on the patternitself, (2) the sumof the
frequenciesof the friends (indexed by f) timestheir overlap
with the test pattern,and (3) the sum of the frequenciesf
the enemiegqindexed by ¢) timestheir overlap with the test
pattern.lt mustbe keptin mind, however, thatthis equationis
only approximatefor networkswith hiddenunits andtrained
by error correction. Thesetwo aspectf the implemented
networksarecritical in thatthey helpto overcomeinterference
from enemiegi.e., thenegativetermsin Equationl7), thereby
enablingthe networksto achieve correctperformanceon ex-
ceptionwords—thatis, wordswith mary enemiesandfew if
ary friends—aswell ason regularwordsandnonwords.

Mary of thebasicphenomenan the domainof word read-
ing canbe seenasnaturalconsequencesf adherencéo this
frequeng-consisteng equation. In general,ary factor that
senesto increaseghesummednputto theactivationfunction,
o(-) in Equationl?, improves performanceas measuredy
namingaccurag and/orlateny. Thus, morefrequentwords
arereadbetter(e.g.,Forster& Chambers]973;Frederikser&
Kroll, 1976) becausethey have higher valuesof FUl, and
words with greaterspelling-soundconsisteng are readbet-
ter (Glushko,1979; Jaredet al., 1990) becausehe positive
sumfrom friends outweighsthe negative sumfrom enemies.
The nonlinear asymptotingnatureof the activation function,
however, dictateghatthecontributionsof thesefactorsaresub-
jectto “diminishing returns”asperformancemproves. Thus,
as readingexperienceaccumulates—therekipcreasingF [,
FU1 and Flel proportionaly; or equivalently, increasinge—
the absolutemagnitude®f the frequeny andconsisteng ef-
fects diminish (see,e.g., Backmanet al., 1984; Seidenba,
1985). The sameprinciple appliesamongdifferenttypesof
stimuli for a readerat a given skill level: performanceon
stimuli thatarestrongin onefactoris relatively insensitve to
variationin otherfactors.Thus,regularwordsshaow little effect
of frequeng, and high-frequeng wordsshaw little effect of
consisteng (asshowvn in Figure7). Theresultis the standard
patternof interactionbetweenfrequeng andconsisteng, in
whichthenamingof low-frequeng exceptionwordsis dispro-
portionatelyslow or inaccuratg/Andrews, 1982; Seidenbay,
1985; Seidenbag et al., 1984; Taraban& McClelland,1987;
Waters& Seidenbag, 1985).

16For a unit with a target of —1, the signswould simply be reversed.
Alternatiely, the equationcanbe interpretedasreflectingthe correlationof
theactivationof outputunit ; with its target, whichmayin thatcasebeeither
+1lor-1.
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The elaboratedrersionof the frequeng-consisteng equa-
tion alsoprovidesa basisfor understandinghe effectsof se-
manticson naming performance. In the approximationex-
pressedy Equationl7,the contritution of the semantigath-
way for a given word, S, is simply anotherterm in the
summedinput to eachoutput (phoneme)unit. Justas with
frequeng and consisteny, then, a strongersemanticcontri-
bution movesthe overall input further alongthe asymptoting
activation function, therebydiminishing the effects of other
factors. As a result, wordswith a relatively weak semantic
contribution (e.g.,abstractor low-imageabilitywords; Jones,
1985; Safran, Bogyo, Schwartz,& Marin, 1980) exhibit a
strongerfrequeng-by-consisteng interaction—inparticular
naminglatenciesand error ratesare disproportiorately high
for itemsthatareweakon all threedimensions:abstract|ow-
frequenyg exceptionwords(Strainetal., in press).

Of course,asthe simulationsdemonstratenetworkswith
hidden units and trained with error correctioncan learn to
pronouncecorrectlyall typesof wordswithoutary helpfrom
semanticsln thecontet of themoregeneraframevork, how-
ever, full competences requiredonly from thecombinatiorof
semanticand phonologicalinfluences. Thus,asthe semantic
pathwaydevelopsandst* increasesthe contributionrequired
from the other phonologicaltermsin Equationl17 to achieve
the samelevel of performances correspondinglyreduced.
With theadditionalassumptiorthatthesystemhasanintrinsic
biasagainstunnecessargompleity (e.g.,by limiting its ef-
fective degreesof freedomwith weightdecay) extendedead-
ing experienceeadsto a redistribution of labor. Specifically
asthe semantigpathwayimproves,the phonologicabathway
graduallylosesits ability to procesgshewordsit learnedmost
weakly: thosethatarelow in bothfrequeng andconsisteng

If, in thiscontet, thecontritutionfromsemanticss severely
weakenedr eliminated(by braindamage)the summednput
to eachoutputunit will be reducedby asmuchas Stl. For
outputunits with significantnegative termsin their summed
input—thatis, for thosein wordswith mary enemies—this
manipulationmay causetheir summednput (andhencetheir
output)to changesign. Theresultis anincorrectresponse.
Sucherrorstend to be regularizationsbecausehe reduced
summedinput affects only thoseoutput units whosecorrect
activationsareinconsistenwith thoseof theword’sneighbors.
Furthermoreasfrequeng makesanindependenpositivecon-
tributionto the summednputs,errorsaremorelikely for low-
thanfor high-frequeng exceptionwords. By contrast,a re-
ductionin the contritution from semanticshaslittle if ary
effect on correctperformanceon regular words becausehe
positive contributionfrom their friendsis sufficientonits own
to give output units the appropriatelysignedsummedinput.
Theresultingpatternof behaior, correspondingo fluentsur
facedyslexia (Bubetal.,1985;McCarthy& Warrington,1986;
Shalliceetal., 1983),canthusbe seerasanexaggeratednan-
ifestationof the sameinfluencesf frequeny andconsisteng
thatgiveriseto the normalpatternof naminglatencies.
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Thepatterrof joint, nonlinearsensitvity to thecombinedef-
fectsof frequeng andconsistengin theconrectionstaccount,
alongwith assumptionsn the contribution of semanticslead
to anumberof predictionsot sharedy traditionaldual-route
accountsFirst,frequeng andconsisteng cantradeoff against
eachother sothatthedetrimentakffectsof spelling-soundn-
consistenyg canalwaysbeovercomeby sufiiciently highword
frequeng. Consequentlythe connectionisiccountmakesa
strongprediction: therecannot be an (English-languagejur
facedyslexic patientwhoreadsno exceptionwords;if regular
wordscanbe readnormally, theremustalsobe somesparing
of performancen high-frequenyg exceptions.By contrasta
dual-routeframavork could accountfor sucha patientquite
easily in termsof damagehat eliminatesthe lexical route(s)
while leaving the GPCroutein operation. In fact, giventhe
putative separatiomf theseroutes theframevork would seem
to predict the existenceof suchpatients. The connectionist
accountalsodiffers from the dual-routeaccountin claiming
that consisteng ratherthanregularity per se (i.e., adherence
to GPCrules)is the determiningvariablein “regularization”
errors(where,asformulatedhere,consisteng depend®n all
typesof orthographicverlapratherthansolely on word bod-
ies; cf. Glushko,1979). Finally, the connectionistaccount
predictsa closerelationshipbetweernimpairmentsn the con-
tribution of semanticgo phonologyandthe surfacedyslexic
reading pattern(Grahamet al., 1994; Patterson& Hodges,
1992),althoughthis relationshipwill be subjectto premorbid
individual differencesin readingskill and division-of-labor
betweenthe semanticand phonologicalpathways.Thus, pa-
tientswith highly developedphonologicalpathwaysmay not
exhibit the patternunlessthe semantidmpairmentis very se-
vere (Cipolotti & Warrington,1995; Schwartzet al., 1980).
By contrast,dual-routetheoriesthat include a lexical, non-
semantigathway(e.g.,Coltheart1978,1985;Coltheartetal.,
1993)predictthatselectve semantiadamageshouldnever af-
fectnamingaccurag.

Ourconnectionisaccountwe believe,alsohasanimportant
adwantageof simplicity over the dual-routeapproach. This
adwantagegoeswell beyond the basicpoint that it provides
a single setof computationaprinciplesthat canaccountfor
exception word and nonword reading, while the dual-route
modelmustrely on separateetsof principles. Theadditional
adwantagelies in the fact that the boundarybetweenregular
and exceptionwordsis not clear and all attemptsto drav
suchboundariedeadto unfortunateconsequencedrirst, the
marking of itemsas exceptionswhich mustbe lookedup as
wholesin the lexicon ignoresthe fact that most of the let-
tersin thesdtemswill taketheir standardyrapheme-phoneme
correspondencesThus, in PINT, 3/4 of the letterstaketheir
regular correspondenceSecond the marking of suchitems
asexceptionsignoresthe fact that even the partsthat are ex-
ceptionaladmit of someregularity, so that, for example,the
exceptionalpronunciatiorof thel in PINT alsooccursin mary
otherwordscontainingani (e.g.,mostof thoseendingin _IxE,
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_IND or _ILD, wherethe/«/ representary consonant).Third,
exceptionsoften comein clustersthat sharethe sameword
body Specialword-bodyrules may be invokedto capture
theseclusters,but then ary word that conformsto the more
usualcorrespondencbecomesxceptional. Thus, we could
treatoo=-/u/ whenfollowedby K asregular, but this would
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Acquired Phonological Dyslexia. As mentionedearliet
it is straightforwardvithin the SM89framework to accounfor
the centralcharacteristiof acquiredohonologicaldyslexia—
substantiallybetterword readingthan nonwordreading—in
termsof a relatively selectve impairmentof the phonologi-
cal pathway The apparendifficult ariseswhen considering

makesPook which takesthe more commoncorrespondence patientswho (a) are virtually unableto readnonwords,sug-

00=/U/, an exception. The explicit treatmentof virtually

ary word asan exception,then,neglectsits partial regularity
and preventsthe word both from benefittingfrom this partial
regularity and from contributing to patternsof consisteng it

entersinto with otheritems. Our connectionisapproachpy
contrastavoidsthe needtio imposesuchunfortunatedivisions,
and leaves a mechanisnthat exhibits sensitvity to all these
partially regularaspect®f so-calledexceptionwords.

The fact that exceptionsare subjectto the sameprocesses
asall otheritemsin our systemallows usto explainwhy there
arevirtually no completelyarbitraryexceptions.On the other
hand,the dual-routeapproacHeavesthis fact of the spelling-
soundsystemcompletelyunexplained. Nor, in fact, do some
dual-routemodelseven provide a basisfor accountingor ef-
fectsof consisteng in readingwordsand nonwords. Recent
dual-routetheorists(e.g., Coltheartet al., 1993; Coltheart&
Rastle,1994) have appealedo partial activation of otherlex-
ical items as a basisfor sucheffects. Suchan assumption
movespart-waytowardour view thatconsisteng effectsarise
from theinfluenceof all lexical items. We would only addthat
our connectionisimodel exhibits theseeffects aswell asthe
requisitesensitvity to generagrapheme-phoneneorrespon-
dences,without stipulatinga separateule systemover and
above the systemthat exhibits the broadrangeof consisteng
effects.

Additional Empirical Issues

Proponentsf dual-routetheorieshave raiseda number of
empiricalissueghatthey believe challengeour connectionist
accountof normal and impairedword reading. For exam-
ple, Coltheartet al. (1993, alsoseeBesneret al., 1990) raise
six questionsconcerningthe readingprocessall but one of
which—exceptionword reading—thg deemproblematicfor
the SM89 frameavork. Two of the remainingfive—nonword
readingand acquiredsurfacedyslexia—have beenaddressed
extensvely in the currentwork. Herewe discusshow there-
mainingthreeissues—acquireghonologicaldyslexia, devel-
opmentaldyslexia, andlexical decision—maybe accounted
for in light of thesefindings. We also considerthree other
empiricalfindingsthathave beeninterpretedasproviding ev-
idenceagainstthe currentapproach—pseudohomophoeg
fects(Buchanan& Besner1993;Fera& Besner1992;Mc-
Cann& Besner1987;Pugh,Rexer, & Katz, 1994),stimulus
blockingeffects(Baluch& Besner1991;Coltheart& Rastle,
1994;Monselletal., 1992),andtherecentiindingthatnaming
latenciedor exceptionwordsareinfluencedby the positionof
theexceptionalcorrespondencgColtheart& Rastle,1994).

gestinga completeelimination of the phonologicalpathway
and(b) have anadditionalsemantidmpairmenthatseemgo
renderthesemantigathwayinsufficientto accounfor theob-
sened proficieny at word reading. Two suchpatientshave
beendescribedn theliterature: WB (Funnell,1983)andWT
(Coslett,1991). To explain theword readingof thesepatients,
dual-routetheoristsclaim that it is necessaryo introducea
third routethatis lexical but nonsemantic.

In pointof fact, Coltheartetal. (1993)explicitly considered
an alternatve explanationand (we think too hastily) rejected
it.

Perhapsa patientwith an impaired semanticsys-
tem,whothereforemakessemantierrorsin reading
comprehensioandwhoalsohasasererelyimpaired
nonsemanticeadingsystemgcouldavoid makingse-
manticerrorsin readingaloudby makinguseof even
very poor informationaboutthe pronunciatiorof a
word yielded by the nonsemantiadeadingsystem.
The semanticsystemmay no longerbe ableto dis-
tinguishtheconcepbrange from theconceptemon;

however, to avoid semanticerrorsin readingaloud,
all thenonsemanticouteneeddo deliveris justthe
first phonemeof the written word, not a complete
representatioof its phonology (p. 596)

Coltheartand colleaguesaguedagainstthis accountentirely
on the basisof two findingsof Funnell (1983): WB did not
pronounceorrectlyary of asinglelist of 20writtennonwords,
and he did not give the correctphonemiccorrespondenct

ary of 12 single printedletters. Thus,they claimed,"WB'’s

nonsemanticeadingroute was not just severely impaired, it

wascompletelyabolished(p. 596).

This argumentis uncorvincing. Firstof all, it would seem
unwiseto basesucha strongtheoreticalklaim on sofew em-
pirical obsenrations,especiallygivenhow little informationis
requiredof thephonologicapathwayontheabore account.To
pronouncea nonwordcorrectly however, all of its phonemes
mustbe derived accurately Thus, WB’s inability to read20
nonwordsannobetakenasdefinitive evidencehathisphoro-
logical pathwayis completelyinoperatve. Furthermore\WB
did, in fact,makesemanti@rrorsin oralreadinge.g.,TRAIN =
“plane”, GIRL ="boy”; seeAppendix1 of Funnell,1983). Al-
thoughsucherrorswererelatively rare,comprisingonly 7.5%
(5/67) of all lexical error responsestherewere no error re-
sponseshatwerecompletelyunrelatedo the stimulus. Thus,
theeffectof semantiaelatednesm errorsis difficult to ascribe
to chancerespondingseeEllis & Marshall,1978;Shallice&
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McGill, 1978). More generally fully 38.8%(26/67)of WB'’s
lexical errorshada semanticcomponenttypically in combi-
nationwith visual/phonemior morphologicakelatedness.

More critically, Coltheartand colleaguedail to take into
accountthe fact that WB exhibited deficitson purely phono-
logical tasks,suchasnonwordrepetition(Funnell,1983)and
phonemestrippingandblending(Patterson& Marcel,1992),
suggestingan additionalimpairmentwithin phonologyitself.
Funnellhadamguedthatsuchaphonologicaimpairmentould
not explain WB’s nonwordreadingdeficit, becauséa) here-
peatechonwordsmoresuccessfullyf10/20)thanhereadthem
(0/20), and (b) he achieved somesuccesg6/10) in blending
three-phoneme&vordsfrom auditory presentatiorof their in-
dividual phonemes.We note, however, thatthe failure to re-
peatfully half of a setof simple, single-syllable word-like
nonwords(e.g., COBE, NUST) certainly representsa promi-
nentphonologicaldeficit. Moreover, sinceFunnell’s auditory
blendingtestusedonly wordsastargetresponsesiVB’s par
tial succes®nthistaskis notespeciallygermanedo theissue.
Pattersonand Marcel (1992) assesseWB’s blendingperfor
mancewith nonwordtargetsandfoundthathe wasunableto
produceasinglecorrectresponseyhethetheauditorypresen-
tation consistef the threeindividual phoneme®f a simple
nonword(suchascoBg) or its onsetandrime. Pattersonand
Marcel amguedthat this phonologicaldeficitin a non-reading
taskwassufficientto accountfor WB'’s completeinability to
readnonwords.

Thus,the patternof performancesxhibited by WB canbe
explainedwithin the SM89 frameawvork in termsof a mildly
impaired semanticreading pathway possibly an impaired
phonologicalreadingpathwaybut, in particular an impair-
mentwithin phonologyitself. A similar explanationapplies
to WT (Coslett,1991): althoughthis patients performancen
phonologicablendingtasksis not reported shewassererely
andequally impairedin her ability to readandto repeatthe
samesetof 48 nonwords.

We point out in passingthat deep dyslexia (Coltheart
et al., 1980), the remainingmajor type of acquiredcentral
dyslexia andcloselyrelatedo phonologicablyslexia (seeg.g.,
Glosser& Friedman,1990),canbe accountedor in termsof
the samecomputationalprinciplesthat are employedin the
currentwork (seePlaut& Shallice,1993).

Developmental Dyslexia. Our focusin the currentwork
hasbeenon characterizinghe computationaprinciplesgov-
erningnormalskilled readingandacquireddyslexia following
braindamagen premorbidlyliterateadults. Even so, we be-
lievethatthe sameprinciplesprovide insightinto the natureof
readingacquisitionpothin itsnormalform andin developmen-
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velopmentabnalogueso theacquiredformsof dyslexia (see,
e.g.,.Baddelg, Ellis, Miles, & Lewis, 1982;Harris& Coltheart,
1986; Marshall,1984). Perhapghe clearestevidencecomes
from CastlesandColthear{(1993),who compared3dyslexic

childrenwith 56 age-matcheeormalreaderdn their ability

to pronounceexceptionwords and nonwords. The majority
(32) of the dyslexic childrenwere abnormallypoor on both

setsof items. However, 10 were selectvely impairedat ex-

ceptionwordreading correspondingo developmentakurface
dyslexia, and 8 were selectvely impairedat nonwordread-
ing, correspondingo developmentalphonologicaldyslexia.

Castlesand Coltheartinterprettheir findingsas supportinga
dual-routetheoryof word reading,in which eitherthe lexical

orthesubleical procedureanselectvely fail to developprop-
erly (althoughthey offer no suggestiorasto why this might
be).

More recently Manis, Seidenbeg, Doi, McBride-Chang,
and Peterson(in press)compareds1 dyslexic childrenwith
51 controlsmatchedor ageand27 matchedor readinglevel.
They confirmedthe existenceof separatesurfaceandphono-
logical dysleic patternsalthoughagain,mostof thedyslexic
children shaved a generalreadingimpairment. Critically,
the performanceof the developmentalsurfacedysleic chil-
drenwasremarkablysimilar to that of reading-leel matched
controls,suggestinga developmentaddelay By contrastthe
phonologicaldysleic childrenperformedunlike eithersetof
controls,suggestinga deviant developmentalpattern. While
thesefindings are not incompatiblewith the dual-routeac-
count, Manis and colleaguesontendthat they are morenat-
urally accountedor in termsof differentimpedimentdo the
developmentof a single(phonologicalpathway Specifically
they suggestfollowing SM89)thatthe delayedacquisitionin
developmentakurfacedyslexia may arisefrom limitationsin
theavailablecomputationatesourcesvithin the phonological
route. Consistentvith this interpretation SM89found thata
versionof theirnetwak, trainedwith only halfthenormalnum-
berof hiddenunits,shaveda disproportionatémpairmenton
exceptionwordscomparedvith regular words(althoughper
formanceon all itemswaspoorer consistentvith finding that
generalizedeficitsaremostcommon).However, thenonword
readingcapabilityof thenetworkwasnottestedandColtheart
et al. (1993) point out thatit wasnot likely to be very good,
giventhatoverall performancevasworsethanin the normal
networkwhich itself wasimpairedon nonwordreading.

Justasfor normalskilledreadingthislimitation of the SM89
modelstemsfrom its useof inappropriatelystructuredortho-
graphicandphonologicaflepresentationsio demonstratéhis,
we traineda feedforwardnetworkwith only 30 hiddenunits

tal dyslexia, in which childrenfail to acquireage-appropriate in anidenticalfashionto the onewith 100 hiddenunits from

readingskills.

Thereis generalagreementhat a numberof distinct pat-
ternsof developmentaldyslexia exist, althoughexactly what
thesepatternsare and what givesrise to themis a matterof
ongoingdebate. A commonviewpoint is that thereare de-

Simulation4 (without semantics).This networkwas chosen
for comparisorsimply becausé is theonly onefor whichthe
relevant acquisitiondatahasalreadybeenpresentedin Fig-
ure22—theothernetworkswouldbeexpectedo showv similar
effects. Thecorrespondinglatafor theversionwith 30 hidden
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Figure 26. Correctperformanceof a feedforwardnetwork
with only 30 hiddenunitson TarabarandMcClelland's(1987)
high- and low-frequeng exception words and their regular
consistentontrolwords,andon Glushkos (1979)nonwords,
as a function of training epoch. The network was trained
exactly asthe one whosecorrespondingdata are shavn in

Figure22.

unitsaregivenin Figure26. As a comparisorof the figures
reveals limiting thenumberof hiddenunitsselectvely impairs
performancen exceptionwords,particularlythoseof low fre-
gueng. By contrast,nonwordreadingis affectedonly very
slightly. Noticethatthe performanceof the dyslexic network
atepoch500is quite similar to that of the normalnetworkat
aboutepoch150. Thus,limiting the computationatesources
that are available for learningthe spelling-to-soundask re-
produceghe basicdelayedpatternof developmentalsurface
dyslexia. Othermanipulationghatimpedelearning,suchas
weak or noisy weight changeswould be expectedto yield
similar results.

With regardto developmentaphonologicablysleia, Manis
etal. (in pressuggesthataselectveimpairmentn nonword
readingmay arisefrom the use of phonologicalrepresenta-
tionsthatarepoorlyarticulatedperhapsiueto moreperipheral
disturbancegalsosee,e.g.,Liberman& Shankweiler1985;
Rack,Snawling, & Olson,1992). A consideratiorof the nor-
mal SM89 modelis instructive here. That networkemployed
representationthat, we have amgued,poorly capturetherele-
vantstructurewithin andbetweerorthographyandphonology
As aresult,themodelwasover 97%correctat readingwords,
bothregularandexception,but only 75%correctonasubsebf
Glushkos (1979) nonwords(when scoredappropriately;see
Seidenbagy & McClelland,1990). Thus,in asensethemodel
behaed like a mild phonologicaldyslexic (seeBesneret al.,
1990, for similar aguments). In this way, the performance
of the modelprovides evidencethat a systemwith adequate
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computationalesourcesbut which fails to develop appropri-
atelycomponentiabrthographiand(particularly)phonologi-
calrepresentationsyill alsofail to acquirenormalproficieny
in subleical spelling-soundranslation.It shouldalsobekept
in mind that, to whatever extent the semantigpathwaydevel-
opsandcontributesduringreadingacquisitionthedissociation
betweerword andnonwordreadingwould be exacerbated.

A final point of contentionwith regardto the implications
of developmentareadingdisordersfor the SM89 framavork
concernghe existenceof childrenwhoseoral readingability,
evenon exceptionwords,far surpassetheircomprehension—
asin so-callechyperlexia (Huttenloche& Huttenlocher1973;
Mehegan & Dreifuss,1972;Metsala& Siegel, 1992; Silver
beg & Silverbeg, 1967). Typically, thesechildrenaremod-
eratelyto severely retardecbn standardizedntelligencetests,
andmaytotally lack corversationakpeech.They alsotendto
devoteaconsiderabl@mountof time andattentionto reading,
althoughthishasnotbeenstudiedhoroughly We suggesthat,
perhapsdueto abnormallypoor developmentin the semantic
pathway suchchildrenmay have phonologicapathwayghat
arelike our networkstrainedwithout semantics.In the limit,
suchnetworkslearnto pronounceall typesof wordsandnon-
wordsaccuratelywith no comprehension.

Lexical Decision. The final of Coltheartet al.’s (1993)
objectionsto the SM89 modelconcernsts ability to perform
lexical decisions. While SM89 establishthat, under some
stimulus conditions,the model can discriminatewordsfrom
nonwordson the basisof a measureof its accurag in regen-
eratingthe orthographidnput, Besnerandcolleague¢Besner
etal., 1990;Fera& Besner1992)have demonstratethatits
accurag in doing so is worsethan that of humansubjects
in mary conditions. Coltheartet al. (1993) mistakenlyclaim
thatthe SM89 orthographicerrorscoresyield a false-positve
rateof over80%onWatersandSeidenbeg’'s (1985)nonwords
whenword error ratesare equatedwith subjects’at 6.1%—
in fact, thesenumbersresult from using phonological error
scores(Besneret al., 1990),which SM89 do not employ(al-
thoughthey do suggesthat learningphonologicalattractors
for words might help). While the actualfalse-positve rate
is muchlower—Besnerand colleaguegeporta rate of 28%
whenorthographi@andphonologicakrrorscoresaresummed
and orthographicallystrangewords are excluded—itis still
unsatisfactory

Of course, SM89 never claimed that orthographicand
phonologicainformationarecompletelysuficientto account
for lexical decisionperformanceunderall conditions,point-
ing outthat“there may be othercasesn which subjectamust
consultinformationprovidedby the computatiorfrom orthog-
raphyto semantics’(p. 552). Semanticds a naturalsource
of informationon which to distinguishwordsfrom nonwords,
giventhat, in fact, a string of lettersor phonemess defined
to be a word by virtue of it having a meaning.Coltheartand
colleaguesgaisethe concernthat,in a full implementatiorof
the SM89framawork, the presentatioof anorthographically
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regular nonword(e.g.,SARE) would activate semanticgo the
samedgyreeasaword (e.g.,CARE), therebyprecludingexical
decision.

While further simulationwork is clearly requiredto ad-
dressthe full rangeof lexical decisiondataadequatelya few
commentsnaysene to allay this specificconcern.We imag-
ine thatthe semanticepresentation®r wordsarerelatively
sparse, meaninghateachword activatesvery few of the pos-
siblesemantideaturesandeachsemantideatureparticipates
in the meaningsof a very small percentagef words. Con-
nectionistnetworksof the sort we are investigatinglearnto
setthebaseactivationlevel of eachoutputunit to the expected
valueof its correctactivationsacrosgheentiretrainingcorpus,
becaus¢hesevaluesminimizethetotal errorin theabsencef
ary informationabouttheinput. In the caseof sparseseman-
tic representationghis meansthat semanticfeatureswould
be almostcompletelyinactive without specificevidencefrom
the orthographidnput thatthey shouldbe active. Noticethat
the natureof this evidencemustbe very specificin orderto
preventthe semantideaturesof a word like CARE from being
activatedby thepresentatioof orthographicallysimilarwords
like ARE, SCARE CAR, etc. This extremesensitvity to small
orthographidistinctionswould alsopreventsemantideatures
from beingactivatedby a nonwordlike SARE Thus,on this
account,the computationalrequirementof a connectionist
systenthatmapsorthographyto semanticyeritablyentail the
ability to performlexical decision.

Pseudohomophone and Blocking Effects. Two other
someavhat overlappingsetsof empirical findings have been
viewed as problematicfor the currentapproach: pseudoho-
mophoneeffects (Buchanan& Besner1993;Fera& Besner
1992;McCann& Besner1987;Pughetal., 1994)andblock-
ing effects(Baluch& Besner1991;Coltheart& Rastle,1994;
Monselletal.,1992). Thefirstsetinvolvesdemonstrationthat,
underavarietyconditions pseudohomophonéise.,nonwords
with pronunciationshatmatchthatof aword;e.g.,BRANE) are
processedifferentlythanorthographically-matchegbnpseu-
dohomophonioonwordge.g.,FRANE). For example subjects
arefasterto namepseudohomophonesdslower (andlessac-
curate)to rejectthemin lexical decision(McCann& Besner
1987). Thesecondetof problematidindingsinvolvesdemon-
strationsthat subjects’performances sensitve to the context
in which orthographicstimuli occur usually operationalized
in termsof how stimuli are blockedtogetherduring an ex-
periment. For example, subjectsare slower and makemore
regularizationerrorswhenpronouncingxceptionwordsinter-
mixed with nonwordsthanwhen pronouncingpure blocks of
exceptionwords(Monselletal., 1992).

Neither of thesesetsof phenomenas handled particu-
larly well by the SM89 implementation but both have nat-
ural formulationswithin the more generaframewvork thatin-
cludessemantics.Pseudohomophoreffects may stemfrom
anarticulatoryadwantagein initiating familiar pronunciations
(Seidenbag, PetersenMacDonald,& Plaut,in press)and/or
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from interactionsbetweenphonologyand semanticghat do
not occurfor controlnonwords.Blocking effectsmay reflect
adjustments—eithestimulus-drvenor underthe strateic con-
trol of subjects—intherelative contritutionof thesemantiand
phonologicalpathwaysdn lexical tasks. Theseinterpretations
are supportedby recentfindings of Pughet al. (1994), who
investigateceffectsof spelling-sounatonsisteng andseman-
tic relatednes lexical decision,asa functionof whetheror
notthenonwordfoils includepseudohomophone$hey found
fasteratenciegor consistentvordsthanfor inconsistentvords
only in thecontet of purelynorpseudohomdonic nonwords;
therewas no effect of consisteng whenpseudohomophones
were present. Similarly, in a dual lexical decisionparadigm,
they obtainedacilitation for visuallysimilarword pairsthatare
phonologicakonsistente.g.,BRIBE-TRIBE) andinhibition for
thosethatareinconsistente.g.,COUCH-TOUCH; Meyer etal.,
1974)only whenno pseudohomophonegerepresentthein-
troductionof pseudohomophonediminatedthe consisteng
effect. However, semanticrelatednesge.g., OCEAN-WATER)
yieldedfacilitationregardles®f nonwordcontext. Thesefind-
ings suggesthatsubjectsormally useboththe semanticand
phonologicapathwaysn lexical decision put avoid theuseof
the phonologicapathwaywhenthis would leadto inappropri-
atesemanti@ctvity, aswhenpseudohomophoneaseincluded
asfoils.

Effects of Position of Exceptional Correspondence.
Coltheartand Rastle (1994) ague that one of the determi-
nantsof namingRT for exceptionwordsis the position—-
countinggraphemeandphonemefom left to right—atwhich
theword deviatesfrom rule-governedcorrespondenced.hey
claim that such an effect is incompatiblewith ary parallel
approacho word naming,whereaghe Dual-RouteCascaded
(DRC)modelof Coltheartetal. (1993)bothpredictsandsimu-
latesthiseffect, becaus¢he GPCproceduref theDRC model
operatesserially acrossan input string. The threemonosyl-
labic wordsfor which they provide simulationdatafrom the
DRC modelarecHEr, TOMB andGLow. By theiraccountthe
critical factoris that cHeF—for which the modelrequiresthe
largestnumberof processingycles—isirregular at its first
grapheme/phonema&pwmB, requiringanintermediatenumber
of cycles, breaksthe rulesat the secondgrapheme/phoneme;
andGLow, whichyieldsthe fastestime from themodel,only
becomesrregularatthethird position.

By our accountthe critical differencebetweerthesethree
words may not be the position of irregularity but ratherthe
proportionof otherknown wordswith similarspellingpatterns
thatagreeor conflictwith thetargetword’s pronunciatior(see
Jared& Seidenbag, 1990, for an elaborationof this argu-
ment). The ConciseOxford Dictionary lists 72 monosyllabic
words startingwith cH_; 63 of thesehave the pronunciation
/tS/ asin CHAIR; 5 have the pronunciatior/S/ asin CHEF, 4
are pronouncedk/ asin CHORD. CHEF is thereforea highly
inconsistentvord. For theword TOMB, it is somavhatdifficult
to know what neighborhoof wordsto choosefor a similar
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analysis. If we takewordsbeginningwith To_, althoughthe
two mostcommonpronunciationsire/a/asin Torand/O/ asin
TONE, thethird mostlikely pronunciationwith 7 exemplarsjs
/Ul asin 10, TOO, andTOMB; otherpronunciationgasin TON,
TOOK, TOIL) arelesscommon. At the body level, ToMB has
onefriend, womB, andtwo enemiespoMB andCOMB. TOMB
is thereforeamoderatelynconsistentvord. Finally, for words
endingin _ow, althoughthe GPCprocedureof Coltheartetal.
(1993)considersow =/W/ (asin Now) regularandow =-/O/
asin gLow irregular, in fact 17 of the 29 monosyllabiovords
in Englishendingin _ow rhymewith GLow, whereanly 12
have Coltheartand colleagues*regular’ pronunciationasin
Now. Thus,GLOwW is inconsistenbut hasthe more frequent
correspondence.Consistentwith this interpretation,the at-
tractor network developedin Simulation3 producesnaming
latenciesof 2.00for CHEF, 1.92for TomB, and1.73for GLOW.

Theexperimentwith humarreadergerformedy Coltheart
andRastlg(1994)revealedheirpredictedelationshifbetween
position of irregularity and naming RT, with slowvestRTs to
wordslike cHA0S with an irregular first grapheme-phoneme
correspondencandfastestRTsto wordslike BANDAGE which
do not becomeirregular until position5. All of the stimulus
wordshadtwo syllableswhichpreventsusfrom evaluatingthe
performancef our networkson their materials.Inspectionof
thesewordsin their appendixhowever, againsuggests con-
foundingbetweerpositionanddegreeof consisteng. Takethe
itemswhich, by theiranalysispecomerregularat position5;
almosthalf of thesewords(6/14)weretwo-syllablewordswith
first-syllablestressandwith secondsyllablesendingin silent
E (e.g.,BANDAGE andFESTIVE). Sincethe GPCprocedureof
Coltheartet al. (1993) appliesthe samerulesindependenof
syllableposition,it assignghevowel /A/ to thegrapheme._E
in the secondsyllable of BANDAGE andthe vowel /I/ to the
grapheme_E in the secondsyllableof FESTIVE Despitethe
factthatour modelis notyetableto treatmultisyllabicwords,
thenatureof its operatiorensureghatit would be sensitve to
thefact thatwordswith this sort of patterndo not have tense
(long) vowelsin secondsyllable. The great majority of two-
syllablewordsendingin _IVE (e.g.,ACTIVE, PASSIVE, MOTIVE,
NATIVE) have thesamdinal vowel asFESTIVE, makingreSTIVE
arelatively consistenivord. Whetherthis reinterpretatiorof
the Coltheartand Rastleeffect turns out to give an adequate
accountof their resultsremainsto be seenfrom future em-
pirical and modelingwork. Furthermoregven if a position
effectis found usingproperlycontrolledstimuli, it may very
well be consistentwith a parallelcomputationof phonology
from orthographyin which the decisionto initiate articulation
dependnly on theinitial phoneme(sjKawamoto,Kello, &
Jones1994,1995). Thus,ratherthanbeingincompatiblewith
ourapproachColthearandRastlesfindingsmayin factrelate
to simple propertiesof networksthat develop representations
overtime.
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Extensions of the Approach

The approachwe have takencanbe extendedin a numberof
differentdirections. The mostobvious and naturalextension
is to thereadingof multisyllabicwords. The pronunciatiorof
thesewordsexhibits the samekind of quasi-rgular structure
foundatthelevel of morpsyllableqJared® Seidenbeg, 1990),
but theseregularitiesnow applynotjustto grapheme-phoneme
correspondencdaut to the assignmenof stressaswell, and
they involvesensitvity to linguisticvariablessuchastheform-
classof the word, its deriational status,and several other
factors(Smith& Baker 1976).

Onechallengeghatarisesn extendingour approactio mul-
tisyllabicwordsis finding a bettermethodfor condensingeg-
ularitiesacrosspositionswithin aword. The representations
we have usedcondenseegularitieswithin theonsetor thecoda
of amonosyllabicword, but experiencewith particularcorre-
spondence the onsetdo not affect processingf the same
correspondencm the codaor vice versa. Indeed,our model
hastwo completelyseparatesetsof weightsfor implementing
thesecorrespondenceandmostof its failures(e.g.,with the
consonantl in the coda)are attributableto the fact that its
knowledgecannotbe transferreetweeronsetsandcodas.

Ultimately, it seemdikely thatthe solutionto the problem
of condensingegularitieswill involvesequentiaprocessingt
somelevel. Theparadigmcaseof this is the approactusedin
NETtalk (Sejnavski & Rosenbay, 1987,alsoseeBullinaria,
1995),in whichthelettersareprocessedequentiallyproceed-
ing throughatext fromleft to right. Theinputis shiftedthrough
awindow thatis several slotswide andeachletteris mapped
to its correspondingghonemewhenit falls in the centralslot.
This allowseachsuccessk letterto be processethy thesame
setof units,sotheregularitiesextractedin processindettersin
ary positionareavailablefor processindettersin every other
position. At the sametime, the presencef otherlettersin the
slotsflankingthe centralslot allows the networkto be contet
sensite andto exhibit consisteng effects.

Onedravbackof sucha letterby-letterapproacthis thatthe
onsetof pronunciatiorof a word is completelyinsensitie to
the consisteng of its vowel; consisteng doesaffectthevowel
correspondencebut theseonly comeinto play afterthe pro-
nunciationof the onsethasbeencompleted. This presentsa
problembecausehe empiricalfinding of consisteng effects
in naminglatenciess oneof themainmotivationsof aconnec-
tionistapproacho wordreading.For thisreasonandbecause
thereis a greatdealof coarticulationof successie phonemes,
we have takenthe view that fluent, skilled readinginvolves
a parallel constructionof a pronunciationof at leastseveral
phonemest a time. One possibility is that skilled readers
attemptto processaasmuchof theword asthey canin parallel,
thenredirectattentionto theremainingpartandtry again(see
Plaut, McClelland,& Seidenbag, in press,for a simulation
illustrating this approach).In this way, early on in learning,
readingis strictly sequentialasin NETtalk, but as skill de-
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velops,it becomeanuchmore parallel,asin the modelswe
have presentedhere. Theresultis thatthe systemcanalways
fall backon a sequentiabpproachwhich allows the applica-
tion of knowledgeof regularitiesacquiredin readingunits of
ary sizeto beappliedacrosgheentirelengthof the utterance
(Skoyles,1991). The approactextendsnaturallyto wordsof
ary length,with thesizeof thewindow of parallelcomputation
beingcompletelydependenbn experience.

Moving beyond single word reading,the approachtaken
hereis applicable,we believe, to a wide rangeof linguistic
and cognitive domains—essentiallyo all thosewith quasi-
regular structure,in the sensethat thereis systematicitythat
coeists with somearbitrarinessand mary exceptions. The
first domainto which the approachwas appliedwas that of
inflectionalmorphology(Rumelhar& McClelland,1986).As
statedin the Introduction,this applicationcertainly remains
controversial; Pinkerandhis colleaguegMarcusetal., 1992;
Pinker 1991;Pinker& Prince,1988)continueto maintainthat
no singlemechanisncanfully capturethebehaior of thereg-
ularinflectionalprocesandthehandlingof exceptions.While
we do not claim that the existing connectionistsimulations
have fully addressedll valid criticismsraised,at this point
we seelittle in thesecriticismsthatstandsagainstheapplica-
bility of the connectionisapproachn principle. Indeed,the
amgumentsraisedin thesepapersdo not, in general reflecta
full appreciatiorof the capabilitiesof connectionishetworks
in quasi-rgular domains. For example, Pinker (1991) does
not acknavledgethat connectionismodelsof both spelling-
to-sound(as shavn hereand in SM89) and of inflectional
morphology(Daugherty& Seidenbeag, 1992)shav the very
frequeng-by-regularity interactionthathe takesasoneof the
key indicatorsof theoperatiorof a(frequeng insensitve)rule
systemanda (frequeng sensitve) lexical lookupmechanism.

Indeedthereareseveralaspect®f theempiricaldatain the
domainof inflectional morphologythat appearat this point
to favor an interpretationin termsof a single, connectionist
systemthat is sensitve to both frequeng and consisteny.
We will considerhereonesuchaspecthamelythe historical
evolution of the English pasttensesystem. Hareand EIman
(in press)have reviewedthe patternof changefrom the early
Old English(EOE) period(circa 870)to the present.In EOE,
thereweretwo maintypesof verbs—strongandweak—each
consistingof several subtypes.Over the periodbetweer870
andthepresentthedifferenttypesof weakverbscoalescedhto
a singletype: the current“regular” past. Mary of the strong
verbs‘regularized; but severalof thempersisto thisdayasthe
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is castastheiterativeapplicatiorof anew generatiorof learners
(simulatedby new, untrainednetworks)to the outputof the

previous generationof learners(simulatedby old networks,
trainedontheoutputof evenoldernetworks).Eachgeneration
imposesits own distortionson the corpus: amongtheseare

the eliminationof subtledifferencedbetweervariationsof the

weak pastthat apply to similar forms, and the regularization
of low-frequeng irregularformswith few friends. Gradually
overthecourseof generationghe systernis transformedrom

the highly complex systemof circa 870to the muchsimpler
systemthatis in usetoday Theremainingirregularverbsare

eitherhighly consistentvith their neighborshighly frequent,
or both;lessfrequentindlessconsistenstrongverbshave been
absorbedy the regular system. Crucially for our agument,
both the “regular” (or weak) systemandthe “exception” (or

strong)systemshow effects of frequeng andconsisteng, as
would be expectedon a single-systenaccount.

Derivationalmorpholoy presentsinoterrich quasi-rgular
domainto which our approactwould apply. Firstof all, there
are mary morphemeghat are partially productve in ways
thataresimilarto quasi-rgularcorrespondencés inflectional
morphologyandspelling-to-soundthatis, they appearto be
governedby a setof “soft” constraints.Secondthe meaning
of amorphologicallycomplex wordis relatedto, but notcom-
pletely determinedy, its constituentmorphemesthus,there
is partial, but not complete,regularity in the mappingfrom
meaningto sound(seeBybee,1985,for a discussiorof these
points).

Gradedinfluencesof frequeny and consisteng appearo
operatenot just at thelevel of individualwordsbut alsoat the
level of sentencesasevidencedby recentfindingsof lexical,
semanticand contextual effectsin syntacticambiguity reso-
lution (see,e.g.,MacDonald,1994; Taraban& McClelland,
1988;Trueswell,Tanenhaus& Garnsg, 1994). For example,
considerthe temporarymain verb/reducedelative ambiguity
associateavith the word EXAMINED in the sentenc@ HE EVI-
DENCE EXAMINED BY THE LAWYER WAS USELESS(Ferreira&
Clifton, 1986). Thedegreeto whichsubjectsareslowedin sen-
tencecomprehensiomvhen encounteringsuchambiguitiesis
subjectto anumberof influencesincludinga previousdisam-
biguatingcontext (Trueswelletal., 1994),thesemantiglausi-
bility of theheadnounin themain-verbreading(cf. EVIDENCE
vs. ananimatenounlike WITNESS, andtherelative frequeny
with which the verb is usedasa simple pasttense(e.g., THE
PERSONEXAMINED THE OBJECT) asopposedo apassvizedpast
participle (e.g., THE OBJECTWAS EXAMINED BY THE PERSON

variousirregular verbsof modernEnglish. The coalescence MacDonald;1994). Verbsthatareconsistentlyusedn thesim-

of the varioustypes of weak verbsinto a single type, the
patternof susceptibilityto regularizationamongthe strong
verbs,andthe occasionabccurrenceof “irregularization, in

which a particularweakverb took on the characteristicef a
clusterof strongverbs,areall tracedto workingsof a single
connectionisisystemthat is sensitve both to frequeng and
consisteng. In HareandElman’s approachlanguagechange

ple pasttenseleadto muchstrongemardenpatheffectswhen
areducedelative interpretationis requiredthando verbsthat
aremoreambiguousn their usage.Theseeffectshave a nat-
uralinterpretatiorin termsof a constraint-satisfactioprocess
in which a varietyof sourcef lexical knowledgeconspireto
producea coherentsentenceanterpretation,jncluding graded
influenceswhose strengthdependson the consisteng of a
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word-form’s usage(seeJuliano& Tanenhausin press;Mac-

Donald,Pearimutter& Seidenbeg, 1994,for discussionand

Kawamoto,1993;PearlmutterDaughertyMacDonald & Sei-

denbeg, 1994;St.John& McClelland,1990,for connectionist
simulationdllustratingsomeof theseprinciples).

Even moregenerally the domainsencompassebly seman-
tic, episodicandeng/clopedicknowledgeareall quasi-rgular,
in thatfactsandexperiencesrepartiallyarbitrary butalsopar
tially predictabldrom thecharacteristicef other relatedfacts
and experiencegseeMcClelland, McNaughton& O’Reilly,
in pressfor discussion).Considertherobin, for example. Its
propertiesarelargely predictabléfrom the propertiesof other
birds, but its color andexact size,the soundthatit makesthe
colorof its eggs,etc,arerelatively arbitrary Rumelhar{1990;
Rumelhar®& Todd,1993)shavs how a connectionishetwork
canlearnthe contentsof a semanticnetwork, capturingboth
the sharedstructurethat is presentin the set of concepts—
so asto allow generalizatiorto nev examples—whileat the
sametime masteringheidiosyncraticpropertiesof particular
examples. As anotherexample,considerJohnF. Kennedys
assassination.Therewere several arbitrary aspectssuchas
the dateand time of the event, etc. But our understanding
of what happenedlependon knowledgederived from other
eventsinvolving presidentsimotorcadesifles, spiesetc. Our
understandingf thesethingsinforms, indeedpenades,our
memoryof Kennedys assassinationAnd our understanding
of other similar eventsis ultimately influencedby what we
learnaboutKennedys assassinatiorSt. John(1992)provides
anexampleof a connectionishetworkthatlearnsthe charac-
teristicsof eventsand appliesthemto other similar events,
usingjustthesamdearningmechanismgovernedby thesame
principlesof combinedfrequeny andconsistenyg sensitvity,
asour spelling-to-soud simulations.

In summary quasi-rgular systemslike that found in the
Englishspelling-to-soundystemappearto be penasive, and
thereareseveralinitial indicationghatconnectionishetworks
sensitveto frequeng andconsisteng will provideinsightinto
theway suchsystemsarelearnedandrepresented.

Conclusions

At the endof their paper Coltheartet al. (1993)reacha con-
clusionthatseemgo them“inescapablé.

Ourability todealwith linguisticstimuliwe have not
previouslyencountered. . canonly beexplainedby
postulatingthatwe have learnedsystemf general
linguistic rules,and our ability at the sametime to
deal correctly with exceptionsto theserules. . .
canonly be explainedby postulatingthe existence
of systemsf word-specifidexical representations.
(p. 606)

We have formulateda connectionistapproachto knowledge
andprocessingn quasi-rgulardomainsjnstantiatedt in the
specificdomainof English word reading,and demonstrated
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thatit canaccountfor the basicabilities of skilled readergo
handlecorrectly both regular and exceptionitemswhile still
generalizingvell to novelitems. Within theapproachthepro-
ficieng of humansgn quasi-rgulardomainstemaotfromthe
existenceof separateule-base@nditem-specifianechanisms,
but from the fact that the cognitive systemadheredo certain
generabrinciplesof computatiorin neural-likesystems.

Ourconnectionisapproacmotonly addressethesegeneral
readingabilities, but also provides insight into the detailed
effectsof frequeng andconsisteng bothin thenaminglateny
of normalreadersand in the impaired namingaccurag of
acquiredanddevelopmentatlyslexic readers A mathematical
analysisof a simplified system,incorporatingonly someof
the relevant principles,forms the basisfor understandinghe
intimaterelationshipbetweernthesefactorsand,in particular
theinherentlygradednatureof spelling-sounatonsisteng.

The more generallexical framevork for word readingon
which the currentwork is basedcontainsa semantigpathway
in additionto a phonologicalpathway In contrastto the lex-
ical and subleical proceduresn dual-routetheories,which
operatan fundamentallydifferentways,the two pathwaysn
the currentapproachoperateaccordingto a commonset of
computationaprinciples.As aresult,thenatureof processing
in thetwo pathwaysds intimatelyrelated.In particular a con-
siderationof the patternof impairedandpresered abilitiesin
acquiredsurfacedyslexia leadsto a view in which thereis a
partial division of laborbetweerthe two pathways.The con-
tribution of the phonologicalpathwayis a gradedfunction of
frequeng andconsisteng, itemsweakon both measuresire
processegbarticularlypoorly. Overt accurag on theseitems
is not compromisedhowever, becausehe semanticpathway
also contributesto the pronunciationof words (but not non-
words). Therelative capabilitiesof the two pathwayss open
to individual differencesand thesedifferencesmay become
manifestin the patternand severity of readingimpairments
following braindamage.

Needlesgo say muchremainsto be done. The current
simulationshave specificlimitations, suchas the restriction
to uninflectedmonosyllablesandlack of attentionpaidto the
developmentof orthographiaepresentationghat needto be
remediedn futurework. Furthermorethenatureof processing
within thesemantigpathwayhasbeencharacterizednly in the
coarsestvay. Finally, awide rangeof relatedempiricalissues,
includingphonologicatlyslexia, developmentatlyslexia, lexi-
caldecisionandpseudohomophorandblockingeffects,have
beenaddresseanly in very generalterms. Nonethelessthe
resultsreportechere,alongwith thoseof otherstakingsimilar
approaches;learly suggesthatthe computationaprinciples
of connectionistnodelingcanleadto a deepemunderstanding
of the centralempiricalphenomenén word readingin partic-
ular, andin quasi-rgulardomainanoregenerally
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Appendix 1: Stimuli Used in Simulation Studies

Regular Regular
Consistent  Inconsistent Ambiguous Exception Nonword

High Frequeng
BEST BASE BROWN ARE LARE
BIG BONE CLEAR BOTH FOTH
CAME BUT DEAD BREAK DEAK
CLASS CATCH DOWN CHOOSE BOOSE
DARK CooL FOUR COME POME
DID DAYS GONE DO MO
FACT DEAR GOOD DOES POES
GOt FIVE HEAD DONE RONE
GROUP FLAT HOW FOOT pooT
HIM FLEW KNOW GIVE MIVE
MAIN FORM KNOWN GREAT REAT
ouT GO LOVE HAVE MAVE
PAGE GOES LOW MOVE BOVE
PLACE GROW NEAR PULL RULL
SEE HERE NOW PUT SUT
SOON HOME ONE SAID HAID
STOP MEAT OUR SAYS TAYS
TELL PAID OWN SHALL NALL
WEEK PLANT SHOW WANT BANT
WHEN ROLL SHOWN WATCH NATCH
WHICH ROOT STOOD WERE LERE
WILL SAND TOWN WHAT DAT
WITH SMALL YEAR WORD TORD
WRITE SPEAK YOUR WORK BORK

Low Frequeng
BEAM BROOD BLOWN BOWL NOWL
BROKE COOK BROW BROAD BOAD
BUS CORD CONE BUSH FUSH
DEED COVE CROWN DEAF MEAF
DOTS CRAMP DIVE DOLL FOLL
FADE DARE DREAD FLOOD BOOD
FLOAT FOWL FLOUR GROSS TROSS
GRAPE GULL GEAR LOSE MOSE
LUNCH HARM GLOVE PEAR LEAR
PEEL HOE GLOW PHASE DASE
PITCH LASH GOWN PINT PHINT
PUMP LEAF GROVE PLOW CLOW
RIPE LOSS HOOD ROUSE NOUSE
SANK MAD LONE SEW TEW
SLAM MOOSE PLEAD SHOE CHOE
SLIP MOTH POUR SPOOK STOOK
STUNT MOUSE PRONE SWAMP DRAMP
SWORE MUSH SHONE SWARM STARM
TRUNK PORK SPEAR TOUCH MOUCH
WAKE POSE STOVE WAD NAD
WAX POUCH STRIVE WAND MAND
WELD RAVE SWEAR WASH TASH
WING TINT THREAD WOOL BOOL
wIT TOAD ZONE WORM PORM

Note: The“RegularConsistent'words,“Regularinconsistentwords,and“Exception” wordsarefrom Experi-
mentsl and2 of TarabanandMcClelland (1987). In thosestudiesthe regularconsistentvordsarethe control
wordsfor the exceptionwords. In addition,eachregularinconsistentvord sharesa body with someexception
word. The*Ambiguous”wordscontainbodiesassociategvith two or morepronunciationseachof which occurs
in manywords. Theyweregeneratety SeidenbegandMcClelland(1989)to bematchedn frequencyKugera&
Francis 1967)with the TarabarandMcClellandhigh-andlow-frequencyregularconsistenandexceptiorwords.
The“Nonwords” weregeneratedby alteringthe onsetf the exceptionwords.
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Appendix 2: Accepted Pronunciations of Glushko’s (1979) Nonwor ds

ConsistenNonwords InconsisteniNonwords
Nonword Pronunciation(s) Nonword Pronunciation(s)
BEED /bEd/ BILD /blld/, /bild/

BELD /beld/ BINT /bint/, /bint/

BINK /biNk/ BLEAD /blEd/, /bled/

BLEAM /bIEm/ BOOD /buUd/,/bad/, lbud/
BORT /bOrt/ BOST /bOst/,/bAst/,/bost/
BROBE /brOb/ BROVE /brOv/, /bruv/, lbrav/
CATH k@T/, IkaT/ COSE /kOs/,/kOz/,/kUz/
COBE /kOb/ COTH /kOT/, IkoT/

DOLD /dOld/,/dald/ DERE /dAr/, [dEr/, [dur/
DOON /dUn/ DOMB /dOm/,/dUm/,/dam/,/damb/
DORE /dOr/ DOCT /dUt/, /dut/

DREED /drEd/ DROOD /drud/,/drAd/, /drud/
FEAL /fEl/ FEAD /fEd/, [fed/

GODE /gOd/ GOME /gOm/,/gAm/
GROOL /grul/, /grul/ GROOK /grUk/, Igruk/

HEAN /hEn/ HAID /h@d/,/hAd/, /hed/
HEEF [hEf/ HEAF [hEf/, Ihef/

HODE /hOod/ HEEN /hEn/,/hin/

HOIL hyl/ HOVE /hOv/,/huv/, IhAav/
LAIL NIAl/ LOME /1om/, 1Am/

LOLE /10l/ LOOL NIUN, Nlul/

MEAK ImAK/, ImEk/ MEAR /mAr/, ImEr/

MOOP /mUp/ MONE /mOn/,/mAn/, /mon/
MUNE /mUn/,/myUn/ MOOF /mUf/, Imuf/

NUST InAst/ NUSH InAS/,InuS/

PEET IpEY PILD /plld/, /pild/

PILT Ipilt/ PLOVE IplOv/, Ipluvl, IplAv/
PLORE /plOr/ POMB /pOm/,/pUm/,/pam/,/pamb/
PODE /pOd/ pPoOT /pUt/, Iput/

POLD /pOld/,/pald/ POVE IpOV/, IpuV/, Ipavl
PRAIN /prAn/ PRAID /pr@d/,/prAd/, Ipred/
SHEED /SEd/ SHEAD /SEd/,/Sed/

SQAD /sOd/,/sod/ SO0OD /sUd/,/snd/, Isud/
SPEET /spEt/ SOST /sOst/ /sAst/,/sost/
STEET [StEt/ SPEA’ /spAl/, IspEt/,/spet/
SUFF Isnfl STEAT [stAt/, IstEt/,/stet/
SUST /sAst/ SULL IsAll, Isull

SWEAL /swEI/ SWEAK /swAk/, /swEk/

TAZE tAz/ TAVE h@v/, ItAv/, Itav/
WEAT /WAL, IWEL/, lwet/ WEAD /wEd/, lwed/

WOSH /waS/ WONE /wOn/,/wAn/, lwon/
WOTE /wOt/ WULL WAL/, fwul/

WUFF IwAT/ WUSH IWAS/, IwuS/

Note: /a/in Por, /@/in CAT, /e/in BED, /il in HIT, /o/ in DOG, /u/ in GooDb, /A/ in MAKE, /E/in KEEP, /I/ in
BIKE, /O/ in HOPE /U/ in BOOT, /W/ in NOw, /Y/ in BOY, /Al in cup, IN/ in RING, /S/in SHE, /C/in CHIN /Z/
in BEIGE, /T/ in THIN, /D/ in THIS. All otherphonemesrerepresenteth the corventionaway (e.g.,/b/ in
BAT).
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Appendix 3: Regularizations of Taraban and M cCleland’s (1987) Exception Words
High-Frequeng Exceptions

Low-Frequenyg Exceptions

Word Correct Regularization(s) Word Correct Regularization(s)
ARE lar/ 1Ar] BOWL /bOl/ bW/

BOTH /bOT/ /boT/ BROAD /brod/ /brOd/
BREAK  /brAk/  /brEk/ BUSH /buS/ /bAS/
CHOOSE /CUz/  /CUs/ DEAF /def/ /dEf/

COME /kam/  /kOm/ DOLL /dal/ /dOl/

DO /du/ /dO/, /da/ FLooD  /fiad/ /flud/, fflud/
DOES [dAaz/ /dOz/,/dOs/ GROSS  /grOs/ /grosl/,/gras/
DONE /dAn/ /dOn/ LOSE lJz/ /10s/,/10z/
FoOT ffut/ [fUt/ PEAR IpAr/ /pEr/

GIVE giv/ giv/ PHASE  [fAz/ [fAs/

GREAT  /grAt/  [grEY/ PINT /pint/ Ipint/

HAVE /hav/ /hAv/ PLOW IpIW/ /plO/

MOVE /mUv/  /mOv/ ROUSE /rWz/ IrWs/

PULL /pul/ IpAl SEW /sO/ /sU/

PUT /put/ IpAt/ SHOE  /SU/ /SO/

SAID /sed/ /sAd/ SPOOK  /spUk/  /spuk/

SAYS /sez/ [sAz/,IsAs/ swampP  /swamp/ /sw@mp/
SHALL /Sal/ /Sol/ SWARM  /swOrm/ /swarm/
WANT /want/  /w@nt/ TOUCH [tAC/ IWC/
WATCH /waC/ /w@C/ WAD Iwad/ w@d/
WERE Iwur/ IWETr/ WAND /wand/  /w@nd/
WHAT IwAt/ w@t/ WASH /woS/ w@S/
WORD /wurd/  /wOrd/ wooL  /wul/ /wul/

WORK /wurk/  /wOrk/ WORM  /wurm/  /wOrm/

Note: /a/in por, /@/ in CAT, /el in BED, /i/ in HIT, /o/ in DOG, /u/ in GOoD, /A/ in MAKE, /E/ in KEEP, /I/ in
BIKE, /O/in HOPE, /U/ in BOOT, /W/ in NOow, /Y/ in BOY, /A/ in CUP, /N/ in RING, /S/in SHE, /C/in CHIN /Z/ in
BEIGE, /T/in THIN, /D/ in THIS. All otherphonemesirerepresenteth thecorventionaway (e.g.,/b/in BAT).
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