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On a distributed connectionist approach, morphology re�ects a learned
sensitivity to the systematic relationships among the surface forms of words
and their meanings. Performance on lexical tasks should thus exhibit graded
effects of both semantic and formal similarity. Although there is evidence for
such effects, there are also demonstrations of morphological effects in the
absence of semantic similarity (when formal similarity is controlled) in
morphologically rich languages like Hebrew. Such �ndings are typically
interpreted as being problematic for the connectionist account. To evaluate
whether this interpretation is valid, we carried out simulations in which a set
of morphologically related words varying in semantic transparency were
embedded in either a morphologically rich or impoverished arti�cial
language. We found that morphological priming increased with degree of
semantic transparency in both languages. Critically, priming extended to
semantically opaque items in the morphologically rich language (consistent
with �ndings in Hebrew) but not in the impoverished language (consistent
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with �ndings in English). Such priming arises because the processing of all
items, including opaque forms, is in�uenced by the degree of morphological
organisation of the entire system. These �ndings suggest that, rather than
being challenged by the occurrence of non-semantic morphological effects in
morphologically rich languages, the connectionist approach may provide an
explanation for the cross-linguistic differences in the occurrence of these
effects.

INTRODUCTION

Language is among the most fundamental of human cognitive abilities, and
one of its most remarkable properties is its productivity: a relatively small
number of familiar elements can be recombined in highly �exible ways to
express a virtually limitless range of ideas. This productivity stems both
from morphology (i.e., how words are formed) and from syntax (i.e., how
they are ordered into sentences). Languages differ widely in the extent to
which they rely on morphology versus syntax for productivity, and how
morphology is expressed in the written and spoken forms of words. Indeed,
it is generally agreed that morphology is the area of language that exhibits
the greatest degree of cross-linguistic variation and, consequently, that
learning must play a particularly important role in its organisation.

In these respects, English and Hebrew constitutes a very informative
contrast. English makes relatively limited use of morphology, and the
process of word formation mostly involves simple concatenation (e.g.,
UNBREAKABLE = UN- + BREAK + -ABLE; see Marchand, 1969). In Hebrew, by
contrast, almost every word is structurally complex and word formation
involves both concatenative and non-concatenative processes, including
interdigitating a largely vowel-based word pattern into a three-consonant
root (e.g., ZMR [related to music] + _ I _ _ A = ‘‘zimra’’ [singing]; see
Berman, 1978). Thus, it is a considerable challenge to theories of language
to explain how a child can learn either English or Hebrew (or both)
depending only on the language environment in which he or she grows up.

The standard view of morphology is that words are built out of discrete
units called morphemes that contribute systematically to the meanings of
words containing them (e.g., RE- typically means to do again, as in REW ASH,
RESEAL, etc.). Morphological systematicity is important in part because it
underlies the formation of novel words. For example, given the relatively
new English verb FAX, we can automatically say and understand words like
REFAXED and UNFAXABLE. In fact, the same holds for novel verbs: regardless
of what the verb W UG might mean, something is UNW UGGABLE if it cannot
be W UGGED.

Critically, as in other linguistic domains, systematicity in morphology is
only partial. For example, although most English verbs form the past tense
by adding -ED, there are also about 150 irregular verbs that form clusters
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which undergo similar changes (e.g., SIN G ) ‘‘sang’’, DRIN K ) ‘‘drank’’)
along with a few very high-frequency arbitrary forms (e.g., GO ) ‘‘went’’).
A similar state of affairs holds for other aspects of morphology (see
Marchand, 1969). For instance, given an English verb, the most productive
way of deriving the word for one who does the action is to add -ER; thus,
someone who RUN S is a RUNN ER, someone who THINKS is a THINKER, and so
on. Such words are transparent because their meaning can be derived
directly from the meanings of their morphemes. However, there are also
opaque items: someone who – IES a plane is not a – IER but a PILOT; a
CORN ER is not someone who CORNS .

Many theories of morphological processing (e.g., Burani & Caramazza,
1987; Marslen-Wilson, Tyler, Waksler, & Older, 1994; Pinker, 1991;
Prasada & Pinker, 1993; Schreuder & Baayen, 1995) respond to the fact
that morphology is only partially systematic by handling the systematic and
idiosyncratic aspects separately. Idiosyncratic words are stored as
unanalysed wholes whereas systematic words are represented and
processed compositionally in terms of stems and af�xes. Recognition of
the latter thus involves decomposing a complex word into its identi�able
stem and af�x and then accessing the stored stem (Marslen-Wilson et al.,
1994). Such dual-mechanism theories run into problems, however, because
morphological structure is not just partial but graded—that is to say, there
are many intermediate cases that are neither completely transparent
(regular) nor completely opaque (irregular). Rather, there are sub-
regularities among the irregulars and between them and regulars. For
example, the spoken forms of irregular verbs that do not change between
present and past tense (e.g., HIT, SPREAD) all end in either /t/ or /d/—the
same phonemes that occur at the end of regular past-tense forms. Thus,
these items are not arbitrary exceptions; the fact that they already share
the phonological structure of a past-tense form contributes to their
patterning. Similarly, a word like DRESSER is neither fully semantically
transparent nor fully opaque—although a DRESSER is not someone who
dresses but a piece of furniture that holds clothes, it is clearly related to the
activity of dressing. More generally, the isolation of idiosyncratic from
systematic knowledge, which is at the core of dual-mechanism theories and
which seems necessary to prevent the exceptions from compromising
generalisation to novel forms, ends up being a serious handicap in the face
of the rich, graded structure of language.

These dif�culties have prompted many researchers to explore an
alternative way of expressing language knowledge, based on connectionist
or neural network modelling, that can handle graded degrees of
systematicity more naturally. Connectionist models attempt to capture
the essential properties of the neural mechanisms that give rise to
behaviour by implementing cognitive processes in terms of cooperative
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and competitive interactions among large groups of simple, neuron-like
units (see McClelland, Rumelhart, & PDP Research Group, 1986;
McLeod, Plunkett, & Rolls, 1998; Quinlan, 1991; Rumelhart, McClelland,
& PDP Research Group, 1986b).

From a connectionist perspective, morphology is a characterisation of
the learned mapping between the surface forms of words (orthography,
phonology) and their meanings (semantics) (see also Cottrell & Plunkett,
1995; Gonnerman, Devlin, Andersen, & Seidenberg, 2000b; Hoeffner &
McClelland, 1993; Joanisse & Seidenberg, 1999; Rueckl, Mikolinski,
Raveh, Miner, & Mars, 1997; Rueckl & Raveh, 1999). To the extent that
a particular surface pattern occurs in many words and maps consistently to
certain aspects of meaning, the internal representations will come to re�ect
this structure and treat the pattern componentially—that is, represent and
process it relatively independently of the other parts of the word (Plaut &
McClelland, 1993; Plaut, McClelland, Seidenberg, & Patterson, 1996). As
surface patterns behave less systematically, their internal representations
will be correspondingly less componential. At the extreme end, if an item
violates what is otherwise a systematic aspect of the domain (e.g., CORN ER),
its internal representation must be very non-componential in order to
avoid being given a transparent interpretation (e.g., someone who CORN S).

To make the connectionist approach to morphology more concrete,
consider the framework for lexical processing depicted in Figure 1 (see
also Gonnerman et al., 2000b; Joanisse & Seidenberg, 1999). The
orthography, phonology and semantics of words are represented as

Figure 1. A connectionist framework for lexical processing. The large arrows depict inputs
and outputs of the system.
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distributed patterns of activity over separate groups of processing units.
Within each of these domains, similar words are represented by similar
(overlapping) patterns of activity. For example, CAT and DOG would be
encoded by similar patterns in semantics but by dissimilar patterns in
orthography and phonology, whereas CAT and CAP would be similar in
orthography and phonology but dissimilar in semantics. Lexical tasks
involve transformations between these patterns—for example, written
word comprehension requires that the orthographic pattern for a word
generate the appropriate semantic pattern. Such transformations are
accomplished via interactions among the units, including additional
intermediate or hidden units that mediate between the other groups of
units.1 Unit interactions are governed by weighted excitatory and
inhibitory connections between them. When the network is presented
with input (e.g., the orthography of CAT), units repeatedly update their
activations as a function of the total input they receive via connections
from other units, until the network as a whole settles into a stable pattern
of activity constituting its response to the input (e.g., the meaning and
pronunciation of CAT). The behaviour of the network in response to a given
input thus depends on the speci�c values of the connection weights, which
collectively encode the knowledge of the system. The network learns these
values by gradually adjusting the weights to improve performance based
on exposure to written words, spoken words, and their meanings. This
learning has the effect of inducing new, internal representations over the
intermediate units that are effective in accomplishing the relevant tasks.

At a general level, the reliance within the connectionist approach on
learning internal representations is in sharp contrast to more traditional
approaches to language which typically make very strong assumptions
about the structure of internal representations and the processes that
manipulate them. For example, it is often assumed that underlying
linguistic knowledge takes the form of explicit rules which operate over
discrete, symbolic representations (Chomsky, 1957; Chomsky & Halle,
1968; Fodor & Pylyshyn, 1988; Pinker, 1991; Prasada & Pinker, 1993) and,
moreover, that this knowledge is, in large part, innately speci�ed
(Chomsky, 1965; Crain, 1991; Pinker, 1994). By contrast, rather than
stipulating the speci�c form and content of the knowledge required for
performance in a domain, the connectionist approach instead speci�es the

1 Readers may note that the current framework differs from the ‘‘triangle’’ model of word
reading (e.g., Harm & Seidenberg, 1999; Plaut et al., 1996; Seidenberg & McClelland, 1989) in
having one rather than three groups of hidden units mediating among orthography,
phonology, and semantics. Although this distinction is a matter of ongoing research, Kello
and Plaut (in press) report strategic effects in word reading that seem problematic for the
triangle framework but can be simulated effectively by a model with a common group of
hidden units (Kello & Plaut, 1998, in preparation).
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tasks the system must perform but then leaves it up to the learning process
to develop the necessary internal representations and processes (McClel-
land, St. John, & Taraban, 1989). The result is often that learning develops
representations and processes which are radically different from those
proposed by traditional theories, resulting in novel hypotheses and testable
predictions concerning human cognitive behaviour.

In particular, the connectionist approach to morphology makes the
strong prediction that the magnitudes of behavioural effects that re�ect
morphological processing should vary continuously as a function of the
degree of semantic and phonological transparency of words. This
prediction was recently con�rmed in English by Gonnerman, Andersen,
and Seidenberg (2000a), who found that prime-target pairs with
intermediate degrees of semantic or phonological transparency produced
intermediate degrees of priming.

Other empirical �ndings, however, would seem to challenge the
connectionist claim that morphology is derived from learning among
orthography, phonology, and semantics. In particular, it seems dif�cult to
reconcile this perspective with demonstrations of morphological effects
that are independent of both semantic and surface similarity. Many of
these demonstrations are in languages, such as Hebrew, that have much
richer morphological systems than English. For example, morphological
priming in Hebrew can occur in the absence of semantic priming or can be
insensitive to variations in semantic relatedness when surface similarity is
controlled (Bentin & Feldman, 1990; Frost, Deutsch, & Forster, in press-a;
Frost, Deutsch, Gilboa, Tannenbaum, & Marslen-Wilson, in press-b; Frost,
Forster, & Deutsch, 1997). It thus appears that the existence of priming
under these conditions is governed by morphological relatedness per se,
and not by semantic or surface similarity. If, according to the connectionist
approach, morphological structure ultimately derives from graded
systematicity among surface forms of words and their meanings, there
would seem to be no basis for morphological effects that are independent
of semantic and surface similarity.

The current article reports on two simulations designed to evaluate
whether the existence of morphological priming in the absence of semantic
similarity in morphologically rich languages is inconsistent with a
distributed connectionist approach to morphology. A common set of
primes and targets, ranging in transparency, were embedded among a
larger set of words that were either transparent or opaque, forming two
arti�cial languages: a morphologically rich language analogous to Hebrew,
and a morphologically impoverished language analogous to English. A
network was then trained to map orthography to semantics for either
language, and then tested for priming. Both languages yielded morpho-
logical priming for the more transparent targets, but priming extended to
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semantically opaque targets only in the rich language. The results suggest
that non-semantic morphological priming is, in fact, compatible with the
connectionist approach but that its occurrence is predicted to depend on
the degree of morphological richness of the language.

The next section reviews the relevant empirical �ndings that support or
challenge a connectionist approach to morphology. We then discuss the
computational principles that are essential for understanding both the
general approach and the basis for the results of the simulations which
follow. We conclude with a more general discussion of the strengths and
limitations of the current work as well as remaining challenges to the
connectionist approach.

OVERVIEW OF RELEVANT EMPIRICAL FINDINGS

One of the earliest studies on the role of morphology in lexical processing
was conducted by Taft and Forster (1975). Using a lexical decision task,
they found that subjects were able to reject nonwords with pseudo-stems
(e.g., DEPERTOIRE) faster than nonwords with real stems (e.g., DEJUVEN ATE).
Based on these �ndings, Taft and Forster argued for a processing strategy
that �rst strips af�xes from complex words and then searches for a stored
stem representation. Many subsequent studies, using a variety of
experimental techniques, have examined the extent to which morpholo-
gical information is used to decompose complex words in lexical
processing (see Feldman, 1995). These studies have produced con�icting
results, leading to disagreement about the precise nature and locus of
morphological decomposition. For example, Andrews (1986) argued that
compound words are decomposed in lexical access, suf�xed words are
optionally decomposed in access, and all types of complex words are
represented as whole forms. Alternatively, Stanners, Neiser, Hernon, and
Hall (1979) claimed that derived forms are processed as wholes, but
in�ected forms are decomposed. Another account proposes that pre�xed
words are processed as whole forms but that suf�xed words are
decomposed (Colé, Beauvillain, & Segui, 1989). Yet another approach
advocates two types of lexical access procedures—whole word and
decompositional—which are activated in parallel (e.g., Burani, Salmaso,
& Caramazza, 1984; Laudanna, Badecker, & Caramazza, 1989, 1992;
Laudanna, Cermele, & Caramazza, 1997). While there has been no
consensus as to exactly when and where morphological processing occurs,
the majority of researchers agree that some form of discrete, all-or-none
decomposition based on morphological structure operates somewhere
within the lexical system.
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The connectionist approach, by contrast, holds that decomposition is not
an all-or-none phenomenon and that behavioural effects should be graded,
re�ecting the degree of convergence among semantic, phonological, and
orthographic codes. One source of evidence for continuous, graded
similarity structure in the semantic relatedness of morphologically complex
words and their stems comes from subjects’ similarity judgements
(Gonnermann, 1999; Gonnerman, et al., 2000a). Gonnerman and
colleagues found that subjects produced highly consistent ratings that fell
on a continuum, judging some word pairs to be unrelated (e.g., CORNER–
CORN), some moderately related (e.g., DRESSER–DRESS) and some highly
related (e.g., TEACHER–TEACH). With regard to formal similarity, Rueckl et
al. (1997) present �ndings from both masked and standard fragment
completion tasks in which priming effects for morphologically related word
pairs varied in magnitude as a function of orthographic similarity.

Further empirical support for the connectionist perspective comes from
a series of cross-modal priming studies in which subjects made lexical
decisions to written targets preceded by auditorily presented primes
(Gonnerman, 1999; Gonnerman et al., 2000a; see also Marslen-Wilson et
al., 1994). Gonnerman and colleagues compared the magnitude of
priming as a function of the degree of semantic transparency between
prime and target (e.g., high; BREAKAGE–BREAK; intermediate: SHORTAGE–
SHORT; low: MESSAGE–MESS). Crucially, all of the items were phonologi-
cally transparent, such that the stems were contained unchanged in the
complex words. Gonnerman and colleagues found that prime-target pairs
with intermediate degrees of transparency also produced intermediate
degrees of priming. Thus, highly semantically-related word pairs (e.g.,
BAKER–BAKE) primed twice as much (40 vs. 19 ms) as moderately related
pairs (e.g., DRESSER–DRESS), and unrelated pairs (e.g., CORNER–CORN)
showed no priming effects. Strikingly similar results were also obtained
for pairs of pre�xed words and their stems; highly related pairs (e.g.,
PREHEAT–HEAT) primed twice as much (42 vs. 20 ms) as moderately
related pairs (e.g., MIDSTREAM–STREAM), whereas unrelated pairs (e.g.,
REHEARSE–HEARSE) showed no priming. Again, as with the suf�xed-stem
pairs, phonological relatedness was held constant. A third experiment
showed that these graded effects hold for derived-derived word pairs.
Highly related pairs (e.g., SAINTLY–SAINTHOOD) produced signi�cant
facilitation (34 ms), whereas less related pairs (e.g., OBSERVATION–
OBSERVANT) produced only moderate facilitatory effects (14 ms) that
failed to reach signi�cance.

Gonnerman et al. (2000a) also found evidence for graded effects of
phonological relatedness among word pairs that were equated on measures
of semantic similarity. Thus, priming was greater among phonologically
related pairs involving a consonant change (e.g., DELETION–DELETE; 65 ms)
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than among pairs involving a vowel change (e.g., VAN ITY–VAIN ; 48 ms),
which, in turn, was greater than priming among pairs involving both vowel
and consonant changes (e.g., INTRODUCTION–INTRODUCE; 35 ms).

In two �nal experiments, Gonnerman et al. (2000a) found similar
priming effects among word pairs that are both semantically and
phonologically similar but morphologically unrelated. In one experiment,
signi�cant priming (24 ms) was demonstrated for ‘pseudo-suf�xed’ words
that do not share morphological stems (e.g., TRIVIAL–TRI– E), but crucially,
only if the words overlapped suf�ciently in both meaning and sound. Data
from a second experiment indicated priming (35 ms) for words taken from
semantic and phonological clusters where there are no morphological
relationships (e.g., SNARL–SN EER). Again, priming occurred only if there
was suf�cient overlap in both meaning and sound; SW ITCH–SW IM pairs did
not prime. These �ndings con�rm that priming effects similar to those
found for morphologically related items hold for word pairs that are
correlated in meaning and sound, but have no morphological relationships
(see also Rueckl & Dror, 1994, for a related demonstration that subjects
learn an arti�cal vocabulary better if formal and semantic similarity are
correlated).

Thus, Gonnerman et al. (2000a) provided clear evidence for graded
effects of similarity in semantics, phonology, and orthography on cross-
modal priming. Furthermore, the graded semantic effects were shown to
generalise across morphological types, holding for morphologically related
suf�xed-stem, pre�xed-stem, and suf�xed-suf�xed pairs. The effects of
graded semantic and phonological similarity were demonstrated even for
morphologically unrelated word pairs. Taken together, these results
support a distributed connectionist approach where morphology char-
acterises the regularities in the learned mapping between semantics and
phonology.

There are, of course, �ndings that seem to challenge the notion that
morphological effects can be reduced entirely to the joint in�uence of
semantic and formal similarity. For example, with regard to formal
similarity, Murrell and Morton (1974) found priming among formally
related word pairs only if they were morphologically related (e.g., CARS–
CAR but not CARD–CAR) and concluded that priming is determined by
morphological structure rather than by formal relatedness per se. With
regard to semantics, Kempley and Morton (1982) found that regularly
in�ected word pairs (e.g., RE– ECTED–RE– ECTING) produced signi�cant
facilitation, whereas irregularly in�ected pairs (e.g., HELD–HOLDING) did
not. They argued on the basis of these results that semantic properties of
words do not in�uence processing, whereas morphology does. Many
additional studies have come to a similar conclusion: that morphological
structure, and not semantic or formal properties, underlies lexical
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processing (e.g., Fowler, Napps, & Feldman, 1985; Grainger, Colé, &
Segui, 1991; Marslen-Wilson et al., 1994; Napps, 1989; Napps & Fowler,
1987; Stolz & Besner, 1998).

It is important to note, however, that none of these studies examined or
manipulated semantic and formal similarity jointly. For example, Napps
and colleagues failed to �nd effects of semantic factors on morphological
priming in one study (Fowler et al., 1985), and failed to �nd effects of
phonological factors in another (Napps & Fowler, 1987), and concluded
that ‘‘morphemic priming is not the result of the convergence of semantic,
orthographic, and phonological relationships but rather that morphemic
relationships are represented explicitly in the lexicon’’ (Napps, 1989,
p. 729). Similarly, Marslen-Wilson et al. (1994) failed to �nd an effect of
degree of phonological change between stem and derived forms, but they
(unlike Gonnerman et al. 2000a) did not equate semantic similarity across
conditions. In a subsequent experiment, they found evidence that priming
was in�uenced by morphological type—suf�xed-stem word pairs exhibited
priming but suf�xed-suf�xed pairs did not—even though the conditions
were matched on semantic similarity. Gonnerman et al. (2000b) showed,
however, that the word pairs used by Marslen-Wilson et al. (1994) in the
suf�xed-suf�xed condition were systematically less phonologically similar
than the pairs in the suf�xed-stem condition; in fact, suf�xed-suf�xed pairs
do yield priming if they are suf�ciently related (Gonnerman et al., 2000a).
Gonnerman and colleagues also demonstrated that a distributed connec-
tionist model trained on the experimental stimuli closely replicated the
empirically observed pattern of priming.

More recently, Stolz and Besner (1998) explicitly question the ability of
the connectionist approach to account for their morphological effects.
They conducted a series of experiments where subjects made lexical
decisions after performing a letter search task. Two experiments showed
priming for morphologically related items (e.g., MARKED–MARK) compared
to either an unrelated or an orthographic baseline (e.g., MARKET–MARK). In
a third experiment, morphologically related items produced signi�cant
priming, whereas items that were only semantically related (e.g., GOLD–
SILVER) did not. The authors also collected semantic relatedness ratings
and demonstrated that these ratings could not account for the differences
in priming between morphologically and semantically related items. Based
on the combined results from their separate experiments, Stolz and Besner
argue that morphological effects are independent of either orthographic or
semantic similarity and thus challenge a connectionist approach. Recall,
however, that form and meaning interact on our connectionist account, so
we would in fact predict greater priming for items that are similar in both
meaning and sound (e.g., morphologically related pairs) than for those
related only on one of the two dimensions. Indeed, the Stolz and Besner
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results, far from presenting a challenge, are entirely consistent with a
distributed connectionist approach.

Overall, the evidence for morphological effects in English that are not
reducible to semantic or formal similarity is, we believe, questionable at
best. More convincing evidence of pure morphological effects comes from
experiments in languages, such as Hebrew, with much richer morphological
structure than English. As mentioned in the Introduction, virtually every
word in Hebrew is morphologically complex, being formed by interdigitat-
ing a mostly vowel-based word pattern into a three-consonant root (see
Bentin & Frost, 1995; Berman, 1978). Words derived from the same root
exhibit a range of semantic relatedness. Bentin and Feldman (1990) took
advantage of this fact to compare priming of a target word (e.g., MIGDAL

[tower], root GDL) by morphologically related primes that either were
semantically related to the target (e.g., GADOL [big]) or were not (e.g.,
GYDUL [tumor]), as well as by semantically related but morphologically
unrelated primes (e.g., TZERIAH [turret]). For long-lag repetition priming,
they found no reliable non-morphological semantic priming and equivalent
levels of morphological priming regardless of whether the primes were
semantically related or not (28 and 24 ms, respectively). Analogous results
have also been obtained using brief masked priming (Frost et al., 1997).
Note that non-semantic morphological priming in Hebrew is not restricted
to within-modality (e.g., visual-visual) presentation as Frost et al. (in press-
b) also found reliable priming for morphologically related but semantically
opaque items under cross-modal presentation (26 ms). In this case the
magnitude of priming did increase if the items were also semantically
related (42 ms), although this is not surprising as the paradigm also yields
semantic priming among morphologically unrelated items (Gonnerman, et
al., 2000a; Marslen-Wilson et al., 1994).

There are analogous items in English that are morphologically related
on a linguistic analysis but have little if any semantic similarity. For
example, Aronoff (1976) has argued that -MIT operates like a morpheme in
that it undergoes systematic morphological transformation across a broad
class of words (e.g., TRANSMIT–TRAN SMISSION , REMIT–REMISSION , COMMIT–
COMMISSION) even though the semantic contribution of -MIT in these words
is largely opaque. Note, however, that such items do not seem to produce
reliable behavioural priming effects, under either cross-modal presentation
(Marslen-Wilson et al., 1994) or visual-visual presentation with 250 ms
prime duration (Feldman & Soltano, 1999). Thus, English appears to
contrast with Hebrew in this respect.

An even more direct challenge to the connectionist approach comes
from recent demonstrations that ‘structural’ manipulations of surface form
that retain surface and semantic similarity can nonetheless have a
profound impact on morphological priming (Frost et al., in press-a). Frost
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and colleagues found that, among verbs, prime-target pairs in Hebrew with
different roots but a common word pattern produce reliable priming if
roots have three consonants, but that this priming is eliminated when the
prime is a ‘weak’ form containing only two consonants. The word-pattern
priming is reinstated, however, if the missing consonant is replaced with
another random consonant to form a ‘pseudo-root’ (resulting in a nonword
prime). The authors were careful to ensure that the manipulation of the
consonantal roots did not alter the orthographic overlap or introduce
semantic similarity among the resulting primes and targets. Thus, it
appears as if the existence of priming in this context is governed, not by
semantic or surface similarity, but by the presence of a structurally intact,
morphologically de�ned three-consonant root.

Taken at face value, the evidence of pure morphological effects in
Hebrew would seem to con�ict with the connectionist proposal that
morphology derives from learned relationships among the surface forms of
words and their meanings. Indeed, Frost et al. (in press-a) claim that their
results are incompatible with distributed connectionist systems, of which
‘all that can be said is that a level of hidden units picks up the correlations
between phonology and semantics, or orthography and semantics, and
these underlie the morphological effects’. To more fully understand what
the connectionist approach actually predicts in this context, however, we
must consider in detail some of the computational principles that underlie
the approach. It will turn out that the implications of these principles for
morphological processing are far more subtle than is often assumed, and
that the degree to which morphologically related items without semantic
similarity should exhibit priming on a connectionist account depends on
the degree of morphological structure of the entire language. These claims
are supported by simulations described in this article.

PRINCIPLES UNDERLYING THE CONNECTIONIST
APPROACH

The connectionist approach instantiates a number of computational
principles that are relevant to morphological processing (see Figure 2).
We discuss �ve central ones in some detail because they are important for
understanding the conditions under which the approach predicts morpho-
logical effects in the absence of semantic and/or phonological similarity
(for additional background on principles of connectionist modelling, see
Chauvin & Rumelhart, 1995; Hertz, Krogh, & Palmer, 1991; McClelland et
al., 1986; Rumelhart, Hinton, & Williams, 1986a; Smolensky, Mozer, &
Rumelhart, 1996).
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Principle 1: Distributed representations

Although many in�uential connectionist models employ localist represen-
tations, in which individual units correspond to familiar entities like words
and concepts (see Page, in press, for discussion), a richer set of theoretical
principles is available through the use of distributed representations
(Hinton, McClelland, & Rumelhart, 1986). In a distributed representation,
familiar entities are encoded by alternative patterns of activity over the
same set of units, where each unit participates in representing many
entities. For any pair of entities, their similarity in a given domain is
re�ected by the degree of overlap (i.e., number of shared active units) in
their representations over the units for that domain. The full set of
pairwise similarities among the representations for a given domain
constitutes the similarity structure of that domain. Note that this similarity
structure is intrinsic to a set of distributed representations, whereas, with
localist representations, it must be imposed externally by appropriate
associative weights between units.

Figure 2. Principles of connectionist modelling. In the diagrams, the circles represent units
and the ovals represent groups of units. The rectangles represent similarity spaces in which the
points correspond to different entities; the distance between points indicates the relative
similarity (overlap) of the corresponding representations. Arrows indicate mappings between
representations.
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Principle 2: Systematicity

Whereas similarity structure concerns the relationships among representa-
tions within a domain, systematicity concerns the relationship between the
similarity structures of two domains. In order to perform a task, a network
must map from the representations in one domain to the representations in
another. For example, oral reading involves mapping the orthographic
representations of words to their phonological representations, whereas
spoken word comprehension involves mapping phonological representa-
tions to semantic representations. In general, the ease of performing a
mapping will depend on its systematicity—that is, the extent to which
patterns that are similar in one domain map to patterns that are similar in
the other domain. Thus, in English, oral reading is highly systematic
because words that are spelled similarly (e.g., CAT and CAP) tend to be
pronounced similarly (see the left side of Figure 2b). By contrast, spoken
comprehension of monomorphemic words is highly unsystematic because
phonological similarity is unrelated to semantic similarity (see the right
side of Figure 2b).

Systematic mappings are easier for connectionist networks to perform
because networks have an inherent tendency to produce similar responses
to similar inputs. This is because unit activations are determined by �rst
computing a linear weighted sum of inputs from other units, and then
applying a smooth, non-linear (typically sigmoidal) function to this
summed input. A similar pattern of activity over the sending units will
generally produce a similar summed input to the receiving unit and, hence,
a similar activation value. The tendency to give a similar output to similar
inputs is violated only when the differences between the sending patterns
happen to be over units with very large connection weights to the receiving
units. It is possible for learning to develop large weights when it is
necessary to perform a task, but it takes a long time to do so (Hinton &
Sejnowski, 1986).

Principle 3: Learned internal representations

Mappings that are highly systematic can often be carried out by a network
with only direct connections from input units to output units (see, e.g.,
Zorzi, Houghton, & Butterworth, 1998, for such a model in the domain of
oral reading). Such two-layer networks are, however, severely restricted in
the mappings they can perform (Minsky & Papert, 1969). In order to carry
out more complicated mappings, a network must have the ability to re-
represent the input patterns such that they can can be mapped effectively
to the output patterns. More speci�cally, the network requires additional
hidden units between the inputs and outputs, and it must develop
representations over these units such that the similarity structure among
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hidden representations is suf�ciently similar to that of both the input and
output representations. Each separate transformation (i.e., input-to-hidden
and hidden-to-output) is then more systematic than the full input-to-
output mapping.

In effect, one can think of the hidden representations as ‘‘splitting the
difference’’ between the structure of the input and the structure of the
output (this is depicted in Figure 2c by the fact that the arrows map in
straight lines through the intermediate similarity space). For a relatively
systematic mapping, the hidden representations will preserve much of the
common similarity structure between the inputs and outputs, deviating
from this only for the more idiosyncratic aspects of the mapping. By
contrast, for an unsystematic mapping in which the similarity structures of
the inputs and outputs are very different, the structure of the hidden
representations may need to be rather different from each of them.

The tendency for hidden representations to adopt intermediate
similarity structure was illustrated by Plaut (1991) for an attractor network
that mapped from orthography to semantics via a single hidden layer. This
task is a particularly useful one to investigate as orthographic similarity is
largely unrelated to semantic similarity. Figure 3 shows, over the course of
eight iterations of settling, the degree to which the activations over the
hidden and semantic layers exhibit semantic structure versus orthographic
structure. This was measured by computing the correlation between the
pairwise similarities of representations at each layer with the pairwise
similarities among the orthographic or semantic representations, respec-
tively. The �gure shows that the similarity structure of the network’s
hidden representations (open symbols) falls between those of orthography
and semantics (closed symbols). Speci�cally, over the last three iterations,
the semantic activations are perfectly correlated with semantic similarity
structure because the network is successful at generating the correct
semantic patterns. The low degree of orthographic structure of these �nal
semantic activations indicates that semantic structure is largely uncorre-
lated with orthographic structure. Most interesting, however, is that the
�nal hidden activations are only moderately (and about equally) correlated
with both orthographic structure and with semantic structure. Thus, in
learning to map orthography to semantics, the network has developed
hidden representations that compromise between orthographic and
semantic similarity structure.

Principle 4: Componentiality

A form of systematicity that is particularly relevant to morphology is
componentiality—the degree to which parts of the input can be mapped
independently from the rest of the input. According to standard theories of
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morphology, morphemes are discrete units that either are or are not
contained in a given word. From a connectionist perspective, by contrast,
the notion of ‘morpheme’ is an inherently graded concept because the
extent to which a particular part of the orthographic or phonological input
behaves independently of the rest of the input is always a matter of degree
(Bybee, 1985). Also note that the relevant parts of the input need not be
contiguous, as in pre�xes and suf�xes in concatenative systems like
English. Even non-contiguous subsets of the input, such as roots and word
patterns in Hebrew, can function morphologically if they behave system-
atically with respect to meaning.

A network comes to exhibit degrees of componentiality in its behaviour
because, on the basis of exposure to examples of inputs and outputs from a

Figure 3. Changes in the similarity structure among hidden representations and among
semantic representations during settling in a network that mapped orthographic representa-
tions to semantic representations (Plaut, 1991; Plaut & Shallice, 1993). ‘Semantic structure’
and ‘orthographic structure’ refer to the pairwise similarities among specified semantic or
orthographic representations, respectively. (Adapted from Plaut, 1991.)
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task, it must determine not only what aspects of each input are important for
generating the correct output, but also what aspects are uninformative and
should be ignored. This knowledge can then apply across large classes of
items, only within small subclasses, or evenbe restricted to individual items.
In this way, the network learns to map parts of the input to parts of the
output in a way that is as independent as possible from how the remaining
parts of the input are mapped. This provides a type of combinatorial
generalisation by allowing novel recombinations of familiar parts to be
processed effectively. In short, a network can develop componential
representations that handle the systematic aspects of the task and that
generalise to novel forms, while simultaneously developing less componen-
tial representations for handling the idiosyncratic aspects of the task.

The ability of connectionist networks to learn internal representations
with varying degrees of componentiality has been illustrated by Plaut et al.
(1996) in the domain of English word reading. After training an attractor
network to map from orthography to phonology for about 3000
monosyllabic words, Plaut and colleagues determined the minimum level
of activation over each orthographic input cluster (onset, vowel, coda)
required to activate each phonological output cluster correctly. They
contrasted regular consistent words that obey the standard spelling-sound
correspondences of English (i.e., GAVE, MINT, analogous to morphologically
transparent words) with exception words that violated these correspon-
dences (i.e., HAVE, PINT, analogous to opaque words). They also considered
the intermediate case of so-called ambiguous words which contain spelling
patterns with multiple common pronunciations (e.g., –OWN in DOW N, TOW N,
BROW N , etc. vs. KN OWN , SHOW N, GROW N, etc.).

The results are shown in Figure 4. The network developed highly
componential representations for regular consistent words, in that each
phonological cluster depended only on the corresponding orthographic
cluster (i.e., onset ) onset, vowel ) vowel, coda ) coda). This
componentiality supports effective generalisation to pronounceable non-
words (e.g., MAVE, RIN T) because each cluster in the input is mapped more-
or-less independently of the others. Onsets and codas in the other word
classes are also treated componentially because they typically obey the
standard spelling-sound correspondences. By contrast, the vowel cluster of
exception words—which is the primary locus of exceptionality in English—
is treated non-componentially. Correct activation of the vowel in the
phonological output was sensitive to activation across the entire ortho-
graphic input. Moreover, the representations of the ambiguous words, with
intermediate levels of spelling-sound consistency, showed intermediate
degrees of componentiality. Thus, the network solved the task by learning
internal representations with the appropriate degree of componentiality
given the speci�c nature of the statistical structure of the task.



462 PLAUT AND GONNERMAN

Figure 4. Componential representations in the word reading model of Plaut et al. (1996,
Simulation 3), for Taraban and McClelland’s (1987) regular consistent words (top) and
exception words (bottom), and for orthographically matched ‘ambiguous’ words with an
intermediate degree of spelling–sound consistency (middle). The height of each bar indicates
the minimum activity level of the indicated orthographic cluster to correctly activate a
particular phonological cluster. Words lacking either an onset or coda consonant cluster in
orthography were excluded from the analysis. (Adapted from Plaut et al., 1996.)
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By the same token, a network trained on inputs with graded
morphological structure would be expected to develop representations
with the corresponding degrees of componentiality (see, e.g., Rueckl &
Raveh, 1999). That is, items with a relatively high degree of morphological
transparency (e.g., TEACHER) will be represented and processed componen-
tially (TEACH + -ER), whereas relatively opaque items (e.g., CORNER) will be
treated more holistically. Critically, the connectionist approach offers a
continuum of compositionality, such that items with an intermediate
degree of transparency (e.g., DRESSER), analogous to the ambiguous words,
will participate in the more general componential structure to some degree
but will also deviate from this structure somewhat.

Principle 5: One system

The �nal principle is perhaps the one most directly relevant to the current
simulation work. It concerns the simple fact that all items within a task are
processed by the same system, so that the knowledge of how to handle all
aspects of the task must be superimposed on the same set of weights. Thus,
although a single network can handle both the systematic, regular,
transparent aspects of the task and the idiosyncratic, irregular, opaque
aspects (and everything in between), these aspects are not treated
independently of one another. Rather, every item is processed in the
context of knowledge about every other item, and the general organisation
of the hidden representations is determined by the overall nature of the
task. If a task contains a large proportion of opaque items, it will be
dif�cult for a network to discover and take advantage of the systematicities
underlying the few transparent items. On the other hand, if a task is largely
systematic, the hidden representations will be dominated by this structure,
making it more dif�cult to learn the opaque items; indeed, the opaque
items will, to some extent, be carried along by this structure and their
representations will have to compensate.

This property may have important implications for understanding the
general pattern of empirical results reviewed in the previous section,
suggesting that morphological effects that are independent of semantic and
surface similarity are found only in languages with rich morphological
structure (e.g., Hebrew) but not in languages with relatively impoverished
morphology (e.g., English). On the connectionist account, a given set of
opaque items will be represented and processed differently depending on
the degree of systematicity of the rest of the task. In an unsystematic task,
the opaque items will be free to behave idiosyncratically because the other
items do not combine to exert a coherent in�uence. In an otherwise
systematic task, the same opaque items will be subject to the strong
in�uence of the overriding transparent structure of the task and, thus, will
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necessarily be represented in a way that coexists effectively with this
structure. This is depicted in Figure 2e by the fact that mapping for the
lone opaque item is distorted to be more consistent with the mappings for
transparent items than it would have been in isolation (straight line
through open circle). The in�uence of overall task structure on the way in
which opaque items are represented and processed within connectionist
networks forms the basis of our account of empirical �ndings, within
morphologically rich languages like Hebrew, of morphological effects that
are not reducible to semantic and/or phonological similarity.

SIMULATION 1

The preceding discussion of the computational principles underlying a
distributed connectionist approach to morphology suggests that, although
morphology ultimately derives from learned systematic relationships
between word forms and meanings, the representational structure that
emerges from this learning may, at least under some circumstances, extend
to the processing of morphologically simple, opaque forms. In this way, the
approach may be consistent, not only with graded in�uences of semantic
and formal similarity on morphological priming (e.g., Gonnerman et al.,
2000a), but also with �ndings of effects of morphology that are
independent of semantic and formal similarity (e.g., Bentin & Feldman,
1990; Frost et al., 1997, in press-a). Although, it may seem at �rst glance as
if the approach is underconstrained if it can account for such inconsistent
patterns of performance, it actually provides a possible explanation for the
diversity of empirical observations. In particular, the connectionist
approach may provide insight into why the speci�c pattern of morpholo-
gical priming observed depends on the overall degree of morphological
richness of the language.

To further substantiate this account, we carried out a simulation in
which a network was trained on an abstract version of the task of
comprehending morphologically complex written words in either of two
languages.2 One of the languages had a rich degree of morphological
structure, analogous to Hebrew, whereas the other had far less
morphological structure, analogous to English. For present purposes, the
morphological ‘richness’ of a language was operationalised in terms of
the frequency and extent to which the structure of words within the

2 Although our general framework for lexical processing includes interactions of both
orthography and phonology with semantics (see Figure 1), we included only orthography in
the current simulation because the current work is directed at understanding �ndings from
languages, such as English and Hebrew, in which orthographic and phonological structure are
highly correlated. Thus, for present purposes, the inclusion of phonology would have been
largely redundant with orthography.
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language—both in terms of their surface forms and their meanings—could
be systematically decomposed into components that participate in the
construction of many other words. More speci�cally, each language
employed a small number of ‘af�xes’; languages differed both in the
proportion of words containing an af�x and in the degree to which the
meanings of such words could be predicted from the ‘transparent’
meanings of their stems and af�xes. The instantiation of morphological
structure within the simulation was, however, very abstract and not
intended to approximate the actual morphology of any real language in
any detail. Rather, it was designed to capture the most general
characteristics of morphological structure and to permit tightly controlled
manipulations of this structure in a way analogous to variations of
morphological richness across languages. The goal was to demonstrate
that, on a connectionist account, the occurrence of non-semantic
morphological effects depends on the degree of morphological structure
of the entire language. We consider the implications of the limitations in
our approximation of morphological structure in the General Discussion.

Method

Network architecture. The architecture of the network is shown in
Figure 5. Thirty orthographic units were fully connected to 300 hidden
units which, in turn, were fully connected to 50 semantic units. The hidden
and semantic units also had trainable biases that are equivalent to
connections from a unit whose activation is always equal to 1.0. Including
the biases, the network had a total of 24350 connections.

The activation aj of each unit j was computed using the standard sigmoid
function s( ),

Figure 5. The architecture of the network.
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aj = s
i

aiwij =
1

1 + exp ± i aiwij
(1)

where wij are the weights on connections from sending units i.
Each weight was initialised to a random number drawn from a uniform

distribution between 0.1, except for the biases. These were initialised to
s±1 0.1( ) = ±2.197 for hidden units, and s±1 0.2( ) = ±1.368 for semantic
units. Using relatively large negative initial biases improves stability at the
onset of learning.

Representations. The orthographic representations of all words con-
tained two syllables chosen from 100 possible �rst syllables and 100
possible second syllables. Each syllable was represented in terms of a
random binary pattern over 15 units with approximately one-third of the
units active for any syllable. Thus, no attempt was made to introduce any
particular similarity structure among the syllables.

The abstract morphology was modelled after a system with stems and
af�xes. We will refer to the �rst syllables as stems for ease of exposition,
although they ranged in transparency from those behaving like fully
independent morphemes to those with no independent semantic status
whatsoever. Ten of the 100 possible second syllables were selected at
random and designated as af�xes; these syllables behaved in a systematic
fashion with regard to their occurrence in the language and their
implications for meaning. In particular, the transparency of a stem was
re�ected in the frequency with which it combined with the af�xes (as
opposed to other second syllables) and in the degree to which the
meanings of these stem-af�x combinations preserved the canonical
meanings of the stem and af�x.

The construction of semantic representations was designed to permit a
graded degree of transparency between the orthographic forms of words
and their meanings. This was done by �rst assigning each of the 200
possible syllables a canonical meaning over 50 semantic features, contain-
ing 10 randomly selected semantic features for stems, and 5 for af�xes and
other second syllables. For any pair of syllables, a transparent meaning was
constructed by including any semantic feature that was in the meaning of
either syllable (i.e., bitwise OR). Note that the resulting pattern has a high
degree of overlap with each of the component patterns. This transparent
meaning was then distorted to create an actual word meaning, by randomly
turning off a speci�ed proportion of its active features and randomly
turning on the same proportion of features elsewhere.

Each of the 100 stems was associated with one of four levels of
distortion, resulting in four word classes: (a) transparent words retained all
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of the features of their transparent meaning; (b) intermediate words
retained two-thirds of the features; (c) distant words retained one-third of
the features; and (d) opaque words retained none of the features of their
transparent meaning. Thus, words sharing a stem had varying degrees of
semantic similarity as a function of the levels of distortion used in creating
their meanings.

Using these procedures for generating representations, two languages
were created containing 1200 words each. In the morphologically rich
language, the �rst 60 stems, forming 720 words, were all transparent; in the
impoverished language, they were all opaque. This contrast formed the
main experimental manipulation of the simulation. Critically, the remain-
ing 480 words were identical across the two languages, both orthographi-
cally and semantically. These were formed from 10 transparent stems, 10
intermediate stems, 10 distant stems, and 10 opaque stems. The simulation
was designed to evaluate the degree of morphological priming among this
shared set of words as a function of the nature of the remaining words in
each of the two languages.

Opaque stems differed from the three classes of non-opaque stems (i.e.,
transparent, intermediate, distant) not only in their degree of transparency
but also in their distributional properties with respect to the 10 designated
af�xes. In particular, each opaque stem was combined with 2 randomly
chosen af�xes and 10 randomly chosen non-af�x second syllables to form
12 words, all of which were assigned opaque meanings. The combinations
with af�xes are analogous to pseudo-af�xed words like CORNER. By
contrast, each non-opaque stem was combined with all 10 af�xes and with
2 randomly chosen non-af�xes. The af�xed items were assigned semantic
representations with the speci�ed degree of transparency; the non-af�xed
items were assigned opaque meanings and are analogous to words like
SPINACH which are not morphologically complex but happen to start with
syllables that can be stems in other contexts.

Training procedure. Starting with the identical set of initial random
weights, the network was trained on either the morphologically rich or
impoverished language. For each word presentation, the activations of
orthographic units were set to the assigned orthographic representation of
the word, and hidden and semantic activations were computed in turn.
Performance error was computed in terms of the cross-entropy (Hinton,
1989) between the semantic activations generated by the network and the
correct meaning of the word, using targets of 0.8 or greater for present
features and 0.05 or less for absent features. The partial derivative of this
error with respect to each weight and bias in the network was then
computed using back-propagation (Rumelhart et al., 1986a; Werbos, 1974)
and accumulated over word presentations. Weights were updated only
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after each sweep through the full 1200 words, using a learning rate of
0.0005, momentum of 0.9 (applied only after the �rst 10 sweeps), and
weight decay of 0.0001.

The two versions of the network were trained until they were fully
accurate at activating only the correct semantic features for each word and
had reached equivalent (and extremely low) levels of quantitative error.
This required 300 training sweeps for the morphological rich language and
600 sweeps for the impoverished language, yielding means of cross-entropy
per unit per pattern of 0.0034 and 0.0037, respectively.

Testing procedure. The network was evaluated for its ability to
produce facilitation or inhibition in reaction time (RT) in a paired priming
paradigm for each of the four levels of morphological transparency in each
of the two languages. Given that the standard computations in a
feedforward network do not produce a time-course of processing over
the output units, we altered the computation in the network to cascade unit
activations (McClelland, 1979) according to the equation

a[t+t]
j = t s

i

a[t]
i wij + 1 ± t( ) a[t]

j (2)

with a time constant t = 0.01. We then de�ned RT to be the amount of
time required to reach a stability criterion such that the mean change in
semantic activations fell below 0.01. Note that Equation 2 is equivalent to
Equation 1 for t = 1.0 and reaches stability when a[t+ t]

j = a[t]
j , which occurs

when a[t]
j = s i a

[t]
i wij , thereby satisfying Equation 1. Thus, the cascaded

network asymptotes to the same activations as the standard network
(McClelland, 1979). The technique of cascading unit activations within a
feedforward network has been applied effectively to modelling detailed
RT data in other contexts (e.g., Cohen, Dunbar, & McClelland, 1990).

On a given trial, a prime word was presented to the network by setting
orthographic activations to its orthographic representation and initialising
hidden and semantic activations to 0.1. The network then processed the
prime for 1.0 unit of time (100 unit updates according to Equation 2 with
t = 0.01). The orthography of a target word then replaced that of the
prime without altering any other activations in the network, and processing
continued until the semantic activations satis�ed the stability criterion
(mean semantic activation change < 0.01) in settling to the meaning of the
target word. The time from the onset of the target to when this criterion
was reached was taken as the network’s RT to the target following the
prime.
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As the primary goal of the simulation was to evaluate the in�uence of
language structure on morphological processing, all primes and targets
were drawn only from the 480 words that were common across the two
languages. In this way, all potential confounds due to differences in surface
and semantic structure across languages were eliminated. Targets consisted
of each af�xed word generated from the transparent, intermediate, distant,
and opaque stems. There were 100 targets in each of the �rst three classes
and 20 in the last class (as these are the pseudo-af�xed items).

Many empirical studies employ primes that are individually matched to
each target word. To derive a more reliable estimate of priming effects,
however, we computed RTs for each target word proceeded by every
prime word having the appropriate relationship to the target word.
Identical primes were, of course, the targets themselves. Morphological
primes consisted of all non-identical af�xed words with the same stem
(and, hence, the same level of morphological transparency). There were
nine morphological primes for each non-opaque target (900 total prime-
target pairs) and one for each opaque target (20 prime-target pairs).
Control primes consisted of non-af�xed opaque words with no syllables in
common with the target. There were 90 of these for each opaque target (9
non-identical stems 10 non-af�xed second syllables; 1800 total prime-
target pairs). As there were far more non-opaque targets, we randomly
sampled among possible control primes for these targets to produce
approximately 2000 prime-target pairs for each level of transparency.
Table 1 gives examples from English that are analogous to each of the
experimental conditions used in testing the network.

It should be pointed out that the identity condition for the network is not
directly analogous to that for human subjects in that no change in the
stimulus occurs between prime and target—it is exactly equivalent to
measuring the network’s RT to the target and then subtracting the prime
duration of 1.0. By contrast, identity conditions in empirical studies employ
some physical change in the stimulus, such as increasing its size or changing
from lower to upper case. Insofar as these alterations slow RTs to the
target, the network’s RTs will underestimate those of human subjects.

TABLE 1
English examples of experimental conditions

Priming condition

Transparency Target Identical Morphological Control

Transparent RUNNER RUNNER RUNNING SPINACH

Intermediate DRESSER DRESSER DRESSIN G SPINACH

Distant TENDER TENDER TENDING SPINACH

Opaque CORN ER CORNER CORN ISH SPINACH
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Results and discussion

Figure 6 shows the total error produced by the network over the course of
training on either the morphologically rich or impoverished languages.
With the same architecture and starting from the same initial random
weights, the network clearly acquires the morphologically rich language
more quickly than the impoverished one, requiring only half as many
sweeps through the 1200-word corpus to achieve the same �nal level of
performance. This difference arises directly from the different degrees of
systematicity across the two languages, as discussed under Principle 2
earlier. It is also broadly consistent with cross-linguistic differences in rates
of morphological acquisition (see, e.g., Andersen, 1992).

Each version of the network was then run on the identical set of prime-
target pairs, as described in the Method section, and its RTs were
measured. Table 2 presents the mean RTs of the network to target words
of each level of systematicity as a function of the type of the preceding
prime word and the language on which it was trained. The RTs were then
entered into a 2 3 4 ANOVA with items as the random variable,
language (rich, impoverished) and priming condition (identical, morpho-

Figure 6. Total cross–entropy error for the entire training corpus produced by the network
as a function of sweeps through the corpus for either the morphologically rich or
impoverished language.
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logical, control) as within-item factors, and morphological transparency
(transparent, intermediate, distant, opaque) as a between-item factor.
There was no need to perform any data trimming as the network operated
deterministically and made no errors.

The ANOVA revealed a main effect of language, with targets producing
faster RTs in the morphologically rich language compared with the
impoverished language (means of 4.19 vs. 4.27, respectively; F1,316 = 34.42,
p < .001); a main effect of priming condition, with identity primes yielding
the fastest RTs, followed by morphological primes, and then control
primes (means of 3.53, 4.46, 4.69, respectively; F2,316 = 34526, p < .001);
and a main effect of morphological transparency (means of 3.91, 4.29, 4.44,
and 4.43, for transparent, intermediate, distant, and opaque targets,
respectively; F3,316 = 252.2, p < .001). However, priming condition
interacted with both language and transparency, such that the effect of
priming condition was greater in the impoverished compared with the rich
language (F2,632 = 144.9, p < .001), and with decreasing morphological
transparency (F6,632 = 206.6, p < .001).

Given the concerns about the equivalence of the identity condition for
the network compared with that in empirical studies, a second, 2 2 4
ANOVA was carried out excluding this priming condition. This ANOVA
produced exactly the same pattern of results as the �rst.

The effects of priming condition and morphological transparency are
straightforward, and follow from the principles underlying the behaviour
of connectionist networks. For both factors, RTs were faster when the
prime had greater orthographic and semantic overlap with the target.
The effects of language are more interesting, as these re�ect not the

TABLE 2
Mean RTs (and standard errors) to target words as a function of language and priming

condition, and magnitudes of priming effects

Priming condition Priming

Transparency Identical Morphological Control Identity Morphological

Rich language
Transparent 3.28 (0.02) 3.95 (0.02) 4.41 (0.01) 1.11 0.45
Intermediate 3.58 (0.02) 4.47 (0.02) 4.70 (0.02) 1.13 0.26
Distant 3.69 (0.02) 4.67 (0.02) 4.82 (0.02) 1.13 0.14
Opaque 3.63 (0.05) 4.67 (0.05) 4.75 (0.04) 1.13 0.08

Impoverished language
Transparent 3.28 (0.02) 4.07 (0.02) 4.47 (0.02) 1.17 0.37
Intermediate 3.60 (0.03) 4.62 (0.03) 4.77 (0.02) 1.18 0.17
Distant 3.72 (0.03) 4.84 (0.02) 4.89 (0.02) 1.17 0.05
Opaque 3.71 (0.06) 4.91 (0.05) 4.89 (0.05) 1.18 ±0.02
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primes and targets themselves—which were held constant across the
languages—but the different contexts in which these words were learned
(see Principle 5 earlier). RTs were faster in the morphologically rich
language than in the impoverished language because the overall
organisation of the internal representations within the network is more
morphologically structured in the former case. This organisation supports
more effective processing of primes and targets that, at least to some
degree, share this morphological structure. The effect of priming
condition was stronger in the impoverished language essentially because
there is more room for improvement in performance on the targets when
base RTs are slower (see also Plaut, 1995; Plaut & Booth, in press; Plaut
et al., 1996).

Critically, the effect of language context on performance is not restricted
to morphologically structured words. Indeed, in a separate planned
comparison restricted only to opaque targets and the morphological and
control priming conditions, there was a reliable interaction of language and
priming condition (F1,19 = 7.269, p = .0143), such that priming was greater
in the rich language. In fact, separate t-tests showed that morphological
priming (i.e., RTs following control primes minus RTs following
morphological primes) was reliable in the rich language (t19 = 3.780, p =

.001) but not in the impoverished language (t19 = 0.536, p = .598). Figure 7
shows the magnitudes of morphological priming at each level of
transparency for the two languages.

Thus, as suggested in the discussion of Principle 5, the way in which a set
of semantically opaque pseudo-af�xed items (e.g., CORN ER) is represented
and processed by a connectionist network depends on the nature of the
entire task on which it is trained. If the overall language has relatively little
morphological structure, as in English, then opaque items are free to
develop fairly idiosyncratic representations, even though their surface
forms happen to contain segments (e.g., CORN , -ER) that operate as
morphemes in other contexts. Hence, processing one such item as a prime
will have little impact on processing another as target, relative to non-
af�xed control primes. By contrast, in a language that is highly
morphologically structured, the processing of the stem and pseudo-af�x
in opaque items is more strongly in�uenced by how these elements are
handled throughout the rest of the language. Their representation in
opaque items necessarily has some similarity with their representation in
more semantically transparent items, and hence with each other. Thus, the
processing of a pseudo-af�xed item will be facilitated by processing
another such item with the same stem or af�x. Note that, in this context, it
isn’t strictly appropriate to call such items pseudo-af�xed as, although they
are semantically opaque, they nonetheless participate in the morphological
structure of the entire language.
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To demonstrate the effect of training context on the internal
representations developed by the network, we determined the hidden
representation in each version of the network of each word shared across
the two languages. We then compared their pairwise similarities, measured
in terms of Pearson correlation coef�cients, as a function of the level of
transparency of the two words and the nature of their orthographic
overlap, if any.

Overall, the representations of all non-identical pairs of these common
items were more similar in the morphologically rich language (mean r =

0.14) than in the impoverished language (mean r = 0.06; t102078 = 75.65, p
< .001). Not surprisingly, this effect was carried largely by pairs with some
degree of orthographic overlap. Across languages, the representations of
pairs of items sharing a stem were more similar to each other (mean r =

0.52) than were pairs sharing second syllables (mean r = 0.33, t99358 =
200.23, p < .001) which, in turn, were more similar than pairs with no
common syllables (mean r = 0.06, t12646 = 64.78, p < .001). The latter
effect can be attributed to orthographic factors alone, but the difference

Figure 7. Mean priming, measured as mean RT following control primes minus mean RT
following morphological primes, as a function of the transparency of the target word and the
language on which the network was trained.
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between overlapping in stem versus second syllable re�ects the relative
number of features in the canonical semantic representations of these
items.

Table 3 lists the mean correlation coef�cients for word pairs that overlap
in either stem or af�x, as a function of morphological transparency and
language (and t-tests for effects of language). Pairs of items sharing stems
were more similar in the rich compared with the impoverished language at
each level of morphological transparency. These differences give rise to
the effects of language on morphological priming that are apparent in
Figure 7. Note, in particular, that the representations of opaque items
sharing a stem are substantially more similar when learned within the
morphologically rich language than when the same items are learned
within the impoverished language.

Interestingly, none of the comparisons for af�x overlap were reliable,
although there may be a weak trend (given so few items) in favour of the
rich language for opaque items. This suggests that the af�xes themselves
are treated in a systematic fashion regardless of the overall level of
transparency of the language; this is presumably because there are only 10
of them and they are very common, amounting to 25% of all second
syllables in the impoverished language and 85% in the rich language.
These levels of overlap are, of course, much higher than for non-
overlapping word pairs (mean r = 0.06). These �ndings suggest that the
system would exhibit af�x priming (i.e., DARKNESS priming TOUGHN ESS) in
both morphologically rich and impoverished languages. It is important to
note, though, that the af�xes in the simulation, even in the impoverished
language, are all highly transparent, productive, and have unreduced (e.g.,

TABLE 3
Mean Pearson correlation coef® cients for word pairs as a function
of language and morphological transparency, and t-tests for effects

of language

Language

Transparency Rich Impoverished t-test

Stem overlap
Transparent 0.58 0.42 t898 = 23.8, p < .001
Intermediate 0.62 0.46 t898 = 23.7, p < .001
Distant 0.63 0.43 t898 = 28.6, p < .001
Opaque 0.60 0.39 t19 = 4.22, p = .001

Af�x overlap
Transparent 0.34 0.34 t898 = 0.58, p = .57
Intermediate 0.34 0.33 t898 = 1.03, p = .30
Distant 0.33 0.33 t898 = 0.47, p = .64
Opaque 0.37 0.29 t26 = 1.27, p = .21
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syllabic) phonological forms. In fact, empirical studies employing af�xes of
this sort have found reliable priming, both in Hebrew (e.g., Deutsch, Frost,
& Forster, 1998) and in English (e.g., Marslen-Wilson, Ford, Older, &
Zhou, 1996).

SIMULATION 2

The �rst simulation employed an abstraction of morphological structure in
which all of the words formed from a given stem had the same degree of
semantic transparency. Although this organisation may be suf�cient to
demonstrate graded in�uences of transparency, it is in many ways a poor
approximation of the morphology of real languages, in which there is
generally a range of transparency among words generated from a common
stem. For example, the English stem SHORT is found in the transparent
forms like SHORTN ESS and SHORTEST, intermediate forms like SHORTAGE,
SHORTLY and SHORTS, and opaque forms like SHORTENIN G. Thus, it seems
important to con�rm that the cross-linguistic differences in non-semantic
morphological priming observed in Simulation 1 were not due to
idiosyncratic aspects of the form of morphological structure that was
employed. Accordingly, we carried out a second simulation that was as
closely analogous to the �rst simulation as possible except that semantic
transparency varied in a graded manner within the set of words derived
from each stem.

Method

Network architecture. The network architecture was identical to that
used in Simulation 1 (see Figure 5).

Representations. The orthographic representations and ‘‘transparent’’
semantic representations were the same as in Simulation 1; the only
difference was in how these semantics were distorted to form word
meanings. As in Simulation 1, 12 words were formed from each of 100
stems, with 40 ‘‘experimental’’ stems forming words that were common
across the two languages. Ten of the words derived from each
experimental stem were created by combining with each of the 10
af�xes. Of these 10 words, two were transparent (no distortion to
transparent semantics), two were intermediate (one-third of features
regenerated randomly), two were distant (two-thirds of features
regenerated), two were opaque (all features regenerated), and the
remaining two were assigned to one of these transparency levels
randomly. The other two words derived from each experimental stem
were formed using randomly selected non-af�x second syllables and were
assigned opaque semantics. Thus, as in Simulation 1, the 40 experimental
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stems created (approximately) 100 words at each of four levels of
semantic transparency—although now every stem contributed to every
transparency level—as well as 80 additional opaque words containing
non-af�x second syllables.

The remaining 60 stems (720 words) were treated exactly as in
Simulation 1. In the morphologically rich language, each of these stems
formed 10 semantically transparent words using each of the 10 af�xes, and
two opaque forms using other second syllables. In the impoverished
language, they formed 12 semantically opaque words (two with randomly
selected af�xes and 10 with other second syllables).

Training procedure. The training procedure was the same as in
Simulation 1. The network had to be trained slightly longer than in the
�rst simulation in order to reach equivalent levels of cross-entropy error.
For the rich language, the network required 360 sweeps through the 1200-
word training corpus to achieve a mean cross-entropy error per semantic
unit per pattern of 0.0033; for the impoverished language, 650 sweeps were
required to achieve a mean of 0.0029.

Testing procedure. The testing procedure was the same as in
Simulation 1.

Results and discussion

Table 4 presents the mean RTs of the network to target words of each level
of systematicity as a function of priming context and language. The RTs
were entered into a 2 3 4 ANOVA with stem as the random variable
and language (rich, impoverished), priming condition (identical, morpho-
logical, control) and morphological transparency (transparent, intermedi-
ate, distant, opaque) as within-item factors. The ANOVA revealed main
effects of language (F1,39 = 100.2, p < .001), of priming condition (F2,78 =

14727, p < .001), and of transparency (F3,117 = 64.11, p < .001), and two-
way interactions of transparency with language (F2,78 = 185.6, p < .001)
and with priming context (F6,234 = 186.7, p < .001). In addition, the three-
way interaction of transparency, context, and language was also reliable
(F6,234 = 3.64, p < .01), such that the decrease in priming as a function of
transparency was greater in the impoverished compared with rich
language. The directions of these effects were all in accordance with the
results of Simulation 1.

Asecond 2 2 4 ANOVA that compared only the morphological and
control priming conditions produced the same pattern of effects. Figure 8
shows the magnitudes of morphological priming (i.e., control condition
minus morphological condition) at each level of transparency for the two
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TABLE 4
Mean RTs (and standard errors) to target words as a function of language and priming

condition, and magnitudes of priming effects

Priming condition Priming

Transparency Identical Morphological Control Identity Morphological

Rich language
Transparent 3.43 (0.02) 4.06 (0.03) 4.71 (0.02) 1.28 0.65
Intermediate 3.54 (0.03) 4.54 (0.03) 4.84 (0.02) 1.30 0.30
Distant 3.54 (0.03) 4.66 (0.02) 4.86 (0.02) 1.30 0.20
Opaque 3.64 (0.02) 4.76 (0.02) 4.96 (0.02) 1.31 0.18

Impoverished language
Transparent 3.51 (0.02) 4.19 (0.03) 4.72 (0.02) 1.22 0.54
Intermediate 3.60 (0.03) 4.68 (0.03) 4.80 (0.03) 1.20 0.12
Distant 3.64 (0.03) 4.82 (0.03) 4.85 (0.03) 1.20 0.02
Opaque 3.74 (0.03) 4.93 (0.02) 4.94 (0.02) 1.20 0.01

Figure 8. Mean priming, measured as mean RT following control primes minus mean RT
following morphological primes, as a function of the transparency of the target word and the
language on which the network was trained.
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languages. As in Simulation 1, a planned comparison restricted only to
opaque targets found a reliable interaction of language and priming
condition (F1,39 = 122.3, p < .001), such that priming was greater in the rich
language. Separate t-tests showed that morphological priming was reliable
in the rich language (paired t39 = 12.56, p < 0.001) but not in the
impoverished language (paired t39 = 0.40, p = 0.69).

Thus, the current simulation replicated the main �ndings of Simulation
1: (a) morphological priming effects varied as a function of graded degrees
of semantic transparency of primes and targets; and (b) semantically
opaque forms yielded priming only in the morphologically rich language.
Indeed, the use of more natural morphological structure, in which semantic
transparency varied both within and between stems, yielded an even
stronger cross-linguistic difference in priming for opaque (and even
distant) forms.

GENERAL DISCUSSION

Traditional theories of lexical processing assume that morphology is
re�ected explicitly in the structure of the lexicon: words are built out of
discrete units called morphemes, and a given word either is or isn’t
decomposed into constituent morphemes at each stage of processing. In
fact, given a reliance on symbolic, rule-based computation as the basis for
language knowledge, it is dif�cult to imagine an alternative. What would it
mean to say that one symbol (a word) can be decomposed into component
symbols (morphemes) partially?

Distributed connectionist modelling offers an alternative. Words are
represented as alternative patterns of activity over multiple groups of
units, and subpatterns of those patterns can exhibit varying degrees of
stability and independence in a natural way. Connectionist networks are
sometimes described as simple ‘associationist’ (Pinker, 1991) or ‘correla-
tional’ (Frost et al., in press-a) systems, but such descriptions misrepresent
the computational sophistication of the approach. Networks can learn
internal representations that re�ect the underlying functional structure of
the domains in which they are trained, and these representations can
support effective handling of exceptional knowledge without compromis-
ing generalisation to novel forms (Plaut et al., 1996).

On a connectionist account, morphological processing re�ects a learned
sensitivity to the systematic relationships among the surface forms of
words and their meanings. Given that these relationships exhibit graded
degrees of systematicity, the approach predicts that the magnitudes of
behavioural measures of morphological processing, such as priming,
should vary continuously as a function of the degree of semantic and
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formal transparency of stimuli. These predictions were recently con�rmed
by Gonnerman et al. (2000a).

The connectionist account would also seem to be supported by failures
to �nd priming among morphologically related words in English that are
not semantically related (Feldman & Soltano, 1999; Marslen-Wilson et al.,
1994). By the same token, however, evidence for non-semantic morpho-
logical priming in Hebrew (Bentin & Feldman, 1990; Frost et al., 1997, in
press-a, in press-b) has been assumed to present a challenge for the
account. It turns out, however, that the predictions of the connectionist
account in this context depend on the morphological structure of the
language as a whole, and Hebrew is morphologically much richer than
English.

We reported on simulations in which a network was trained on abstract
versions of either a morphologically rich or impoverished language and
then tested for morphological priming among a set of words in both
languages that varied in semantic transparency. The network exhibited
graded morphological priming as a function of semantic transparency in
both languages (consistent with Gonnerman, et al., 2000a). More
importantly, there was reliable priming for morphologically related but
semantically opaque items in the rich language (consistent with Bentin &
Feldman, 1990; Frost et al., in press-a, in press-b) but not in the
impoverished language (cosistent with Feldman & Soltano, 1999;
Marslen-Wilson et al., 1994). Morphologically related but semantically
opaque items in the rich language exhibit priming because the organisation
of the internal representations in the network are dominated by the
pervasive morphological structure of the language to such an extent that
even opaque items participate in it. By contrast, in the impoverished
language, the same items are free to behave idiosyncratically and, thus,
exert little in�uence on each other. These �ndings suggest that, rather than
being challenged by the occurrence in Hebrew of morphological effects in
the absence of semantic similarity, the connectionist approach may be able
to explain the cross-linguistic differences in the occurrence of these effects.

To be clear, we do not consider the current work, in and of itself, to
constitute an account of the relevant empirical �ndings in English or in
Hebrew. Indeed, we employed tasks that bear only the most abstract
relationship to actual morphological systems. To be more realistic, the
system would need to be modi�ed both with regard to the tasks it would
perform, and the input it would receive. For example, children learn the
relationships between meaning and sound before they learn anything
about orthography. While effects of literacy on interpretation of
morphologically complex words have yet to be spelled out for English or
Hebrew, knowledge of orthographic patterns will undoubtedly impact
ultimate representations, since some morphological relationships in
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English are maintained in orthography but obscured in speech (e.g., SIGN–
SIGN AL). An adequate account of the empirical results, in our view, would
be based on a simulation in which orthographic, phonological, and
semantic representations all interact in the process of interpreting written
and spoken words (see Figure 1). Moreover, the orthographic and
phonological representations would need to approximate the actual
systems of the two languages, and the semantic representations would
need to capture salient aspects of the relationships among word meanings.
In particular, constructing an adequate approximation of Hebrew
orthography presents a number of challenges in that some aspects of
word patterns are represented with diacritics and others are typically
omitted in material for adults. Moreover, the richness of Hebrew
morphology manifests not only in graded semantic transparency but also
(and perhaps primarily) in the extensive number of in�ections and
derivations which common phonological structure across words. By
contrast, our abstract rich and impoverished languages differed only in
the token frequencies of af�xes but not in their type frequencies.
Additionally, while we examined degree of semantic transparency both
across word forms (Simulation 1) and within them (Simulation 2), we did
not manipulate other distributional characteristics that have been shown to
be empirically relevant. For example, differential effects for morphologi-
cally complex words based on cumulative root frequency compared to
surface-form frequency have been demonstrated for English (Taft, 1979)
and in other languages (Italian: Burani & Caramazza, 1987; French: Colé
et al., 1989). A more adequate model would thus also incorporate realistic
type and token frequencies of both complex words and related simple
words. We leave the development of such simulation to future work.

It is also important to be clear that the connectionist approach does not
entail the elimination of morphology as an important level of analysis of
linguistic structure and psycholinguistic behaviour. To the contrary, on our
view, the morphological structure of a language has a fundamental impact
on the organisation of lexical representation and processing. The critical
difference between our perspective and more traditional ones is that,
rather than stipulate morphological principles as facts that are independent
of other aspects of the lexicon, we seek to derive them from independently
motivated assumptions about the nature of orthographic, phonological and
semantic representations in a language and the nature of learning and
processing in the underlying (connectionist) mechanism. Note that
morphology is no different than other levels of representation in this
respect. For example, phonological representations can be understood as
arising from learned relationships among acoustic, semantic, and articu-
latory information (Plaut & Kello, 1999) and semantic representations can
be understood as arising from learned relationships among multiple input
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and output modalities (McGuire & Plaut, 1997; Plaut, in press, in
preparation; Rogers & Plaut, in press). By adopting a multi-pronged
approach in which different simulations make linked approximations in the
service of addressing a range of speci�c issues in lexical processing, we seek
to develop a computationally explicit and empirically adequate theoretical
account of language behaviour that spans perception to action.
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