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Abstract

Predictionis believedto beanimportantcomponentof cogni-
tion, particularly in naturallanguageprocessing.It haslong
beenacceptedthat recurrentneuralnetworks arebestableto
learnpredictiontaskswhentrainedonsimpleexamplesbefore
incrementallyproceedingto more complex sentences.Fur-
thermore,thecounter-intuitive suggestionhasbeenmadethat
networksand,by implication,humansmaybeaidedin learn-
ing by limited cognitive resources(Elman,1993,Cognition).
The currentwork reportsevidencethat startingwith simpli-
fied inputs is not necessaryin training recurrentnetworks to
learnpseudo-naturallanguages;in fact, delayedintroduction
of complex examplesis oftenanimpediment.Wesuggestthat
thestructureof naturallanguagecanbelearnedwithoutspecial
teachingmethodsor limited cognitive resources.

Introduction
Thequestionof how humansareableto learna naturallan-
guagedespitethe apparentlack of adequatefeedbackhas
long beena perplexing one. Baker (1979)arguedthat chil-
drendo not receive a sufficient amountof negative evidence
to properlyinfer thegrammaticalstructureof language(also
seeMarcus,1993).Computationaltheorysuggeststhatthis is
indeedproblematic,asGold (1967)hasshown that,without
negativeexamples,nosuperfiniteclassof languagesis learn-
able,includingtheregular, context-free,andcontext-sensitive
languageclasses.Therefore,unlessthesetof possiblenatural
languagesis highly restricted,it would appearthatsuchlan-
guagesarenot learnablefrom positive examples.How, then,
arehumansableto learnlanguage?Mustwerely onextensive
innateknowledge?

In fact,afrequentlyoverlookedsourceof informationis the
statisticalstructureof naturallanguage.Languageproduction
canbe viewed asa stochasticprocess—somesentencesand
grammaticalconstructionsaremorelikely thanothers. The
learnercanusethesestatisticalpropertiesasa form of im-
plicit negativeevidence.Indeed,stochasticregularlanguages
andstochasticcontext-freelanguagesarelearnableusingonly
positive data(Angluin, 1988). Oneway the learnercantake
advantageof thesestatisticsis by attemptingto predict the
next word in anobservedsentence.By comparingthesepre-
dictionsto theactuallyoccurringnext word, feedbackis im-
mediateandnegativeevidencederivesfrom incorrectpredic-
tions. Indeed,thereis considerableempiricalevidencethat
humansgenerateexpectationsin processingnaturallanguage

andthattheseplayanactiverole in comprehension(see,e.g.,
Neisser, 1967; Kutas& Hillyard, 1980; McClelland,1988;
McClelland& O’Regan,1981).

Elman (1991, 1993) provided an explicit formulation of
how a systemmight learnthegrammaticalstructureof a lan-
guageon thebasisof performinga word predictiontask.He
traineda simplerecurrentnetwork to predict the next word
in sentencesgeneratedby anEnglish-like artificial grammar
having numberagreement,variableverbargumentstructure,
andembeddedclauses.Hefoundthatthenetwork wasableto
learnthetaskbut only if thetrainingregimenor thenetwork
itself wasinitially restrictedin its complexity (i.e., it “started
small”). Specifically, thenetwork could learnthetaskeither
when it was trainedfirst on simple sentences(without em-
beddings)andonly lateronagraduallyincreasingproportion
of complex sentences,or when it was trainedon sentences
drawn from thefull complexity of thelanguagebut it hadan
initially faultymemoryfor context whichgraduallyimproved
over the courseof training. By contrast,whenthe network
wasgivenfully accuratememoryandtrainedonthecomplex
grammarfrom the outset,it failed to learnthe task. Elman
suggestedthat the limited cognitive resourcesof the child
may, paradoxically, be necessaryfor effective languageac-
quisition,in accordancewith Newport’s(1990)“lessis more”
proposal.

This paperreportson attemptsto replicateof someof El-
man’sfindingsusingsimilarnetworksbut moresophisticated
languages.In contrastwith his results,it wasfoundthatnet-
workswereableto learnquitereadilyevenwhenconfronted
with thefull complexity of thelanguagefrom thestart.Only
undervery contrivedcircumstancesdid startingwith simple
sentencesreliablyaid learningand,in mostconditions,it was
ahindrance.Furthermore,startingwith thefull languagewas
of even greaterbenefitwhen the grammarwas mademore
English-likeby includingstatisticalconstraintsbetweenmain
clausesandembeddingsbasedon lexical semantics.We ar-
guethat,in theperformanceof realistictasksincludingword
predictionin naturallanguage,recurrentnetworksinherently
extract simple regularitiesbeforeprogressingto morecom-
plex structures,andno manipulationof the trainingregimen
or internalmemoryis requiredto inducethisproperty. Thus,
the current work calls into questionsupportfor the claim
thatinitially limited cognitiveresourcesor othermaturational
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S � NPVI . | NPVT NP .
NP � N | N RC
RC � who VI | who VT NP| who NPVT
N � boy | girl | cat | dog | Mary | John |

boys | girls | cats | dogs
VI � barks | sings | walks | bites | eats |

bark | sing | walk | bite | eat
VT � chases | feeds | walks | bites | eats |

chase | feed | walk | bite | eat

Table1: The underlyingcontext-free grammar. Transitionproba-
bilities arespecifiedandadditionalconstraintsareappliedon top of
this framework.

constraintsarerequiredfor effectivelanguageacquisition.

Simulation Methods
We begin by describingthegrammarsusedin both Elman’s
work and the currentstudy. We then describethe corpora
generatedfromthesegrammars,thearchitectureof thesimple
recurrentnetworks trainedon the corpora,andthe methods
usedin their training.

Grammars

Thelanguagesusedin thiswork aresimilar in basicstructure
to thatusedby Elman(1991),consistingof simplesentences
with thepossibilityof relative-clausemodificationof nouns.
Elman’s grammarinvolved10 nounsand12 verbs,plus the
relativepronounwho andanend-of-sentencemarker. Fourof
theverbsweretransitive,four intransitive,andfouroptionally
transitive.Six of thenounsandsix of theverbsweresingular,
theothersplural. Numberagreementwasenforcedbetween
nounsandverbswhereappropriate.Finally, two of thenouns
wereproperandcouldnotbemodified.

Grammarssuchasthis areof interestbecausethey forces
a predictionnetwork to form representationsof potentially
complex syntacticstructuresand to rememberinformation,
suchaswhetherthe nounwassingularor plural, acrosspo-
tentially long embeddings.Elman’s grammar, however, was
essentiallypurelysyntactic,involving little or no semantics.
Thus,thesingularverbsall actedin thesameway; likewise
for thesetsof pluralverbsandsingularandpluralnouns.Nat-
ural languageis clearlyfarmorecomplex, andtheadditionof
semanticrelationshipsoughtto haveaprofoundeffecton the
mannerin whicha languageis learnedandprocessed.

The underlying framework of the grammarusedin this
study, shown in Table1, is nearly identicalto that designed
by Elman.They differ only in thatthecurrentgrammaradds
onepair of mixedtransitivity verbsandthatit allows relative
clausesto modify propernouns.However, severaladditional
constraintsare appliedon top of this framework. Primary
amongthese,asidefrom numberagreement,is that individ-
ual nounscanengageonly in certainactionsandthat transi-
tive verbscanoperateonly on certainobjects.For example,
anyone can walk intransitively, but only humanscan walk

Verb Intransitive Transitive Objects
Subjects Subjects if Transitive

chase - any any
feed - human animal
bite animal animal any
walk any human dog
eat any animal human
bark only dog - -
sing humanor cat - -

Table2: Semanticconstraintsonverbusage.Columnsindicatelegal
subjectnounswhenverbsareusedtransitively or intransitively and
legalobjectnounswhentransitive.

somethingelseandthe thing walked mustbe a dog. These
constraintsarelistedin Table2.

Anotherrestrictionis thatpropernounscannotactonthem-
selves.For exampleMary chases Mary wouldnotbealegal
sentence.Finally, constructionsof theform Boys who walk
walk aredisallowedbecauseof semanticredundancy. These
andtheaboveconstraintsalwaysapplywithin themainclause
of thesentence.Asidefrom numberagreement,whichaffects
all nounsandverbs,thedegreeto whichtheconstraintsapply
betweena clauseand its subclauseis variable. In this way
the level of informationa noun’s modifying phrasecontains
abouttheidentityof thenouncanbemanipulated.

Thebasicstructureshown in Table1 becomesa stochastic
context-free grammar(SCFG)whenprobabilitiesarespeci-
fied for the variousproductions.Additional structureswere
alsoaddedto allow directcontrolof thepercentageof com-
plex sentencesgeneratedby the grammarand the average
numberof embeddingsin a sentence. Finally, a program
wasdevelopedwhichtakesthegrammar, alongwith theaddi-
tionalsyntacticandsemanticconstraints,andgeneratesanew
SCFGwith theconstraintsincorporatedinto thecontext-free
transitions.In this way, a singleSCFGcanbegeneratedfor
eachversionof thegrammar. This is convenientnot only for
generatingexamplesentencesbut alsobecauseit allowsusto
determinethe optimal predictionbehavior on the language.
Given the SCFGandthe sentencecontext up to the current
point, it is possibleto producethe theoreticallyoptimalpre-
diction of thenext word. This predictionis in the form of a
probabilitydistribution over the26 wordsin thevocabulary.
Theability to generatethis distribution, andhenceto model
thegrammar, is whatweexpectthenetworksto learn.

Corpora

Cleeremans, Servan-Schreiber, and McClelland (1989)
showedthata simplerecurrentnetwork, whentrainedto pre-
dictafinite-statelanguageinvolvingembeddedstructure,was
aidedwhentheembeddingsweresomewhatdependentonthe
surroundingcontext. In orderto studythis effect on our lin-
guistic task, five classesof grammarwere constructed. In
classA, semanticconstraintsdo not applybetweena clause
andits subclause,only within a clause. In classB, 25% of
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the subclauses� respectthe semanticconstraints,in classC,
50%,in classD, 75%,andin classE all of thesubclausesare
constrained.Therefore,in classA, thecontentsof a relative
clauseprovideno informationaboutthenounbeingmodified
other than whetherit is singularor plural, whereasclassE
producessentenceswhich arepresumablythemostEnglish-
like. Finally, a sixth class,N, was producedinvolving no
semanticconstraints,only numberagreement,muchlike El-
man’sgrammar.

Elman (1991) first trained his network on a corpus of
10,000sentences,75%of which werecomplex. He reported
thatthenetworkwas“unableto learnthetask”despitevarious
choicesof initial conditionsandlearningparameters.Three
additionalcorporacontaining0%, 25%, and 50% complex
sentenceswerethenconstructed.Whentrainedfor 5 epochs
on eachof thecorporain increasingorderof complexity, the
network “achieved a high level of performance.” As in El-
man’sexperiment,four versionsof eachclasswerecreatedin
thecurrentwork in orderto producelanguagesof increasing
complexity. GrammarsA � , A ��� , A ��� , andA ��� , for example,
produce0%,25%,50%,and75%complex sentences,respec-
tively. In addition,for eachlevel of complexity, theprobabil-
ity of relative clausemodificationwasadjustedto matchthe
averagesentencelengthin Elman’scorpora.

For eachof the24 grammars(six classesof semanticcon-
straintscrossedwith four percentagesof complex sentences),
two corporaof 10,000 sentenceswere generated,one for
training and the other for testing. Corporaof this size are
quite representative of the statisticsof the full languagefor
all but thelongestsentences,which arerelatively infrequent.
Sentenceslongerthan16wordswerediscardedin generating
the corpora,but thesewereso rare( �
	����� ) that their loss
shouldhave negligible effects. In order to performwell, a
network could not possibly“memorize” the training corpus
but mustlearnthestructureof thelanguage.

Network Architecture
Thearchitectureof thesimplerecurrentnetwork usedbothby
Elmanandin thecurrentwork is illustratedin Figure1. The
network contained6,936trainableweights,includinga fully
connectedprojectionfrom “context” unitswhoseactivations
arecopiedfrom hiddenunitsat theprevioustime step.Each
of the26 inputwordswasrepresentedby aseparate(localist)
input unit. Oneword waspresentedon eachtime step. Al-
thoughthedesiredoutputof thenetwork is a probabilitydis-
tribution indicatingtheexpectednext word, thetargetoutput
duringtrainingconsistedof theactualnext wordoccurringin
thesentence.

Thecurrentsimulationswereperformedwith softmaxcon-
straints(Luce,1986)which normalizetheoutputvectorto a
sumof 1.0,asopposedto thesigmoidoutputunitsusedby El-
man.Specifically, theactivation ��� of eachoutputunit � was
setto �������������� "! � �#���$�%���&� where��� is thetotal inputto unit
� . All other usedthe standardsigmoid activation function
�('*),+-��./�(01� � ���32�4 . Error feedbackwasprovide to the net-
work in termsof thedivergence(Hinton,1989)betweeneach

copy70 HIDDEN

CONTEXT

26

10

10

INPUT26

OUTPUT

Figure 1: Network architecture.Eachsolid arrow representsfull
connectivity betweenlayers(with numbersof unitsin parentheses).
Hiddenunit statesarecopiedto correspondingcontext units(dashed
arrow) aftereachword is processed.

outputunit’s targetvalue 56� andits activation, 56��798":;�%56�- %����� .
Notethatwhenthetargetis 0, thisvalueis by convention0 as
well. Therefore,erroris injectedonly at theunit representing
theactualnext word in thesentence,which is perhapsmore
plausiblethanotherfunctionswhichprovidefeedbackonev-
eryword in thevocabulary. Errorswerenotback-propagated
throughtime, only throughthe currenttime step,andwere
thereforealsorelatively local in time. Hiddenlayeractivation
wasnot resetbetweensentences;however, sentencebound-
arieswereindicatedclearlyby end-of-sentencemarkers.

Experiments
For eachof the six languageclasses,two training regimens
werecarriedout. In the complex regimen,the network was
trainedonthe75%complex corpusfor 25epochswith afixed
learningrate.Thelearningratewasthenreducedandthenet-
work wastrainedfor onefinal passthroughthecorpus.In the
simpleregimen,the network wastrainedfor five epochson
eachof thefirst threecorporain increasingorderof complex-
ity (0, 25, and50%complex sentences).It wasthentrained
on thefourth corpus(75%complex) for 10 epochs,followed
by a final epochat the reducedlearningrate. The six extra
epochsof training on the fourth corpus(not includedin El-
man’s design)wereincludedto allow performancewith the
simpleregimento reachasymptote.Thenetwork wasevalu-
atedon thetestcorpusproducedby thesamegrammarasthe
final trainingcorpus.

A wide rangeof training parameterswere searchedbe-
fore finding a setwhich consistentlyachieved the bestper-
formanceundernearlyall conditions.Thenetwork usedmo-
mentumdescentwith a learning rate of 0.004 (reducedto
0.0003),momentumof 0.9,andinitial weightssampleduni-
formly between< 1.0. Softmaxoutputconstraintswereap-
plied with a divergenceerror function. By contrast,the pa-
rametersselectedby Elman includeda learningrate of 0.1
(reducedto 0.06),no momentum,andinitial weightsin the
< 0.001range;also,softmaxconstraintswerenot usedand
squarederrorwasemployedduringtraining.

Both complex andsimple trials wererun for eachof the
six grammarclasses.Twenty replicationsof eachcondition
wereperformed,resultingin 240 total trials. Although the
actualnext wordoccurringin thesentenceservedasthetarget
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Figure2: Finaldivergenceerror—notethatlowervaluescorrespond
to betterperformance.Meansand standarderror barswerecom-
putedfor thebest16of 20 trials.

outputduringtraining,thenetwork wasexpectedto produce
a probabilitydistribution over all possiblewords. Thetarget
vectorsin the testingcorporaconsistedof the theoretically
correctdistributionsgivethegrammarandthesentenceupto
thatpoint. Becausethegrammarsarestochasticandcontext-
free,theseexpectationsarestraightforwardto generate.

Results and Discussion
Figure2 shows the meandivergenceerror per word on the
testingcorpora,averagedover the16 trials yielding thebest
performancein eachcondition.Overall,thecomplex training
regimenproducedbetterperformancethan the simple regi-
men, F(1,180)=72.8,p � .001. Under no condition did the
simpletrainingregimenoutperformthecomplex trainingreg-
imen.Moreover, theadvantagein startingcomplex increased
with theproportionof fully constrainedrelativeclauses(A vs.
E: F(1,60)=8.55,p=.005). This conformswith the ideathat
startingsmallis mosteffectivewhenimportantdependencies
spanuninformative clauses.Nevertheless,againstexpecta-
tions, startingsmall failed to improve performanceeven in
classA in which relative clausesarenot semanticallycon-
strainedby the headnoun. Startingsmall was a particular
hindranceon thepurelysyntacticgrammar, N.

It is important to establishthat the network was able to
masterthe taskto a reasonabledegreeof proficiency in the
complex regimen. Otherwise,it may be the casethat none
of thenetworksweretruly ableto learn.Averagedivergence
errorwas0.068for networkstrainedoncorpusA ��� , 0.092on
corpusE��� , and0.024onN ��� , comparedwith aninitial error
of 2.6. Informally, the networks appearto perform nearly
perfectlyonsentenceswith upto onerelativeclauseandquite
well onsentenceswith two relativeclauses.

Figure3 comparesthe outputof a network trainedexclu-
sively on corpusE��� with theoptimaloutputsfor thatgram-
mar. The behavior of the network is illustratedfor the sen-

tencesBoy who chases girls who sing walks andDogs
who chase girls who sing walk. Note,in particular, thepre-
diction of the mainverb following sing. Predictionsof this
verbarenot significantlydegradedevenafter two embedded
clauses.Thenetwork is clearlyableto recall the numberof
themainnounandhasa basicgraspof thedifferentactions
allowedto dogsandhumans.It nearlymasteredtherule that
dogscannotwalk somethingelse.It is, however, still unsure
that boys do not bite andthat dogsmay bark, but not sing.
Otherwise,thepredictionsappearto benearlyoptimal.

For sentenceswith threeor four clauses,suchasDog who
dogs who boy who dogs bite walks bite chases cat who
Mary feeds, performancewas considerablyworse. To be
fair, however, humanshave difficulty parsingsuchsentences
without multiple readings. In addition, fewer than 5% of
the sentencesin the most complex corporawere over nine
wordslong. Thiswasnecessaryin orderto matchtheaverage
sentence-lengthstatisticsin Elman’s corpora,but it did not
providethenetwork sufficientexposureto suchsentencesfor
any hopeof learningthemwell. Additionally, the network,
which wasoriginally designedto learnthe pure-syntaxlan-
guage,mayhavehadtoo few hiddenunitsto easilyrepresent
all the informationnecessaryto processlong, semantically-
constrainedsentences.

The bestmeasureof network performancewould appear
to be a direct comparisonwith the resultspublishedby El-
man(1991).However, thereareproblemswith thisapproach.
BecauseElmandid not usea standardform stochasticgram-
mar, it wasnot possibleto producethe theoreticallycorrect
predictionsagainstwhich to ratethemodel. Instead,empir-
ically derived probabilitiesgiven the sentencecontext were
calculated. Presumably, theseprobabilitieswere compiled
over many sentencesgeneratedby the grammar. Unfortu-
nately, this type of empirically basedlanguagemodel tends
to “memorize” theoftenunique,long sentencesin the train-
ing corpusandgeneralizespoorly.

WethereforetrainedanempiricalmodelontheN ��� testing
corpus,aswell as240,000additionalsentencesproducedby
thesamegrammar. Elmanreporteda final errorof 0.177for
his network (using, we believe, Minkowski-1 or city-block
distance).Ourbest16networkstrainedontheN ��� corpushad
anaverageerrorof 0.285whenevaluatedagainstthemodel,
which would seemto beconsiderablyworse.However, city-
blockdistanceis notwell-suitedfor probabilitydistributions.
A bettermeasure(in additionto divergence)is themeanco-
sine of the angle betweentarget and output vectors. The
selectednetwork had an averagecosineof 0.929,which is
somewhatbetterthanthevalueof 0.852thatElmanreported.

Nevertheless,comparisonof the empirically derived pre-
dictionsagainstthe theoreticallyderived predictions,which
representthe true desiredbehavior of the network, indicate
that theempiricalpredictionsareactuallyquitepoor. When
evaluatedagainstthe theoreticalpredictions,the empirical
model,which hadbeentrainedon 250,000sentences,hada
meandivergenceof 1.086,acity-blockdistanceof 0.246,and
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a cosineof 0.934. In contrast,whencomparedagainstthe
samecorrectpredictions,the networks hada divergenceof
0.024,adistanceof 0.088,andacosineof 0.992.Thus,by all
measures,thenetwork’sperformanceis betterthanthatof the
empiricalmodel. Therefore,sucha modelis not a goodba-
sisfor evaluatingthenetwork or for comparingthenetwork’s
behavior to thatof Elman’snetwork.

One possibility is that, althoughnetworks trainedin the
small regimenmight have worseperformanceoverall, they
may nonethelesshave learnedlong-distancedependencies
betterthannetworkstrainedthecomplex regimen.To testthis
hypothesis,wecomputedthetotalprobabilityassignedby the
network topredictionsthatcouldnot,in fact,bethenext word

in thesentence,asa functionof positionin thesentence(see
Figure4). In general,fewer than8 of the26 wordsarelegal
atany pointin asentenceproducedby grammarE��� . Overall,
performancedeclines(ungrammaticalpredictionsincrease)
with word position, except for position 16 which can only
be end-of-sentence.However, even 21% of the total out-
put activation spreadover 18 illegal words is respectable,
consideringthat randomizedweightsproduceabout71%il-
legal predictions. More importantly, the complex-regimen
networks outperformthe simple-regimen networks at each
sentencepositionbetween5–14(typically involving embed-
dings;F(1,15)O 4.31,p P .031,for eachposition).

Although “starting small” failed to prove effective in the
main experiments,we attemptedto find conditionsunder
which the simple training regimen would provide an ad-
vantage. First, we constructedconditions for which one
might expect startingsmall to be beneficial: a sixth class
of grammars,A Q , with no dependenciesbetweenmain and
embeddedclauses(including numberagreement),and cor-
poracomposedentirelyof complex sentences.However, the
complex training regimencontinuedto yield equivalentper-
formanceto the simple regimen (meandivergence: 0.079
vs. 0.080for A Q��� , F(1,30)=0.135,p=0.716;0.078vs. 0.081
for A 4 ��� , F(1,22)=1.14,p=0.298;0.112vs. 0.120for E4 ��� ,F(1,22)=1.46,p=0.241). Only in the extremecaseof A Q 4 ���did startingsmall yield a significantbenefit(0.105complex
vs. 0.064simple,F(1,22)=6.99,p=0.015).

A remainingpossibility is that the differencein training
parameters,or slight differencesin corpora,betweenour ex-
perimentsand Elman’s were responsiblefor our discrepant
results. Therefore,we eliminatedall known differencesbe-
tweengrammarclassN and Elman’s and trainednetworks
without momentum,without the useof softmaxconstraints,
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with a squarederrormeasure,ratherthandivergence,with a
learningrateof 0.1 andinitial weightsin the <R	��S	"	T' range.
Theseparametersaresimilar to thosechosenby Elman.The
resultsrevealedanadvantagefor startinglarge(squarederror:
0.088vs. 0.107,F(1,22)=246.986,p � 0.001),however these
networksdid not performnearlyaswell asthosetrainedon
corpusN with the original training methods(squarederror:
0.0042). In learninggrammarssimilar to Elman’s, we have
yet to find conditionsunderwhichstartingsmallis beneficial.

Conclusions
It is apparentthatsimplerecurrentnetworksareableto learn
quitewell whentrainedexclusivelyonalanguagewith only a
smallproportionof simplesentences.Thebenefitof starting
small doesnot appearto be a robust phenomenonfor lan-
guagesof this type and startingsmall often proves to be a
significanthindrance.It is notnecessaryto presentsimplified
inputs to aid the network in learningshort-termdependen-
ciesinitially. Simplerecurrentnetworks learnthis way nat-
urally, first extractingshort-rangecorrelationsand building
up to longer-rangecorrelationsonestepat a time (see,e.g.,
Servan-Schreiber, Cleeremans& McClelland,1991). Start-
ing with simplifiedinputsallowsthenetwork to developinef-
ficient representationswhich mustbe restructuredto handle
new syntacticcomplexity.

An importantaspectof Elman’s (1993)findingswasthata
network was able to learn when the full rangeof datawas
presentedinitially and the network’s memorywas limited.
Although the current work did not addressthis technique
directly, Elman reportedthat networks trainedwith limited
memorydid not learnaseffectivelyasthosetrainedwith sim-
plified input. Given that, in the currentwork, we found the
simpletraining regimeninferior to trainingon the full com-
plex grammarfrom theoutset,it is unlikely thathinderingthe
network’smemorywould beof any benefit.Indeed,prelimi-
naryresultsnotreportedhereseemto bearoutthisprediction.

It shouldbe acknowledged,however, that therearesitua-
tions in which startingwith simplified inputsmaybeneces-
sary. So-called“latching” tasks(Bengio,Simard& Frasconi,
1994;Lin, Horne& Giles,1996)requirenetworksto remem-
ber informationfor extendedperiodswith no correlatedin-
puts. Bengioandcolleagueshave arguedthat recurrentnet-
workswill havedifficulty solvingsuchproblemsbecausethe
propagatederror signalsdecayexponentially. This is taken
astheoreticalevidencethat an incrementallearningstrategy
is morelikely to converge(Giles& Omlin, 1995).However,
suchsituations,in whichdependenciesspanlong,uninforma-
tive regions,arenotatall representativeof naturallanguage.

Importantcontingenciesin languageandothernaturaltime
seriesproblemstendto spanregionsof inputwhicharethem-
selvescorrelatedwith the contingentinformation. In these
cases,recurrentnetworksareableto leveragetheweakshort-
rangecorrelationsto learn the strongerlong-rangecorrela-
tions. Only in unnaturalsituationsis it necessaryto train a
network initially on simplified input, and doing so may be
harmfulin mostcircumstances.Theability of sucha simpli-

fied network model to learna relatively complex prediction
taskleadsoneto concludethat it is quiteplausiblefor a hu-
maninfantto learnthestructureof languagedespitea lackof
negative evidence,despiteexperiencingunsimplifiedgram-
maticalstructures,anddespitedetailed,innateknowledgeof
language.
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