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Predictionis believedto be animportantcomponenbdf cogni-
tion, particularlyin naturallanguageprocessing.lt haslong
beenacceptedhat recurrentneuralnetworks are bestableto
learnpredictiontaskswhentrainedon simpleexamplesbefore
incrementallyproceedingto more complex sentences.Fur-

thermore the counterintuitive suggestiorhasbeenmadethat
networks and, by implication, humansmay be aidedin learn-
ing by limited cognitive resource4Elman, 1993, Cognition).

The currentwork reportsevidencethat startingwith simpli-
fied inputsis not necessaryn training recurrentnetworks to
learn pseudo-naturdhnguagesin fact, delayedintroduction
of complex examplesis oftenanimpedimentWe suggesthat
thestructureof naturallanguageanbelearnedvithoutspecial
teachingmethodsor limited cognitive resources.

I ntroduction

The questionof haw humansareableto learna naturallan-
guagedespitethe apparentlack of adequatdfeedbackhas
long beena perpleing one. Baker (1979)arguedthat chil-
drendo not receve a sufficient amountof negative evidence
to properlyinfer the grammaticabtructureof languaggalso
seeMarcus,1993). Computationatheorysuggestshatthisis
indeedproblematic,asGold (1967)hasshavn that, without
negative examplesno superfiniteclassof languagess learn-
able,includingtheregular, context-free,andcontect-sensitve
languageslassesThereforeunlesghesetof possiblenatural
languagess highly restricted,it would appeatthatsuchlan-
guagesarenot learnabldrom positve examples.How, then,
arehumansbleto learnlanguageMustwerely onextensie
innateknowledge?

In fact,afrequentlyoverlookedsourceof informationis the
statisticaktructureof naturallanguageLanguaggroduction
canbe viewed asa stochastiqprocess—somseentenceand
grammaticalconstructionsare morelikely thanothers. The
learnercan usethesestatisticalpropertiesas a form of im-
plicit negative evidence.Indeed stodasticregularlanguages
andstochasticontect-freelanguagesirelearnablaisingonly
positive data(Angluin, 1988). Oneway the learnercantake
adwantageof thesestatisticsis by attemptingto predictthe
next word in anobsenedsentenceBy comparinghesepre-
dictionsto the actuallyoccurringnext word, feedbackis im-
mediateandnegative evidencederivesfrom incorrectpredic-
tions. Indeed,thereis considerablempirical evidencethat
humanggeneratexpectationsn processingnaturallanguage
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andthattheseplay anactiverolein comprehensio(seeg.g.,
Neisser 1967; Kutas& Hillyard, 1980; McClelland, 1988;
McClelland& O’Regan,1981).

Elman (1991, 1993) provided an explicit formulation of
how a systemmight learnthe grammaticaktructureof alan-
guageon the basisof performinga word predictiontask. He
traineda simplerecurrentnetwork to predictthe next word
in sentencegeneratedy an English-like artificial grammar
havzing numberagreementyariableverb agumentstructure,
andembeddedlausesHefoundthatthenetwork wasableto
learnthetaskbut only if thetrainingregimenor the network
itself wasinitially restrictedn its compleity (i.e., it “started
small”). Specifically the network could learnthe taskeither
whenit was trainedfirst on simple sentencegwithout em-
beddingspandonly lateronagraduallyincreasingproportion
of complex sentencespr whenit wastrainedon sentences
drawvn from the full compleity of thelanguagebut it hadan
initially faulty memoryfor context whichgraduallyimproved
over the courseof training. By contrast,whenthe network
wasgivenfully accuratanemoryandtrainedonthe complex
grammarfrom the outset,it failedto learnthe task. Elman
suggestedhat the limited cognitive resourcesof the child
may, paradoxically be necessaryor effective languageac-
quisition,in accordanc&ith Newport's (1990)“lessis more”
proposal.

This paperreportson attemptsto replicateof someof El-
man’s findingsusingsimilar networksbut moresophisticated
languageslin contrastwith his results,it wasfoundthatnet-
workswereableto learnquite readily evenwhenconfronted
with the full compleity of thelanguagdrom thestart. Only
undervery contrived circumstanceslid startingwith simple
sentenceeeliably aidlearningand,in mostconditions,it was
ahindranceFurthermorestartingwith thefull languagevas
of even greaterbenefitwhenthe grammarwas mademore
English-like by includingstatisticalconstraintbetweemmain
clausesandembeddingdasedon lexical semantics.We ar-
guethat,in the performancef realistictasksincludingword
predictionin naturallanguagerecurrentnetworksinherently
extract simple regularitiesbefore progressingo more com-
plex structuresandno manipulationof the training regimen
or internalmemoryis requiredto inducethis property Thus,
the currentwork calls into questionsupportfor the claim
thatinitially limited cognitiveresourcesr othermaturational
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NP — NJ| NRC

RC — whoVI| whoVT NP| who NPVT

N — boy| girl| cat| dog| Mary| John|
boys| girls| cats| dogs

VI — barks| sings| walks| bites| eats |
bark| sing| walk| bite| eat

VT — chases| feeds| walks| bites| eats|
chase | feed| walk| bite | eat

Table 1: The underlyingcontet-free grammar Transitionproba-
bilities arespecifiedandadditionalconstraintsareappliedon top of
this framework.

constraintarerequiredfor effective languageacquisition.

Simulation M ethods

We begin by describingthe grammarausedin both EImans

work andthe currentstudy We then describethe corpora
generatedrom thesegrammarsthearchitecturef thesimple
recurrentnetworks trainedon the corpora,and the methods
usedin theirtraining.

Grammars

Thelanguagesisedin thiswork aresimilarin basicstructure
to thatusedby Elman(1991),consistingof simplesentences
with the possibility of relative-clausemodificationof nouns.
Elman’s grammarinvolved 10 nounsand 12 verbs,plus the
relative pronounwho andanend-of-sentencenarker. Fourof
theverbsweretransitve,four intransitve,andfour optionally
transitve. Six of thenounsandsix of theverbsweresingular
the othersplural. Numberagreementvasenforcedbetween
nounsandverbswhereappropriate Finally, two of thenouns
wereproperandcouldnotbemodified.

Grammarssuchasthis are of interestbecausehey forces
a predictionnetwork to form representationsf potentially
comple syntacticstructuresandto rememberinformation,
suchaswhetherthe nounwassingularor plural, acrosspo-
tentially long embeddingsElmans grammay however, was
essentiallypurely syntactic,involving little or no semantics.
Thus,the singularverbsall actedin the sameway; likewise
for thesetsof plural verbsandsingularandpluralnouns.Nat-
urallanguages clearlyfarmorecomples, andtheadditionof
semantiaelationshipsughtto have a profoundeffect onthe
mannelin which alanguages learnedandprocessed.

The underlying frameawork of the grammarusedin this
study shavn in Table1, is nearlyidenticalto that designed
by Elman. They differ only in thatthe currentgrammaradds
onepair of mixedtransitvity verbsandthatit allows relative
clausego modify propernouns.However, severaladditional
constraintsare appliedon top of this framework. Primary
amongthese,asidefrom numberagreementis that individ-
ual nounscanengageonly in certainactionsandthattransi-
tive verbscanoperateonly on certainobjects. For example,
arnyone can walk intransitively, but only humanscan walk

Verb Intransitive | Transitive Objects
Subjects Subjects | if Transitive

chase || - ary ary

feed - human animal

bite animal animal ary

walk ary human dog

eat ary animal human

bark only dog - -

sing humanor cat | - -

Table2: Semanticonstraintonverbusage Columnsindicatelegal
subjectnounswhenverbsareusedtransitively or intransitively and
legal objectnounswhentransitie.

somethingelseandthe thing walked mustbe a dog. These
constraintarelistedin Table2.

Anotherrestrictionis thatpropemounscannotactonthem-
selhes.For exampleMary chases Mary wouldnotbealegal
sentenceFinally, construction®f theform Boys who walk
walk aredisalloved becaus®f semantiacedundang. These
andtheabove constraint&iwaysapplywithin themainclause
of thesentenceAsidefrom numberagreementyhich affects
all nounsandverbs thedegreeto whichtheconstraintapply
betweena clauseandits subclauses variable. In this way
the level of informationa noun’s modifying phrasecontains
abouttheidentity of thenouncanbemanipulated.

Thebasicstructureshovn in Table1 becomes stochastic
contet-free grammar(SCFG)when probabilitiesare speci-
fied for the variousproductions.Additional structuresvere
alsoaddedto allow directcontrol of the percentag®f com-
plex sentencegeneratecby the grammarand the average
numberof embeddingsn a sentence. Finally, a program
wasdevelopedwhichtakesthegrammaralongwith theaddi-
tional syntacticandsemanticonstraintsandgenerateanev
SCFGwith the constraintsncorporatednto the context-free
transitions.In this way, a single SCFGcanbe generatedor
eachversionof the grammar This is corvenientnot only for
generatingexamplesentencebut alsobecausé allowsusto
determinethe optimal predictionbehaior on the language.
Given the SCFGandthe sentencecontext up to the current
point, it is possibleto producethe theoreticallyoptimal pre-
diction of the next word. This predictionis in the form of a
probability distribution over the 26 wordsin the vocahlulary.
The ability to generatehis distribution, andhenceto model
thegrammayis whatwe expectthe networksto learn.

Corpora

Cleeremans, Senan-Schreiber and McClelland (1989)
shavedthata simplerecurrentnetwork, whentrainedto pre-
dictafinite-statdanguagénvolving embeddedtructurewas
aidedwhentheembeddingsveresomeavhatdependenbnthe
surroundingcontet. In orderto studythis effect on our lin-
guistic task, five classesof grammarwere constructed. In
classA, semanticconstraintsdo not apply betweena clause
andits subclausepnly within a clause. In classB, 25% of



the subclausesespectthe semanticconstraints,n classC,
50%.,in classD, 75%,andin classk all of thesubclauseare
constrained.Therefore,jn classA, the contentsof arelative
clauseprovide no informationaboutthe nounbeingmodified
otherthanwhetherit is singularor plural, whereasclasskE
producessentencesvhich are presumablythe mostEnglish-
like. Finally, a sixth class,N, was producedinvolving no
semantiaconstraintspnly numberagreementmuchlike El-
man’s grammar

Elman (1991) first trained his network on a corpus of
10,000sentences!5% of which werecomple. He reported
thatthenetwork was“unableto learnthetask”despitevarious
choicesof initial conditionsandlearningparametersThree
additional corporacontaining0%, 25%, and 50% comple
sentencesverethenconstructed Whentrainedfor 5 epochs
on eachof the corporain increasingorderof compleity, the
network “achieved a high level of performanceé. As in El-
man’s experimentfour versionsof eachclasswerecreatedn
the currentwork in orderto producelanguage®f increasing
compleity. GrammarsAg, Azs, Asg, andAzs, for example,
produced%, 25%,50%,and75%comple sentencesgespec-
tively. In addition,for eachlevel of compleity, the probabil-
ity of relative clausemodificationwasadjustedo matchthe
averagesentencéengthin Elman’s corpora.

For eachof the 24 grammargsix classe®f semanticon-
straintscrosseadvith four percentagesf complex sentences),
two corporaof 10,000 sentencesvere generatedone for
training and the other for testing. Corporaof this size are
quite representatie of the statisticsof the full languagefor
all but the longestsentencesyhich arerelatively infrequent.
Sentencebngerthan16 wordswerediscardedn generating
the corpora,but theseweresorare (< 0.2%) thattheir loss
shouldhave negligible effects. In orderto performwell, a
network could not possibly“memorize” the training corpus
but mustlearnthe structureof thelanguage.

Network Architecture

Thearchitecturef thesimplerecurrennetwork usedbothby
Elmanandin the currentwork is illustratedin Figurel. The
network containeds,936trainableweights,includinga fully
connectegrojectionfrom “context” unitswhoseactivations
arecopiedfrom hiddenunits at the previoustime step.Each
of the26 inputwordswasrepresentetly a separaté€localist)
input unit. Oneword was presentedn eachtime step. Al-
thoughthe desiredoutputof the network is a probability dis-
tribution indicatingthe expectednext word, the targetoutput
duringtrainingconsistedf theactualnext word occurringin
thesentence.

Thecurrentsimulationsvereperformedwith softmaxcon-
straints(Luce, 1986)which normalizethe outputvectorto a
sumof 1.0,asopposedo thesigmoidoutputunitsusedby El-
man. Specifically the actvationa; of eachoutputunit j was
settoexp(z;)/>_; exp(z;) wherez; is thetotalinputto unit
j. All otherusedthe standardsigmoid activation function
1+ exp(—:zj))_l. Error feedbackwas provide to the net-
work in termsof thedivergence(Hinton, 1989)betweereach

26( OUTPUT

10 )
70( HIDDEN } copy
10( ) L—( CONTEXT )
26( NPUT )

Figure 1: Network architecture. Eachsolid arrov representgull
connectiity betweerlayers(with numbersof unitsin parentheses).
Hiddenunit statesarecopiedto correspondingontext units(dashed
arraw) aftereachwordis processed.

outputunit’s targetvaluet; andits activation, ¢; log(t; /a;).
Notethatwhenthetargetis 0, thisvalueis by corventionO as
well. Thereforegrroris injectedonly atthe unit representing
the actualnext word in the sentencewhich is perhapamore
plausiblethanotherfunctionswhich provide feedbaclon ev-
eryword in thevocahulary. Errorswerenot back-propagated
throughtime, only throughthe currenttime step,andwere
thereforealsorelatively localin time. Hiddenlayeractiation
was not resetbetweensentenceshowever, sentencéound-
arieswereindicatedclearlyby end-of-sentencmarkers.

Experiments

For eachof the six languageclassesfwo training regimens
werecarriedout. In the complex regimen, the network was
trainedonthe75%comple corpusfor 25 epochswith afixed
learningrate. Thelearningratewasthenreducedandthe net-
work wastrainedfor onefinal passhroughthecorpus.In the
simpleregimen, the network wastrainedfor five epochson
eachof thefirst threecorporain increasingprderof comple-
ity (0, 25,and50% comple sentences)lt wasthentrained
onthefourth corpus(75% comple&) for 10 epochsfollowed
by a final epochat the reducedearningrate. The six extra
epochsof training on the fourth corpus(not includedin El-
man’s design)wereincludedto allow performancewith the
simpleregimento reachasymptote.The network wasevalu-
atedonthetestcorpusproducedy the samegrammarasthe
final trainingcorpus.

A wide rangeof training parametersvere searchecbe-
fore finding a setwhich consistentlyachiesed the bestper
formanceundernearlyall conditions.The network usedmo-
mentumdescentwith a learning rate of 0.004 (reducedto
0.0003),momentunof 0.9, andinitial weightssampleduni-
formly betweent1.0. Softmaxoutputconstraintsvere ap-
plied with a divergenceerror function. By contrastthe pa-
rametersselectecby Elmanincludeda learningrate of 0.1
(reducedto 0.06), no momentumandinitial weightsin the
+0.001range;also, softmaxconstraintsvere not usedand
squarecerrorwasemployedduringtraining.

Both comple« and simpletrials were run for eachof the
six grammarclasses.Twenty replicationsof eachcondition
were performed,resultingin 240 total trials. Although the
actualnext word occurringin thesentenceenedasthetarget
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Figure2: Final divergenceerror—notethatlower valuescorrespond

to betterperformance.Meansand standarderror barswere com-
putedfor thebest16 of 20trials.

outputduringtraining, the network wasexpectedto produce
a probability distribution over all possiblewords. Thetarget
vectorsin the testingcorporaconsistedof the theoretically
correctdistributionsgive thegrammarandthe sentenceip to

thatpoint. Becausehe grammarsarestochasti@andcontext-

free,theseexpectationsrestraightforvardto generate.

Results and Discussion

Figure 2 showvs the meandivergenceerror per word on the
testingcorpora,averagedover the 16 trials yielding the best
performancen eachcondition.Overall,thecomplex training
regimen producedbetter performancehan the simple regi-
men, F(1,180)=72.8p<.001. Underno conditiondid the
simpletrainingregimenoutperfornmthecomple trainingreg-
imen. Moreover, theadwantagan startingcomple increased
with theproportionof fully constrainedelative clausegA vs.
E: F(1,60)=8.55p=.005). This conformswith the ideathat
startingsmallis mosteffective whenimportantdependencies
spanuninformative clauses. Neverthelessagainstexpecta-
tions, startingsmall failed to improve performancesvenin
classA in which relative clausesare not semanticallycon-
strainedby the headnoun. Startingsmall was a particular
hindranceon the purely syntacticgrammarN.

It is importantto establishthat the network was able to
masterthe taskto a reasonablelegreeof proficieng in the
comple regimen. Otherwise,it may be the casethat none
of thenetworksweretruly ableto learn. Averagedivergence
errorwas0.068for networkstrainedon corpusAys, 0.092on
corpusEys, and0.0240n N5, comparedvith aninitial error
of 2.6. Informally, the networks appearto perform nearly
perfectlyonsentencewith upto onerelative clauseandquite
well on sentencewith two relative clauses.

Figure3 compareghe outputof a network trainedexclu-
sively on corpusEzs with the optimal outputsfor thatgram-
matr. The behaior of the network is illustratedfor the sen-

tencesBoy who chases girls who sing walks and Dogs
who chase girls who sing walk. Note,in particularthepre-
diction of the mainverbfollowing sing. Predictionsof this
verbarenot significantlydegradedeven aftertwo embedded
clauses.The network is clearly ableto recallthe numberof
the main nounandhasa basicgraspof the differentactions
allowedto dogsandhumans.t nearlymasteredherule that
dogscannotwalk somethingelse. It is, however, still unsure
that boys do not bite andthat dogsmay bark, but not sing.
Otherwisethepredictionsappeato benearlyoptimal.

For sentencewith threeor four clausessuchasDog who
dogs who boy who dogs bite walks bite chases cat who
Mary feeds, performancewas considerablyworse. To be
fair, hawever, humanshave difficulty parsingsuchsentences
without multiple readings. In addition, fewer than 5% of
the sentencesn the most complex corporawere over nine
wordslong. Thiswasnecessarin orderto matchtheaverage
sentence-lengthtatisticsin EIman’s corpora,but it did not
provide the network sufficient exposureto suchsentencefor
ary hopeof learningthemwell. Additionally, the network,
which was originally designedo learnthe pure-syntaXan-
guage may have hadtoo few hiddenunitsto easilyrepresent
all the informationnecessaryo procesdong, semantically-
constrainedgentences.

The bestmeasureof network performancewvould appear
to be a direct comparisonwith the resultspublishedby EI-
man(1991).However, thereareproblemswith thisapproach.
Becausdelmandid not usea standardorm stochastigram-
mar, it wasnot possibleto producethe theoreticallycorrect
predictionsagainstwhich to ratethe model. Instead,empir
ically derived probabilitiesgiven the sentenceontext were
calculated. Presumablytheseprobabilitieswere compiled
over mary sentencegeneratedy the grammar Unfortu-
nately this type of empirically basedanguagemodeltends
to “memorize”the often unique,long sentenceg the train-
ing corpusandgeneralizepoorly.

Wethereforerainedanempiricalmodelonthe N5 testing
corpus,aswell as240,000additionalsentenceproducedy
the samegrammar Elmanreporteda final errorof 0.177for
his network (using, we believe, Minkowski-1 or city-block
distance)Ourbestl6 networkstrainedontheN~5 corpushad
anaverageerror of 0.285whenevaluatedagainsthe model,
which would seemto be considerablyworse.However, city-
block distanceas notwell-suitedfor probabilitydistributions.
A bettermeasurdin additionto divergence)s the meanco-
sine of the angle betweentarget and output vectors. The
selectednetwork had an averagecosineof 0.929,which is
someavhatbetterthanthevalueof 0.852thatElmanreported.

Neverthelesscomparisornof the empirically derived pre-
dictionsagainstthe theoreticallyderived predictions,which
representhe true desiredbehaior of the network, indicate
thatthe empirical predictionsare actually quite poor. When
evaluatedagainstthe theoreticalpredictions,the empirical
model,which hadbeentrainedon 250,000sentenceshada
meandivergenceof 1.086,acity-blockdistanceof 0.246,and
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Figure 4: Strengthof illegal (ungrammatical)predictionsversus
word position. Valuesareaveragedver the best16 of 20 networks
trainedin eachcondition.

a cosineof 0.934. In contrast,when comparedagainstthe
samecorrectpredictions,the networks had a divergenceof
0.024,adistanceof 0.088,anda cosineof 0.992.Thus,by all
measureghenetwork’s performancés betterthanthatof the
empiricalmodel. Therefore sucha modelis not a goodba-
sisfor evaluatingthe network or for comparinghe network’s
behaior to thatof EIman’s network.

One possibility is that, althoughnetworks trainedin the
small regimen might have worse performanceoverall, they
may nonethelessave learnedlong-distancedependencies
betterthannetworkstrainedthecomple regimen. To testthis
hypothesiswe computedhetotal probabilityassignedby the
network to predictionghatcouldnot,in fact,bethenext word

in the sentenceasa functionof positionin the sentencésee
Figure4). In generalfewer than8 of the 26 wordsarelegal
atary pointin asentenc@roducedy grammait;s. Overall,
performancedeclines(ungrammaticapredictionsincrease)
with word position, except for position 16 which canonly
be end-of-sentence.However, even 21% of the total out-
put activation spreadover 18 illegal words is respectable,
consideringthat randomizedwveightsproduceabout71%il-
legal predictions. More importantly the comple-regimen
networks outperformthe simple-r@imen networks at each
sentenceositionbetweerb—14 (typically involving embed-
dings;F(1,15)>4.31,p<.031,for eachposition).

Although “starting small” failed to prove effective in the
main experiments,we attemptedto find conditionsunder
which the simple training regimen would provide an ad-
vantage. First, we constructedconditionsfor which one
might expect starting small to be beneficial: a sixth class
of grammarsA’, with no dependenciebetweenmain and
embeddectlauses(including numberagreement)and cor-
poracomposecntirely of complex sentencesHowever, the
comple training regimencontinuedto yield equivalentper
formanceto the simple regimen (meandivergence: 0.079
vs. 0.080for A%, F(1,30)=0.135p=0.716;0.078vs. 0.081
for Apo, F(1,22)=1.14p=0.298;0.112vs. 0.120for E;qq,
F(1,22)=1.46p=0.241). Only in the extremecaseof Aj,,
did startingsmallyield a significantbenefit(0.105comple
vs. 0.064simple,F(1,22)=6.99p=0.015).

A remainingpossibility is that the differencein training
parameterspr slight differencesn corporabetweerour ex-
perimentsand EIman’s were responsibleor our discrepant
results. Therefore we eliminatedall known differencese-
tweengrammarclassN and Elman’s and trained networks
without momentumywithout the useof softmaxconstraints,



with a squarecerror measureratherthandivergencewith a
learningrateof 0.1 andinitial weightsin the +0.001 range.
Theseparameteraresimilar to thosechoserby Elman. The
resultsrevealedanadvantagdor startinglarge(squarecerror:
0.088vs.0.107,F(1,22)=246.986p<0.001),however these
networks did not performnearlyaswell asthosetrainedon
corpusN with the original training methods(squarederror:
0.0042). In learninggrammarssimilar to ElIman’s, we have
yetto find conditionsunderwhich startingsmallis beneficial.

Conclusions

It is apparenthatsimplerecurrennetworksareableto learn
quitewell whentrainedexclusively onalanguagevith only a
small proportionof simplesentencesThe benefitof starting
small doesnot appearto be a robust phenomenorior lan-
guagesof this type and startingsmall often provesto be a
significanthindrancelt is notnecessaryo presensimplified
inputsto aid the network in learningshort-termdependen-
ciesinitially. Simplerecurrentnetworks learnthis way nat-
urally, first extracting short-rangecorrelationsand building
up to longerrangecorrelationsone stepat a time (see,e.qg.,
Senan-SchreiberCleeremans. McClelland,1991). Start-
ing with simplifiedinputsallows the network to developinef-
ficient representationg/hich mustbe restructuredo handle
new syntacticcompleity.

An importantaspecbf EIman’s (1993)findingswasthata
network was able to learnwhenthe full rangeof datawas
presentednitially and the network’s memorywas limited.
Although the currentwork did not addressthis technique
directly, EIman reportedthat networks trainedwith limited
memorydid notlearnaseffectively asthosetrainedwith sim-
plified input. Giventhat,in the currentwork, we found the
simpletraining regimeninferior to training on the full com-
plex grammaifrom theoutsetit is unlikely thathinderingthe
network’s memorywould be of any benefit.Indeed prelimi-
naryresultsnotreportechereseento bearoutthis prediction.

It shouldbe acknavledged,however, thatthereare situa-
tionsin which startingwith simplified inputsmay be neces-
sary So-called‘latching” tasks(Bengio,Simard& Frasconi,
1994;Lin, Horne& Giles,1996)requirenetworksto remem-
berinformationfor extendedperiodswith no correlatedin-
puts. Bengioandcolleaguedave arguedthatrecurrentnet-
workswill have difficulty solvingsuchproblemsbecausé¢he
propagateckrror signalsdecayexponentially This is taken
astheoreticalevidencethat anincrementalearningstratay
is morelikely to corverge (Giles& Omlin, 1995). However,
suchsituationsjn which dependenciespaniong, uninforma-
tive regions,arenotatall representatie of naturallanguage.

Importantcontingencie# languagendothernaturaltime
serieproblemgendto spanregionsof inputwhicharethem-
seles correlatedwith the contingentinformation. In these
casestecurrennetworksareableto leveragegheweakshort-
rangecorrelationsto learn the strongerlong-rangecorrela-
tions. Only in unnaturalsituationsis it necessaryo train a
network initially on simplified input, and doing so may be
harmfulin mostcircumstancesThe ability of sucha simpli-

fied network modelto learna relatvely complec prediction
taskleadsoneto concludethatit is quite plausiblefor a hu-
maninfantto learnthestructureof languagedespitea lack of
negative evidence,despiteexperiencingunsimplifiedgram-
maticalstructuresanddespitedetailed,innateknowledgeof
language.
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