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Plaut and McClelland (2010) and Quian Quiroga and Kreiman (2010) both challenged my characteriza-

tion of localist and distributed representations. They also challenged the biological plausibility of

grandmother cells on conceptual and empirical grounds. This reply addresses these issues in turn. The

premise of my argument is that grandmother cells in neuroscience are the equivalent of localist

representations in psychology. When defined in this way, grandmother cells are biologically plausible,

given the neuroscience to date. By contrast, the neurophysiology is shown to be inconsistent with the

distributed representations often learned in existing parallel distributed processing (PDP) models, and it

poses a challenge to PDP theories more generally.
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Plaut and McClelland (2010) emphasized that parallel distrib-

uted processing (PDP) models are not intended to capture all the

neurophysiology that underpins cognition. Rather, the models are

designed to account for various behavioral phenomena and should

be evaluated in these terms. Nevertheless, these authors took the

successes of these models at the behavioral level as evidence that

the PDP approach captures something fundamental about the

brain. That is, they took the successes as evidence that the brain

relies on distributed representations when identifying words, ob-

jects, and faces.

The problem with this analysis is that PDP models are rarely

judged on the basis of their behavioral successes alone. For ex-

ample, Seidenberg and Plaut (2006) contrasted PDP and localist

(grandmother cell) models of word naming and acknowledged that

localist models often provide a better account of the empirical

findings. They nevertheless endorse the PDP approach because

distributed representations are considered more biologically plau-

sible. This claim regarding the brain is the received wisdom in the

cognitive sciences, and it strongly impacts how the empirical

successes of localist and distributed models are evaluated. If mod-

els were only assessed at the behavioral level, then localist models

would be more widely supported. Indeed, adopting the logic of

Plaut and McClelland (2010), the successes of localist models at a

behavioral level could be taken as evidence that the brain relies on

grandmother cells.

In Bowers (2009), I considered the claim that PDP models

capture something fundamental about the workings of the brain, by

reviewing the large literature on single cell neurophysiology. The

conclusions I reached are very much at odds with the PDP ap-

proach. That is, I argued that the neuroscience falsifies many

existing PDP models but is consistent with localist ones. This is

not to say that the neuroscience uniquely supports a grandmother

theory of neural coding. My claim is that only some versions of

distributed coding are falsified by single-cell recording studies and

that additional empirical and computational research is required to

test the relative merits of grandmother and alternative distributed

coding schemes.

Plaut and McClelland (2010) and Quian Quiroga and Kreiman

(2010) disagreed with my analysis in a number of respects. First, they

challenged my characterization of localist and distributed representa-

tions, and Plaut and McClelland challenged my characterization of the

PDP approach as well. Second, Plaut and McClelland challenged the

biological plausibility of grandmother cells on the basis of on com-

putational considerations (e.g., local coding schemes cannot support

the identification of specific instances of objects, such as Bowers’s

breakfast toast). Finally, Quian Quiroga and Kreiman challenged the

plausibility of grandmother cells on the basis of on neurophysiological

data. I respond to these issues in turn.

Definitions of Localist Versus Distributed Coding

At first blush, the distinction between localist and distributed

coding schemes would seem to be straightforward, but as made

clear in the above two commentaries, there are fundamental points

of disagreement (also see Page, 2000, and the associated commen-

taries). This is not simply a terminological issue, as the different

use and understanding of the terms lead to different interpretations

of data and contrasting theoretical conclusions.

Grandmother Cells

The premise of the target article is that grandmother cell theories

in neuroscience are the equivalent of localist theories in psychol-

ogy. The core claim in both domains is that perception is organized
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in a hierarchy of processing steps, with neurons (processing units)

at higher levels of the hierarchy pooling information from lower

levels, such that each subsequent stage codes for something more

complex. At the top of the hierarchy are single neurons (units) that

code for words, objects, and faces. These theories are a logical

extension of the pioneering work of Hubel and Wiesel (1968), who

found that low-level vision is organized in just this way, with

complex cells in primary visual cortex (V1) pooling inputs from

multiple simple cells in order to code for more complex stimuli. In

fact, Hubel (1995) considered the implications of this hierarchal

organization within early vision and raised the question of whether

the same design principles apply throughout, with grandmother

cells at the top. He rejected this hypothesis as implausible.

Although Hubel (1995) was skeptical that this hierarchy extends

to high-level vision, localist models adopt exactly this logic. For

example, the interactive activation (IA) model includes single units

at the earliest level that respond to line segments (much like simple

cells), which pool their outputs to localist letter representations,

which in turn pool their outputs onto localist word representations

(McClelland & Rumelhart, 1981). Word identification is achieved

when a single word unit is activated beyond some threshold. My

basic claim is that the hierarchical structure of the IA model and its

use of localist word representations is biologically plausible—

more so than are PDP models of word identification that do not

have either of these properties.

This characterization of grandmother cell theories is challenged

by theorists who define distributed representations much more

broadly. For example, Figure 1 is an adaptation of a figure taken

from Poggio and Bizzi (2004), who described a model of face

identification inspired from single cell recording studies. The

model includes simple and complex cells in V1, units in infratem-

poral (IT) cortex tuned to specific familiar faces at a given viewing

angle, and units in anterior IT (AIT) tuned to familiar faces

independent of orientation. The model is described as an extension

of the original Hubel and Wiesel model (1968). Despite the fact

that a familiar face can be identified when a single unit is activated

beyond some threshold, they characterize this model as distributed

because an image of a familiar face activates more than one face

unit (as a function of similarity). Although the coactive face units

play no role representing familiar faces, Poggio and Bizzi argued

that the coactivation of face units is required for generalization to

novel faces and explicitly ruled out grandmother cell theories on

this basis.

The problem with this argument is that it renders the concept of

grandmother (or localist) representation trivial—it is a hypothesis

that no one would defend. As discussed in the target article, all

localist models in psychology have the property that multiple

localist units are coactivated by familiar inputs, and these coactive

representations can impact the identification of familiar (and un-

familiar) stimuli. When evaluating the plausibility of grandmother

cell theories, the critical question is not whether more than one unit

is activated in response to an input but rather whether the identi-

fication of a familiar thing (word, object, face) can be inferred on

the basis of a single unit being active beyond some threshold. This

is how the Poggio and Bizzi (2004) model works. It is a grand-

mother cell theory, exactly the sort theory that Hubel (1995)

rejected.

Plaut and McClelland (2010) adopt an even broader definition

of distributed coding. They argued that words in the IA model are

represented in a localist format at the word level but in a distrib-

uted manner at the letter layer. For instance, the word trap is

thought to be represented locally by a single active unit at the word

level but as a pattern of activation over the units t, r, a, and p at the

letter level. On this definition, even if the word trap selectively

activates one word unit (with no activation extending to units that

code for form similar words), the word trap would still be repre-

sented in a distributed format at the letter level.

To illustrate their point, Plaut and McClelland (2010) consid-

ered the role of the retina in object identification. They claimed

that the retina contains all the relevant information for object

identification and that objects are represented in a distributed

format at this level (e.g., through the coactivation of photorecep-

tors or perhaps ganglion cells). At the same time, they noted that

object knowledge is encoded at a higher level of the visual pro-

cessing system (e.g., IT), and the information in the retina must be

rerepresented at the higher levels before it can access this object

knowledge. Quian Quiroga and Kreiman (2010) make a similar

point: They state that the retina represents the object implicitly in

a distributed format, whereas object knowledge is coded explicitly

at higher levels of the visual processing stream.

In the target article, I devoted a large section of the article

outlining an argument as to why I think it is a mistake to consider

coactive letter representations a distributed representation of a
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Figure 1. Adapted from Figure 2 in “Generalization in Vision and Motor

Control” by T. Poggio and E. Bizzi, 2004, Nature, 431, p. 769. Copyright

2004 by Macmillan Publishers Ltd. Adapted by permission from Macmil-

lan Publishers Ltd. A schematic diagram of a model of face identification

first developed by Riesenhuber and Poggio (1999). Units in the first two

layers of the network respond to lines in much the same way as simple and

complex cells in V1. Units at higher levels pool information from the

previous layer and respond to more complex images in a highly specific

manner. For example, the units in layer infratemporal (IT) pool information

from posterior IT (PIT) and are tuned to specific faces in specific orien-

tations, and units in AIT are tuned to specific faces across a range of

orientations. Although a familiar face can be identified by the activation of

a single unit in AIT, unfamiliar faces can only be identified on the basis of

a pattern of activation across a set of AIT units.
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word (see Bowers, 2009, pp. 223–224). Plaut and McClelland

(2010) rejected my analysis on the basis of on the claim that I have

failed to distinguish between the knowledge of a word that is

coded in the long-term connection weights and an internal repre-

sentation or an interpretation of a word that is coded as a pattern

of activation over units in a network. In addition, they claim that

I have adopted an unconventional definition of localist versus

distributed representations, focusing on long-term knowledge

rather than on the activation of internal representations. In their

view, the critical question is whether the units are activated in a

localist way or a distributed way.

I agree that it is important to distinguish between the long-term

knowledge found in the connection weights of a network and the

temporary activation of units in a network. I also agree that

previous claims regarding the sparseness of neural representations

have focused on the pattern of activity of neurons rather than on

the pattern of connection weights. Indeed, this is the perspective I

have adopted. That is, I am claiming that familiar words, objects,

and faces might plausibly be identified through the activation of

single neurons (or collections of redundant neurons). What is

unconventional is Plaut and McClelland’s (2010) terminological

distinction between knowledge and internal representation. Ac-

cording to standard usage, an object can be represented in long-

term memory (in connection weights and associated units) or

represented in short-term memory (through the temporary activa-

tion of its units). On the standard view, an object is identified when

the relevant units are sufficiently active.

Regardless of this terminological point, there is a problem with

Plaut and McClelland’s (2010) analysis. Consider again their ex-

ample of the retina. Plaut and McClelland claimed that all the

information required to identify an object is encoded in the retina

but that “the information must be rerepresented [italics added] by

a hierarchy of visual areas before it can effectively engage object

knowledge” (Plaut & McClelland, 2010, p. 285). But a great deal

of the information required to identify an object is not in the retina,

including the knowledge that allows us to derive a three-

dimensional percept from a two-dimensional image, knowledge

that supports perceptual grouping, knowledge that derives shape

from shading, and so on. The higher levels of the system do not

simply rerepresent information projected on the retina but also add

new information. In the same way, new information is encoded at

the word level of the IA model, namely, the knowledge that the

letters t, r, a, and p go together to form a familiar word. This

information is not at the level of the letter units, and a pattern of

activation across these units does not capture (or represent) this

information. It does no good to say that object knowledge is

encoded implicitly in the retina, as again, key information about

objects (and words) is not encoded in the retina at all.

To summarize, the term distributed representation can be de-

fined so broadly that every model includes distributed representa-

tions, including the archetypal localist model in psychology,

namely, the IA model. But doing this renders the term meaning-

less: Everyone agrees that many neurons (units) are coactivated in

each cognitive act. If Poggio and Bizzi (2004) want to describe

their (impressive) model as a distributed model even though it

implements an explicit extension of the Hubel and Wiesel (1968)

hierarchy and works very much like the IA model of word iden-

tification, then they are only rejecting a straw-man version of the

grandmother cell theory.

Although these definitional and conceptual issues are important,

there is one sense in which they do not matter. PDP modelers have

rejected the IA model because it includes the wrong types of

representations. Accordingly, even if I were to concede that the IA

model and the Poggio and Bizzi (2004) model include distributed

representations of familiar words and faces (which I do not), the

representations in these models lend no support to the PDP

approach.

Distributed Representations and PDP Models

What sorts of distributed representations are PDP modelers

committed to? In the target article, I note that PDP modelers have

relied on two different sorts, namely, sparse representations that

support rapid learning (but cannot generalize) and dense distrib-

uted representations that support generalization (but cannot learn

quickly). Plaut and McClelland (2010) make the important point

that the space of representations can vary along two dimensions:

sparsity, defined as the proportion of units activated in response to

a single object, and perplexity, defined as the degree to which a

unit responds to dissimilar objects. In principle, units in a network

can take on all levels of sparsity and perplexity. For example, an

object could activate a single unit in a network (the most extreme

version of sparseness), and at the same time, this unit might

respond to a number of different and unrelated inputs (that is, the

response of this one unit is highly perplexing). Alternatively, an

object could coactivate many units (a nonsparse code), and at the

same time, each unit could uniquely respond to this object (the

units are maximally interpretable). Grandmother cell models tend

to include both sparse and interpretable representations, but the

combination of nonsparse and interpretable representations also

constitute a grandmother cell theory (a grandmother cell theory

with redundancy). When defining grandmother cells, it is the

interpretability of units that matters. For similar analysis (and

conclusions) see Földiák (2009).

According to Plaut and McClelland (2010), I have an overly

constrained view of the types of representations that PDP models

can learn, and under the relevant conditions, these models can

learn all variety of internal representations within this two dimen-

sional space,1 including units whose responses are highly sparse

and interpretable. Furthermore, Plaut and McClelland (2010)

claimed that the interpretability of internal representations is irrel-

evant to their theoretical approach. That is, there is no commitment

to dense distributed representations. On their view, the many

reports that neurons respond in a highly selective manner pose no

challenge to the PDP approach.

But the claim that the PDP approach is not committed to dense

distributed representations seems at odds with many past state-

ments of PDP theorists. For example, it is inconsistent with the

claims of Elman (1995) and Smolensky (1988), who wrote that

hidden units cannot be interpreted one at a time (see Bowers, 2009,

p. 226). In the same way, Rogers and McClelland (2004) seem to

1 Although PDP models may learn internal representations that capture

all variety of sparseness and perplexity, PDP models do not learn context

independent representations that play a role in symbolic systems. This

leads to limitations in their ability to generalize (cf., Bowers, Damian, &

Davis, 2009; Bowers & Davis, 2009; but see Botvinick & Plaut, 2009;

Sibley, Kello, Plaut, & Elman, 2009).
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endorse the view that single hidden units in PDP networks are

uninterpretable. When describing a PDP model of semantic mem-

ory originally developed by Rumelhart and contrasting this model

with alternative (non-PDP) connectionist approaches, they wrote,

An important departure from other representational schemes (includ-

ing those used in some other connectionist approaches) is that the

internal representations acquired by the Rumelhart network are not

lists of semantic features—in no way are they directly interpretable

semantically. Individual units in the model’s Representation layer do

not encode the presence or absence of explicit, intuitive object prop-

erties. . . . The individual semantic properties can only be recovered

through the combined effects of the units in the distributed represen-

tation, working in concert with units in other parts of the network.

(Rogers and McClelland, 2004, pp. 62–63)

That is, not only are hidden units in PDP models uninterpret-

able, but this constitutes an important theoretical contrast with

alternative neural network approaches. I would suggest that most

PDP theorists adopt this perspective, which helps to explain why

there have been so few attempts to study the responses of hidden

units one at a time.

Are Grandmother Cell Theories Really Plausible?

Of course, even if the neuroscience rules out the dense distrib-

uted representations associated with the PDP framework, it

does not follow that localist models are right, or even plausible.

Plaut and McClelland (2010) claimed that there are fundamental

conceptual and computational problems with localist theories, and

Quian Quiroga and Kreiman (2010) argued that various findings in

neuroscience rule out grandmother theories. If this is the case,

some other form of distributed coding would be implicated, such

as coarse or sparse coding. But there are reasons to challenge these

analyses.

A Computational Challenge to Grandmother

Cell Theories

The core claim of a grandmother theory is that single neurons at

the top of a hierarchy represent one familiar thing, be it an object,

face, or word. Plaut and McClelland (2010) argued that this

approach is subject to a computational limitation. That is, although

this form of coding might (in principle) support object identifica-

tion at a basic level (e.g., a generic cat, rat, or car), the task of

perceiving the intricate details of scenes, including the specific

tulip on McClelland’s dining room table, is thought to be unten-

able. The problem is that it results in a combinatorial explosion:

There is no way that unique grandmother cells can be devoted to

each possible discriminable state in the world (e.g., a specific tulip

in a particular context, a specific piece of toast complemented with

Marmite, etc.). Plaut and McClelland also considered instance

theories of perception, in which each token of an object is stored

with its own localist representation. Here, the brain does not need

to include separate grandmother cell for an infinity of possible

discriminable states but need include only the states that have been

experienced directly. Although this might at first appear to provide

a computationally tractable version of a grandmother cell theory,

Plaut and McClelland claimed that instance theories are incompat-

ible with the localist theories. As they noted, on an instance theory,

the identification of a piece of toast involves the coactivation of

many toast nodes.

The core problem with this analysis is that a grandmother cell

theory is only committed to the claim that single neurons code for

an equivalent class of familiar things. Accordingly, it is only

necessary to devote a single unit to a specific tulip on McClel-

land’s dining room table if McClelland can identify it (as opposed

to other tulips). Barring this, it is possible that there is a unit for

tulips (in general) at the top of his visual processing hierarchy, and

a tulip is identified when the tulip cell is activated beyond some

threshold. The perceptual vividness of each tulip might be due to

the specific set of coactive neurons across all the levels of the

visual hierarchy. This is only a concession to the distributed

approach if distributed coding is defined as multiple neurons

firing.

This characterization of vision is consistent with the reverse

hierarchy theory of vision, in which the conscious perception of a

visual scene first occurs at the top of the visual hierarchy. The

representations at this level support the perception of the “gist of

a scene,” but not its fine details. The representations at lower levels

of the hierarchy support the conscious perception of these details,

but this requires the observer to scrutinize a scene (cf. Ahissar &

Hochstein, 2004). This theory of vision helps make sense of the

finding that one can identify objects at an abstract level without

first perceiving its details (although still one can detect that some-

thing is in the visual scene before one knows what it is; cf. Bowers

& Jones, 2008). A similar approach was assumed by Poggio and

colleagues (e.g., Serre, Oliva, & Poggio, 2007) and others (e.g.,

Grossberg, 2003), who assumed that the initial categorization of

objects is based on abstract representations at the top of a hierar-

chy, with the vividness of perception relying on the later involve-

ment of lower level representations (perhaps guided by top-down

feedback or even a resonance of activation between levels). For

additional discussion of this issue, see the target article (Bowers,

2009, pp. 223–224).

In one respect, grandmother cells at the top of a visual hierarchy

are quite different from the representation within an instance

theory. That is, these grandmother cells code for information in an

abstract format. Nevertheless, the representations within an in-

stance theory might also be considered grandmother cells, given

that individual units are interpretable (e.g., a single unit codes for

a specific piece of toast). In fact, it could be argued that the key

difference between theories is that there is an extra visual level in

classic grandmother theories in which abstract units in layer N pool

information from specific units in layer N � 1. For example,

consider Figure 1, in which single units in AIT code for specific

faces independent of orientation (grandmother cells), and single

units in IT code for specific faces in specific orientations (what

might be called instance units). An instance version of this model

might attempt to due away with the final (abstract) level of the

visual hierarchy, and mediate abstraction through the coactivation

of familiar instance units. But the critical point for present pur-

poses is that the top units in this instance version of the theory are

also interpretable. The fact that multiple instance units are acti-

vated in response to an input does not rule it out as a grandmother

cell theory (just as this observation does not rule out a classical

grandmother cell theory that includes abstract localist units on

top).
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Empirical Challenges to Grandmother Cell Theories

In the target article (Bowers, 2009), I reviewed a number of

studies that identified neurons in IT cortex and in the medial

temporal lobe (MTL) that responded to images in a highly selec-

tive fashion, sometimes responding to one image out of many. In

one study, the response of single IT neurons in monkeys could

account for human performance in a face perception and/or mem-

ory task (Keysers, Xiao, Foldiak, & Perrett, 2001). I concluded that

these findings falsify existing PDP models that learn dense dis-

tributed representations and that future research is required to

distinguish between grandmother and highly sparse coding

schemes in which each unit is involved in coding more than one

thing.

However, Quian Quiroga and Kreiman (2010) argued that the

grandmother cell hypothesis is falsified based existing data. They

summarized the conclusions of Waydo, Kraskov, Quian Quiroga,

Fried, and Koch (2006), who carried out a Bayesian analysis on the

responses of 1,425 MTL neurons in humans (based on data col-

lected by Quian Quiroga et al., 2005). Many of these neurons did

not respond to any images, other neurons responded to one or very

few images, and still others responded to many images (e.g., 25%

of the images displayed). Despite the selectivity of some neurons,

they concluded that each image activated approximately 5 million

neurons within MTL (a measure of population sparseness), and

each neuron is involved in representing between 50 and 150

objects (a measure of lifetime sparseness). On the basis of both sets

of estimates, Waydo et al. (2006) rejected grandmother cells.

It is important to describe how these numbers were reached. The

Bayesian analysis relied on the response of all 1,425 neurons, and

it provided an estimate of the number of images that the typical

neuron in MTL responds to (in the form of a probability distribu-

tion across a range of possible values). On the basis of this

analysis, Waydo et al. (2006) concluded that each neuron responds

to approximately 0.54% of the distinct objects in the world (when

responding was defined as 5 SDs above baseline). Given that there

are approximately 109 neurons in MTL, they concluded that

0.0054 � 109 or �5.4 million neurons responded to the image.

And on the assumption that people know between 10,000 and

30,000 objects, each individual neuron will be involved in repre-

senting 0.0054 � 10,000 to 0.0054 � 10,000 (or 50 to 150)

images.

There are both analytical and conceptual problems with these

conclusions. The computational analyses rest on the key assump-

tions that all the neurons in MTL are involved in identifying basic

level things (from a universe of between 10,000 and 30,000

things), that all neurons have the same lifetime sparseness value,

and that each thing is equally well-represented in MTL. But all

these premises are suspect. For example, many neurons may be

involved in coding for the familiarity (as opposed to the identity)

of an object. Such neurons would fire to a wider range of images

than would neurons involved in coding the identity of a specific

person or object. In other words, the lifetime sparseness of neurons

in the MTL might not be the same, and it would be a mistake to

average the sparseness of all the neurons in the study to reach an

estimate of the sparseness of neurons coding for specific persons

or objects. In addition, there is no reason to assume that all objects

are equally well represented. Quian Quiroga et al. (2005) inter-

viewed the patients before the recordings and selected images of

persons and things that were highly familiar. According to the

multiple trace theory, important memories in the hippocampus are

redundancy coded (massively so), and this provides a parsimoni-

ous account of the retrograde amnesia that is observed following

damage to the hippocampus (Nadel & Moscovitch, 1997). Looking

for neurons that respond to highly familiar objects increases the

likelihood that the object is redundantly coded, and it is presum-

ably easier to find a neuron that responds to an object if it is from

a redundant set of neurons that all respond to the same object. That

is, looking for neurons that respond to highly familiar objects may

result in reduced estimates of sparseness.2 In addition, on a tech-

nical level, it is more difficult to identify neurons with higher

levels of sparseness than to identify neurons with lower levels of

sparseness (cf. Shoham, O’Connor, & Segev, 2006). So again, the

analysis is biased against grandmother cells. Even the Bayesian

estimate of the range of possible sparseness values is biased

against grandmother cells. Lifetime sparseness is defined as the

percentage of images that a neuron responds to, and a grandmother

sparseness value is close to 0 (e.g., 1/30,000 images). In their

Bayesian analysis, Waydo et al’s (2006) a priori estimate of

sparseness (before any data were collected) was that all values of

sparseness from 0 to 1 are equally likely. That is, on their analysis,

it is a priori highly unlikely that a neuron is a grandmother cell.

The consequence is that their estimates of the range of sparseness

values around the mean are biased against grandmother cells.

Some of these points are acknowledged by Quian Quiroga and

Kreiman (2010; also by Waydo et al., 2006), but it is important to

highlight that these assumptions could easily change the estimates

of population and lifetime sparseness by an order of magnitude (or

more).

Equally problematic, Waydo et al. (2006) defined grandmother

cells both on the basis of lifetime sparseness (a grandmother cell

should respond to only one object) and on population sparseness (a

single neuron should fire in response to an image). However, as

noted above, the only relevant criterion is lifetime sparseness (or

perplexity)—a grandmother cell theory is still supported if many

neurons can be interpreted unambiguously in the same (redundant)

way. By including population sparseness in their definition of

grandmother cells, Waydo et al. (2006) have adopted the wrong

criterion that makes rejection of grandmother cells guaranteed.

Imagine that Quian Quiroga et al. (2005) had recorded from a

million neurons and estimated that neurons respond to 1/30,000

images (for which 30,000 is the estimate of the number of known

objects). On a lifetime measure of sparseness, this would constitute

a grandmother cell. Nevertheless, Waydo et al. (2006) would

conclude that 1/30,000 � 109 or �30,000 neurons respond to a

given image. This is far less than their estimate that 5 million

neurons respond to a given object (which they take to be incon-

sistent with grandmother cells), but 30,000 coactive neurons is also

inconsistent with the theory, if it is assumed that one and only one

neuron should respond to a given object.

2 Although measuring neural responses to highly familiar images may

introduce a bias against high estimates of sparseness, my previous claim

that Waydo et al.’s (2006) calculations are equally consistent with the

conclusion that there are 50–150 redundant neurons for each object or

person is incorrect, as noted in both commentaries.
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Despite these problems, the above analyses might still appear to

rule out grandmother cells. That is, even if Waydo et al’s (2006)

estimate of lifetime sparseness is off by an order of magnitude for

the reasons described above, the conclusion that each neuron is

involved in representing between 5 and 15 things (as opposed to

50–150 things) would falsify grandmother theories.

However, the fact that a neuron fires in response to an image of

an object does not imply that the neuron is involved in representing

the object. As detailed in the target article (Bowers, 2009), localist

units are often activated by things they do not represent. That is,

units are incidentally activated, by virtue of similarity. For exam-

ple, as noted in Figure 4 of the target article, the blue unit in the IA

model is activated in response to the word blur, but this unit is not

involved in representing blur. In the same way, the finding that a

given neuron responds to more than one thing does not imply that

it is involved in representing multiple things. The observation that

a neuron responds most strongly to one thing and more weakly to

similar things is consistent with a grandmother cell theory.

Is This Account of a Grandmother Cell

Theory Unfalsifiable?

I am arguing that the visual system might work something like

the IA model of word identification or the Poggio and Bizzi (2004)

model of face identification, in which familiar stimuli (e.g., words

or faces) can be identified on the basis of a single unit passing

some threshold of activation. By my definition, these are grand-

mother cell theories, even though a given unit responds to more

than one familiar word or face (by virtue of similarity), and I am

allowing for the possibility that there may be substantial redun-

dancy, with many units representing the same thing. Does this

make my account of grandmother cell theories unfalsifiable?

Quian Quiroga and Kreiman (2010) argued that it does. They

pointed out that researchers do not know what a neuron “codes

for” as opposed to what it “responds to” and concluded that it is

implausible to reject a distributed coding scheme when there is

direct evidence that single neurons respond to multiple things.

Indeed, they take this evidence to be inconsistent with grand-

mother cells. The problem with this conclusion is that single units

in localist networks also respond to multiple things. I agree that

this makes it difficult to distinguish between these theoretical

approaches, but the important differences between these positions

remain. The proper response is not to reject grandmother cells (or

distributed coding) but rather to delay any strong conclusions until

more telling data are obtained.

One obvious way forward is to test highly selective neurons

with many more images and find out whether indeed they respond

to other images (at a similar level) or whether they have a clear

preference for one stimulus among thousands. Ideally, the studies

should be carried out in IT rather than MTL because the grand-

mother cell theory is concerned with how the perceptual system

works, not episodic memory. Additional approaches to tackling

this question are possible as well. For example, Nicholas and

Newsome (2002) took a different approach to address this question

in the domain of motion perception (with mixed results; see

Figure 12 from target article, Bowers, 2009). And of course, the

relative successes of localist and distributed models in accounting

for behavior will speak to this issue as well. Future work may

indeed rule out grandmother cells, but at present, the strong con-

clusion of Quian Quiroga and Kreiman (2010) is premature.

Conclusions

There is an extensive literature of single-cell recording studies,

and the uncontroversial conclusion is that the visual system is

organized into a hierarchy of processing steps and that neurons at

the top of the hierarchy (in IT) often respond to stimuli in a highly

selective fashion. The first main conclusion I draw is that this

literature is inconsistent with many existing PDP models. PDP

models that learn via back propagation do not learn this hierarchi-

cal structure, and the response of single units is generally highly

nonselective. Most importantly, these data are inconsistent with

the more general theory of cognitive processing that most PDP

modelers have adopted, namely, that words, objects, and faces are

identified on the basis of dense distributed representations in the

cortex.

My second main conclusion is that the widespread rejection of

grandmother cell theories in neuroscience is unjustified, or at least

premature. Neuroscientists have properly rejected theories in

which it is assumed that a single neuron codes for a complex scene

(e.g., a weeping grandmother) and theories that assume that one

and only one neuron fires in response to an object or a face. But

this is an overly constrained view of a grandmother theory. My

premise is that grandmother cell theories in neuroscience are the

equivalent of localist models in psychology, and localist models

make neither of these claims. Indeed, computational neuroscientist

have developed models of face identification based on single cell

recording data that are very much like the IA model of word

identification (e.g., Riesenhuber & Poggio, 1999). In fact, these

models provide an explicit extension of the hierarchical model of

vision first proposed by Hubel and Wiesel (1968), with localist

representations of words and faces on top. This type of grand-

mother theory is plausible given the neuroscience to date.

References

Ahissar, M., & Hochstein, S. (2004). The reverse hierarchy theory of visual

perceptual learning. Trends in Cognitive Sciences, 10, 457–464.

Botvinick, M., & Plaut, D. C. (2009). Empirical and computational support

for context-dependent representations of serial order: Reply to Bowers,

Damian, and Davis (2009). Psychological Review, 116, 998–1002.

Bowers, J. S. (2009). On the biological plausibility of grandmother cells:

Implications for neural network theories in psychology and neuro-

science. Psychological Review, 116, 220–251.

Bowers, J. S., Damian, M. F., & Davis, C. J. (2009). A fundamental

limitation of the conjunctive codes learned in PDP models of cognition:

Comments on Botvinick and Plaut (2006). Psychological Review, 116,

986–997.

Bowers, J. S., & Davis, C. J. (2009). Learning representations of word-

forms with recurrent networks: Comment on Sibley, Kello, Plaut, &

Elman (2008). Cognitive Science, 33, 1183–1186.

Bowers, J. S., & Jones, K. W. (2008). Detecting objects is easier than

categorizing them. Quarterly Journal of Experimental Psychology, 61,

552–557.

Elman, J. L. (1995). Language as a dynamical system. In R. F. Port & T.

van Gelder (Eds.), Mind as motion: Explorations in the dynamics of

cognition (195–223). Cambridge, MA: MIT Press.
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Postscript: Some Final Thoughts on Grandmother Cells,

Distributed Representations, and PDP Models of

Cognition

Jeffrey Bowers
University of Bristol

Below, I briefly respond to a number of terminological, theo-

retical, and empirical issues raised in some postscripts. The goal is

not to respond to each outstanding point but rather to address some

comments that in my view confuse rather than clarify matters. I

respond to Plaut and McClelland (2010) and Quian Quiroga and

Kreiman (2010) in turn.

According to Plaut and McClelland (2010), the parallel distrib-

uted processing (PDP) approach is defined by its commitment to

interactivity and graded constraint satisfaction. Many localist mod-

els, including the interactive activation (IA) model, are character-

ized in this way, and accordingly, they write that “it makes perfect

sense to speak of localist PDP models” (p. 289). On this definition,

any evidence in support of grandmother cells constitutes a chal-

lenge not to the PDP approach per se, just to models that include

distributed representations. This characterization of the PDP ap-

proach constitutes more of a terminological point than a theoretical

point, but it is worth noting that it is inconsistent with many

previous statements in which distributed representations are de-

scribed as a core principle (e.g., Plaut & Shallice, 1993; Seiden-

berg, 1993). Furthermore, this definition renders the PDP approach

so broad that it encompasses almost all neural networks, including

network models that are typically seen as inconsistent with the

PDP framework (e.g., Grossberg, 1980; Davis, 1999; Hummel &

Biederman, 1992). If advocates of the PDP approach are only

committed to interactivity and graded constraint satisfaction, with

no commitment to the form of the representations that underpin

cognition, then there is nothing unique (or novel) about the ap-

proach per se.

Even in the context of this broad definition, Plaut and McClel-

land (2010) argued that my version of a localist model is incon-

sistent with the PDP approach. That is, I am advocating models in

which word, object, and face identification is achieved when a

localist representation is activated beyond some threshold. This is

said to undermine the key successes of localist PDP models which

rely on cascaded processing. For instance, they note that the IA

model can explain context effects in letter perception (e.g., a

facilitation in identifying a letter embedded in a pseudoword) with

the assumption that partial and ambiguous activity at the letter

level propagates forward to the word level and partial and ambig-

uous activity at the word level feeds back to the letter level

(although feedback is not strictly necessary to account for the

context effects; Grainger & Jacobs, 1996). These context effects in

the IA model are observed without thresholds (or identifying any

words), and indeed, according to Plaut and McClelland (2010), the

inclusion of thresholds would undermine a model’s ability to

account for the effects.

Plaut and McClelland (2010) appear to have mistaken my com-

ments regarding thresholds with the claim that processing is discrete;

that is, when partial activation of letters and words cannot be passed

on to subsequent levels and can play no role in processing. In both the

target article (Bowers, 2009) and my reply (Bowers, 2010), I
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describe localist models in which a given input coactivates multi-

ple units and in which the competition between coactive units

plays a role in selecting the target. That is, the competition serves

to restrict the number of units that pass some threshold. Thresholds

and cascadedness are orthogonal issues, and accordingly, a model

with thresholds can account for letter context effects in word

perception. Indeed, as noted by Plaut and McClelland (2010),

thresholds are often implemented in the IA model. The important

point for present purposes is that thresholds in a network in no way

undermine the distinction between a unit that codes for an input

(e.g., a unit that codes for the word blue) and a unit that is only

incidentally activated by virtue of form similarity (e.g., a unit

coding for blur responding to the input blue). Equally important,

this is all tangential to the question of whether a localist model

(PDP or otherwise) is biologically plausible.

Plaut and McClelland (2010) also raised the concern that localist

models have no ready way to assign units to inputs. How is the

model to know whether a unit should be assigned to a particular

grandmother as opposed to grandmothers in general? Or tulips in

general as opposed to a particular tulip? What constitutes an

equivalence class? They claimed that there are no well-developed

learning theories to address these difficult problems and suggested

that they may well be intractable for localist approaches in prin-

ciple. But there are existing implemented localist models that show

some promise in addressing these issues. For example, adaptive

resonance theory (ART) models of Grossberg (1980, 1987) can

learn localist representations at various levels of abstraction. A

critical property of these networks is that they include a vigilance

parameter that directly affects the granularity of the learned cate-

gories. The vigilance parameter is adjusted based on the feedback.

If a model makes a mistake in categorizing an input (e.g., catego-

rizing a random old lady as my grandmother or an early blooming

tulip as a late bloomer), the vigilance is set higher, and as a

consequence, the model learns to categorize perceptually similar

inputs with separate localist units. The vigilance parameter also

plays a key role in addressing the stability–plasticity dilemma,

such that learning new categories (e.g., learning that this specific

face belongs to my grandmother) does not erase old knowledge

(that my grandmother is an old woman). As a consequence, the

model does not have to decide whether to code information at

either an abstract or a specific level—it can do both.

Other localist models might be developed to address these

concerns as well. For example, consider the model of face identi-

fication developed by Riesenhuber and Poggio (1999). A key

feature of this model is its hierarchical structure, in which infor-

mation is coded at various levels of abstraction. For instance, in

one layer of the network, the model includes localist units that

code for specific views of familiar persons, and in a subsequent

layer, units code for familiar persons independent of viewpoint. So

once again, the model does not have to choose whether to code a

familiar object at an abstract or specific level because it can do

both. The Riesenhuber and Poggio (1999) model does not learn,

but it is not implausible to imagine a learning algorithm that

develops more levels of localist coding as a function of expertise.

Just as we are all experts in face recognition and can distinguish

one grandmother from another, a florist can distinguish different

types of tulips. In both cases, this might be accomplished by the

recruitment of localist representations at a subordinate level (in

addition to separate units at a basic level). Of course, neither of

these models provides a complete answer to these challenging

questions (nor do distributed PDP models), but claims regarding

the computational limitations of localist models seem premature.

With regards to the neuroscience, Quian Quiroga and Kreiman

(2010) highlight that most neurons in their studies responded to

more than one image. Even some of the most selective neurons

with the medial temporal lobe (MTL) responded to more than one

thing—for example, a neuron that fired to two basketball plays,

another to two different landmarks, and yet another that responded

to Luke Skywalker and Yoda (characters in Star Wars), among

other examples. Nevertheless, a few neurons responded robustly to

only one out of all the images tested, and the catalogue of exam-

ples is expanding. For example, Quian Quiroga, Kraskov, Koch,

and Fried (2009) reported a single neuron in MTL that responded

to a written word, spoken word, or image of Saddam Hussein but

responded to no other stimulus in the experiment. What is to be

made of the mixed set of results? Does the fact that most of these

neurons responded to more than one image compromise the grand-

mother cell hypothesis? More generally, is the grandmother cell

hypothesis falsified by the Bayesian analysis reported by Waydo,

Kraskov, Quian Quiroga, Fried, and Koch (2006) that demon-

strates that a given image will inevitably activate many neurons in

MTL and that each of these neurons will inevitably respond to

many images? I would suggest not. The critical point that needs to

be reemphasized is that the units in localist models respond in a

similar way; namely, each localist unit responds to more than one

input, and a given input activates more than one unit. That is,

lifetime sparseness and population sparseness in both localist

models and the MTL are extremely high but are still not at the limit

of sparseness. The analysis of Waydo et al. (2006) is an important

way forward in characterizing the response profiles of neurons in

the MTL, but given the range of possible estimates of these

measures at present, it is not appropriate to reject localist repre-

sentations (or grandmother cells) on the basis of their data just yet.

What would falsify a grandmother cell theory is an estimate of

lifetime and population sparseness in IT that falls outside the range

of plausible values for localist models.

This relates to a more fundamental problem with Quian Quiroga

and Kreiman’s (2010) position. When they rejected the distinction

between what a neuron “codes for” and what it “responds to,” they

are rejecting a fundamental distinction between localist and dis-

tributed networks. By ignoring this distinction, they only end up

rejecting a straw-man version of a grandmother cell theory. Our

impasse on this point might reflect a confusion of terminology

between disciplines, and it might be helpful to put the issue in

another way. Consider again the neurobiological model of face

perception by Riesenhuber and Poggio (1999), inspired by single

cell recording data. In this model, individual units are tuned to

respond to specific familiar faces, and at the same time, a specific

input activates more than one face unit (the target face and units

tuned to other similar faces). On my definition, this constitutes a

localist model in which each unit represents one specific face (and

does not contribute to the representation of other faces). To see

this, consider what would happen to the identification of a familiar

face if all the coactive units were removed from the network (apart

from the unit tuned to the target). The answer is that the model

would continue to recognize the face just fine. Conversely, if this

one unit was removed from the network, the model would fail to

recognize the input as a familiar face. This raises the following
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question: Do Quian Quiroga and Kreiman (2010) take their data as

inconsistent with this modeling approach? If not, we are essentially

in agreement—single cell recording data are consistent with mod-

els that work very much like the localist models in psychology.

Finally, Quian Quiroga and Kreiman (2010) reiterated their

claim that all the information required for object recognition is in

the retina, but in a distributed and implicit code. They reject my

claim that a great deal of information required to identify words,

objects, and people is located outside the retina, in higher levels of

the visual processing pathway. This is said to violate a data

processing inequality, according to which processing cannot add

information. But there is something wrong with this characteriza-

tion of the processing inequality. It is clear is that the retina does

not include the information about what letter strings constitute

words or what configuration of active ganglion cells constitutes an

image from my grandmother. This information is stored in higher

levels of the visual system, acquired through experience. Similarly,

evolution may have endowed higher level visual systems with

computational principles to derive shape from shading, depth cues,

and so on. Although I agree that processing (transforming) infor-

mation in and of itself cannot add new information (all transfor-

mations are by definition derivable from the input), bottom-up

information can nevertheless access other databases of knowledge

that contain new information that cannot be derived from the input

alone. For example, on viewing a duck, I can predict that the duck

might quack. This surely does constitute a violation of data pro-

cessing inequality.

To conclude, I make one observation that should prove uncon-

troversial. Regardless of one’s position regarding the localist–

distributed debate, the target article (Bowers, 2009) highlights a

promising approach for evaluating network models in the future,

namely, exploring the responses of hidden units one at a time in

response to a wide range of inputs. There is a striking disconnect

between the methods of neurophysiology, in which neurons are

studied one at a time, and the methods in cognitive science, in

which hidden units in PDP models are generally studied in com-

bination. This disconnect constitutes a missed opportunity to pro-

vide some important constraints on theorizing. An analysis of

single units may provide some insights into the conditions under

which different coding schemes emerge in neural network models

and some insights into why the brain adopts the solutions it does.

These analyses might even show that localist representations are

required to solve some fundamental computational tasks in per-

ception and memory.
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