
COMMENTS
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A central claim shared by most recent models of short-term memory (STM) is that item knowledge is

coded independently from order in long-term memory (LTM; e.g., the letter A is coded by the same

representational unit whether it occurs at the start or end of a sequence). Serial order is computed by

dynamically binding these item codes to a separate representation of order. By contrast, Botvinick and

Plaut (2006) developed a parallel distributed processing (PDP) model of STM that codes for item-order

information conjunctively, such that the same letter in different positions is coded differently in LTM.

Their model supports a wide range of memory phenomena, and critically, STM is better for lists that

include high, as opposed to low, sequential dependencies (e.g., bigram effects). Models with context-

independent item representations do not currently account for sequential effects. However, we show that

their PDP model is too sensitive to these effects. A modified version of the model does better but still

fails in important respects. The successes and failures can be attributed to a fundamental constraint

associated with context-dependent representations. We question the viability of conjunctive coding

schemes to support STM and take these findings as problematic for the PDP approach to cognition more

generally.
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A number of neural network models of short-term memory

(STM) have been developed in recent years (e.g., Botvinick &

Plaut, 2006; Brown, Preece, & Hulme, 2000; Burgess & Hitch,

1999; Grossberg & Pearson, 2008; Page & Norris, 1998). Most of

these models are concerned with one specific manifestation of

STM, namely immediate serial recall, in which participants at-

tempt to repeat a set of items (e.g., letters, numbers, words) in

the same order. The average person can report 7 � 2 items (the

so-called magic number 7; Miller, 1956), although STM might

actually store 4 � 1 items (Cowan, 2001). If a person is unable to

rehearse the items, the items are quickly lost (Baddeley, 1986).

A key insight that has guided recent theorizing is that STM

cannot be based on item-to-item associations. On some earlier

models, the sequence ABCDE might be stored by developing an

association between A and B, B and C, C and D, etc., such that A

retrieves B, which in turn activates C, etc. (Lewandowsky &

Murdock, 1989; Wickelgren, 1966). Although these so-called

chaining models can support immediate serial recall, there is now

a general consensus that these mechanisms do not underpin human

performance, for a variety of reasons. For example, transpositions

are a common type of error (mistakenly recalling the sequence

ABDCE, with D and C transposed), whereas, according to a

chaining model, transpositions should be rare. For a review of a

variety of findings that pose a challenge for chaining models, see

Botvinick and Plaut (2006).

The most common response to the deficiencies of chaining

models has been to develop models that rely on context-

independent (in this case, position-independent) item representa-

tions in long-term memory (LTM). For example, the LTM repre-

sentation of the letter A is the same when it occurs at the beginning

or the end of a study list, and there is no association between A and

any other letter in a to-be-remembered list. The position of items

is coded by transient associations between the items and a separate

representation that assigns items a position. In the case of the

primacy model (Page & Norris, 1998), position is coded as a

decreasing level of activation across items. For example, the

sequence ABCD is coded with the A unit being the most active, B

second most active, etc., and the sequence DCBA would be coded

with the same set of letter units but with D the most active, C the

next most active, etc. (see also Grossberg, 1978; Grossberg &
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Pearson, 2008). In other models, short-term connection weights (as

opposed to activation values) are used to link items to positions

(e.g., Brown et al., 2000; Burgess & Hitch, 1999). The reliance on

context-independent representations allows these models to over-

come the limitations of chaining models. For example, the se-

quences ABCD and ACBD are quite similar given that B-in-

Position-2 and B-in-Position-3 are coded with the same B unit (and

the same two C units are used in the two lists), and this similarity

leads to transposition confusions in STM.

Recently, Botvinick and Plaut (2006) developed a parallel dis-

tributed processing (PDP) model of immediate serial recall that

also addresses the limitations of chaining models. The model

includes a set of (localist) input and output units and an intervening

set of hidden units that map between them (see Figure 1). As can

be seen in Figure 1, the hidden units include feedback (recurrent)

connections to themselves, and the hidden units are bidirectionally

associated with the output layer. The connection weights constitute

the LTM of the model, and the activation pattern across the units

constitutes the model’s STM, with the recurrent connections en-

suring that the activation persists in the absence of input.

The key finding reported by Botvinick and Plaut (2006) is that

the trained model is able to support STM relying on learned

context-dependent item representations in LTM. That is, it devel-

ops representations that code for items and order conjunctively.

For instance, the letter string ABC would be coded by coactivating

distributed representations of A-in-Position-1, B-in-Position-2, and

C-in-Position-3. The model is able to explain a range of STM

phenomena, including findings that have posed a problem for

chaining models.

At the same time, the model captures another key result in the

literature that has proved to be a challenge for models with

context-independent representations, namely, the finding that STM

is sensitive to background knowledge of sequential structure. For

example, strings of letters are better recalled if adjacent items in

the list frequently co-occur in English words—the so-called big-

ram frequency effect (Baddeley, 1964). The reason that the

Botvinick and Plaut model is sensitive to sequential structure is

that the model learns not only context-dependent representations

(e.g., A-in-Position-1) but also associations between these repre-

sentations of items (e.g., A-in-Position-1 3 B-in-Position-2). So,

for instance, if A and B often occur in sequence during training,

links are developed that associate A-in-Position-1 with B-in-

Position-2, facilitating the transition between these representa-

tions. The complex associations that develop between conjunctive

codes over a million training trials ensure that the model becomes

sensitive to the sequential dependencies that occurred during train-

ing. Nevertheless, the model is not a chaining model: These links

code for the entire history of training rather than by item-by-item

associations that occur during a specific memory trial, and more

importantly, the items themselves (independent of the links) can

support recall. That is, even in the absence of any associations

between items, the sequence ABC could be recalled by virtue of the

coactive position-dependent letter units A-in-Position-1, B-in-

Position-2, and C-in-Position-3. The learned associations only bias

performance.

Botvinick and Plaut (2006) took the model’s sensitivity to

sequential structure as strong evidence that STM relies on con-

junctive item–position representations, contrary to the assumption

in many alternative accounts. However, we challenge this claim in

the present commentary. One of the standard criticisms of the PDP

framework is that context-dependent (conjunctive) codes in LTM

limit generalization in a variety of cognitive and perceptual do-

mains (e.g., Bowers, 2002; Davis, 1999; Fodor & Pylyshyn, 1988;

Marcus, 1998; Pinker & Prince, 1988). This suggests that the

Botvinick and Plaut model may be too sensitive to the sequential

structure of the training lists and fail to recall various types of

untrained sequences. In line with this analysis, we show that the

model is constrained in ways that alternative models of STM (and

humans) are not. We take these findings to challenge Botvinick

and Plaut’s model of STM and the PDP approach in general.

The rest of this commentary is organized as follows. First, we

set the stage by outlining the types of novel letter sequences that

might prove difficult for the model to recall (given its reliance on

context-dependent item representations). Second, we report a se-

ries of seven simulations that test the original Botvinick and Plaut

model as well as a modified (fully distributed) version of the

model on these sequences. We show that the original model fails

on lists that humans should find trivial. The modified model does

better, but it nevertheless fails to recall sequences that humans

could recall (and that are within the capacities of alternative

models). Finally, we consider the implications of these findings for

PDP theories of STM and cognition more generally.

Generalization and Context-Dependent Representations

A core claim of the PDP approach is that all knowledge is coded

in a context-dependent manner (cf. McClelland, Rumelhart, & The

PDP Research Group, 1986). According to critics of this approach,

networks that rely on context-dependent representations cannot

support various forms of generalization that humans routinely

perform. For instance, Davis (1999; see also Davis & Bowers,

2004, 2006) highlighted the limitations of models of word identi-

fication and naming that code for letter identity and letter position

using context-dependent letter codes (e.g., A-in-Position-1, B-in-

Output Layer 
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Input Layer 

Figure 1. Diagram of the Botvinick and Plaut (2006) recurrent parallel

distributed processing model of immediate serial recall. The model in-

cludes a set of 27 input and output units (one for each letter of the alphabet

plus a unit in the input layer that cues recall and a unit in the output layer

that codes end of list) plus a set of 200 hidden units. Arrows indicate

connections between and within layers. Adapted from “Short-Term Mem-

ory for Serial Order: A Recurrent Neural Network Model,” by M. M.

Botvinick and D. C. Plaut, 2006, Psychological Review, 113, p. 204.

Copyright 2006 by the American Psychological Association.
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Position-2). This includes all PDP theories as well as many localist

ones (e.g., Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001;

McClelland & Rumelhart, 1981). The problem is that the models

fail to identify familiar words in unfamiliar contexts (e.g., POLE in

CATPOLE) because the familiar words are coded in a novel way

(e.g., the letters P-in-Position-5, O-in-Position-6, L-in-Position-7,

and E-in-Position-8 have not been associated with the familiar

word POLE). Similar constraints are claimed to apply to PDP

models designed to generalize to new morphological forms (Pinker

& Prince, 1988), semantic and syntactic relations (Fodor & Pyly-

shyn, 1988; Marcus, Vijayan, Bandi Rao, & Vishton, 1999), se-

quential behavior (Cooper & Shallice, 2006), analogies (Hummel

& Holyoak, 1997), etc.

In contrast to the longstanding debate regarding the extent to

which PDP models can successfully accommodate human gener-

alization in the domains of language, thought, and behavior, this

issue has not been given much consideration in the case of STM.

Botvinick and Plaut (2006) did show that their model can recall

untrained sequences. For example, in their first simulation, the

model was trained on approximately 1 million random letter se-

quences (of various lengths) and was then tested on random strings

of six letters. The test sequences were almost always novel (99.3%

of the time), and the model succeeded approximately 50% of the

time, which is similar to human performance. Nevertheless, all

these novel sequences included letters that were repeatedly trained

in all positions (e.g., A was presented in Position 1, as well as

Position 2, etc., multiple times), and all bigrams were repeatedly

trained in all positions. Indeed, given 1 million training trials with

list length stepping up from one to nine items, each possible

bigram will be presented approximately 6,150 times and each

possible trigram approximately 200 times.

A critical question, then, is whether Botvinick and Plaut’s model of

STM can support recall for lists that contain familiar items in novel

positions or novel bigrams of familiar items. It seems unlikely that

human performance is constrained in this way. For example, if you

are taught the new word BLAP, then it is self-evident that you can

recall it when it is presented in Position 1, 2, or 3 in a list (even if it

was never trained in Position 2 or 3). Similarly, read the following list

of words and then try to recall them in sequence: TEDDY

COGNITION BLUEBERRY SYNAGOGUE MATTRESS STIMULI. If

you succeed in recalling all (or most) of the words, you have

accomplished this despite the fact that you have never seen any of

the adjacent word pairs before. Indeed, as of August 10, 2009,

these word pairs never co-occur in the entire search space of

Google. Type “TEDDY COGNITION” (in quotation marks), and

you get zero hits.

The main question we addressed in the following simulations

was whether PDP models of STM can recall familiar letters when

they are presented in novel positions within a list or in novel

bigram contexts.

Testing the Original Botvinick and Plaut Model of STM

(Simulations 1–3)

Simulation 1

As a first step, we attempted a replication of Simulation 1 from

the Botvinick and Plaut (2006) article. This model includes a set of

27 input and output units (one for each letter of the alphabet plus

a unit in the input layer that cues recall and a unit in the output

layer that codes end of list) plus a set of 200 hidden units. We

followed the same training regime and assessed performance on

six-item lists when the to-be-remembered items were randomly

selected (without replacement). We then tested the model after 1

million training trials, a level of training that led the model to

closely mirror human performance in terms of overall accuracy.

Furthermore, to determine whether the similar overall performance

of the model and human behavior reflects an intrinsic memory

capacity of the model, we continued training for 5 million trials.

Performance of the model was assessed at intervals of 1 million

training trials.

As is clear from Figure 2, we replicated Botvinick and Plaut’s

(2006) Simulation 1, with performance approximately 40% for

six-item lists following 1 million training trials. Performance con-

tinued to improve with training, so that after 5 million trials, recall

accuracy was approximately 100% for six-item lists and approxi-

mately 60% for nine-item lists. Thus, the close match between

human memory capacity and the overall performance of the model

reported by Botvinick and Plaut should not be given too much

weight. Although it is impressive that the model can support the

human performance, it could also simulate any level of perfor-

mance between zero and perfect accuracy.

Simulation 2

In our first test of the model’s ability to generalize more broadly,

we tested it on sequences in which some letters were excluded

from specific positions. We trained the Botvinick and Plaut model

in the same way as above except that we ensured that four letters

never occurred in specific positions, namely, B-in-Position-1,

D-in-Position-2, G-in-Position-3, and J-in-Position-4. When a ran-

dom list was generated in which one (or more) of these letters

occurred in these positions, we simply eliminated that list and

generated another sequence. At recall we tested the model on lists

of 1,000 six-letter sequences when zero (baseline), one, two, three,

or all four of the critical untrained letter–position combinations

were included in the list. We varied which specific letters were

Figure 2. Performance of the Botvinick and Plaut (2006) model on letter

lists of various lengths after various amounts of training.
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excluded in different lists. For instance, when a single untrained

letter was presented at test, we included 1,000 trials in which

B-in-Position-1 was tested, 1,000 trials in which D-in-Position-2

was presented, etc. Similarly, when two critical untrained letters

were presented at test, we included 1,000 trials in which B-in-

Position-1 and D-in-Position-2 were tested, 1,000 trials in which

D-in-Position-2 and G-in-Position-3 were tested, etc. Other than

this restriction, the sequence of the six letters in the lists was

random at test. This ensured that the model was trained on all

bigrams of letters. That is, BD, DG, and GJ were studied but not

in Positions 1–2, 2–3, and 3–4, respectively.

The results (averaging across the specific test letters that were

included) can be seen in Figure 3. As is clear from this figure, the

model’s performance was severely impaired on lists that included

the untrained letter–position combinations. Indeed, when the

model was tested on lists that contained all four of the untrained

critical letter–position combinations, the model achieved less than

1% correct.

Inspection of the erroneous responses revealed that the model

frequently made anticipatory errors at recall. For example, when

tested on lists with B-in-Position-1, the model recalled the second

letter in the sequence in the first position 57.4% of the time. That

is, the model’s response was captured by trained sequences

that were similar to the presented sequence. In the test sequence

BJRSCQ, J is output as J-in-Position-1 because J in the first two

positions is coded in a similar way in the hidden layer of the model

(Botvinick & Plaut, 2006, argued that this similarity plays a critical

role in inducing transposition errors in their model and human

performance), and J-in-Position-1 has been trained.

It is also interesting to note that the model often perseverated

after making an anticipation. For example, when the model was

tested on lists with B-in-Position-1, anticipations were followed by

perseverations 92.9% of the time. If the model was presented with

the sequence BCQRTF, it was quite likely to respond CCQRTF

(note that the perseverative response, the second C, is correct).

Perseverations are rare in human errors (Henson, 1996), and

Botvinick and Plaut (2006) highlighted the finding that their model

captured this constraint on errors. But clearly this is not the case

when the model is tested on sequences of untrained bigrams.1

Simulations 3a–3c

In Simulations 3a–3c we trained the Botvinick and Plaut model

in the same way as above except that we eliminated a small set of

bigrams (from one to three) from the training lists. Specifically, we

eliminated the bigram D–G in Simulation 3a, the bigrams D–G and

G–J in Simulation 3b, and the bigrams B–D, D–G, and G–J in

Simulation 3c. When these bigram sequences were randomly gen-

erated in a list for training, we simply eliminated that list and

generated another sequence. At recall we tested the model on

1,000 pseudorandom lists of six letters in one of two conditions:

(a) None of the lists included the untrained bigrams, or (b) all the

lists included the untrained bigrams.

Not surprisingly, performance in Condition A was similar in

Simulations 3a–3c; as in all cases, the test lists were restricted to

sequences of trained bigrams.2 By contrast, performance was

much poorer for sequences in Condition B. With one untrained

bigram, performance dropped by approximately 25%, and with

three untrained bigrams performance was less than 1% (see

Figure 4).

It should be emphasized that one of the key findings that

Botvinick and Plaut (2006) presented in support of their approach

is that their PDP model shows the appropriate sensitivity to bigram

frequencies (in accordance with human performance), whereas

models relying on context-independent representations do not un-

less additional assumptions are built in. However, it turns out that

this putative advantage is actually a flaw. That is, the Botvinick

and Plaut model is too reliant on sequential dependencies. Human

performance is sensitive to, but transparently not reliant on, se-

quential dependencies; STM extends to word sequences that have

never been observed, as in the TEDDY COGNITION illustration

above.

Once again, it is interesting to note the type of errors the model

made. In many cases the model’s response indicates that it was

captured by a trained sequence at the expense of the untrained test

sequence, which often manifested itself as an anticipation (30.9%

of the time). For example, when the sequence DGJ was excluded

during training, it was nevertheless the case that the sequence DJ

was trained. As a consequence, the model often responded with the

1 A surprising result is that the performance of the model was sensitive

not only to the number of untrained letters that it was tested on but also to

which untrained letters. Performance was always poorest when the test

sequences included an untrained letter in the first position of the list.

Indeed, when the model was presented with the single untrained item

B-in-Position-1 at test, performance was at 5.3%. We are unclear why the

model fails most dramatically for untrained items at the start of the list.
2 For the simulations contrasting unconstrained with constrained learn-

ing environments, such as Simulations 3a–3c, we initially had difficulty in

matching baseline performance when the model was given different train-

ing histories. The difficulty arose because the model exhibits a cyclical

pattern of performance, with overall performance improving and declining

quite dramatically within only a few cycles. We therefore trained the

various versions of the model up to 1 million trials and then continued

training in steps of 10 cycles until baseline performance matched as closely

as possible across conditions (generally within 1%–2%; see Figures 4 and

6). It is unclear to us why performance of the model is cyclical.

Figure 3. Performance of the Botvinick and Plaut (2006) model when

tested on sequences that included zero (baseline), one, two, three, or four

letters in a given position that were not included at training. The baseline

condition assessed the model’s memory when tested with trained se-

quences; the latter conditions assessed memory on untrained sequences.

The untrained letter–position combinations were B-in-Position-1, D-in-

Position-2, G-in-Position-3, and J-in-Position-4.
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sequence DJ when presented with DGJ. This is similar to the types

of errors that Cooper and Shallice (2006) reported when they

tested a PDP recurrent model of sequential behavior (Botvinick &

Plaut, 2004). As in our analysis, the errors of this recurrent

network were determined by the training history, with correct

performance strongly biased toward trained sequences.3

Testing a Fully Distributed Botvinick and Plaut Model

(Simulations 4–7)

Although the Botvinick and Plaut model is challenged by Sim-

ulations 2 and 3, it is possible that its failure is a by-product of the

choice of input coding scheme for the model. In all their simula-

tions, Botvinick and Plaut included a set of localist units in the

input and output layers (localist letter units in their Simulations

1–3, localist pseudoword units in their Simulation 4), with distrib-

uted representations limited to the hidden layer of their model.

This feature of their model was not considered critical, and Botvin-

ick and Plaut (2006) made it clear that the localist codes were

included only for convenience. However, there is some reason to

think that the localist coding schemes played a role in the model’s

failures. In Simulation 2, the exclusion of sequences with B at the

start ensured that input and output Unit 2 (that codes for B) was

never activated at the beginning of a sequence. Similarly, the

exclusion of the sequence BD in Simulation 3 ensured that the

corresponding input–output Units 2 and 4 were never activated in

sequence. These restrictions on the activation of the input–output

units may have played a key role in constraining the model’s

performance.

These generalization problems might be overcome if the model

included distributed input and output units. Consider a case in

which the letters are coded as a distributed pattern of activation

across a collection of input and output units. In this situation, the

exclusion during training of B at the start of the list, or B followed

by D, does not eliminate the activation on Node 2 at the beginning

of the list or the activation of Node 2 followed by Node 4. For

instance, if B is coded by the pattern {0, 1, 1, 0} over four units,

D as {0, 0, 1, 1}, and F as {1, 1, 0, 0}, and B never occurs first

during training, it is nevertheless the case that Node 2 is activated

at the beginning of the list whenever F is presented (the second

unit is active in the distributed pattern for F). Similarly, if D never

follows B at training, it is nevertheless the case that Node 4 is

activated following Node 2, by virtue of D following F. That is, the

inclusion of distributed representations at the input and output

layers ensures that all input and output nodes are activated in all

positions and sequences, even when a letter in a given position or

a specific bigram sequence was untrained. It seems possible, then,

that a fully distributed Botvinick and Plaut model would generalize

more broadly.

Simulation 4

We first assessed whether the modified version of the Botvinick

and Plaut model with distributed input representations would suc-

ceed when training and test lists of letters were generated ran-

domly. The architecture and processing assumptions of the model

were unchanged, and we simply modified the nature of the inputs

and outputs to the model. In particular, instead of representing

each letter through the activation of one unit, we represented a

letter over five units. That is, in addition to coding A with Unit 1,

B with Unit 2, etc., we assigned each letter four additional units;

for example, the letter A was coded by the Units 1, 3, 12, 20, and

22. The consequence of this coding was that each letter was

uniquely defined as a pattern of activation over five units, with

each unit being involved in the coding of five letters. Each letter

was randomly assigned five units, with the restriction that each

unit was involved in coding five letters.

We followed the same training regime as in Simulation 1, and

accuracy at recall was determined by comparing the output of the

model with the distributed representations of all 26 letters and se-

lecting the letter with the highest cosine similarity. This is similar

to selecting the most active letter in a localist coding scheme. After

1 million trials, the model was correct on 51.5% of six-item lists.

This performance is roughly comparable to the localist model

under the same conditions.

Simulation 5

In Simulation 5 we replicated Simulation 2 with the distributed

input and output coding schemes. The training phase was the same

3 The fact that errors were often the product of the model anticipating

letters that were trained raises the possibility that performance would

improve if we removed the bigrams that incorrectly captured the model’s

response. That is, if we removed the bigram D–J in the above example,

then it should be less likely that the model would incorrectly respond DJG

to the input DGJ. Out of interest, we trained the model by removing the

first-order bigrams (such as D–G and G–J), as above, but also second-,

third-, and fourth-order bigrams (as relevant). For instance, if the sequence

BDFGJ was excluded from training, we eliminated not only B–D, D–F,

F–G, and G–J but also the second-order bigrams B–F, D–G, and F–J; the

third-order bigrams B–G and D–J; and the fourth-order bigram B–J. We

did this across all positions in the list. It is interesting to note that the

model’s performance did improve somewhat but was still far from satis-

factory. Its performance was 20.0%, 10.7%, and 3.1% when two, three, and

four bigrams (plus their corresponding higher order bigrams) were re-

moved, respectively.

Figure 4. Performance of the Botvinick and Plaut (2006) model when

training excluded one, two, and three bigrams. Performance was assessed

on lists that either included the untrained bigrams or excluded the untrained

bigrams. The untrained bigrams were B–D, D–G, and G–J.
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as in Simulation 2. That is, we excluded the letter B-in-Position-1,

D-in-Position-2, G-in-Position-3, and J-in-Position-4 during train-

ing and then tested the model on 1,000 six-letter lists when zero

(baseline), one, two, three, or all four of the critical letters were

included. As before, we also varied the specific letters that were

included at test and averaged performance across items.

The results can be seen in Figure 5. Clearly, the model did much

better in all conditions. Indeed, when tested on sequences that

included all four untrained letters, the model achieved 44.7%

correct, compared with less than 1% for the localist model.

Simulations 6a–6c

Simulations 6a–6c were a replication of Simulations 3a–3c

except that distributed input and output letter codes were used. As

before, the model was trained on sequences that had either one,

two, or three bigrams removed (Simulations 6a, 6b, and 6c, re-

spectively). Once again, we tested the model on 1,000 six-letter

lists in one of two conditions: Either none of the lists included the

untrained sequences, or all the lists included the untrained se-

quences. Accuracy at recall was determined in the same way as in

Simulation 5.

As can be seen in Figure 6, the model performed well in both

conditions. That is, unlike the localist model tested in Simulation

3, the distributed model generalizes to untrained bigram se-

quences. Thus, it is clear that a PDP model can support memory

for lists of letters even when they contain letters in untrained

positions (Simulation 5) or sequences of untrained bigrams (Sim-

ulation 6). Accordingly, the problem with the Botvinick and Plaut

model might appear to be superficial—it is simply that localist

coding schemes were employed at the input and output layers, and

this restricted generalization.

Simulation 7

In the final simulation we tested the modified model on a more

extreme form of generalization. We trained the model on a set of

letters that were free to occur in any position and in any order (as

in Simulation 4) and then introduced a new target letter that was

trained only in Position 1. At test the model was tested with

sequences that included the target letter in initial or noninitial

positions. This is analogous to Simulation 5 in which we tested the

model on lists that contained letters in untrained positions, but here

the model is being asked to generalize more extensively. That is,

the model is familiar with the target letter only in Position 1, and

it is being asked to generalize to all other positions. In Simulation

5 the model succeeded in recalling a target letter in an untrained

position (e.g., recalling B-in-Position-1), but this was after it was

trained on the letter in all other positions.

We first trained the model on 25 of the 26 distributed letter

patterns used above for 1 million trials (we excluded the letter R,

which corresponds to Units 9, 11, 13, 14, and 25). After training,

STM performance on six-letter lists composed of these letters was

54.7%, similar to the model’s performance when trained on all 26

letters in Simulation 5. We then trained the model on all 26 letters

but allowed the target letter R to appear only in Position 1. That is,

lists were randomly generated, and we eliminated any lists in

which R appeared in Positions 2–6. We assessed the model’s

performance on lists that contained R in Positions 1–6 before any

additional training (before the model was trained with R) and

following 100,000, 200,000, 300,000 and 1 million additional

training trials. For each test position of R, the model was presented

with 1,000 lists of six letters, with R fixed in one position and the

letters in the other position randomly.

The results are presented in Figure 7. Before any additional train-

ing, the model performed near floor on lists that contained R in any

position (i.e., the model was unable to recall lists that contained a

novel letter), and with additional training, performance selectively

improved in Position 1. Following an additional 300,000 training

trials, the model performed 50.2% (similar to performance on lists that

did not contain R following the initial training), and following 1

million trials, the model correctly recalled 97.6% of the lists with R in

Position 1. By contrast, the model catastrophically failed on lists that

contained R in all other positions regardless of the amount of training,

ranging from 0.3% to 3.4%.

To provide a more sensitive test of any learning across positions,

we tested the model trained for an extra 1 million trials on 1,000

two-letter lists in one of two conditions: Either the letter R was

presented first followed by a random letter, or a random letter was

presented first followed by the letter R. Not surprisingly, performance

on two-item lists that started with R was perfect (100%). By contrast,

accuracy on lists that ended with R was only 12.6% (with all the errors

on the letter R). Clearly, generalization is highly constrained even

with the distributed input coding scheme of the modified model. By

contrast, it is clear that humans can readily recall the sequences

described in Simulation 7. That is, if you learn a new letter name (e.g.,

ree), or a new word (e.g., BLAP), or a Zulu click, or a cough that is

presented at the start of a list, you can recall that novel item in Position

2. One does not need to conduct an experiment to see whether a

participant who recalls the sequence ree-B can also succeed on the

sequence B-ree.

Figure 5. Performance of the modified Botvinick and Plaut (2006) model

with distributed representations when tested on sequences that included zero

(baseline), one, two, three, or four letters in a given position that were not

included at training. The baseline condition assessed the model’s memory

when tested on trained sequences; the latter conditions assessed memory on

untrained sequences. The untrained letter–position combinations were B-in-

Position-1, D-in-Position-2, G-in-Position-3, and J-in-Position-4.
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Discussion

Botvinick and Plaut (2006) developed a recurrent PDP model that

supports STM through learned conjunctive letter–position codes. For

example, the letter string ABC would be coded by coactivating dis-

tributed representations of A-in-Position-1, B-in-Position-2, and C-in-

Position-3. The model is able to accommodate a wide range of

findings that proved difficult for chaining models of STM and, crit-

ically, is sensitive to background knowledge of sequential structure,

such as the bigram effect observed in humans (Baddeley, 1964).

These latter findings pose a challenge to current alternative models of

STM that rely on context-independent item representations in LTM

(e.g., Page & Norris, 1998).

However, we have shown that the original Botvinick and Plaut

model is excessively sensitive to background sequential structure.

That is, the model catastrophically failed when tested on letter

sequences composed of letters in untrained positions (Simulation

2) and when tested on letter sequences composed of untrained

bigrams (Simulation 3). By contrast, these sequences would pose

no problem for humans.

At the same time, we have shown that a modified version of the

Botvinick and Plaut model that includes a distributed, as opposed

to a localist, input letter coding scheme succeeded in these two

conditions (Simulations 5–6). Nevertheless, when we tested the

model on a more extreme form of generalization, the model

catastrophically failed (Simulation 7). That is, when the model was

trained with the letter R only in the first position of a list, it was not

able to recall sequences that contained the letter R in other posi-

tions. These types of strings would appear to be well within the

capacities of human memory (and alternative models of STM, as

discussed below). For example, if you learn a new letter named

ree, then you can recall that letter in any position within a list

(limited only by your memory span)—there is no need to be

trained on the letter ree in all positions.

Although Simulations 2, 3, and 7 identify some serious restric-

tions in the performance of the original and modified Botvinick

and Plaut model, perhaps some other PDP model with a different

input–output coding scheme would succeed. Indeed, we have

shown that the input coding scheme greatly impacts on the model’s

ability to recall unfamiliar sequences. Although we cannot rule out

this possibility, we are skeptical. Whatever input coding scheme is

Figure 6. Performance of the modified Botvinick and Plaut (2006) model when training excluded one, two, and

three bigrams. Performance was assessed on lists that either included the untrained bigrams or excluded the

untrained bigrams. The untrained bigrams were B–D, D–G, and G–J.

Figure 7. Performance of the modified Botvinick and Plaut (2006) model

on lists of six letters that contained the letter R in various positions (from

1 to 6). The model was initially trained for 1 million trials on lists that

excluded the letter R and was then provided additional training (ranging

from 0 to 1 million extra training trials) in which R was free to occur in

Position 1 but in no other position.
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adopted, as long as serial recall relies on conjunctive item–position

coding within the hidden layer, it seems likely that the modified

model would suffer similar limitations and for the same reason;

namely, there are no learned units that code for R-in-Position-6

when it has been trained only in R-in-Position-1. Still, it is always

possible that another PDP model of STM that learned a different

set of context-dependent codes would succeed in the current con-

texts. One thing is clear: If PDP models of STM are to provide a

viable account of human STM performance, it will be important to

show that they can generalize more broadly.

Learning Poses Another Problem for Models of STM

That Rely on Context-Dependent Representations

Although we have focused on the claim that generalization is

limited in PDP models of STM that rely on context-dependent rep-

resentations, there is another possible limitation of this approach with

regard to learning. The original and modified Botvinick and Plaut

models were able to learn a set of 156 letter–position conjunctive

codes (26 letters � 6 positions) given the appropriate training. Nev-

ertheless, it took the models approximately 1 million training trials to

match human performance in terms of overall accuracy. Given this,

consider the difficulty of recalling sequences of words. To recall the

list DOG, RAIN, MOTHER, and FUN, the model must have a con-

junctive representation of DOG-in-Position-1, RAIN-in-Position-2,

MOTHER-in-Position-3, and FUN-in-Position-4. Because it is possi-

ble to recall these words in any order, the model needs separate

conjunctive representations for each word (indeed all words) in all

positions, such as DOG-in-Position-2, DOG-in-Position-3, etc. It

seems unparsimonious to include separate conjunctive representations

for each word in each position in a list. But more importantly, given

the amount of training required to learn 156 conjunctive codes for

letters, it is unclear whether it is feasible to learn approximately

600,000 conjunctive codes for words (assuming 100,000 words in a

person’s vocabulary � 6 positions).

One tempting solution would be to argue that memory for lists of

words is supported by conjunctive codes of letters (or perhaps familiar

syllables), in which letters (or syllables) are coded by both their

position within a word (e.g., some form of slot coding typical of PDP

models) and their position within a list. This would minimize the

number of conjunctive codes that need to be learned to a manageable

number. For example, to remember lists of up to six words that vary

from one to eight letters, the model would need to learn only 1,248

conjunctive representations (26 letters � 8 possible letter positions

within a word � 6 possible words in a list). For instance, the sequence

DOG CAT could be coded by D-in-Position-1-of-a-word-at-

beginning-of-list, O-in-Position-2-of-a-word-at-beginning-of-list,

G-in-Position-3-of-a-word-at-beginning-of-list (together that code for

DOG at the start of a list), C-in-Position-1-of-a-word-in-second-

position-in-a-list, A-in-Position-2-of-a-word-in-second-position-in-a-

list, and T-in-Position-3-of-a-word-in-second-position-in-a-list (to-

gether that code for CAT in Position 2 of a list).

Although this later solution might allow a PDP model to learn a set

of conjunctive codes that would support STM for a list of words, it

would not provide a good account of human performance, for at least

three reasons. First, a standard finding in the behavioral literature is

that STM is better for words than for nonwords. For instance, Jeffer-

ies, Frankish, and Lambon Ralph (2006) found that participants re-

called 79% of consonant–vowel–consonant (CVC) words presented

in a list of five words, compared with 31% of CVC nonwords

presented in a list of five nonwords. This shows that STM relies on

lexical knowledge. Any attempt to model STM for words on the basis

of conjunctive letter codes (ignoring word knowledge) seems unlikely

to succeed. Second, memory for lists of words is relatively insensitive

to word length. For instance, Hulme, Suprenant, Bireta, Stuart, and

Neath (2004) compared STM for lists of words that were either one

or five syllables in length. When long and short words were inter-

mixed, they were recalled at the same level. When long and short

words were presented in separate blocks, the short items enjoyed a

slight advantage (�12%), but given that five times as many phonemes

need to be recalled in the case of the long words, it is clear that STM

is not the product of recalling a series of phonemes (or syllables).

Rather, memory for words is based on recalling a sequence of word

representations. Third, STM is sensitive not only to background

knowledge of the sequential structure of letters but also to the sequen-

tial structure of words (e.g., Miller & Selfridge, 1951); these depen-

dencies reflect lexical, not sublexical, knowledge. Thus, if PDP mod-

els of STM are to be extended to support STM for words, they are

going to have to learn a lot of conjunctive codes.

Can Models Relying on Context-Independent

Representations Account for Sequential Effects in STM?

Although the current article is primarily concerned with highlight-

ing a limitation of PDP models of STM, it is worth considering

whether Botvinick and Plaut’s (2006) main criticism of alternative

models is justified. That is, they claimed that models that rely on

context-independent representations do not naturally account for the

fact that STM is sensitive to background knowledge of sequential

structure, such as bigram effects. Nevertheless, they highlighted one

possible mechanism by which future models of this sort might ac-

count for the effects, citing the work of Lee and Estes (1981). That is,

if STM stores a fixed number of (context-independent) items, then

memory performance would be improved if the items themselves

were organized into larger chunks. For instance, if a model can store

four chunks in STM, and the model includes the sequence GO as a

context-independent item (in that GO is coded the same way regard-

less of its position or context), then memory would be better for the

sequence GOXYZ compared with VWXYZ. Both sequences involve

five letters, but in the former case only four chunks need be recalled.

The key point for present purposes is that a bigram frequency effect

would be predicted if the model has learned some chunks of frequent

bigrams.

Although the relevant learning mechanisms have not yet been

implemented in alternative models, there is good evidence that chunk-

ing does indeed impact on STM span. For example, Cowan, Chen,

and Rouder (2004) tested the original Miller (1956) claim that STM

has a fixed capacity of memory chunks. In this study participants

completed a training task in which a series of letters were presented

either one at a time or in pairs (a condition in which participants might

learn a new chunk), and then they completed an immediate serial

recall task on lists that contained the letter pairs. The participants who

had been trained on the letter pairs performed better than those who

had been trained on the same letters presented one at a time, and

critically, an analysis of the performance revealed that this improve-

ment was attributable to recalling the letter pairs as a chunk. That is,

memory for all participants was estimated to be about 3.5 chunks, but

memory was better for participants who had learned the new chunks.
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Thus there is every reason to assume that models of STM that rely on

context-independent representations can be developed in a principled

way in order to account for bigram effects (as well as other effects of

background knowledge of sequential dependences).

Relating the Current Findings to the More General Debate

Regarding PDP Versus Symbolic Models of Cognition

The failure of both the original and modified Botvinick and Plaut

models to recall all the relevant sorts of test lists highlights a gener-

alization constraint associated with context-dependent codes. It is

exactly this sort of restriction that has led many authors to develop

symbolic models of cognition that include context-independent rep-

resentations of items in LTM and a dynamic process of assigning a

role to these items. Models of this sort have been developed in a

variety of domains, including word recognition (e.g., Davis, 1999),

morphology (e.g., Pinker & Ullman, 2002; Prasada & Pinker, 1993),

object recognition (Hummel & Biederman, 1992), conceptual struc-

ture (e.g., Fodor & Pylyshyn, 1998), and analogical reasoning (e.g.,

Hummel & Holyoak, 1997). It is important to emphasize that al-

though symbolic models are inconsistent with PDP models, they do

not constitute a rejection of neural networks in general. Indeed, a wide

range of neural networks can operate on the basis of context-

independent representations (cf. Bowers, 2002; Davis, 1999; Hummel

& Holyoak, 1997). Pinker and Prince (1988) coined the terms elim-

inative connectionism to describe neural networks that eliminate sym-

bols (i.e., models that reject context-independent item representations

and a process of dynamically binding these items to a role) and

implementational connectionism to describe neural networks that rely

on symbols (i.e., models that rely on exactly these item representa-

tions and processes).

In this context, it is clear that neural network models of STM

that rely on context-independent item representations (e.g., A), and

a process of dynamically assigning the item a role in a to-be-

remembered list (e.g., temporally assign A to the start of the list),

should be described as symbolic (e.g., Brown et al., 2000; Burgess

& Hitch, 1999; Farrell & Lewandowsky, 2002; Grossberg &

Pearson, 2008; Page & Norris, 1998). Although some of these

authors might question the use of the term symbolic when applied

to their models, we would argue that these models not only satisfy

the definition of symbolic that is commonly adopted in the do-

mains of language and semantics (e.g., Pinker & Prince, 1988) but,

more importantly, behave like symbolic models with regard to

their ability to generalize.

For instance, consider the Page and Norris (1988) model that

codes for letters in LTM in a context-independent fashion and

dynamically codes order by the level of activation of the letter

codes (such that the sequence ABC is coded with A the most active,

B the second most active, and C the third most active). Here it does

not matter whether a given letter was learned only in Position 1. As

long as the model has an LTM representation of a letter, it is free

to generalize to all positions, as the process of producing an

activation gradient over a set of context-independent letter units is

blind to which positions letters have been studied. Indeed, the

model will be able to recall any possible sequences of familiar

items (within its memory span), and the same generalization ca-

pacities will extend to all models that rely on context-independent

representations (Brown et al., 2000; Burgess & Hitch, 1999; Far-

rell & Lewandowsky, 2002; Grossberg & Pearson, 2008). It is

precisely the capacity of symbolic models to generalize that has

led to their development in so many cognitive domains.

Part of the reason for the continuing debate regarding the

relative merits of symbolic versus PDP models relates to disagree-

ment about the operating characteristics of human cognitive and

perceptual systems. On the one hand, advocates of symbolic mod-

els often highlight the generative capacities of the human mind

(e.g., Fodor & Pylyshyn, 1988; Hummel & Holyoak, 1997; Pinker

& Prince, 1988), and on the other hand, advocates of PDP theories

often highlight the limitations of both PDP models and human

minds in terms of generalization, with the limitations of the model

taken as a virtue (e.g., Elman, 1998; McClelland, McNaughton, &

O’Reilly, 1995; Munakata & O’Reilly, 2003). For instance, when

considering the merits of symbolic and connectionist models in the

domain of language, Thomas and McClelland (2008) wrote:

Again, however, the characterization of human cognition in [sym-

bolic, syntactically driven] terms is highly controversial; close scru-

tiny of relevant aspects of language—the ground on which the dispute

has largely been focused—lends support to the view that the syste-

maticity assumed by proponents of symbolic approaches is overstated

and that the actual characteristics of language are well matched to the

characteristics of connectionist systems. (p. 27)

As long as it is possible to disagree about human capacities in a

given domain, there is little chance of resolve the modeling debate.

In our view, an advantage of the current analysis is that we have

identified a restriction in generalization in a domain in which the

capacities of the system should be less controversial. That is, whatever

one’s view regarding the systematicity of language or thought, there

should be little disagreement that a person who learns to recall a letter

in the initial position of a list is also capable of recalling that letter at

the end of a list. The fact that a PDP model fails in this predictable

way should make the computational limitations of conjunctive coding

all the more salient. We take these restrictions as evidence for the role

of symbols in cognition more generally.
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Postscript: More Problems With Botvinick and

Plaut’s (2006) PDP Model of Short-Term Memory

Jeffrey S. Bowers and Markus F. Damian
University of Bristol

Colin J. Davis
Royal Holloway, University of London

In our commentary we demonstrated that Botvinick and

Plaut’s (2006) model of immediate serial recall catastrophically

fails when familiar letters are tested in untrained positions

within a list (Simulation 2), and a modified version of their

model with a distributed letter coding scheme also fails to recall

familiar (and novel) letters when tested in untrained positions

(Simulation 7). That is, short-term memory (STM) did not

generalize to all possible test sequences. We argued that these

failures reflect a fundamental limitation of the conjunctive

coding schemes used in parallel distributed processing (PDP)

models of cognition. Indeed, these constraints have inspired

symbolic models of cognition that rely on context-independent

representations of items in long-term memory (LTM; e.g., a

representation for the letter A, unspecified by position within a

list) and a dynamic (short-term) process of binding these items

to a given role (e.g., a dynamic process of binding the letter A

to a given position) in order to generalize more broadly.

Botvinick and Plaut (2006) rejected these claims and reported a

simulation in which a new version of their model recalls familiar
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(and novel) items in novel positions. However, it is important to

note the conditions in which this model succeeded. It included 30

input–output units, with the first 10 units coding for the onset, the

next 10 units the vowel, and the final 10 units the coda. Each

syllable was defined by activating one onset, one vowel, and one

coda unit, and the model was trained on 999 out of a possible 1,000

(10 3 10 3 10) syllables. Their critical finding was that the model

could recall the untrained item without difficulty (in all positions).

What Botvinick and Plaut did not emphasize, however, was that

the model was trained on all the letters in all positions of the list.

So, in principle, the model could recall novel syllables (and fa-

miliar syllables in untrained positions) by recalling familiar pho-

nemes in trained positions. For example, if the untrained syllable

was SAM, then the model could recall SAM in Position 1 of a list

by learning and activating the following trained conjunctive codes:

S-onset-in-list-Position-1, A-vowel-in-list-Position-1, and M-coda-

in-list-Position-1. Indeed, that is what the model has done.

To further highlight the generalization constraints associated

with these learned conjunctive codes, we ran two new simulations.

First, we developed a modified model in which the first 10 units

were reserved for onsets, the next six for vowels, and the final 10

for codas (resulting in 10 3 6 3 10 or 600 possible syllables). We

trained the model for 3 million trials on lists of up to nine syllables

taken from a random set of 300 syllables but excluded 32 syllables

that included the phoneme R in the coda position (henceforth

R-syllables; R represented by input and output Unit 17). We then

trained the model for another 2 million trials, during which

R-syllables were allowed to appear in Position 1 but not in other

positions. This constitutes a general replication of the procedure

we reported in our Simulation 7 but using a similar representa-

tional structure as Botvinick and Plaut’s new simulation. At test,

the model was presented with 1,000 lists of six syllables (taken

from the vocabulary of 300) that all contained one random

R-syllable in list Positions 1–6. As can be seen in Figure P1, when

the model had not been trained on R-syllables, it catastrophically

failed on these lists. During the additional training with the

R-syllables, the model slowly developed a position-specific knowl-

edge of these items: Performance improved for the R-syllables in

first position, but the model continued to catastrophically fail when

these syllables were presented in other positions. This pattern of

performance is just as we reported in Simulation 7. More strik-

ingly, in a second simulation, we trained the model on the 300

syllables with no restrictions except that the R-syllables were not

permitted to occur in list Position 1. After 3 million training trials,

the model could recall lists of six syllables that contained one

R-syllable as long as it did not occur in Position 1. That is, when

the model was tested on 1,000 lists of six syllables, its recall

performance was 2.5%, 49.4%, 46.9%, 45.8%, 47.0%, and 45.5%

when the R-syllable occurred in Positions 1–6, respectively. So,

learning to recall CAR in list Positions 2–6 did not allow the model

to recall CAR in Position 1. Botvinick and Plaut endorse our claim

that anyone who can recall the sequence ree-B should also succeed

in recalling the sequence B-ree. But as we have demonstrated here,

PDP models do not exhibit the same position invariance.

These findings suggest that our new model succeeded (to the

extent that it did) by relying on learned phoneme–position con-

junctive codes. To test this more directly, we trained it on a

random sample of 500 of the possible 600 syllables for 4 million

trials and then tested it on 1,000 lists of syllables composed of

familiar or unfamiliar syllables that varied in length. If lists of

syllables are recalled on the basis of phoneme–position conjunc-

tive codes (e.g., the syllable SAM at the start of the list is coded by

coactivating the long-term representations for S-onset-in-list-

Position-1, A-vowel-in-list-Position-1, and M-coda-in-list-

Position-1), then the familiarity of the syllables should be irrele-

vant. This is indeed the case, as depicted in Figure P2. By contrast,

lexical representations play a key role in supporting human STM,

as revealed by a robust advantage of words over nonwords (e.g.,

Jefferies, Frankish, & Lambon Ralph, 2006). Another failure of the

model follows directly from this. STM is sensitive to background

knowledge of sequential dependencies, and this extends to the

sequential dependencies between lexical items, or newly trained

syllables (e.g., Botvinick & Bylsma, 2005). Indeed, the original

Botvinick and Plaut model trained on 26 letters captured these

sequential effects, and this was considered a key advantage of the

model compared with others. But these sequential effects are lost

in the modified model given that memory performance is based on

remembering sequences of phonemes. In short, when a modified

Botvinick and Plaut model is trained on a larger vocabulary (e.g.,

100s syllables rather than 26 letters), it suffers from both under-

and overgeneralization. That is, the model cannot recall familiar

(or novel) syllables that include familiar phonemes in untrained

positions, but as long as this constraint is avoided (by ensuring that

the training extends to all phonemes in all positions), it recalls

novel syllables just as well as familiar ones and untrained se-

quences of syllables just as well as trained sequences.

Two additional points merit brief discussion. First, Botvinick

and Plaut (2006) claimed that single-cell recording data lend

support to their view that STM is mediated by context-dependent

Figure P1. Performance of our modified model when it was first trained

for 3 million trials on lists of syllables that excluded the phoneme R

(R-syllables) and then trained another 2 million trials when the R-syllables

were free to occur in Position 1 but not in other positions. Performance was

assessed on 1,000 lists of six syllables that all contained one R-syllable in

various positions (1–6) after various levels of training: immediately after

the 3 million trials in which the R-syllables were untrained and following

an additional 500,000, 1 million, 1.5 million, and 2 million training trials

in which the R-syllables were free to occur in Position 1.
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representations. But they failed to mention the evidence for

context-independent representations. For example, they cited

Ninokura, Mushiaske, and Tanji (2004), who reported that 30% of

the relevant neurons in the lateral prefrontal cortex were selective

to both position and identity (conjunctive cells). It is perhaps worth

mentioning that 44% of the task-relevant neurons in this study

were sensitive to list position irrespective of object identity, and

26% responded to object identity irrespective of list position

(context-independent cells). Similar findings have been reported

elsewhere (e.g., Averbeck, Chafee, Crowe, & Georgopoulos, 2002;

Inoue & Mikami, 2006). Second, we think that Botvinick and Plaut

mischaracterized Page and Norris’s (1998) primacy model of

STM, and they appear to have a misunderstanding regarding the

representations employed in PDP and symbolic models. They

claimed that the primacy model relies on conjunctive representa-

tions of items and order. But the model includes LTM represen-

tations of items that are coded independently of order, and the

order of an item in a list is dynamically coded by the relative

activation of the items representations. The fact that the given

letter (e.g., R) is coded with the same unit regardless of its list

position allows the model to generalize more broadly than PDP

models that do rely on conjunctive representations. Indeed, all

symbolic models of cognition include a process that dynamically

assigns items a role, where the role could specify the position of a

letter within a word (e.g., Davis, 1999), an attachment relation

between object parts (e.g., Hummel & Biederman, 1992), or, in the

present case, the order of items in a to-be-remembered list (e.g.,

Page & Norris, 1998). By contrast, Botvinick and Plaut adopted a

modeling approach that binds items to roles statically, through

conjunctive codes in LTM (e.g., where R-in-Position-1 and R-in-

Position-2 are coded differently). By relying on a version of

back-propagation, they “stipulated” that their model would learn

conjunctive (context-dependent) long-term representations. The

consequences are just as we predicted (see also Bowers & Davis,

in press). The ball is now in their court to show that the many

limitations of their model can be addressed without appealing to

symbolic (context-independent) representations in LTM.

References

Averbeck, B. B., Chafee, M. V., Crowe, D. A., & Georgopoulos, A. P.

(2002). Parallel processing of serial movements in prefrontal cortex.

Proceedings of the National Academy of Sciences, USA, 99, 13172–

13177.

Botvinick, M., & Bylsma, L. M. (2005). Regularization in short-term

memory for serial order. Journal of Experimental Psychology: Learning,

Memory, and Cognition, 31, 351–358.

Botvinick, M. M., & Plaut, D. C. (2006). Short-term memory for serial

order: A recurrent neural network model. Psychological Review, 113,

201–233.

Bowers, J. S., & Davis, C. J. (in press). Learning representations of

wordforms with recurrent networks: Comment on Sibley, Kello, Plaut,

and Elman (2008). Cognitive Science.

Davis, C. J. (1999). The self-organising lexical acquisition and recognition

(SOLAR) model of visual word recognition (Unpublished doctoral dis-

sertation). University of New South Wales, Sydney, Australia.

Hummel, J. E., & Biederman, I. (1992). Dynamic binding in a neural

network for shape recognition. Psychological Review, 99, 480–517.

Inoue, M., & Mikami, A. (2006). Prefrontal activity during serial probe

reproduction task: Encoding, mnemonic, and retrieval processes. Jour-

nal of Neurophysiology, 95, 1008–1041.

Jefferies, E., Frankish, C. R., & Lambon Ralph, M. A. (2006). Lexical and

semantic binding in verbal short-term memory. Journal of Memory and

Language, 54, 81–98.

Ninokura, Y., Mushiaske, H., & Tanji, J. (2004). Integration of temporal

order and object information in the monkey lateral prefrontal cortex.

Journal of Neurophysiology, 91, 555–560.

Page, M. P. A., & Norris, D. (1998). The primacy model: A new model of

immediate serial recall. Psychological Review, 105, 761–781.

Figure P2. Performance of our modified model when it was trained for

4 million trials on random lists of syllables taken from a vocabulary of 500

of the possible 600 syllables. Performance was assessed on 1,000 lists of

syllables taken from the trained (word) and untrained (nonword) sets, with

list length varying from one to six syllables.

997COMMENTS


