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Woollams, Lambon Ralph, Plaut, and Patterson (2007) reported detailed data on reading in 51 cases of

semantic dementia. They simulated some aspects of these data using a connectionist parallel distributed

processing (PDP) triangle model of reading. We argue here that a different model of reading, the dual

route cascaded (DRC) model of Coltheart, Rastle, Perry, Langdon, and Ziegler (2001), not only provides

a more accurate simulation of these aspects of reading in semantic dementia than does the PDP model

but also provides highly accurate simulations of other aspects of reading in this disorder that the PDP

approach has not simulated. We conclude that our findings add to evidence both from simulations of

normal skilled reading and from simulations of other kinds of acquired dyslexia that the nonconnectionist

DRC model of reading offers a better account of normal and disordered reading than the connectionist

PDP models of reading.
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Semantic dementia (Hodges, Patterson, Oxbury, & Funnell,

1992; Snowden, Goulding, & Neary, 1989) is a progressive brain

pathology particularly involving focal degeneration of the tempo-

ral lobes, especially the left temporal lobe. Its initial cognitive

symptom is an impairment in the comprehension of written words,

spoken words, and pictures. At this initial stage, reading aloud can

be fully preserved even though reading comprehension is im-

paired. As the disease progresses, specific impairments in reading

aloud begin to emerge. The disorder has recently excited the

interest of reading theorists, in particular those concerned with

building computational models of reading, because the patterns of

preserved and impaired reading abilities seen in these patients and

how these change as the disease progresses over time provide

challenging sets of data for theories to explain and models to

simulate.

By far the most extensive study to date of reading in semantic

dementia has been that of Woollams, Lambon Ralph, Plaut, and

Patterson (2007), who reported detailed individual data on reading

and other tasks from 51 patients with semantic dementia. Some of

these patients were assessed on more than one occasion (so as to

follow the course of the disease), and hence, some patients yielded

more than one data set; the total number of data sets reported in

Woollams et al. was 100.1 For all 100 data sets, there are measures

of the accuracy of reading aloud for high- and low-frequency

regular and exception words. For 34 of the data sets, there is also

a measure of accuracy of reading aloud for nonwords.

Woollams et al. (2007) used one of the parallel distributed

processing (PDP) triangle models of reading (Simulation 4 of

Plaut, McClelland, Seidenberg, & Patterson, 1996) to simulate

some aspects of the reading data collected from these patients. Our

aim in this article is to evaluate this triangle model’s account of the

data provided by Woollams et al. and to compare the triangle

model and the dual route cascaded (DRC) model (Coltheart,

Rastle, Perry, Langdon, & Ziegler, 2001) with respect to how well

each model can account for the reading symptoms seen in people

with semantic dementia.

The Effect of Semantic Dementia on Reading

Comprehension and Reading Aloud

So as to characterize what it is that computational models of

reading2 have to simulate as far as reading aloud in semantic

1 We are grateful to Anna M. Woollams for providing us with the

reading data from all of these data sets.
2 This is a shorthand for computational models of reading aloud. Of

course, there is much more to reading than reading aloud—reading com-

prehension, for example—but we are concerned here only with reading

aloud.
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dementia is concerned, we begin with a description of the effects

that this condition has on reading abilities.

The Three Phases of Semantic Dementia

Blazely, Coltheart, and Casey (2005) offered a description of the

stages of reading deterioration in semantic dementia. Thanks to the

study by Woollams et al. (2007), a rather more detailed picture of

the course of this deterioration can now be proposed. We suggest

that, in any patient with semantic dementia, a sequence of three

phases may be discerned in the patient’s reading as the disease

progresses.

Phase 1: Impaired reading comprehension with intact read-

ing aloud. Patients must have impaired reading comprehension

if they are to meet the diagnostic criteria for semantic dementia. At

the onset of the disorder, however, this is the only form of

impaired reading they show: Their reading aloud of exception

words (even those of low frequency), regular words, and nonwords

is within normal limits.

Woollams et al. (2007) identified 5 of their 100 data sets in

which the patient performed within the normal range on accuracy

of the reading aloud of low-frequency exception words (they

defined normal as within two standard deviations of the mean of a

normal control group: The cutoff value here was 87% correct).

These 5 data sets are shown in Table 1.

Here, we have five cases of semantic dementia in which reading

aloud, at least for words (we do not know about nonword reading

because it was not tested with these five data sets), was fully

preserved despite the presence of semantic impairment. Three of

these patients were classified by Woollams et al. (2007) in the mild

category of impairment and the other two in the mild–moderate

category. Numerous other patients with semantic impairments but

normal accuracy in reading aloud even for low-frequency excep-

tion words have been reported. Some of these suffered from

semantic dementia (Blazely et al., 2005; Cipolotti & Warrington,

1995; McKay, Castles, Davis, & Savage, 2007; Schwartz, Saffran,

& Marin, 1980), and we take these cases as examples of patients

who were at our Phase 1 of semantic dementia when tested. Others

were patients with Alzheimer’s disease (Lambon Ralph, Ellis, &

Franklin, 1995; Noble, Glosser, & Grossman, 2000) or stroke

(Gerhand, 2001); such patients are relevant to any model of read-

ing according to which there is an intimate connection between

access to semantics and exception word reading, even though these

were not patients with semantic dementia.

Phase 2: Impaired reading comprehension with pure surface

dyslexia. Somewhat later in the course of the disorder, the pa-

tient begins to show a frequency-sensitive impairment in reading

aloud exception words (low-frequency exception words less accu-

rate than high-frequency exception words; performance can be

within normal limits for the latter). This is surface dyslexia, and in

this phase, it is pure surface dyslexia in the specific sense that the

reading aloud of nonwords is within normal limits even though

there is an impairment in the reading aloud of exception words (at

least those of low frequency).

Since, in 5 of the 100 data sets of Woollams et al. (2007),

reading accuracy of low-frequency exception words was within the

normal range, it follows that in 95 of these data sets reading of

low-frequency exception words was impaired. How many of these

95 data sets represent cases of pure surface dyslexia—that is, how

many had preserved nonword reading? Of the 100 data sets, there

were 34 that included nonword reading data, so we can only ask

this question in relation to these 34 of the 100 data sets. Control

data for the Woollams et al. nonword reading test showed normal

performance (performance within two standard deviations of the

mean performance of normal control readers) to be 94% correct or

better. Nonword reading accuracy was 94% or better in 10 of these

34 (29%). These 10 data sets are shown in Table 2. (In the patient

identifiers, the number refers to the order of the testing session.

Thus, e.g., G.C.1 and G.C.2 refer to the same patient: G.C.1

identifies data from the first testing session of the patient, and

G.C.2 identifies data from the second testing session of the same

patient.)

In 66 of the 100 data sets, nonword reading data were not

collected. However, for 19 of these 66 cases (29%), reading

accuracy was within normal limits on low-frequency regular words

(i.e., 91% correct or more) but impaired for low-frequency excep-

tion words (less than 87% correct). These 19 cases are arguably

also instances of pure surface dyslexia, though nonword reading

data would be needed and would need to be in the normal range for

this to be definitively claimed.

Phase 3: Impaired reading comprehension with generalized

impairment of reading aloud. Still later in the disorder, reading

accuracy for nonwords also begins to decline, so that accuracy for

both exception words and nonwords (and often for regular words

too) is below normal limits. This was the case in the remaining 24

of the 34 data sets from Woollams et al. (2007) that included data

on nonword reading: All showed impairments both on word read-

ing and on nonword reading. There were no cases where nonword

reading was impaired but exception word reading was intact, even

though there were numerous cases where exception word reading

was impaired and nonword reading was not (see Table 2). Hence,

in this sample of 34 data sets, impaired nonword reading did not

begin to be apparent until after impaired exception word reading

Table 1

Percentage Correct Word Reading Accuracy in Five Cases of Semantic Dementia With Intact

Reading Aloud of Words, Including Low-Frequency Exception Words

Patient
High-frequency
regular words

Low-frequency
regular words

High-frequency
exception words

Low-frequency
exception words Nonwords

B.C.1 100 97.62 100 92.86 Not tested
G.C.1 100 100 100 92.86 Not tested
M.A.1 100 100 100 100 Not tested
E.B.1 100 100 100 100 Not tested
M.G.1 100 100 95.24 92.86 Not tested
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had already been established. In other words, semantic dementia is

not accompanied by pure phonological dyslexia (impaired non-

word reading with intact exception word reading).

The task confronted by computational models of reading is thus

to offer an explanation of the progression through these stages of

reading impairment and of why these stages take the form they do,

as well as also to attempt to make quantitative predictions of the

reading data from individual patients with semantic dementia. The

degree to which a model succeeds in these tasks is a measure of its

worth as a description of the human reading system.

Computational Modeling of Reading

The Triangle Models Approach to Modeling Reading

The general form of the triangle models of reading aloud is

shown in Figure 1 of Woollams et al. (2007). We use the plural in

referring to these models because there have actually been seven

different triangle models proposed, and these, while all adhering to

the general structure depicted in this figure, do differ from each

other in substantive ways.

For example, in one of the triangle models, the units in the

orthographic system represent wickelgraphs (random three-letter

sequences); in others, they represent single letters; and in still

others, they represent orthographic onsets, vowels, and codas.

Similarly, in one of the triangle models, the units in the phono-

logical system represent wickelphones (random three-phoneme

sequences); in others, they represent single phonemes; and in still

others, they represent phonetic features. Thus, the general triangle

model approach does not make any proposals about the specific

ways in which orthography and phonology are actually represented

in the human reading system.

A more critical fact about differences between the various

triangle models has to do with how well the direct orthography-

to-phonology (O3P) pathway of each triangle model can read

words with atypical or exceptional correspondences between spell-

ing and sound (exception words). Seidenberg and McClelland

(1989) took pains to emphasize that this single route in their model

could read exception words perfectly and yet did well on reading

nonwords, which they considered as contradicting earlier claims

that two distinct reading routes are needed to handle these two

different reading tasks. These latter claims were also based on data

from patients with pure surface dyslexia (e.g., the patients of Bub,

Cancelliere, & Kertesz, 1985, and McCarthy & Warrington, 1986)

in whom, after brain damage, reading of exception words, espe-

cially when these are of low frequency, is impaired, while non-

word reading accuracy remains intact. A problem for the triangle

models is that it is not obvious how one could selectively damage

an O3P pathway that, when intact, was perfect at reading excep-

tion words and nonwords, in such a way as to harm exception word

reading while sparing nonword reading and regular word reading.

Indeed, attempts to lesion a triangle model in this way to simulate

surface dyslexia (Patterson, 1990; Patterson, Seidenberg, &

McClelland, 1989) did not succeed: A computational lesion of the

O3P pathway severe enough to mimic the low level of perfor-

mance with low-frequency exception words shown by the patient

of McCarthy and Warrington (1986) also harmed the triangle

model’s ability to read nonwords aloud, and yet, this patient was

normal at nonword reading.

Thus, Plaut et al. (1996) tried a different approach to triangle

model simulation of surface dyslexia, by creating a version of the

triangle model in which reading of exception words by the direct

O3P pathway was not perfect: They referred to this model as

Simulation 4 (S4), and it was trained in such a way that after

completion of training, its direct O3P pathway still made errors,

particularly when reading low-frequency exception words. As S4

was being trained, input from the semantic system (S) to the

phonological system (P) was gradually introduced. Woollams et al.

(2007) referred to this as “S”3P input because the S system is not

implemented in Model S4, so the input had to be artificially

introduced by the modeler. The strength of this input was pro-

grammed to increase monotonically over training epochs and to be

greater for high-frequency than for low-frequency words (for de-

tails, see Plaut et al., 1996; Woollams et al., 2007). The upshot was

that Model S4 could read virtually all regular words and nonwords

just using the O3P pathway but relied on “S”3P input for

correct reading of many exception words, especially those low in

frequency; the provision of this input during training prevented the

O3P pathway from learning to read all low-frequency exception

words correctly (which it otherwise would have been able to do).

Thus, if, after training, the model is lesioned by depriving it of the

“S”3P input, it is worse at reading exception words than regular

words: It is surface dyslexic.

So, the triangle model proposal here is that surface dyslexia is

caused by semantic impairment, and indeed, these two symptoms

do very frequently co-occur (as in the data of Woollams et al.,

2007). However, this claim would predict that all patients with

semantic impairment will be surface dyslexic, that is, will be

abnormal at reading exception words (at least those of low fre-

quency). This is not so; as we mentioned above, numerous patients

with semantic impairments but normal accuracy in reading aloud

even for low-frequency exception words have been reported (in-

cluding five such patients reported by Woollams et al., 2007; see

Table 1). How can such patients be reconciled with the idea that

semantic impairment causes surface dyslexia?

Plaut et al. (1996) and Woollams et al. (2007) addressed this

issue by supposing that, in intact readers, there are individual

differences in the degree to which the reading of low-frequency

exception words requires the support of input from the semantic

system to phonology. Those individuals whose premorbid reading

Table 2

Percentage Correct Reading Accuracy for Nonwords and

Low-Frequency Exception Words in 10 Cases of Semantic

Dementia With Pure Surface Dyslexia

Patient
Low-frequency exception

words (control cutoff 87%)
Nonword reading

(control cutoff 94%)

G.C.2 76.19 95.0
A.M.3 69.05 95.0
J.H.4 26.19 95.0
S.L.1 66.67 97.5
A.M.1 64.29 97.5
B.M.2 57.14 97.5
G.C.6 47.62 97.5
P.S.M.1 78.57 100
B.M.1 69.05 100
A.M.4 50.00 100
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of low-frequency exception words required such input will be

surface dyslexic if they subsequently suffer a semantic impair-

ment; those who premorbidly did not require any input from

semantics to read any exception word will remain normal at

exception word reading after suffering a semantic impairment.

This somewhat complex proposal is in fact too simple, as Wool-

lams et al. pointed out, because all the patients with semantic

dementia they reported who had intact exception word reading at

a stage of their disease when a semantic impairment was clearly

demonstrable did subsequently become surface dyslexic as the

disease progressed further. Hence, it was suggested that “as these

individuals did not rely on S3P activation as extensively as most

during reading aloud, exception word reading did not begin to

suffer until a greater decline in semantic knowledge had occurred”

(Woollams et al., 2007, p. 332). So, Woollams et al. varied two

model parameters in their simulations: Individuals were assumed

to vary premorbidly in the strength of the semantic contribution to

phonology and postmorbidly in the degree of semantic impairment

(which impacted both the strength and the variability of the se-

mantic contribution according to a fixed equation).

Since no method was offered by which one might retrospec-

tively assess the degree to which any patient would have been

relying, premorbidly, on semantics to support exception word

reading, Woollams et al. (2007, p. 332) commented, “We acknowl-

edge that this hypothesis regarding individual differences in divi-

sion of labor is difficult to test in the absence of premorbid

estimates of semantic reliance during reading aloud”.

Triangle Model S4 is one of two triangle models in which the

direct O3P pathway is less than perfect at exception word read-

ing, that is, in which there is a division of labor between the two

routes with respect to exception word reading (the other is Harm &

Seidenberg, 2004), and is the only one applied to the simulation of

surface dyslexia. Model S4 is the version of the triangle model

used in the simulations by Woollams et al. (2007), and so, that is

the version of the triangle model that we consider in this article.

The method by which reading in semantic dementia was simu-

lated by Woollams et al. (2007) was by training the S4 triangle

model with steadily increasing “S”3P input and then, after com-

pletion of training, lesioning the trained model by making the

putative contribution of semantics to phonology both (a) weaker

and (b) more noisy: This noise was frequency dependent in the

sense that the lower the frequency of the word presented to the

model for reading, the noisier the computation of its phonology

(the larger the standard deviation of the Gaussian distribution from

which the noise was sampled).

The DRC Approach to Modeling Reading

The DRC model has been described in detail elsewhere (Colt-

heart et al., 2001), as has its ability to accurately simulate a variety

of results obtained from studies of normal and disordered reading

(Blazely et al., 2005; Castles, Bates, & Coltheart, 2006; Coltheart,

2005, 2006; Coltheart et al., 2001; Nickels, Biedermann, Coltheart,

Saunders, & Tree, 2008; Rastle & Coltheart, 2006).

The DRC model has two routes from print to speech. One is a

lexical nonsemantic route that receives input in parallel from all

the letters in a visually presented letter string: This parallel input

activates frequency-sensitive word entries in an orthographic lex-

icon, and these in turn activate their corresponding frequency-

sensitive entries in a phonological lexicon, from which the pho-

nemes of the phonological lexical entry are activated in the

phoneme level. As this is happening, a letter-sound translation

process is sweeping from left to right across the activated letter

units, using a stored set of grapheme–phoneme correspondence

(GPC) rules to translate the letters to phonemes and so to build up

activation in phonemes (from left to right) at the phoneme level;

this is how the nonlexical route of the model works.

Exception words (those that disobey the GPC rules) will be

wrongly translated to phonology by the nonlexical route but cor-

rectly translated by the lexical route. Nonwords (which are not

represented in the lexicons) will be correctly translated to phonol-

ogy by the nonlexical route but will yield fragmentary3 or no

output to the phoneme level from the lexical route. Both routes will

activate all the correct phonemes of a letter string when this letter

string is a regular word (a word that obeys the GPC rules).

Simulating the Data Reported by

Woollams et al. (2007)

We first consider just those aspects of the Woollams et al.

(2007) data that those authors simulated using the triangle model

approach, so as to directly compare the ability of the triangle and

DRC models to simulate these results. After that, we consider

aspects of the patient data that were not simulated by the triangle

model and evaluate how well the DRC model can simulate these.

The DRC Account of Semantic Dementia

According to the DRC account of reading in semantic dementia,

the reading system can be compromised in three ways. The disor-

der begins with just the semantic system compromised. Because,

in the DRC model, reading aloud accuracy is perfect without the

use of the semantic system, at this stage in the disorder, reading

accuracy is intact (as it was in the patients with semantic dementia

listed in Table 1). When impaired reading aloud first appears

during the progression of the disease, this is due to an impairment

of the lexical nonsemantic reading route; at that point, the non-

lexical reading route is still intact. Here, the patients will have a

frequency-sensitive impairment of reading of exception words,

with nonword reading and regular word reading still intact (i.e.,

pure surface dyslexia). At a later stage of the disease, the nonlexi-

cal route also begins to be impaired, so that nonword and regular

word reading will be abnormal as well as exception word reading.

Thus, two lesions of the DRC model will be needed to fully

capture the range of reading aloud impairments here. Noble et al.

(2000) expressed views about the neuropathology of semantic

dementia that are congruent with our ideas about the nature of the

progressive reading deterioration seen in semantic dementia;

Woollams et al. (2007, pp. 333–334) expressed doubts about just

how consistent these ideas actually are with what is known about

the neuropathology of the disease.

3 Depending on the particular parameters of the model being used, a

nonword’s word neighbors may be activated in the orthographic lexicon

and so in turn in the phonological lexicon, and this can result in some

fragmentary activation at the phoneme level, though the set of phonemes

thus (weakly) activated will never correspond to the correct pronunciation

of the nonword.
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These are not predictions from the DRC model. The model

claims nothing about the neuroanatomical locations of its process-

ing components, so cannot make such predictions. Instead, this is

just a description in DRC terms of what we think happens in

semantic dementia. We presume that the reason the disorder first

affects the semantic system, then affects the lexical nonsemantic

route for reading, and only later affects the nonlexical route for

reading has to do with a combination of (a) which are the particular

brain regions through which the disorder spreads over time, with

more and more regions being affected over time, and (b) which of

these regions are important for the semantic system, which are

important for lexical nonsemantic reading, and which are impor-

tant for nonlexical reading.

A region that appears important for the lexical nonsemantic

reading route is the left fusiform gyrus, proposed by McCandliss,

Cohen, and Dehaene (2003) as the site of the visual word form

system. We might expect abnormality of this region to result in

surface dyslexia. Bright, Moss, Stamatakis, and Tyler (2008) re-

ported neuroimaging data from two of the patients studied by

Woollams et al. (2007), BS and EK. Both patients were scanned

three times over a 3-year period. For both patients, the first scan

revealed no abnormality in the region of the left fusiform gyrus,

whereas atrophy of this region was evident in the second and third

scans for both patients. When these patients were tested by Wool-

lams et al., both were surface dyslexic. Nestor, Fryer, and Hodges

(2006) also reported hypometabolism of left fusiform gyrus in a

group of people with semantic dementia.

Lesioning the DRC Model to Simulate Reading in

Semantic Dementia

To capture the frequency sensitivity of the impairment of the

lexical nonsemantic route, we lesioned that route in the DRC

model4 by deleting the x% least frequent words in the model’s

orthographic lexicon; the deleted words were then effectively

nonwords. Any deleted word that was regular would still be read

correctly because the intact nonlexical route can do this. Any

deleted word that was irregular would be regularized. So, this

lesion made the model surface dyslexic; the larger x was, the more

severe the model’s pure surface dyslexia.

The nonlexical route uses GPC rules to read aloud. The DRC

model has 234 such rules. We lesioned this route by deleting the

least frequently used y% of the GPC rules (the measure of GPC

frequency was simply the number of words in which that particular

GPC occurs). This made the model impaired at nonword reading;

the larger y was, the more severe this impairment.

These deletions of orthographic lexical entries and GPC rules

were probabilistic in the following way. Suppose the cutoff for

being in the bottom x% of words with respect to frequency was a

frequency of 150. Then, the probability of a word being deleted

from the lexicon was a function of the difference between its

frequency and the cutoff frequency, 150. This probability was

normally distributed with a mean equal to the difference between

the cutoff frequency and the word’s frequency and a standard

deviation of .20. Hence, the probability of deletion was .50 for a

word right at the cutoff (a word with frequency 150), increased as

the word’s frequency decreased from this cutoff value, and de-

creased as the word’s frequency increased above the cutoff value.

The same probabilistic scheme was used in lesioning the GPC

route.

We constructed a large set of lesioned DRC models by varying

the lexical lesion severity x from 0% to 99.5% in 0.5% steps while

varying the nonlexical lesion severity y from 0% to 100% in 0.5%

steps. This generated 40,200 different versions of DRC, each

corresponding to a different combination of lesioned lexical route

and lesioned nonlexical route, that is, each corresponding to a

different hypothetical patient with acquired dyslexia. Then, we

submitted to each lesioned model the high- and low-frequency

regular and irregular words and the nonwords5 administered to

their cases by Woollams et al. (2007), and the model’s response to

each item was scored as correct or incorrect. This yielded a word

and nonword reading accuracy profile for each of the 40,200

lesioned models.

Thus, we varied two model parameters to simulate the reading

impairments in these data sets; as mentioned earlier, Woollams et

al. (2007) also varied two model parameters in their simulations.

If the DRC model is capable of simulating the full range of

reading impairments seen in semantic dementia, then for every one

of the 100 data sets we are considering, there must be a profile in

this multidimensional space that corresponds to that data set’s

profile. We must emphasize that this is a far from vacuous pre-

diction. This is so because there is an infinite number of reading

profiles that are logically possible but that are not in this space: For

example, whenever the reading accuracy of regular words is no

higher than the reading accuracy of irregular words, reading ac-

curacy for nonwords must be zero, and any profile where this is not

so cannot be generated by any lesioning of DRC and therefore will

be absent from the profile space, even though the observation of

such a profile is logically possible. So, it could be the case that not

a single one of the 100 patient data sets was at all close to any of

the 40,200 lesioned DRC score profiles.

We can express in another way this point about it being possible

for these simulations to falsify the DRC model. The model lesion

technique varies two theoretically motivated parameters (how im-

paired the lexical route is, how impaired the nonlexical route is),

but for each data set, the number of observations to be simulated

is not two: It is five for some data sets and four for others. Given

that, for each data set, the number of observations to be simulated

is greater than the number of parameters to be varied, if the

simulations fit the observations well, this is not a negligible find-

ing.

For each of the 100 data sets, we identified the model profile

that was closest to that patient data set profile by calculating the

absolute difference between the patient’s percentage correct and

each lesioned DRC model’s percentage correct for each of the

different categories of stimuli (four categories—high-frequency

exception, low-frequency exception, high-frequency regular, and

low-frequency regular words—for the 66 cases where there were

no nonword reading data, and a fifth category as well, nonwords,

4 The model we used can be downloaded from http://www

.maccs.mq.edu.au/�ssaunder/SemanticDementia/
5 We had to discard two words, trial and sour, because in DRC’s dialect,

these are disyllabic and therefore not in DRC’s vocabulary, and we

replaced the nonword gamp with gomp because gamp is a word in DRC’s

vocabulary (it means umbrella).
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for the 34 cases where such data were collected), averaging these

absolute discrepancies, and then finding for each patient that

lesioned DRC model for which the averaged absolute discrepancy

between patient and lesioned model was minimized.

The median value of this average of absolute discrepancies

between simulated and obtained percentage correct across the 34

data sets for which nonword reading was available was 1.4 (range:

0.0–8.0), indicating that each of these patient data sets was well

fitted by some lesioned version of the DRC model. Table 3 shows

the group patient data and the group simulation data; the fit of

model to data is clearly satisfactory.

For the remaining 66 data sets, those for which nonword reading

data were not available, the fits to individual patients were again

satisfactory. The median value of this average of absolute differ-

ences between simulated and obtained percentages correct across

the 66 data sets was 0.8 (range: 0.0–5.7), indicating that each of

these patient data sets was also well fitted by some lesioned

version of the DRC model. Table 3 shows the group patient data

and simulation data; again, the fit of model to data is clearly

satisfactory for both groups.

At the risk of belaboring the point about whether this method of

lesioned DRC simulation is too powerful, we did a kind of Monte

Carlo study. If it were the case that any possible pattern of

accuracy on the five types of stimuli could be well matched by one

of the 40,200 lesioned DRC models from which the best match

could be chosen, then we would find good matches between

lesioned DRC performance and obtained scores even when the

latter were derived randomly rather than from testing patients. So,

we created 100 random data sets by assigning random numbers

between 0 and 100 for the percentage accuracy with the five item

types and then searched the full space of 40,200 lesioned DRC

models for each random data set’s best match. If DRC’s success in

capturing the patient patterns was because it can capture any

pattern, then it would capture the random patterns just as well as

it captured the patient patterns. However, as Figure 1 shows, this

was not so.

The median value of this average of absolute differences be-

tween simulated and obtained percentage correct across the 100

random data sets was 16.0 (range: 2.8–33.3). For the 100 patient

simulations, this median was 1.0 (range: 0.0–8.0). That shows that

the range of possible patterns is far larger than the range of patterns

that the set of lesioned DRCs could accurately capture, yet the 100

patterns that were actually seen in the patient data set were all

captured well by a lesioned DRC model.

Comparing Triangle Model Simulations With

DRC Simulations

We can now turn to the results obtained by Woollams et al.

(2007) that were simulated in their article using the triangle models

approach (these are results only for word reading; as discussed

below, the triangle model did not simulate the impaired nonword

reading shown by some of the patients), so as to consider how well

the DRC model fares, in comparison to the triangle model ap-

proach, when attempting such simulations. Here, we consider

every result reported by Woollams et al. for reading of words, the

triangle model simulation of that result, and the DRC model

simulation of that result.

One of the variables studied by Woollams et al. (2007) was

severity. For the patient data, severity means severity of the se-

mantic deficit, as measured by a composite score derived from

picture-naming and spoken-word-to-picture-matching scores. For

the triangle model simulations, the severity of the semantic deficit

was represented by the degree to which the “S”3P input in the

model was weakened and made noisier. For the DRC model, of

course, there was no semantic deficit to vary in severity since

lesioning of a semantic system was not involved in the DRC

simulations. That is because, on the DRC account of reading in

semantic dementia, the association between a patient’s semantic

deficit and his or her reading accuracy is just that—an association,

not a causal relationship.

Table 3

Reading Accuracy in the Two Groups of Patients and Their DRC Simulations

Category

34 data sets with
nonword data

66 data sets without
nonword data

Patients DRC Patients DRC

High-frequency regular words 92.50 94.76 94.00 94.45
Low-frequency regular words 83.56 84.21 81.53 81.41
High-frequency exception words 86.69 89.14 83.45 85.17
Low-frequency exception words 60.75 59.87 53.79 52.84
Nonwords 78.90 78.30

Note. DRC � dual route cascaded model.

Figure 1. Best dual route cascaded model fits to the 100 patient data sets

(left) and 100 random data sets (right).
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Nevertheless, severity effects can be simulated by the DRC

model. For each particular patient data set, our simulations yielded

a specific best fitting lesioned DRC model (i.e., a model with a

particular combination of a lexical lesion of a certain degree with

a nonlexical lesion of a certain degree) and, hence, a particular

accuracy score for each different stimulus type for that lesioned

model and, therefore, for that patient data set simulation. There-

fore, for each lesioned DRC model, one can define severity as the

severity score of the particular patient whose data set that lesioned

model simulates.

That allows one to plot accuracy of reading of each of the four

word types as a function of severity not only for reading by the

patients but also for reading by the DRC model, and the patient and

model plots can be compared as a way of investigating how well

the simulations match the patient data. This is done in Figure 2.

For all four word types, the relationship between reading accuracy

and severity seen in the patient plots is very well captured in the

lesioned DRC plots.

The plots in Figure 3 may be directly compared to the plots in

Figure 6 of Woollams et al. (2007), which present the same patient

data plots along with triangle model plots. Comparisons between

these two figures show clearly that the relationship between se-

verity and accuracy of reading of each of the four word types as

seen in the patients is captured more accurately by the DRC model

than by the triangle model.

Woollams et al. (2007) reported the results of regression anal-

yses to investigate severity effects. These analyses indicated that

the relationship between severity and reading accuracy was stron-

ger for low-frequency than for high-frequency words and stronger

for exception words than for regular words for both the patient data

and the triangle model simulations. Table 4 shows the results of

these regression analyses plus the results of the regression analyses

for the DRC simulations.

For the four sets of word data (we discuss the nonword data

later), the DRC R2 values are much more similar to the patient

R2 values (average difference: 0.005) than the triangle model R2

values are (average difference: �0.24), and the DRC intercept

values are more similar to the patient R2 values (average differ-

ence: �0.85) than the triangle model intercept values are (average

difference: 1.50). Hence the effect of severity on word reading

accuracy in the patients is captured more accurately by the DRC

model than by the triangle model, confirming the impression

gained by comparing our Figure 2 with Figure 6 of Woollams et al.

(2007).

Word Reading Accuracy

For the patients and for the triangle model simulations, reading

accuracy was significantly affected by regularity (exception word

reading worse than regular word reading) and frequency (high-

frequency words read more accurately than low-frequency words).

For both the patient data and the triangle model data, these two

variables interacted, reflecting the larger effect of regularity on

low-frequency words. The interaction between regularity and fre-

quency was independent of level of severity.

All of this was also true for the DRC simulations: An analysis

of covariance with regularity and frequency as factors and patient

severity score as a covariate yielded significant effects of regular-

ity, F(1, 98) � 157.5, p � .0001, and frequency, F(1, 98) � 178.9,

p � .0001, and a significant interaction between these variables,

F(1, 98) � 27.3, p � .001. The interaction among frequency,

regularity, and severity was not significant ( p � .490). Hence, the

pattern of results in the patient data was completely captured by

the DRC simulations (as it was by the triangle model simulations).

LARC Errors

A legitimate alternative reading of components (LARC) error is

“a response in which the orthographic components of the stimulus

are pronounced in accordance with correspondences contained in

another existing monosyllabic word” (Woollams et al., 2007, p.

325). All regularization errors are by definition LARC errors, but

LARC errors can also occur with regular words (e.g., reading the

regular word food to rhyme with blood or good).

In both the patient data and in the triangle model simulations

(see Woollams et al., 2007, Figure 7), percentage LARC errors

(calculated as a percentage of total responses, correct or incorrect)

showed the same pattern of effects of regularity and frequency as

overall error rates (i.e., main effects of both frequency and regu-

larity and an interaction between these two factors, with this

interaction independent of severity) The same results were ob-

tained with the DRC simulations: The proportion of incorrect

responses by the DRC model that were LARC errors showed

strong effects of regularity, F(1, 98) � 158.3, p � .001, and

frequency, F(1, 98) � 77.4, p � .001, and a Frequency � Regu-

larity interaction, F(1, 98) � 70.25, p � .001. The interaction

among frequency, regularity, and severity was not significant ( p �

.356). Hence, the pattern of results in the patient data was com-

pletely captured by the DRC simulations (as it was by the triangle

model simulations).

Figure 3 plots the percentage of DRC’s LARC errors with each

of the four word types as a function of patient severity. Figure 7 of

Woollams et al. (2007) provided such plots for the patient data and

for the triangle model simulations. Inspection of these two figures

reveals that the DRC simulation plot is much more similar to the

patient data plot than the triangle model plot is.

We conclude that all of the features of the data reported by

Woollams et al. (2007) that have been simulated using the triangle

model approach can also be simulated by the DRC model and,

moreover, that these DRC simulations are superior to the triangle

model simulations: The patient plots of accuracy of reading for the

different word types as a function of severity are more accurately

reproduced in the DRC simulations than in the triangle model

simulations, the same is true of the patient plots of percentage

LARC errors for the different word types as a function of severity,

and in the regression analyses summarized in Table 3, the fit of

simulation to patient data is much better for the DRC model than

for the triangle model.

DRC Simulations of Aspects of Reading in Semantic

Dementia That Were Not Simulated by the Triangle

Model Approach

Nonword Reading

As noted earlier, it is not just exception word reading that is

impaired in some cases of semantic dementia: Nonword reading

impairment is impaired in some cases too (e.g., in 71% of the 34
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Figure 2. Effect of severity on reading of regular and irregular high- and low-frequency words in patients with

semantic dementia and their dual route cascaded model simulations. HE � high-frequency exception words;

HR � high-frequency regular words; LE � low-frequency exception words; LR � low-frequency regular words.
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data sets of Woollams et al., 2007, where nonword reading was

assessed). This impairment was not captured by the triangle model:

Its nonword reading accuracy was exactly the same when it was

lesioned as when it was intact. In contrast, we have already

presented data showing that the DRC model can successfully do

this: Table 2 reports that the mean nonword reading accuracy of

the 34 lesioned DRC models simulating the 34 data sets that

included nonword reading data was 78.30%, which compares well

with the mean patient score of 78.89%.

These simulations of nonword reading are in fact remarkably

accurate, as Figure 4 illustrates. The correlation between patient

and lesioned DRC accuracy here is .997 ( p � .001). It is important

to appreciate that this accuracy was achieved in the presence of the

constraint that accurate simulation of reading accuracy for high-

and low-frequency regular and exception words was also required

using the same lesion values as used to produce the results shown

in Figure 4.

Relationship Between Severity and Nonword

Reading Accuracy

Although Woollams et al. (2007) did not successfully model the

fact that nonword reading is impaired in some cases of semantic

dementia, they did (as mentioned above) collect nonword reading

data for 34 of the 100 data sets they reported, and they observed

that in this group, nonword reading performance “was somewhat

impaired, with a mean accuracy of 78.53% (SD � 22.51). In

contrast to all word conditions, however, nonword reading perfor-

mance was not significantly predicted by level of semantic knowl-

edge” (Woollams et al., 2007, pp. 328–329). This was also true of

the individual-patient lesioned DRC simulations for this group.

Nonword reading by this group of 34 lesioned DRCs was some-

what impaired, with a mean accuracy of 78.30% (SD � 22.54).

Woollams et al. (2007) also noted that that the degree of

nonword reading impairment in this patient group was unrelated to

severity. In the patient data, the regression of nonword reading

accuracy on severity of semantic impairment (as measured by the

composite semantic score) did not approach significance; this was

also true of the DRC data.

In sum, it is clear that the nonword reading performance in this

group of 34 cases of semantic dementia and its independence from

severity of semantic impairment are modeled by DRC with a high

degree of fidelity.

Yet there is a puzzle here. If, as our account claims, the impair-

ment of exception word reading appears relatively early in the

Figure 3. Percentage of lesioned dual route cascaded model responses that were LARC errors, as a function

of severity, for regular and irregular high- and low-frequency words. HE � high-frequency exception words;

HR � high-frequency regular words; LARC � legitimate alternative reading of components; LE � low-

frequency exception words; LR � low-frequency regular words.
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disorder and the impairment of nonword reading relatively late,

one would expect nonword reading to be better in a group of

patients who are relatively early in the disorder—in some of these

patients, nonword reading would not impaired at all—than in a

group of patients who are late in the progression of the disorder.

More generally, at the earliest stage of the disorder, reading aloud

of all types of items is intact, whereas at the latest stages, reading

aloud of all types of items is impaired. So, there must surely be an

association between the severity of the semantic impairment and

the severity of the nonword reading disorder. Why, then, is no such

association observable in the data of Woollams et al. (2007) and in

the DRC simulations of these data?

The relevant data here are those of the 34 data sets from 20

different patients tested on nonword reading on between one and

five occasions.

The decision as to whether or not to test a patient on nonword

reading on any testing occasions (nonword reading was tested on

34 of the 100 testing sessions) was not made systematically,6 so it

is possible that the testing sessions where nonword reading was

measured were with patients whose range of severity of semantic

impairment was restricted compared to the range across the full

100 data sets. However, this is not so: The composite semantic

score for those tested on nonword reading was 48.32 (SD � 4.31),

and for those not tested on nonword reading, it was 47.71 (SD �

3.09).

We did discover, however, that the absence of any relationship

between severity of semantic impairment and nonword reading in

the 34 data sets from 20 patients was due just to the data from one

patient, Patient M.A. When that one patient’s data are removed

(this involves removing 5 data sets from the 34 because M.A. was

tested on nonword reading on five occasions7), the regression of

nonword reading on severity of semantic impairment is significant

in the human data (R2
� .122, one-tailed p � .03) and in the DRC

simulations (R2
� .146, p � .041).

To explore the way in which Patient M.A. was an outlier, Figure 5

plots nonword reading accuracy for patients and DRC simulations

against severity of semantic impairment for each of the 34 data sets

that contained nonword reading data. Here, it is clear that M.A.

was quite different from all of the other patients: M.A.’s nonword

reading impairment was present at a much earlier severity stage

than is the case with all of the other patients. This is true also for

the DRC simulations of M.A. All 5 of the other patients with very

marked nonword reading impairments (�80% correct) were at late

severity stages (all scoring �40% on the composite semantic test);

again, this was also true for the DRC simulation data. We have

nothing to say about what might explain why M.A.’s nonword

reading impairment became apparent at an earlier severity stage

than is characteristic of the other patients.

We note that even in M.A.’s data, there is a clear trend for

nonword reading accuracy to decline as severity of semantic

impairment increases, and since this effect was actually significant

in this patient group when M.A.’s data were removed, we offer this

as preliminary evidence that it is a general feature of semantic

dementia that a nonword reading deficit is associated with the late

stages of the disease.

The Dual Route Equation

Since, in the DRC account of the human reader, a correct

translation of a nonword from print to speech by a human reader

indicates correct operation of that reader’s nonlexical route, one

can estimate the integrity of the nonlexical route in any reader by

measuring the accuracy with which nonwords are read. Similarly,

since correct translation of an irregular word from print to speech

6 Anna M. Woollams (personal communication, February 2008).
7 M.A. was not tested on nonword reading on the first testing occasion,

which is why there is no M.A.1 in Figure 5.
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Figure 4. Nonword reading accuracy in 34 cases of semantic dementia

and in dual route cascaded model (DRC) simulations of these cases.

Table 4

Regressions of Patient and DRC Reading Performance on

Patient Severity and Regressions of Triangle Model Reading

Performance on Strength of “S”3P Contribution in the Model

Category Intercept R2

High-frequency regular words
Patient data 84.5 0.26
DRC model 86.0 0.27
Triangle model 87.7 0.43

Low-frequency regular words
Patient data 63.7 0.26
DRC model 64.1 0.26
Triangle model 60.5 0.54

High-frequency exception words
Patient data 62.9 0.42
DRC model 66.5 0.40
Triangle model 59.1 0.57

Low-frequency exception words
Patient data 26.8 0.50
DRC model 24.7 0.49
Triangle model 24.6 0.84

Nonwords
Patient data 71.4 0.03 (ns)
DRC model 69.6 0.04 (ns)
Triangle model

Note. DRC � dual route cascaded model; “S”3P � semantics to pho-
nology.
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Figure 5. Nonword reading accuracy as a function of degree of semantic impairment, in patients (left) and

lesioned dual route cascaded model (DRC) simulations (right). MA � Patient M.A.
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indicates correct operation of the lexical route, one can estimate

the integrity of the lexical route by measuring the accuracy with

which exception words are read. Since a regular word will be read

correctly whenever either route does its job correctly, the DRC

model predicts that in any reader, one ought to be able to estimate

the accuracy with which a set of regular words is read if one knows

the accuracy with which the person reads exception words and

nonwords, assuming that the regular and exception words are

matched on relevant variables such as frequency and that the

regular words and nonwords are matched on relevant variables

such as length. The specific equation generated from these con-

siderations is

pr(regular word correct) � pr(exception word correct) �

(1 � pr[exception word correct]) � pr(nonword correct).

Coltheart et al. (2001, p. 247) reported results of the application

of this equation to data from 1,488 children ages 7 to 15 years

whose reading of regular words, exception words, and nonwords

had been measured. For this sample, the correlation between

obtained regular word accuracy and the accuracy predicted by the

dual route equation was very high: .921. This was further explored

by Castles et al. (2006), who analyzed data from nine separate

samples8 of children in all of whom reading of regular words,

exception words, and nonwords had been measured. The nature of

these samples (see Castles et al., 2006, for details) and the corre-

lations between obtained regular word accuracy and the regular

word accuracy predicted by this dual route equation are shown in

Table 5.

These are all high correlations, indicating that the equation

works well in predicting children’s reading regardless of whether

the children are normal readers, are dyslexic, or have suffered

brain damage. Analyses of age effects showed that the accuracy of

prediction by the equation is independent of age: The equation is

just as accurate for children age 7 or 8 years (who can barely read)

as it is for children age 14 or 15 years (most of whom are skilled

adult-level readers). This is consistent with the view (Marshall,

1984) that the architecture of the reading system proposed in the

DRC model is appropriate even for children who have only just

begun to learn to read.

The reason this work was done with children (some normal

reader samples, some disordered reader samples) is that adult

normal readers would be at ceiling on all the word and nonword

reading measures, and so, there would be no reading score vari-

ance for the equation to capture. That is of course not the case for

adults with an acquired dyslexia—such as adults with semantic

dementia. We therefore applied this equation to the data of the 34

cases of Woollams et al. (2007) for whom nonword reading data

were collected (the equation cannot be applied unless data on

regular words, exception words, and nonwords are available). For

high-frequency words, the correlation between observed regular

word reading accuracy and the prediction from the equation was

.928 ( p � .001); for low-frequency words, it was .924 ( p � .001).

Thus, the DRC equation makes rather accurate predictions, for

individual patients with semantic dementia, of the patient’s regular

word reading accuracy given knowledge of the patient’s exception

word reading accuracy and nonword reading accuracy. We see no

way in which any existing triangle model could be used to do this.

Pro Tem Summary: Conclusions Concerning

Simulation of Reading in Semantic Dementia by the

Triangle and DRC Models

We conclude that the DRC model is clearly the superior model

here, our reasons for this conclusion being the following:

1. Every effect that the triangle model simulates is more

accurately simulated by the DRC model;

2. The dual route equation that so accurately predicted

regular word reading accuracy in the patients has no

counterpart in the triangle model framework;

3. The triangle model was unable to simulate the nonword

reading impairment in semantic dementia, whereas the

DRC simulation of this impairment was highly accurate;

and

4. The DRC model offers simulations at the individual-

patient level, whereas the triangle model simulations do

not.

This brings to an end our discussion of the data of Woollams et

al. (2007) and its simulation by the triangle and DRC models. We

conclude our article with a brief discussion of two other sets of

data on acquired dyslexia and attempts to simulate these using the

lesioned DRC method we have introduced in this article.

Two Other DRC Simulations of Acquired Dyslexia

The Study by Gold et al. (2005)

There were three groups of subjects in this study: 6 patients with

semantic dementia, 10 patients with Alzheimer’s disease, and 14

healthy controls. They were given 163 regular words varying in

length from three to six letters to read aloud under speeded reading

8 Some of these samples were included in the analyses of Coltheart et al.

(2001).

Table 5

Correlations Between Obtained Regular Word Reading

Accuracy and Regular Word Reading Accuracy Predicted From

the Dual Route Equation for Nine Samples of Children

Sample characteristics

Correlation of observed
with predicted regular
word reading accuracy

Children—normal readers (N � 420) .829
Children—normal readers (N � 56) .732
Children—normal readers (N � 297) .736
Children—normal readers (N � 242) .838
Children—normal readers (N � 309) .814
Children—normal readers (N � 812) .821
Children with dyslexia (N � 53) .678
Children with dyslexia (N � 40) .857
Children who had had strokes (N � 17) .960
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conditions. The words were categorized as short (three to four

letters) or long (five to six letters) and varied in frequency. Accu-

racy of reading these words was at ceiling for all three groups. All

three groups of subjects showed an effect of word frequency on

reading aloud latency.

According to the DRC analysis of reading in semantic dementia,

if these patients with semantic dementia had been in Phase 3 of the

disorder, they would have been less accurate than healthy controls

on low-frequency regular word reading, which they were not. They

were not in Phase 1 of the disorder either because they all had

prominent rather than mild semantic impairments (Gold et al.,

2005, Figure 1). Thus, these patients were all in Phase 2 of the

disorder and hence would have been expected to be surface dys-

lexic, which they were: On the American National Adult Reading

Test (Grober & Sliwinski, 1991) test of irregular word reading, all

scored below the means of the healthy and Alzheimer’s groups,

with 5 showing particularly poor performance. Any patient in

Phase 2 will be reading at least some regular words via the

nonlexical route. Reading via the nonlexical route generates a

substantial length effect that is minimal or absent in reading via the

lexical route (Weekes, 1997), a result that is also true of the DRC

model’s reading (Coltheart et al., 2001) Therefore, the DRC anal-

ysis predicts that although all three groups of subjects were at

ceiling on accuracy of reading regular words, the patients with

semantic dementia should show a larger effect of length on reading

aloud latencies for regular words than the other two groups. This

is what was found by Gold and colleagues, who therefore con-

cluded (Gold et al., 2005, pp. 842–843) that their data were better

explained by the DRC approach than by the triangle models

approach.

To computationally verify the DRC analysis here, we carried out

a simulation study using the same short and long regular words as

were used in the study by Gold and colleagues (2005).9 These

words were run through the intact DRC model (simulating control

subjects) and through a DRC model with nonlexical route intact

but lexical route lesioned by 94% (simulating severe pure surface

dyslexia). Figure 6 shows the results. In the human data, the length

effect for control readers was not significant, whereas the patients

with semantic dementia showed a large and significant effect of

length. The same contrast is seen between intact and lesioned DRC

models. For the intact model, the effect of length was not signif-

icant (F � 1); for the lesioned model, it was highly significant,

F(1, 157) � 8.465, p � .004.

The Study by Crisp and Lambon Ralph (2006)

This was a study of 12 heterogeneous stroke patients with

acquired dyslexias of various sorts, the inclusion criterion being

the presence of at least one of the three symptoms: (a) an image-

ability effect on word reading, (b) the occurrence of semantic

paralexias in word reading, and (c) worse reading of nonwords

than words—(in fact, all 12 patients showed nonword reading

worse than normal, their percentage correct for nonword reading

ranging from 0% to 70%). The matched materials relevant to our

analyses that were administered to this patient group were as

follows:

1. Thirty-six low-frequency monosyllabic regular words

from Monaghan and Ellis (2002);

2. Thirty-six low-frequency monosyllabic exception words

from Monaghan and Ellis (2002), matched to the regular

words on frequency, age of acquisition, neighborhood

size, and number of letters; and

3. Twenty-four monosyllabic nonwords from the PALPA

battery (Kay, Lesser, & Coltheart, 1992).

Application of the DRC equation to the prediction of regular

word reading accuracy from exception word reading accuracy and

nonword reading accuracy with the data from these patients

yielded a correlation between predicted and observed regular word

reading accuracy of .973 ( p � .001). Figure 7 plots observed

against predicted regular word reading accuracy for the 12 pa-

tients.

The data of these 12 patients were also individually simulated

using the lesioned DRC method described above. The 96 items

were presented to every lesioned DRC, and for each patient, the

lesioned DRC that yielded the minimum absolute average dis-

9 We thank Brian Gold for providing us with these stimuli. We excluded

one word (fire) because in DRC’s dialect, it is disyllabic.

Figure 6. Effect of length on reaction time for reading aloud of regular words, for controls and patients with

semantic dementia (left) and for intact and lesioned dual route cascaded (DRC) models (right).
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crepancy between the patient’s proportions correct on the three

types of items and the proportions correct of the lesioned DRC

model was identified. The results are shown in Table 6. As can

be seen, for 9 of the 12 patients, there existed a lesioned DRC

whose data were identical to the data of the patient. For the

remaining 3 patients, the mean unsigned discrepancy was not

zero but was very small: .009. Let us point out again that this is

not a vacuous finding: For each patient, two parameters are

being used to fit three data points, so successful fitting is not

guaranteed. The fit of DRC to individual patients was therefore

excellent in this lesioning-of-DRC study.

General Conclusions

It was claimed in the first study reporting the full DRC model

(Coltheart et al., 2001) that the DRC model was able to offer

accounts of a much wider variety of facts about adult skilled

visual word recognition and reading aloud than any other com-

putational model of reading then in existence. More recently,

Rastle and Coltheart (2006) focused on two specific questions

about the nature of the human reading system about which the

DRC and the PDP triangle model approaches disagree—“Is

there any processing in the human reading system that is

serial?” and “Are there representations in the human reading

system that are local rather than distributed?”—and provided

evidence that the answer to both questions is yes (as asserted by

the DRC model) rather than no (as asserted by the PDP ap-

proach). In particular, Rastle and Coltheart summarized eight

different lines of evidence that, they argued, show that there is

serial processing in the human reading system and hence are

inconsistent with any purely parallel processing model of that

system. We therefore consider that the DRC model is currently

superior to the PDP triangle model approach in its ability to

account for skilled adult reading. We do not mean to claim that

there are no findings with adult skilled readers that the triangle

models can simulate and the DRC model cannot. There are

some: consistency effects, for example, including consistency
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Figure 7. Relationship between obtained regular word accuracy and

regular word accuracy predicted from the dual route equation for 12

patients with various forms of acquired dyslexia.

Table 6

DRC Simulations of Accuracy of Reading Regular Words, Exception Words, and Nonwords in 12 Patients With Acquired Dyslexia

Patient Regular words Exception words Nonwords Lexical lesion Nonlexical lesion
Mean absolute discrepancy

between model and patient data

R.S. .694 .361 .333 76.0% 68.0% .009
DRC .694 .333 .333

P.G. .750 .583 .375 53.5% 77.5% .009
DRC .750 .555 .375

D.B. 1.000 .806 .583 31.5% 67.0% .009
DRC .972 .806 .583

L.R. .083 .028 .083 96.5% 93.5% .000
DRC .083 .028 .083

M.M. .111 .110 .000 84.5% 91.5% .000
DRC .111 .110 .000

R.J. .250 .278 .083 70.0% 96.0% .000
DRC .250 .278 .083

A.B. .806 .583 .542 55.0% 72.5% .000
DRC .806 .583 .542

M.R. .750 .639 .333 57.0% 87.0% .000
DRC .750 .639 .333

B.N. .667 .472 .458 62.5% 77.0% .000
DRC .667 .472 .458

T.H. .889 .861 .250 23.0% 76.0% .000
DRC .889 .861 .250

N.S. .778 .528 .292 51.5% 80.0% .000
DRC .778 .528 .292

T.J. .694 .556 .083 49.0% 85.5% .000
DRC .694 .556 .083

Note. DRC � dual route cascaded model.
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effects in acquired dyslexia (Patterson & Behrmann, 1997;

Perry, Ziegler, & Zorzi, 2007). Yet these findings are few,

whereas the number of effects that the DRC model has simu-

lated but that the triangle models have not is large.

We also consider that the DRC approach is currently superior to

the PDP approach in its ability to account for various forms of

acquired and developmental dyslexia. This argument has been

made by Coltheart (2006) in relation to acquired surface and

phonological dyslexia and by Castles et al. (2006) in relation to

developmental dyslexia. In this article, we have made this argu-

ment in relation to the patterns of acquired dyslexia seen in

semantic dementia. We have compared the accounts of reading in

semantic dementia offered by the DRC model and the PDP triangle

model and have shown (a) that even those aspects of reading in

semantic dementia that have been simulated using the triangle

model are more accurately simulated by the DRC models and (b)

that there are aspects of reading in semantic dementia that have not

been simulated by the triangle model but are accurately simulated

by the DRC model.

Hence, we conclude that the DRC model is currently to be

preferred to triangle models based on the PDP approach as an

account of how human readers recognize printed words and read

aloud.
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Postscript: Reading in Semantic Dementia—A Response

to Woollams, Lambon Ralph, Plaut, and Patterson (2010)

Max Coltheart
Macquarie University

Jeremy J. Tree
Swansea University

Steven J. Saunders
Macquarie University

Let us first summarize what Woollams and her colleagues

(Woollams, Lambon Ralph, Plaut, & Patterson, 2007, 2010) and

we agree about, which is as follows. All patients with semantic

dementia have impairments of semantic memory. All of them also

show atrophy to the anterior temporal lobes, which spreads along

the temporal pole to more posterior regions. Other regions (e.g.,

frontal lobes) may also eventually be affected, and the pattern of

atrophy can differ between hemispheres. All patients with seman-

tic dementia will show surface dyslexia at some point or another

during the evolution of their condition. Across any group of

patients, any measure of comprehension ability (e.g., the average

of picture-naming and picture-to-word-matching performance)

will be positively correlated with accuracy of reading of irregular

words.

Our fundamental disagreement has to do with the interpretation

of the last of these facts. Woollams and colleagues regard this

correlation as involving a causal relationship: The semantic im-

pairment is causing the reading impairment because, to a degree

that differs from person to person and from exception word to

exception word, correct reading of an exception word needs input

from semantics to phonology. In contrast, we regard this correla-

tion as representing what cognitive neuropsychologists sometimes

refer to as a mere association, due to the influence of a third

variable, which, in this case, is the severity of the atrophy. The

more extensive this atrophy is, the worse comprehension perfor-

mance will be and the worse exception word reading will be, but

this is not telling us anything about the nature of the reading

system or about the role of semantics in reading aloud because

there is nothing causal about the observed correlation between

these two variables. So in response to a question such as “Why

would the ability of the patients to name pictures and match

spoken words to be expected to have an effect on the ability of the

DRC model to read aloud?”, our answer would be that the ability

of patients to name pictures and match spoken words is a measure

of the extent of the patients’ cortical atrophy and that the greater

this atrophy is, the more damage there will be to nonsemantic

components of the reading system. That is why a computational

model of reading that has no semantic system (the dual route

cascaded [DRC] model) can nevertheless very accurately simulate,

as Coltheart, Tree, and Saunders (2010) demonstrated, the patterns

of exception word, regular word, and nonword reading seen in

individual patients with semantic dementia. Textbook treatments

of cognitive neuropsychology standardly argue that inferences

from dissociations between abilities are much more secure than

inferences from associations between abilities (see, e.g., Ellis &

Young, 1996, p. 6), a tenet that we take Woollams and colleagues

to reject since they are making a theoretical inference on the basis

of the association between semantic impairment and reading im-

pairment.

A second tenet of cognitive neuropsychology to which we

adhere but that, it appears, Woollams and colleagues also reject is

that when studying any particular neuropsychological impairment

of cognition, the real task is to explain the patterns of results seen

in individual patients having that impairment, not just to explain

the group means of a set of such patients, that is, to do single case

studies rather than group studies (see, e.g., Ellis & Young, 1996, p.

9). That is why we have sought to investigate whether the DRC

model can produce an accurate simulation of every one of the 100

data sets from patients with semantic dementia that were collected

by Woollams et al. (2007). In contrast, the simulations using the

triangle model reported by Woollams et al. (2007, 2010) do not

involve any attempt to model the individual patterns of perfor-

mance with exception words, regular words, and nonwords seen in

data from individual patients. On the contrary, the impaired non-

word reading seen in the majority of cases of semantic dementia

(seen in 71% of the data sets of Woollams et al., 2007, that

included nonword reading data) was not modeled by Woollams et

al. (2007), and the new modeling reported by Woollams et al.

(2010), where impaired nonword reading was produced in the

triangle modeling by adding noise to the computation of phonol-

ogy from semantics, aimed only at matching the model to the

group mean nonword reading of the patients. There was no attempt

here to explain why some patients were within the normal range on

nonword reading and some very severely impaired. The worst

performance of the triangle model on nonword reading was 49%

correct (see Figure 2 of Woollams et al., 2010), whereas in the

patient data, there were seven patients who scored less than 49%.

The triangle model simulation produced a mean nonword reading

level of 81.4%, with a range from 49% to 100%. In the patient

data, the mean was 78.9%, with a range from 23% to 100%. In the

DRC model simulation data, the mean was 78.3%, with a range

from 23% to 100%, and across the 34 data sets, the correlation

between the DRC-simulated nonword reading performance and the

patient reading performance was .997. This is a clear demonstra-

tion that the triangle model simulations of nonword reading per-

formance in semantic dementia done to date fit the patient data

much less well than do the DRC model simulations.
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We have failed to understand the discussion by Woollams and

colleagues criticizing our view about the phases of reading impair-

ment in semantic dementia. They and we agree (a) that there are

patients with semantic dementia whose reading aloud is intact, (b)

that there are patients with semantic dementia who are impaired at

reading aloud exception words but normal at reading aloud non-

words, (c) that there are patients with semantic dementia who are

impaired at both exception word reading and nonword reading, and

(d) that there are no reports of patients with semantic dementia

who are in the normal range of exception word reading but

impaired at nonword reading. Surely, it follows from these four

facts that in the course of semantic dementia, impaired exception

word reading emerges only after semantic impairment has already

emerged and that impaired nonword reading emerges only after

both semantic impairments and then impaired exception word

reading have both already emerged? That is what our claim is

regarding the phases of reading impairment in semantic dementia.

Do Woollams and colleagues dispute this claim? If so, on what

basis? The data presented in Figure 1 of Woollams et al. (2010) do

not bear on this claim. What would bear on this claim would be the

discovery of patients with semantic dementia, intact exception

word reading, and impaired nonword reading.

Concerning what Woollams et al. (2010) have to say about

assessing model fit: What we want when we are seeking to

computationally model any kind of acquired cognitive impairment

is to show that the performance of the model when lesioned shows

similarities to the performance of the relevant patients. The closer

this similarity is, the stronger the patient data are as support for the

model. So, in analyses aimed at assessing model fit, one variable

has to be data from the model, and the other has to be data from

the patients. We cannot understand why Woollams et al. followed

Seidenberg and Plaut (2006) in referring to this as “comparing

apples to oranges” (Woollams et al., 2010, p. 277), nor why they

think that the appropriate way of assessing model fit is for both

variables to be derived from the model. To do that is to carry out

an investigation just of the model—an exercise in pure connec-

tionism, a branch of mathematics rather than of cognitive sci-

ence—not to seek to explain patient data in terms of a proposed

model. We therefore are unable to see the point of the analyses

reported in Tables 1 and 2 of Woollams et al.

We conclude with some remarks on the goals of the computa-

tional modeling of cognition, another topic on which our views

differ greatly from those of Woollams and colleagues. In common

with other computational modelers of cognition such as Jacobs and

Grainger (1994) and Perry, Ziegler, and Zorzi (2007), we adhere to

the practice of nested incremental modeling. What this means is

that if one discovers some result that is inconsistent with one’s

current model—call this Model A—even if one is able to show

that some new model—call this Model B—can account for this

new result, the replacement of Model A by Model B does not count

as making progress unless it is shown that all of the results that

Model A could account for can also be accounted for by Model B,

that is, the set of results that Model A can explain is nested inside

the set of results that Model B can explain. As Woollams et al.

(2010) noted, their views about the goals of computational mod-

eling are as set out in Seidenberg and Plaut (2006), who clearly

repudiated the principle of nested incremental modeling:

The PDP [parallel distributed process] approach is frustrating to some

because there is no single simulation that constitutes the model of the

domain. The model seems like a moving target. . . . Each model shares

something with all of the others, but each model differs as well.

Where, then, is the integrative model that puts all the pieces together?

The answer is, there is none and there is not likely to be one.

(Seidenberg & Plaut, 2006, p. 42)

We must confess to having been flabbergasted when we read these

words. If there is no fact of the matter about what the human

reading system is like—about what its cognitive architecture ac-

tually is—then what is the point of the experimental psychology of

reading, and what is it that computational modelers of reading are

trying to model?
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