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COMMENTS

Such Stuff as Habits Are Made On:
A Reply to Cooper and Shallice (2006)

Matthew M. Botvinick David C. Plaut
University of Pennsylvania Carnegie Mellon University

The representations and mechanisms guiding everyday routine sequential action remain incompletely
understood. In recent work, the authors proposed a computational model of routine sequential behavior
that took the form of a recurrent neural network (M. Botvinick & D. C. Plaut, 2004). Subsequently, R. P.
Cooper and T. Shallice (2006) put forth a detailed critique of that work, contrasting it with their own
account, which assumes a strict hierarchical processing system (R. P. Cooper & T. Shallice, 2000). The
authors respond here to the main points of R. P. Cooper and T. Shallice’s (2006) critique. Although
careful and constructive, the arguments offered by R. P. Cooper and T. Shallice (2006) mistook several
superficial implementational issues for fundamental theoretical ones, underestimated the computational
power of recurrent networks as a class, and in some ways mischaracterized the relationship between the
accounts they compare. In responding to these points, the authors articulate several key theoretical
choices facing models of routine sequential behavior.
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The knowledge structures, or schemas, that guide everydag2006) have analyzed the relationship between the respective ac-
action routines have been of fundamental interest to psychologistsounts, arguing broadly in favor of their approach and against ours.
since the time of William James (James, 1890; Miller, Galanter, & Although the comments offered by Cooper and Shallice (2006)
Pribram, 1960; Norman, 1981; Reason, 1990; Schank & Abelsorightfully restored the spotlight to some fundamental questions
1977). However, whereas the topic has become increasingly cemoncerning routine sequential action, they also have called for a
tral within artificial intelligence (e.g., Barto, Singh, & Chentanez, response. The investigators claimed to demonstrate several spe-
2005), human factors research (e.g., John, 2003), and neurosciengific deficiencies in the behavior of the Botvinick and Plaut (2004)
(e.g., Grafman, 1995), within psychology it appears to have driftednodel, but many of these can be shown to stem from fairly
toward the sidelines. Although important work has certainly con-superficial implementational factors rather than from basic theo-
tinued, both in psychology and in neuropsychology (e.g., Altmanryetical assumptions. In translating their specific observations into
& Trafton, 2002; Buxbaum, Schwartz, & Montgomery, 1998; general statements about the Botvinick and Plaut (2004) frame-
Forde & Humphreys, 2002; Zacks & Tversky, 2001), research intowork, Cooper and Shallice underestimated that framework’s com-
the representations underlying routine sequential behavior stangsytational capacity and overestimated its dependence on ad hoc
in need of reinvigoration. Hence, the series of articles by Coopeassumptions. Finally, in characterizing the relations between the
and Shallice (Cooper & Shallice, 2000; Cooper, 2003, in pressBotvinick and Plaut (2004) account and their own, Cooper and
Cooper, Schwartz, Yule, & Shallice, 2005) introducing an explicit shallice drew some debatable distinctions while at the same time
symbolic computational model of routine sequential action is ofgownplaying some critical ones.
considerable importance. Inspired by this work, we recently of- | the present article, we reply to Cooper and Shallice (2006).
fered an alternative model based on a recurrent neural networ}g“hough we aim to rebut a set of specific claims, our broader goal
architecture (Botvinick & Plaut, 2002, 2004). Cooper and Shallicejg 1o advance the debate by laying out some key theoretical issues
that are raised by the contrast between the relevant models but
which have not yet been adequately articulated. These bear pri-
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their paradigm and the one proposed in Botvinick and Plaut This can be illustrated by examining the behavior of the original
(2004). Finally, we consider the parallel Cooper and Shallice drewBotvinick and Plaut (2004) model if the incorrect visual input is
between the present debate and the rules versus connections debatesented following a search action. We ran the model on the
currently underway in some other domains of inquiry. coffee-making task used in Botvinick and Plaut (2004) until it had
Throughout the article, in keeping with Cooper and Shallicetorn open the coffee packet and selected the ouipate-cupin
(2006), we refer to their computational framework as tAd preparation to pout However, rather than providing the cup as the
(Interactive Activation Networkjnodeland to the Botvinick and  viewed object on the next time step, we instead presented the sugar
Plaut (2004) model as tt&RN(Simple Recurrent Networkjodel bowl (input featuresup-shapedtwo-handlessugal). Faced with
this input, on most trials (78%), the model selecpexnlr (fixate-
. . spoonwas selected on 17% of trials afigate-cupon the remain-
Specific Observations ing 5%). On the basis of the classification introduced by Schwartz,
Cooper and Shallice (2006) presented observations from a serigxced, Montgomery, Palmer, and Mayer (1991), this error—pour-
ing the coffee grounds into the sugar bowl—would count as a

of simulations using the SRN model that are purported to indicate _—
Substitution error.

flaws in the theory the model implements. Six observations are Of course, if the model were ained under circumstances in

considered o be of particular concem: (a) the infrequency Ofwhich search occasionally yielded the incorrect object, it would

object substitution errors; (b) the failure of the model to produce .
presumably be less prone to error under such circumstances. Never-

one specific anticipation error; (c) the failure of the model to ; . L
- . o theless, under noise, such a change would obviously lead substitution
match, at test, the frequencies of tasks during training; (c) the

failure of the model to infer that certain subsequences are equiv(?rmrS to become more frequent than in the original mbdel.

alent and interchangeable; (d) the failure of the model to cope with

novel initial conditions; and (e) the susceptibility of the model to Anticipation Errors

catastrophic interference. In the following sections, we revisit

these issues, arguing that the observations reported in Cooper and” S€cond type of action error that Cooper and Shallice (2006)

Shallice (2006) can largely be attributed to relatively inconsequenfocused on is the anticipation error, in which a critical action is

tial implementational considerations rather than to core paradigSkiPPed. As is acknowledged in Cooper and Shallice (2006), the

matic assumptions. SRN model does produce such errors at rates resembling those
observed empirically. However, it is pointed out that the model
fails to commit a particular anticipation error that does occur in the

Object Substitution Errors coffee task when performed by patients with action disorganiza-
tion syndrome. Here, in adding cream, the step of opening the

Object substitutions, as observed both in normal behavior and igream container is omitted, leading to an effort to pour from a
apraxia, involve incorrect use of one object in place of another—egled container.

Cooper and Shallice (2006) gave the example of pouring instant However, the failure of the original model to emit this error

coffee grounds into a sugar bowl instead of a cup. As Cooper anfeflects an inessential implementational choice rather than a deep-

Shallice (2006) noted, such errors do occur in the SRN model (Seeated flaw in the paradigm. The error fails to occur for the simple

Botvinick & Plaut, 2004, p. 417). However, as demonstrated in

their Simulation 1, substitutions make up a smaller proportion of

all errors than observed in human behavior. 1 The Botvinick and Plaut (2004) model was retrained on the coffee and
As Cooper and Shallice (2006) correctly noted, for the SRNtea sequences as described in the original article. However, the background

model to acquire the wrong object in a given context, the modepet was notincluded. The background set included only scenarios involving

must explicitly select that object, and it is unlikely to do this unlessthe objgcts ‘involved in the coffee and taskg and sohconte_lihed no instances

its internal representation of task context is already disrupted?’ POUing info the sugar bowl, as one might do in refilling. Thus, the

background set inappropriately biased against performing this action as an

Thus, having acquired the wrong object, the model is more likely, "\ e was added to hidden unit activations as described in Botvinick

to §e|ect an action appropriate t9 that object than it is to use th(;:‘md Plaut (2004) at a level of 0.2. All simulation results reported in the
object to execute the correct action for the tallsk.context. ) body of the article were replicated in five separate training runs.
However, the infrequency of object substitution errors in the 2 tpjg i turn, would also address two other concerns raised by Cooper
SRN model stems from an inessential implementational choiceang Shallice (2006), allowing the presence of distractor objects to affect
For simplicity, Botvinick and Plaut (2004) modeled object selec-performance and driving down the proportion of omission errors. In an-
tion as a deterministic process; when the model selected thtcipation of further debate, it is noted that the use of “perceptual actions”
fixate-cupaction, the cup reliably appeared on the next time stepas outputs of the SRN model is another implementational convenience,
as the viewed object. This choice was made to minimize thestanding in for a mechanism whereby objects are selected by top-down
potential sources of error in the model so as to emphasize the rofkiasing on the processing of bottom-up perceptual inputs (see Botvinick,
of the model’s internal context representations in generating error$Y!sma, Buxbaum, & Jax, in press). ) _ _
However, it is obvious from everyday life and well documented in . Note that our argument in the present section, as in subsequent sections,

. . . implies the assumption that introducing the specified changes to the
empirical studies (Zhang, Samaras, Yang, & Zelinsky, 2005) tha}?:otvinick and Plaut (2004) model would leave previously established

object selection is not deterministic. Searching for one object oftefygpects of the model's behavior intact. Given that we have not tested this
leads to the inadvertent and typically transient selection of anothefnrough detailed simulations, the assumption can be questioned. Neverthe-
Incorporating this fact into the SRN implementation would haveless, in the absence of obvious causes for doubt, the assumption appears
increased the frequency of object substitution errors. justifiable.
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reason that, in the repertoire of tasks on which the model wasvhich is further detailed in the Appendix, also makes clear why
trained, there is no example of a container that does not requir€ooper and Shallice (2006) failed to observe the desired effect.
opening before use. Thus, the sequepickup—fixate-cup—~pour To keep things simple, our simulation posits a formalized task
never occurs in any context during training. In the real world, domain that boils the issue down to its basics. It is assumed that all
containers are often open when first encountered (think of addindegal action sequences within this domain have the same structure.
cream to coffee from a pitcher), making the sequenceEach starts with the use of some objagctransitions to the use of
pickup—fixate-cup—pour quite familiar and more likely to intrude a second objedb, and then finishes with a return to the original
as an error. Indeed, if the model is trained on coffee sequences imbject a (see the Appendix for details of the task and model
which the cream is sometimes already open when first encounteradchplementation). A critical assumption is that there are two ob-
and then tested at a noise level of 0.2, it does occasionally commijects,b, andb,, analogous to the sugar packet and sugar bowl, that
the anticipation error that is of interest to Cooper and Shallicecan fill theb role. It is assumed, additionally, thiaf andb, can be
(2006). used interchangeably in a variety of different contexts, and to
capture this we assume that five different objeetsf can fill the
a role. As a result, there are 10 legal sequences in the domain:
a,—b,—a,, a,—b,—a,, a,—b,—a,, a,—b,—a,, and so forth. In
Simulation 2 of Cooper and Shallice (2006) demonstrated thabur simulation, the model is trained on all butdl,-b,—a,). The
the SRN model, as implemented in Botvinick and Plaut (2004),question of interest is whether, following training, the model
does not produce sequences at the same relative frequencies wjghoduces that withheld sequence. As detailed in the Appendix,
which those sequences occurred during training. For example, thehen trained and tested under a reasonable set of assumptions, the
simulation showed that if the model is trained with a slight fre- model does produce this sequence. This demonstrates, in a simple
quency bias toward adding cream before sugar, the trained modelay, that the SRN model can infer that 2 subsequences may be
shows a much stronger bias. Cooper and Shallice (2006) concludagsed interchangeably in a context in which it has not been directly
that “the frequency of sequences in the training set must be finelyrained to do so.
balanced if the SRN model is to be able to generate all sequencesA critical observation from the above simulation is that the
on which it has been trained” (p. 895). model fails to generalize in the same way if a more restricted
This aspect of the model's performance stems from anothetraining set is used. In the training set just described, both versions
inessential implementational decision, which was to use a winneref the objectb subsequence occurred in four different contexts
take-all method for output selection. As Cooper and Shallice(a,.s). However, if sequences involviray s are removed from the
(2006) pointed out (p. 902), an equally reasonable choice wouldraining set, so that the model observes Hutlandb, in only one
have been to select actions probabilistically, with the likelihood ofcontext &,), the trained model's behavior does not reflect the
an action depending on the activation of the relevant output unitnference that the two subsequences can be used interchangeably
(above some minimum). In fact, such a selection rule was esin thea; context. Details of the relevant simulation are once again
chewed by Botvinick and Plaut (2004) simply for expository provided in the Appendix. The crucial point is that, to generalize
reasons. We wished to avoid introducing another potential sourci the fashion Cooper and Shallice (2006) quite reasonably de-
of errors, again reflecting a desire to make clear the effect oimanded, the SRN model must be exposed during training to an
degrading the model’s context representations. Had a probabilistisdequate range of sequence variation. Restricting the training set,
selection procedure been used, such as the Luce choice rule (Luas must be done for practical reasons, necessarily exposes the
1963), it is evident that the model would come closer to matchingnetwork during learning to spurious correlations that are unlikely
the frequencies of sequences in the training set, a point that Coop&y arise in actual human experience—such as the invariable and
and Shallice (2006) themselves allowed (p. 902). massively repeated use of one of two permissible methods for
adding sugar during tea making, as in the Cooper and Shallice
(2006) simulation (for related computational observations, see
Rougier, Noell, Braver, Cohen, & O'Reilly, 2005). The reliance of
An important feature of routine sequential action is that it oftenthe SRN model on a training set that is broad and representative of
contains subsequences that can be substituted for one anothére task domain is a point we shall further emphasize in what
Botvinick and Plaut (2004) showed that the SRN model can learrfollows.
to treat subsequences interchangeably, learning specifically to add
sugar from a sugar packet or a sugar bowl. However, Cooper an@ariations in Initial Conditions
Shallice (2006) raised the question of whether the model can infer
such sequence equivalence. Specifically, Simulation 3 demon- Another claim from Cooper and Shallice (2006) is that the SRN
strated that if the model is trained to prepare tea by using both anodel performs reasonably only if presented with precisely the
sugar packet and sugar bowl but to prepare coffee by using only same environmental conditions as encountered during training.
sugar bowl, the fully trained model does not spontaneously proGiven different circumstances, it is suggested, the model cannot
duce coffee sequences in which the sugar packet is used. infer correct modifications to action sequences. The example pro-
Although it is true that Botvinick and Plaut (2004) did not vided in Simulation 4 of Cooper and Shallice (2006) involved
directly demonstrate the ability to infer sequence equivalence, thatunning the trained model on the coffee task but also initializing
article did note that SRN models are capable of it and referred tehe environment such that the sugar bowl is initially open, a
unpublished simulation results documenting this point (p. 423-situation never encountered during training. The sensible thing to
424). The relevant simulation, which we now briefly describe, anddo when encountering a sugar bowl with a spoon in hand (as the

Frequency Matching

Interchangeable Subsequences
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model does) is of course to go ahead and scoop. Instead, the modelCooper and Shallice (2006) further attempted to undermine the
put down the spoon and momentarily picked up the sugar bowldea that the hippocampal system may alleviate Cl by commenting
before picking up the spoon again, scooping sugar and reenteringn the connectivity in rats between hippocampus and subportions
the standard coffee sequence. As bizarre as the model's behaviof the dorsal striatum thought to subserve habit production. How-
may appear in this case, its implications for the underlying theoryever, the medial temporal cortex is well known to interact widely
are not as significant as Cooper and Shallice (2006) suggested.with neocortex, including areas throughout frontal, parietal, and

What Cooper and Shallice (2006) were asking the model to daemporal cortex that are certain to be involved in representing the
in this simulation is to exhibit a form of generalization. As the perceptual inputs and associated actions involved in habits. Fur-
previous section concluded, before such generalization can occuthermore, the hippocampal complex also interacts with regions of
the model must be exposed to an adequate, though not exhaustivthe prefrontal cortex generally agreed to support planning and
range of variation. The model’'s behavior in the Cooper and Shalaction in nonroutine situations (Cohen & O’Reilly, 1996). Bring-
lice (2006) simulation is a direct consequence of the use of ang in the McClelland et al. (1995) dual learning systems theory
highly restricted training set. As mentioned earlier, the Botvinickthus in no way contradicts the proposal in Cooper and Shallice
and Plaut (2004) model never encountered during training any2006) that the learning of action routines is mediated in part by a
container that did not need to be opened before use. There is evehygher-level action system dedicated to the programming of ac-
reason to expect that if the model were trained on a wider range dfons in nonroutine circumstances. Nevertheless, unlike Cooper
task sequences, including tasks involving the use of uncoverednd Shallice (2006), we do not assume that habitual action se-
containers, that it would show precisely the kind of generalizationquences are always or primarily learned via such a route. In a
Cooper and Shallice (2006) sought. reductio ad absurdum of the Botvinick and Plaut (2004) theory,

The point can be substantiated by pointing to other equallyCooper and Shallice (2006) argued that hierarchically structured
meaningful instances in which the model does behave sensibly iaction sequences are not learned through “unguided imitation or
the face of novel initial conditions. For example, if the environ- observation of lengthy, apparently purposeless action sequences”
ment is initialized so that the coffee cup already contains cream afp. 899). However, there is abundant empirical evidence that
the beginning of the trial—a situation never presented duringpeople actually are quite good at abstracting the sequential struc-
training—the model adds coffee grounds and sugar but skips theire of purposeless sequences (Avrahami & Kareev, 1994; Cleer-
cream-adding sequence. In this instance, the contents of the traiemans, 1993; Saffran, 2001), and this capacity is typically attrib-
ing set provided an adequate range of sequence variation for the&ed to systems underlying procedural memory, systems that seem
model to infer that cream need not be added if it is already seen tbkely to support routine sequential action in everyday life
be in the cup. (Poldrack, Prabakharan, Seger, & Gabrieli, 1999).

Catastrophic Interference (ClI) Broader Criticisms of the SRN Model

A well-known property of neural network models that use The preceding _sections have shown that many of the problems
distributed representations is their susceptibility to Cl, the disrup-Co0Per and Shallice (2006) purported to reveal in the SRN model
tion of initial learning by later training on a different task (French, €@n be addressed without substantially altering the underlying
1999). Cooper and Shallice (2006) demonstrated, in Simulation 52ccount put forth by Botvinick and Plaut (2004)—in most cases by
that the SRN model is no exception: To learn two tasks, the modefiMPly implementing the account in greater detail. Having re-
must be trained on both in an interleaved fashion. The susceptSPOnded to specific observations, we turn now to two key gener-
bility of the SRN model to Cl was acknowledged in Botvinick and alizations that Cogper and Shal_llce (2006) advanced_, on the basis
Plaut (2004), but it is not the fatal flaw that Cooper and Shallice®f those observations, concerning the themgeferativity The
(2006) suggested. In particular, McClelland, McNaughton andfirstis the claim that the SRN model cannot produce sequences it
O'Reilly (1995) have suggested how CI might be avoided througha@s not been djrectly trained upon; the second is the related claim
the interaction of dual learning systems, one based on medidhat the behavior of the model is unreasonably dependent on the
temporal lobe structures including the hippocampus. Cooper angtructure of the training set.

Shallice rejected the dual system theory as “neuroscientifically and
cognitively implausible” (p. 906), at least as an account of howGenerativity
e e Cooper an Shaic (206)clmed hat he SR moe an

. o é’nly produce—even as errors—sequences of actions on which it
accurately a very Iong sequence of _lnput-to-output Mappings (phas been substantively trained” (p. 905). With regard to errors, this
896). However, there is abundant evidence that the hippocampus is learly untrue. As indicated in the sectidmticioation Error
involved in encoding sequences (see Botvinick & Plaut, 2004, p's clearly ) . . Hicip N
424), and there is no evidence of which we are aware to suggeé?e model _does proplgce errors involving a_ct!on sequences that do
that Ehere is a hard limit on the capacity of hippecampal sequencnOt occur in the training set. Ind.eed, _Botvmlck and Plaut (2004)
memory, falling below the relevant sequence length Furthermore}eeloortECI such errors ((_a.g., pouring directly from the sugar bowl
Lo . ’ into the cup, p. 417). It is true that the errors produced by the SRN
it might not be necessary for medial temporal lobe memory sys-
tems to encode long sequences; as Ans, Rousset, French, and
Musca (2004) have demonstrated, Cl in sequence learning can bes mportantly, this work by Ans et al. (2004) did address non-Markov
prevented by mechanisms that generate only single-step inputsequences, that is, sequences whose reproduction requires preservation of
output mappings. temporal context information.
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model are influenced by the structure of the training set, in theck and Plaut (2004). Indeed, those simulations are quite artificial
sense that the model is most prone to errors that fit with anyin that they attempt to model the tasks of coffee and tea making
regularities of sequential structure that characterize the training setvithout directly modeling the thousands of other tasks a typical
However, far from being a flaw of the account, this is in fact one Westerner would also have in his or her repertoire. This accounts
of its strengths, because the same characteristic has been obserfedwhy, as Cooper and Shallice (2006) found, the model's behav-
empirically in studies of human slips of action (Reason, 1990), asor is so sensitive to the precise form of the coffee and tea training
in work on speech errors (Dell, Reed, Adams, & Meyer, 2000). sets, and why the model does not generalize in all of the ways one
Neither is the Cooper and Shallice (2006) claim true with regardwould expect of a human actor. Because the training set was
to correct sequences. As shown above, in the sectideschange-  necessarily small, its details had an overly large influence on the
able Subsequencemd Variations in Initial Conditionsthe SRN  behavior of the model, in precisely the same way that individual
model is quite capable of producing legal sequences that werebservations in a small sample can unduly influence the fit of a
never presented during training. The generative capacity of recurstatistical model. However, as with statistical models, the robust-
rent neural networks is further demonstrated by previous researdahess of learning and the capacity for generalization increase with
in which such models have been used to compose music. Networkkhe sample size. A strong assumption of the Botvinick and Plaut
trained on a variety of melodies have been shown in several studig2004) account, which we consider to be face valid, is that human
to generate novel tunes in the same musical style, melodies né¢arners are exposed to a very broad and representative range of
matching any of those on which the model was trained (Eck &action sequences.
Schmidhuber, 2002; Mozer, 1994). This work clearly demonstrates
that SRN_s can generat_e_sequenc_es that are _consistent with thGParadigmatic Assumptions: Schemas, Hierarchy, Goals
structure implicit in a training set, without matching any exemplar
presented during training. A critical point is that this sort of One strength of Cooper and Shallice (2006) is that it goes
generalization requires the training set to contain a broad antbeyond a simple critique of the SRN model, attempting to identify
representative sample over the relevant domain. The musidghe fundamental theoretical differences between the IAN and SRN
composing SRN need not be exposed to all possible melodies inmodels. According to Cooper and Shallice (2006), the main points
given style, but it does require exposure to a legitimate number obf contrast center on the purportedly “eliminativist” stance of the
them. The importance of a representative—though not necessaril RN model with respect to three elements said to be defining of
exhaustive—training sample is the same one we emphasized abottee IAN framework: (a) explicit schema representations, (b) hier-

in discussing interchangeable sequences. archical network structure, and (c) explicit goal representations.
Although this framing pinpoints a critical set of issues, we would
Importance of the Training Set propose a somewhat different perspective on the role of schemas,

hierarchies, and goals in routine sequential action.
Cooper and Shallice (2006) argued repeatedly that the behavior

of the SRN model depends unreasonably on the detailed structug
- ) chemas
of the chosen training set:

. i i A core assumption of the IAN model is its inclusionstthema
the training set has o be fine-tuned to pro duce the appropriate OUtpur%odes elementary components or units that are identified with
... [thus] the negative property of being hand coded is merely "~ ™' . .
transferred from the weights for the IAN model to the training set for _ent!re tasks or subtasks. Cooper and Shalllce_ (2006) argl_"ed that it
the SRN model. (pp. 905-906) is, in fact, necessary to assume such atomic computational ele-
ments to account for specific aspects of human behavior. These
Again, it is true that the behavior of the SRN model is shaped byinclude anticipation errors, adjustment to novel environmental
the structure of the sequences presented during training, and thé®nditions, and generation of well-formed but novel sequences
was highlighted by Botvinick and Plaut (2004) as one of the core(see Cooper and Shallice, 2006, pp. 893—894). However, as dem-
tenets of the proposed account. Regrettably, Botvinick and Plaubnstrated earlier, the SRN model can address all of these without
(2004) made no direct comment on the specific form of theassuming localist schema representations. The SRN model devel-
training sets used in the simulations it reported. However, two keyps, through learning, the functional equivalent of the IAN mod-
assumptions were strongly implied. The first assumption is that thel's schema nodes. Rather than being represented by single units,
sequences observed by the system during learning constitute task and subtask identity is represented in a distributed fashion,
representative sample of well-formed behavior in the relevanforming part of the internal context representation analyzed in
tasks. This means, above all, that what can vary in an actiomBotvinick and Plaut (2004).
routine will vary in the sequences observed during learning, al- Whereas it is too strong to say, as Cooper and Shallice (2006)
though—as just explained—the training set need not contain allid, that the SRN model is eliminativist with respect to task and
well-formed sequences but merely a sufficient sampling. Thesubtask representations (i.e., schemas), it is true that the relevant
second assumption (implied on p. 403 of Botvinick & Plaut, 2004) patterns of activation may be more difficult to isolate within the
is that learning of any specific task takes place within the contexSRN model than in the IAN model. Intuition may suggest that this
of learning a very broad variety of other tasks and that there arés a problem. After all, in daily communication we use terms that
regularities of sequential structure spanning multiple tasks thatefer to whole sequences of behavior, abstracting over their details:
support generalization across task lines. going to the movies, playing a game of tennis, checking email, and
For practical reasons, it was not possible to fully implement theso forth. In the artificial intelligence literature, such high-level
second of these assumptions in the simulations reported in Botvirrepresentations are referred totamporal abstractiongBarto &
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Mahadevan, 2003; Barto et al., 2005; Sutton, Precup, & Singh, Cooper and Shallice (2006) appeared to acknowledge that this
1999), and there has been growing interest in their use. Welilemma strains the limits of the IAN account. To deal with it, they
consider it informative, however, that the primary importance ofsuggest that the framework could be extended by including an
temporal abstractions within artificial intelligence has to do with inheritance mechanism by which parameters of lower-level sche-
their role in reducing the search problem involved in planning,mas could be controlled by parent schemas (p. 895). Whereas this
rather than any role in supporting the execution of establishedanight mitigate the problem, it would also take the account one step
routines. This seems to reflect a point that is equally applicable t@loser to resembling a full-fledged programming language, and it
human behavior: In planning one’s day, it may be useful to havewvould amount to another case in which the theory simply stipu-
a compact representation of going to the store that abstracts ovéates what it is intended to explain. Moreover, there is empirical
and is quite independent of the internal details of this routine.evidence that action representations at the neural level are far more
However, in actually executing the routine, such abstraction is notontext dependent than the IAN model assumes. Specifically,
particularly important, and for reasons that we shall discuss in théldridge and Berridge (1998) observed in rats that the set of basal
next section, it may in fact be counterproductive. On the basis ofjanglia neurons active during specific grooming movements dif-
these considerations, we consider it likely that the generation ofered dramatically depending on whether the relevant movement
human behavior does leverage highly abstract task representationss executed inside or outside the context of the animal’'s groom-
but that these are put to use by the processes involved in thing sequence (see also Salinas, 2004).
planning and programming of nonroutine action sequences rather The issue we are raising here is not merely a technical one,
than by the processes underlying habit production, which usgertaining only to the contrast between the IAN and SRN models.
context representations tied in a more intimate way to real-timé/Vhat we are arguing is that, within the domain of routine sequen-
execution. tial action, there is an inherent tension between the need for some
degree of context independence, responding to the part-whole
structure of everyday tasks, and the need for context sensitivity.
Any model of routine sequential behavior must provide an account
A key assumption of the IAN model, which is underscored by for how a balance is struck between these, accommodating what
Cooper and Shallice (2006), is that the processing system undewe have termed thguasi-hierarchicalstructure of everyday ac-
lying routine sequential action is strictly and constitutively hier- tion routines (Botvinick & Plaut, 2004). The IAN model, in its
archical in structure. Cooper and Shallice (2006) claimed that thisurrent instantiation, attends exclusively to the demand for context
assumption is necessary on the basis of arguments similar to thossdependence by assuming a strictly hierarchical and localist rep-
used to defend schema nodes. One claim that received particuleesentational regime. As a result, the account faces difficulty with
emphasis (p. 899) relates to the ability to infer subsequence intethe issues of information sharing and context sensitivity, creating
changeability, an ability that Cooper and Shallice (2006) believedhe need for additional, ad hoc mechanisms like inheritance.
the SRN model to lack, as explained earlier. Cooper and Shallice The SRN model addresses the balance between context inde-
(2006) suggested that the ability to transfer a familiar subtaskpendence and context sensitivity at a more basic level. Rather than
sequence into a task context in which it has never previoushassuming hierarchy as a strict constraint on representational struc-
appeared requires that the subtask be represented in a way thattise, the framework starts with a large and unstructured represen-
invariant with respect to context. Thus, the claim goes, the routingational space that is shaped by experience with specific task
for adding sugar must be represented in precisely the same waygpertoires. Where independence between levels of structure is
regardless of whether it appears in the context of coffee or temeeded for successful control, the model is entirely capable of
making. developing internal representations that capture this independence,
To some degree, this point must be valid. Clearly, subtaskas demonstrated by the simulation of subtask equivalence de-
representations must be separable from higher-level task represeseribed earlier. However, because the model’s representations are
tations if subtasks are to be performed in multiple contexts. Theraot constrained to be strictly hierarchical, there is room for repre-
is no barrier to this in the SRN model; as demonstrated earliersentational overlap when tasks share structure, and for interactions
with sufficient variability in the training set, the model does across levels of task structure, whatever form these may take.
develop the ability to transfer subsequences to new contexts. This point relates to the question, raised by Cooper and Shallice
However, it is worth considering whether absolute context inde<{2006), of whether it might be possible to reduce the SRN model
pendence, as required in the IAN framework, is a desirable repreto the IAN account. Cooper and Shallice (2006) offered the inter-
sentational property. It is a conspicuous feature of naturalisticesting and valid observation that some distributed models can be
human behavior that the way a subroutine is performed ofterreduced to localist models, whereas others cannot. However, they
depends on the larger task context in which it occurs (Agre, 1988)mistakenly characterized the SRN model as representing an “ex-
For example, the amount of sugar one adds to a beverage mageme nonreductionist position” (p. 891). In our view the SRN
depend on whether the beverage is coffee or tea. As we havemodel relates to the IAN model as special relativity relates to
observed in previous work (Botvinick & Plaut, 2002, 2004), this Newtonian physics. The former reduces to the latter in the limit of
context dependence raises a difficulty for strict hierarchical com-small speeds. Analogously, the SRN model reduces to the IAN
putational accounts: Should sugar adding be represented by omeodel in the limit of strictly hierarchical task structure. To unpack
schema or two? If two schemas are assumed, this ignores the faittis point, consider that a system can be reduced from distributed
that different versions of sugar adding are likely to share a greato localist when the system’s representations are mutually orthog-
deal of structure (see Schank & Abelson, 1977). If one, then howonal. In the case of the SRN model, the representations at issue are
is execution to be modulated by context? the activation vectors that indicate task and subtask context. Note

Hierarchical Structure
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that there is nothing in the system’s architecture to prevent thesthe model recognizes “goals” in precisely the same limited way
from being orthogonal. Indeed, the tea-making context could inthat the IAN does. Cooper and Shallice (2006) suggested that the
principle be represented by a single hidden unit just as in the IANmplementation of goals in the IAN model allows it to cope with
model. Thus, at a functional level, the SRN model can implementertain situations in which the SRN model is said to fail. However,
a hierarchical representational scheme. Indeed, SRNs have betre supposed problems—dealing with interchangeable subse-
used in some research (see Rodriguez, Wiles, & Elman, 1999) tquences and recognizing when environmental conditions make it
implement push-down automata, precisely the kind of mechanisnunnecessary to execute particular actions—we have already been
used in some production system architectures (e.g., adaptive coable to set aside.
trol of thought—rational [ACT—R]; Anderson & Lebiere, 1998) to  In the final analysis, there is little if any difference between the
support hierarchical goal and subgoal management. However, utAN and SRN models in terms of the functional role played by
like the IAN model, the SRN model is not restricted to orthogonalgoals. Neither model involves goals in the strong sense of that
representations, allowing it also to accommodate departures frorerm: In much of psychology and artificial intelligence, the term
strict hierarchy where they exist in action routines. goal typically denotes a representation of a desired outcome that is
Cooper and Shallice (2006) proposed a framework for reconcilimatched against action effects as part of a process of means—ends
ing the IAN and SRN accounts in which the localist representa-analysis. When understood in this sense, goals are tied closely to
tions in the IAN network correspond to point attractors in a problem solving or planning, functions that both Cooper and
recurrent neural network. We consider this an appealing directionShallice (2006) and we attribute to systems separable from those
largely because it relaxes the constraint of strict hierarchy thasupporting highly routine behavior. In our view, the computations
currently limits the IAN account. Indeed, in recent work, we have underlying routine sequential behaviors do not, in fact, depend on
reported an implementation of the Botvinick and Plaut (2004)goals in this strong sense of the term.
theory that takes the form of an attractor network (Botvinick, in  Indeed, this idea fits precisely with recent work that Cooper and
press). This work takes a further step toward reconciling the twdShallice (2006) cited, delineating the division of labor between
accounts by addressing neuroscientific data suggesting that sgeal-directedand habit systems. On the basis of animal studies,
quential action is supported by neocortical networks that assume Balleine et al. (Balleine & Dickinson, 1998; Yin, Knowlton, &
roughly hierarchical organization (Fuster, 1997). Balleine, 2004) have concluded that the system underlying routin-
ized behaviors, that is, the habit system, is not driven by repre-
sentations of desired and anticipated outcomes but instead operates
in a purely reactive way (see also Dickinson, 1985). This is also
The third element Cooper and Shallice (2006) identified asconsistent with reinforcement learning accounts of basal ganglia
distinguishing between the IAN and SRN accounts involves thefunction, which also posit a reactive mechanism for action selec-
role of goals. Cooper and Shallice (2006) defined a goal as “a statéon (Daw, Niv, & Dayan, 2005). The SRN model provides an
of affairs that an agent aims to achieve” (p. 888), stating that “aaccount for how a reactive habit system could give rise to rela-
schema may be seen as a means of achieving a goal” (p. 888)vely complex action routines, routines that respond flexibly to
Goals are considered to play a critical role in the operation of thevarying conditions and that reliably bring about specific outcomes,
IAN model, whereas it is claimed that “goals play no role in the but that do not rely on goals of the kind involved in planning and

Goals

functioning of the SRN model” (p. 898). problem solving.
However, Cooper and Shallice (2006) overestimated the role of
goal representations in the IAN model. At an operational level, the Relation to Nonroutine Action

goal nodes in the IAN model are simply gates on activation from
high-level schemas to lower levels. As Cooper and Shallice (2006) Although we concur with Cooper and Shallice on the distinction
explained, “When a parent schema is selected, it does not excite dlletween two interacting systems underlying action control, a habit
of its component schemas, just those whose preconditions ar@r Contention Scheduling) system and a goal-directed (or Super-
satisfied and whose post-conditions are not satisfied” (p. 895), andisory Attentional) system, one important difference between the
it is goal nodes that enforce the latter constraint. Thus, goals in th€ooper and Shallice (2006) account and our own concerns the
IAN framework ultimately function simply as negative precondi- assumed relationship between the representations put to use by
tions on schemas. Like the “test” component of the classic TOTEhese two systems. Cooper and Shallice (2006) implied that the
unit of Miller et al. (1960), they simply close off certain portions representations inhering in the goal-directed and habit systems are
of activation space when particular conditions hold. One can thugssentially identical in nature. This is suggested, for example, by
exhaustively describe the functional role goals play in the IANthe proposition that the goal-directed system constructs “tempo-
model without any appeal to the notionsmirposeor aim. rary schemas” (p. 897) that are used as a basis for “instructing the
Although Cooper and Shallice (2006) claimed that goals play ndhabit system” (p. 899) and that the habit system can be understood
role in the SRN model, that model's behavior clearly reflectsas a “plan library” (p. 888). However, it is most directly indicated
gating by negative preconditions. This is shown, for example, byby the discussion in Cooper and Shallice (2006) of the interaction
the fact that the model skips cream adding if cream is alreadyetween goal-directed and habit systems. Consistent with the well-
present in the cup (sééariations in Initial Condition$ and by the  known theory of Norman and Shallice (1986); Cooper and Shallice
fact that the model continues to execute sigaction until the cup  (2006) assumed that the goal-directed system (identified with the
is empty (see Botvinick & Plaut, 2004, p. 423). Unlike the IAN Supervisory Attentional System) operates by providing top-down
model, there is no special structural element dedicated to impleinput to the habit system (identified with the Contention Schedul-
menting the relevant precondition gates, but at a functional leveing system). The Botvinick and Plaut (2004) account is compatible
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with this idea, as noted earlier. However, Cooper and Shallicegoal-directed system and a habit system, the latter of which is our
(2006) made the further assertion that, for the goal-directed systeifiocus.

to communicate with the habit system effectively, there must be a Despite these inconsistencies, the rules versus connections de-
one-to-one correspondence between schema and goal represeritate does resonate with the present discussion in at least one
tions in the two systems. This position is implied in the criticism important way. Like rule-based accounts of past-tense formation
that the absence of discrete, isolable schema and goal represen{Rinker, 1999), the Cooper and Shallice (2006) account began by
tions in the SRN model “limits the extent to which representationsfocusing on a salient structural characteristic of behavior (i.e.,
used by the routine system can be communicated to and manipinrerarchy) that largely though approximately characterizes the
lated by the nonroutine system” (p. 905). domain and builds this same structure directly into the architecture

In contrast to this claim, numerous other accounts of actiorof the processing system. As with rule-based accounts of past-
control have suggested that the representations underlying estaiense formation, the challenge then becomes to explain how the
lished action routines are different in form from those supportingprocessing system copes with secondary aspects of behavior that
nonroutine action, or more specifically, planning. This is true, forstrain or violate the governing structural principle initially as-
example, of the account of proceduralization in the ACT-R parasumed. This leads to the stipulation of additional mechanisms to
digm (Anderson, 1987), as well as of the neural lesion studies ofandle such exceptions to the rule. In the case of the Cooper and
Balleine et al. (Balleine & Dickinson, 1998; Yin et al., 2004) and Shallice theory, the list of additional mechanisms has grown over
related computational work (Daw et al., 2005). Of possible reletime and now includes manner and quality features and an inher-
vance, there is fairly extensive behavioral and neuroscientifiGtance mechanism (Cooper and Shallice, 2006, pp. 896—897), goal
evidence for an analogous representational distinction in the dodecay (p. 904), a type-token distinction that allows multiple in-
main of spatial navigation (see Hartley, Maguire, Spiers, & Bur-stances of a schema to be created (p. 898), and precondition gates
gess, 2003). that preserve information about previous actions.

At a quite general level, Rougier et al. (2005) have argued that The theory laid out in Botvinick and Plaut (2004), which we
there is an intrinsic tradeoff in neural computation between the usave further articulated here, takes an approach akin to the one
of graded, distributed representations, which can capture detailegqopted by those pursuing the connectionist side of the rules
patterns of similarity and overlap, and the use of more abstract anglersus connections debate (Plaut, McClelland, Seidenberg, &
categorical representations, which are more amenable to arbitragyatterson, 1996). The Botvinick and Plaut (2004) account began
manipulation and recombination. Rougier and colleagues proposegl; assuming an essentially unstructured representational space and
that different brain systems may assume different points on the general purpose learning mechanism and then investigated how
continuum between these extremes, on the basis of the demandsﬁrticmar patterns of behavior might emerge from these in the
the particular operations those brain areas perform. This proposghntext of a particular environment. As in work on past-tense
resonates with our own earlier comments concerning the issue @brmation, this approach results in an account that portrays the
temporal abstraction, in which we suggested that different degregs,gst systematic aspects of behavior as emerging out of a system
of abstraction may be appropriate for executing routine proceduregat can also accommodate finer-grained aspects of behavior that
and for planning. We consider it an important theoretical differ- ¢t across this first-order structure. Specifically, the SRN model
ence between the SRN and IAN accounts that the former leavegnows how broadly hierarchical patterns of behavior can emerge
open the possibility of multiple formats for action rep_resenta_tion,from a processing system that—because it is not constrained to
whereas the latter commits to a uniform code, spanning habit anghyresent only strictly hierarchical relationships—retains the flex-

goal-directed systems. ibility to encode aspects of sequential action that violate strict
hierarchy. Thus, no special mechanisms are needed to allow for
Rules Versus Connections in the Habit System interactions among levels of task structure.

In addition to capturing hierarchical relationships where they are
¢ ] ot - =critical to the guidance of behavior, the system’s representational
one laid out in Botvinick and Plaut (2004), Cooper and Shallicegpce retains sufficient flexibility that it can accommodate poten-
(2006) attempted to draw a parallel to the rules versus connectiong, complex interrelations among different operations. The rep-
debate in language, which contrasts symbolic and parallel diStribfesentations it develops can respond simultaneously to the simi-

uted processing mechanisms (McClelland & Patterson, 2002). It is
not clear that this analogy is neatly applicable. After all, the IAN

framework is based directly on a connectionist processing archi- 4This concern does not appear to run very deep because Cooper and
tecture (McClelland & Rumelhart, 1981), and, in enumerating theShallice (2006) themselves offered the appropriate response. They write
supposedly symbolic components of their theory, Cooper andhat “one might envisage a system that maintains associations between
Shallice (2006) placed links between nodes at the top of the list (phigher-level representations of schemas and the hidden unit patterns that

889). Moreover, other components described as irreducibly Symr_esult in those schemas being performed. A supervisory system could then
bolic in nature, specifically pre- and postconditions, we haveinterface with the SRN model to yield controlled behavior (when required)

. . . iberately instantiating the hidden uni ith th m ndin i-
shown to have direct functional analogues in the SRN model.by deliberately instantiating the hidden units with the corresponding act
vations ... There is also a sense in which the instruction units already

Finally, the rules Versgs connections debate, a.t least as it arises HPesent in the SRN model do this for the two basic tasks of preparing tea
research on the English past tense, centers in large part on the preparing coffee” (p. 905). This is, indeed, precisely the account we
question of whether there is a single system for the relevant set Gfiould offer, as indicated in Botvinick and Plaut (2004, p. 424). We assume
transformations or more than one system. In the case of sequentigiat this form of interface would support recovery from errors, guided by

action, it is agreed there seem to be two systems involved, &e supervisory system.

In framing the relationship between their own theory and the
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larities and differences among sets of overlapping activitiesand it is disappointing that Cooper and Shallice (2006) did not
(Botvinick & Plaut, 2002). This property is important, given that address this in the terms directly linked to their computational
complex patterns of overlap are characteristic of human behaviorahodel. On a broader level, we agree with Cooper and Shallice
repertoires (consider the relationships among the routines fof2006) that the behavioral and neuroscientific work reported by
spreading jam, spreading peanut butter, spreading sauerkraut orBalleine and colleagues (e.g., Balleine & Dickinson, 1998) has
hot dog, spreading icing on a cake, spreading wax on a floor, usingrovided some important empirical points of reference. The com-
a squeegee on a window, and raking the lawn). putational investigations reported by Daw et al. (2005), addressing
It is worth remarking that it was considerations of this kind, andthat empirical research, also strike us as providing a useful new
specifically the role of complex shared structure, that in the 1980%oint of reference for the ongoing development of theories of
inspired David Rumelhart to abandon the symbolic approach taoutine sequential action.
schema representation (Rumelhart & Ortony, 1977) in favor of a
recurrent neural network account, laying some of the initial foun-
dations for connectionist psychology (Rumelhart, Smolensky, Mc-

Czlg(l;indt,h&slglr\]ton, 198t6)' Ahs noted in %OEVIT(;CK at?]d Zl.aUttlAgre, P. E. (1988)The dynamic structure of everyday l{feech. Rep. No.
( ), the account we have proposed builds rather directly 1085). Cambridge, MA: Massachusetts Institute of Technology, Artifi-

on this pioneering work, as does recent work in concept represen- i, ntelligence Laboratory.

tation, another area in which the schema construct has a longigridge, W. J., & Berridge, K. C. (1998). Coding of serial order by

history (Rogers & McClelland, 2004). neostriatal neurons: A “natural action” approach to movement sequence.
Journal of Neuroscience, 18777-2787.

Altmann, E. M., & Trafton, J. G. (2002). Memory for goals: An activation-
based modelCognitive Science, 289-83.
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Appendix
Details of the Simulation Briefly Described interchangeable Subsequences

Task and Representations Results

As explained in the main text, the task domain included 10 sequences, \yhen trained on all 10 sequences, the model successfully reproduced
each composed of four steps. The model’s universe was assumed to includg ., sequence at test. On Stefii@ate-h, andfixate-b, output units both
seven objects (denotel, &, as, &, &, by, andb,) only one of which 555 med activation values of approximately 0.5, reflecting the uncertainty
could be viewed at a time. The universe was also assumed to contain Igssqciated with this point in the sequence. More important was the question
act!ons: 1 sear_ch action for egch object (dfigate-a) and 1 manipulative ¢ \\hether the model would produgg—b,—a, when this was omitted
action appropriate to each object (eigs¢-a). Each target sequence began qring training. Of particular interest was the model's behavior at two
on Step 1 with an objed; € {ay, &, 8, a, a} as the viewed objectand  gpecific steps following initial presentation af. First, we considered
the target response beinge-a On Step 2, the input remained unchanged, \yhether, on Step 2, the model would activiitate-b, as well agixate-h.
and the target action becarfieate-i € {b,, b,}. On Step 3b;became the 5404, we considered whether, on Step 4, the model would most strongly
viewed input, and the target action changedise-h. On Step 4, with the . atefixate-a. Together, these behaviors would indicate that the model
viewed input remainingy, the target output becama, redirecting the -4 inferred that the subsequendete-b— use-h and fixate-b,—
system back toward the object with which the sequence began. Crossing Eﬂke-g are interchangeable
ch0|ct_es ofa with all choices °f_b y'EIqed the 10 target_ sequences. As In the first simulation in which generalization was tested, to our initial
explained underResuI_ts and D'SCUSS_'C_’m sgcond version _Of th_e t_ask_ surprise the model did not show the first form of generalization. On Step
assymgd tha_t on the f_|r§t step an addmgnal input was provided |_nd|cat|ngz only fixate-b, was significantly activated. However, there turned out to
as '_f via peripheral vision, whether objeb{ or b, was present in the be a sensible reason for this. Note that during training the model observed
environment. only b,—neverb,—employed in thea, context without any explanation

. for this bias. This would be analogous to observing sugar added from a
Model Architecture packet—and not from a sugar bowl—over thousands of witnessed execu-
The model was identical to the one used in Simulation 1 of Botvinickt'ons of coffee making. Clearly, on the basis of this experience, it would be

and Plaut (2004), except with regard to the following details. The modelquite reasonable to infer that coffee making forbids the use of a sugar bowl.

included 7 input units, each representing a single visual object. To reprel_—lowever, consider the same scenario if it were also known that, in each

sent the currently viewed object, on each step of processing 1 of these unifé/tnessed instance of coffee making, only sugar packets were available.
was set to an activation level of 1 whereas the others were set to 0. Unlik(lhIS WOUId_ prc_)Vlde an explanation fgr the failure to observe use of a sugar
the Botvinick and Plaut (2004) model, the present network did not incIudebOWI' mgklng |Lmore relaspna:Ie tof:(nfer thit_ sugar bowl and slugaLpacket
input units representing held objects. The output layer contained 14 unit!S€ are interc Iangeabg in the coftee m"’(‘j 'rg co_ntelxta ads Esew 'erhe. TIO
each representing 1 of the actions identified above. The hidden |aye'|f,“905e a_n ana ogous situation in our mq el, yve 'ncu_ ed the peripheral
contained 100 units. vision units described above. These provided information at the outset of
To simulate the alternative version of the task described above and und&2Ch trial as to whethes, or b, was present in the environment. When
Results and Discussiomn extended version of the model included an trained on this modified version of the task, the model showed both forms
additional 2 “peripheral vision” units, allowing it to receive information, on of generalization predicted, including correct responses on Step 4, on all 10

the first step of the task, as to whethby or b, was present in the simulation runs. Presented initially with, as the viewed object and
1 2 . . . . . . . .
environment. In sequences involvirty, one of these input units was peripheral vision input indicating the presencdgin the environment, the

activated on the first step of processing, andgirials the other unit was model con5|s_tently gene_rated the doubl_y novel sequgsee_q—»‘lxate-
activated. On subsequent trials, both units were inactive. b,—use-—fixate-g. This result contradicts the assertion in Cooper and

Shallice (2006) that the SRN model has “no way of knowing how to

preserve context information (e.g., whether it is making tea or coffee)

across a subtask (e.g., adding sugar) unless it has received explicit training
The model was trained and tested following the procedure used iron that variant of the task” (p. 899).

Botvinick and Plaut (2004). In a first simulation, the model was trained on ~ Critically, as noted in the main text, the results differed when a smaller

all 10 basic target sequences, and the model was then tested on all 18nge of contexts was included in training. Specifically, when the training

sequences. In a second simulation, all but 1 sequemeel,—a,) were  setincluded only the sequenags—b,—a,, a,—b;—a,, anda,—b,—a,,

presented during training, and the model was tested on the omitted s&nd the model was again tested for productioragfh,—a,, the model

quence. In a final simulation, the extended task was used, again omittingever correctly generalized on Step 2, even when the peripheral vision

and testing §,—b,—a,). In the latter two simulations, the sequence units were included.

a,—b,—a, was presented twice as often as other sequences during train

ing, to assure that the frequency of alfillers was matched. In all

simulations, the duration of training was 2,500 trials. To establish replica- Received February 3, 2006

bility, each simulation was repeated with each of 10 sets of random initial Revision received April 20, 2006

weights. Accepted April 24, 2006m

Training and Testing
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Postscript: The Way Forward impasse. Instead, the debate has made clear what measures might
be taken to shed further light on the mechanisms underlying
Matthew M. Botvinick routine sequential behavior. Clearly, one road forward involves
University of Pennsylvania implementing and evaluating the various refinements and exten-
David C. Plaut sions that have been proposed for both the SRN and IAN models.

With regard to the SRN model, it may be particularly informative
to develop further the simulation we offered to address the topic of
In our view, the reply by Cooper and Shallice (2006) left our intgrchfarllgeable.subseguences, considering more fully thg problem
original responses more or less intact. Cooper and Shallice dispaff implicit negative evidence (the problem that led us to include
aged our account of anticipation errors by arguing that it servesPeripheral vision” inputs to the framework). With regard to the
only to “highlight the importance of the training set in shaping the /AN model, what seems most urgently needed is an explicit,
[SRN] model's errors” (p. 892). However, as we argued ear|ier,|mplern_ented account o_f how the goal_-dlrected action s_ystem (or
this link between errors and prior experience may be viewed as 8UPErvisory system) trains up the habit system (contention sched-
strength of the SRN model rather than a weakness. They dismissétind system). Here and in general, the present exchange has
the idea of selecting among actions probabilistically in the SRNStrongly highlighted the degree to which any account of the habit
model (an idea they earlier seemed to promote) on the basis of tryStém will interact with how the goal-directed system is under-
claim that such a selection procedure cannot be biased by previo§$00d- Many of the points we have debated have turned out to
intentions. However, it is easy to see how the setting of intention§l€Pend on what assumptions are made about the goal-directed
could be encoded in the context layer, leading to amplification ofSyStém and about how it interfaces with the habit system. In view
intended action outputs and the suppression of competitors. The§f this, what seems necessary is to place our present accounts of
rejected our demonstration that the SRN model can, under appréoutine sequential action within a larger computational framework
priate circumstances, deal appropriately with novel initial condi-that explicitly addresses both systems and their interrelations. We
tions, but they did this by resorting to the confusing argument tha@dree with Cooper and Shallice that such an enterprise might best
the model’s correct performance must be understood as an errdfoncentrate on instances of behavior that depend critically on a
They rejected our demonstration of object substitution errors in th&llaboration between the two systems, such as error correction or
SRN with the assertion that this class of error is defined in earlie€OPing with novel and unexpected environmental contingencies
work in terms of the actions following the actual incorrect use of €ncountered during routine behavior. Building a larger theoretical
an object, but we fail to find this kind of definition in the sources framework, capable of dealing with such areas of behavior, will
they cite (Reason, 1984; Schwartz et al., 1998). They responded f§duire innovative experimental research, because there are at
our analysis of the role ajoal nodesin the IAN model with the pres_ent frustratlngly few meaningful empirical benchmarks to con-
assertion that this mechanism “captures the fact that some schem@i&in new modeling.
have a common purpose” (p. 894). However, at the level of
function (rather than description), goal nodes serve only to enforce References
the selection of one among a set of competing schemas. This
functionality involves no direct reference to purpose or goaLCooper, R. P, & _Shallice, T. (2000)._Stru_ctu'red representations i.n.the
Certainly, in human behavior, interchangeable action Sequencescontrol of behavior cannot pe SO ea;ﬂy dismissed: A reply to Botvinick
often share a common goal. However, in the IAN model, this fact and Plaut (2006)Psychological Review, 11329-931.

. o Reason, J. T. (1984). Lapses of attention in everyday life. In W. Parasura-
onl_y 'n_forms the Wgy that_the ne:fwork IS V\f,'red up by the modeler. man & R. Davies (Eds.)Varieties of attentiorfpp. 515-549). Orlando,
It is in no way intrinsically “captured” by the goal node
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