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Despite a century of research, the mechanisms underlying short-term or working memory for serial
order remain uncertain. Recent theoretical models have converged on a particular account, based on
transient associations between independent item and context representations. In the present article,
the authors present an alternative model, according to which sequence information is encoded
through sustained patterns of activation within a recurrent neural network architecture. As demon-
strated through a series of computer simulations, the model provides a parsimonious account for
numerous benchmark characteristics of immediate serial recall, including data that have been
considered to preclude the application of recurrent neural networks in this domain. Unlike most
competing accounts, the model deals naturally with findings concerning the role of background
knowledge in serial recall and makes contact with relevant neuroscientific data. Furthermore, the
model gives rise to numerous testable predictions that differentiate it from competing theories.
Taken together, the results presented indicate that recurrent neural networks may offer a useful
framework for understanding short-term memory for serial order.
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Short-term memory for serial order has been a central topic in
psychology almost since the discipline’s inception. The earliest
published studies on the topic go back to the 19th century (Nipher,
1876), and by the 1930s, enough work had been done to warrant
the publication of a literature review (Blankenship, 1938). Today,
the PsycINFO database lists over 800 articles under the search
term serial recall, with over 250 of these also found under short-
term or working memory, and over 150 focusing on the single,
hallmark task of immediate serial recall (ISR). Taken together,
existing work yields an extremely detailed characterization of
human performance, describing effects of list length and compo-
sition, effects of presentation modality, detailed characteristics of
errors, and many other features of serial recall (for reviews, see
Marshuetz, 2005; Neath, 1998).

From the beginning, research on serial memory1 has placed a
strong emphasis on the development of explicit theories. Over the
years, such theories have evolved from verbal, analogy-based
accounts (e.g., Conrad, 1965; Murdock, 1974) to box-and-arrow
schematics (e.g., Baddeley, 1986), to abstract mathematical char-
acterizations and algorithms (Anderson & Matessa, 1997;
Drewnowski, 1980; Estes, 1972; Lewandowsky & Murdock, 1989;
Nairne, 1990). In the most recent generation of models, the trend
has been toward connectionist or neural network models, which

seek to characterize the mechanisms involved in serial memory in
terms that can be mapped onto neural hardware (e.g., G. Brown,
Preece, & Hulme, 2000; Burgess & Hitch, 1999; Houghton, 1990;
Page & Norris, 1998).

Considering the sophistication and explanatory power of recent
models, one might assume that the problem of serial order in
short-term memory has essentially been solved. However, this is
not at all the case. Although substantial progress has been made
toward clarifying the ramifications of various theoretical perspec-
tives (see Henson, 1999), the mechanisms underlying serial recall
are still vigorously debated, even at the most fundamental levels.

In the current article, we propose a new theory of short-term
memory for serial order. Our approach takes, as its foundation,
previous work in both psychology and neuroscience, examining
the function of recurrent neural networks. Through computer sim-
ulation, we have applied a recurrent network to the task of ISR,
evaluating its ability to account for a core set of empirical bench-
marks. The model accounts well for a wide range of phenomena,
including findings that had been thought to rule out recurrent
networks as candidate models of serial recall. At the same time, the
model is capable of accounting for a set of findings, relating to
interactions between short- and long-term memory, that has pre-
sented difficulty for competing accounts.

In what follows, we provide a context for the work to be
reported, by contrasting two general frameworks for understanding
sequence memory. Following this, we introduce the details of our
own approach, and then turn to the simulation results.

1 Throughout the article, we use the terms serial memory and serial
recall interchangeably, setting aside the fact that serial memory refers more
to a mental faculty and serial recall, to a specific task, which is used to tap
that mental faculty.
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Two Frameworks for Understanding Memory for
Serial Order

Recurrent Neural Networks and Activation-Based Memory

One of the earliest proposals concerning the mechanism under-
lying serial recall was made by Hebb (1949). Hebb suggested that
serial memory depends on what he termed “activity traces.” Spe-
cifically, the proposal was that information about the identities of
items in a sequence, and their serial order, are represented through
sustained patterns of neural activation. From early on, it was
suggested that such sustained activity might emerge as the result of
recurrent connectivity in the brain, which created “reverberatory
loops” (Conrad, 1959; Lashley, 1951).

Over the years since these original proposals, the view of serial
recall as based on activation traces in a recurrent architecture has
garnered considerable empirical support, particularly from neuro-
scientific data. It is now widely accepted that sustained neural
activation plays a central role in short-term, or working, memory
(Fuster, 1997; Goldman-Rakic, 1995; E. K. Miller & Cohen, 2001;
O’Reilly, Braver, & Cohen, 1999) and that recurrent synaptic
connectivity plays a critical role in supporting such activation
(Compte, Brunel, Goldman-Rakic, & Wang, 2000; Zipser, Kehoe,
Littlewort, & Fuster, 1993). Neurophysiologic studies with non-
human primates suggest that the same considerations may apply to
memory for serial order. Specifically, during ISR, neurons in
prefrontal cortex have been found to encode item and position
information and to remain active between list encoding and recall,
providing a distributed representation of the target sequence (Bar-
one & Joseph, 1989; Funahashi, Inoue, & Kubota, 1997; Ninokura,
Mushiake, & Tanji, 2003, 2004). Several computational models
have shown how the patterns of activity observed in these neuro-
physiologic studies of serial recall can be accounted for on the
basis of the dynamics of recurrent neural networks connecting
cortex, basal ganglia, and thalamus (e.g., Beiser & Houk, 1998;
Dominey, Arbib, & Joseph, 1995; see Figure 1). Such studies have
demonstrated the sufficiency of recurrent neural networks to sup-
port the recall of sequences. Indeed, the capacity of recurrent
networks to encode sequence information has become an area of
study in its own right within computer science and engineering
(Jaeger, 2001; Maass, Natschlager, & Markram, 2002; White, Lee,
& Sompolinsky, 2004).

Arguments Against Recurrent Networks

Given the accumulating neuroscientific evidence for the in-
volvement of recurrent neural circuitry in supporting serial recall,
it is striking to find that many psychologists in fact reject recurrent
networks as candidate models in this domain. The central argu-
ment that has been leveled against recurrent networks forms an
important backdrop for the work we present here, so it is worth
laying out in some detail.

The primary objection derives from the view that recurrent
networks can produce sequences only by relying on interitem
associations, a mechanism referred to as chaining (G. Brown et al.,
2000; Burgess & Hitch, 1999; Henson, Norris, Page, & Baddeley,
1996; Houghton, 1990; Houghton & Hartley, 1995). This assump-
tion—inaccurate, we argue—is based on the observation that re-
current networks, because of their connectivity, are influenced by
their own earlier internal states. It has also been encouraged by the

fact that recurrent networks have, to date, been most frequently
applied to tasks requiring prediction of items in a sequence on the
basis of their predecessors (e.g., Cleeremans, 1993; Elman, 1990).

If recurrent networks were in fact simply chaining models, it is
true that this would exclude them as models of serial recall. For
although it was long considered a possibility that short-term mem-
ory for serial order might be based on chaining (Lewandowsky &
Murdock, 1989; Wickelgren, 1966), subsequent empirical work
has succeeded in conclusively ruling out this hypothesis. The
critical observation was made by Baddeley (1968; see also Bjork
& Healy, 1974; Henson et al., 1996). Here, subjects were asked to
recall six-item consonant lists that alternated between acoustically
confusable and nonconfusable items. Not surprisingly, recall for
the nonconfusable items was superior to that for confusable ones,
yielding a “sawtooth” pattern (shown in Figure 9). The pivotal
finding, however, was that recall for nonconfusable items in these
alternating lists was as accurate as recall for items in the same
positions in lists made up completely of nonconfusable items (see
Figure 9). If recall were conducted on the basis of chaining, one
would expect the similarity between confusable items to lead to
exchanges among their nonconfusable successors (see Henson et

Figure 1. A recurrence-based model of the neural mechanisms underly-
ing immediate serial recall, proposed by Beiser and Houk (1998). T �
thalamus; PF cortex � prefrontal cortex; CD � caudate; GPi � globus
pallidus interna; R � recurrent prefrontal unit; E � encoding prefrontal
unit. From “Model of Cortical–Basal Ganglionic Processing: Encoding the
Serial Order of Sensory Events,” by D. G. Beiser and J. C. Houk, 1998,
Journal of Neurophysiology, 79, p. 3170. Copyright 1998 by the American
Physiological Society. Reprinted with permission.

202 BOTVINICK AND PLAUT



al., 1996, for a detailed presentation of this argument). However,
no such tendency was observed.

Henson et al. (1996) have provided another argument against
chaining, which has to do with what Wickelgren (1966) called
“associative intrusions” and what the Henson group calls “relative
errors.” Here, two items that appear adjacent to one another in the
input list are moved to new positions at recall, but remain adjacent
and in their original order. Chaining models predict that such
errors should occur at above-chance levels, because when an item
migrates to a new position, item-to-item associations should often
lead that item’s successor to follow. Henson et al. (1996) provided
empirical evidence contradicting this prediction, showing that rel-
ative errors were not as frequent as a chaining account would
necessarily predict.

Context-Based Accounts

The accumulation of evidence against chaining has led to a shift,
within the psychological literature, away from models based on
interitem associations (e.g., TODAM; Lewandowsky & Murdock,
1989) and toward a framework that depends instead on transient
associations between item representations and a time-dependent
representation of context. Within this framework (see, e.g., G.
Brown et al., 2000; Burgess & Hitch, 1992, 1999; Grossberg,
1986; Hartley & Houghton, 1996; Henson, 1996, 1998; Houghton,
1990; Houghton & Hartley, 1995), recall is accomplished by
resetting the context representation to the state it held at the
beginning of list encoding and then stepping through the context
representation’s successive states, using them to retrieve the asso-
ciated item representations. The main point of variation among the
relevant accounts concerns the nature of the context representation,
which may be understood as a representation of list position
(Anderson & Matessa, 1997), distance from list start or end (Hen-
son, 1998; Houghton, 1990), or the state of a set of neural oscil-
lators (G. Brown et al., 2000; Burgess & Hitch, 1999). In each
case, however, serial recall depends on transient links between
item and context representations.

The majority of context-based models has been presented in the
form of neural networks. Here, the associative links between item
and context representations are established by changing the con-
nection weights between processing units (analogous to the
synapses between neurons in a biological neural network). When
cast in neural terms, the context-based account can thus be char-
acterized as using a weight-based method for encoding and main-
taining serial order information, a point that strongly differentiates
it from the activation-based framework considered earlier.

Unlike recurrent, activation-based models, context-based mod-
els have been applied to a wide range of detailed behavioral
findings, including list-length effects, transposition gradients, ef-
fects of item similarity and modality, effects of grouping, and
changes in performance over development, not to mention numer-
ous others. Their considerable success in accounting for such data
has made context-based models the standard against which any
competing account of serial recall must presently be compared.

It is, however, important to point out that there is at least one
area that has proven challenging for context-based models. This
involves cases in which serial recall is influenced by long-term or
background knowledge about sequential structure. One classic
example of such an influence is the bigram frequency effect, first
reported by Baddeley (1964; see also Baddeley, Conrad, & Hull,

1965; Kantowitz, Ornstein, & Schwartz, 1972; Mayzner &
Schoenberg, 1964). Here, strings of letters are better recalled if
adjacent items are also likely to appear together in English words.
Similar effects have been demonstrated with other kinds of mate-
rial: G. A. Miller and Selfridge (1951) found that lists of words
were better recalled if they contained pairwise transitions that are
likely to occur in actual sentences. More recently, Botvinick
(2005; Botvinick & Bylsma, 2005) has shown that the same effect
can be observed using a set of pseudowords sequenced on the basis
of an artificial grammar; after extended experience with sequences
generated on the basis of the grammar, subjects were better able to
recall orderings that were associated with a high probability under
the grammar, than less probable orderings. Finally, it has been
shown that lists of nonwords are better recalled if the nonwords
contain high-frequency phoneme-to-phoneme transitions, suggest-
ing that short-term memory is influenced by background knowl-
edge concerning phonotactic structure (Gathercole, 1995; Gather-
cole, Frankish, Pickering, & Peaker, 1999; Gathercole, Willis,
Emslie, & Baddeley, 1991; Grant et al., 1997; Roodenrys &
Hinton, 2002; Van Bon & Van der Pijl, 1997). In these examples,
short-term memory for serial order is seen to depend on back-
ground knowledge concerning domain-specific regularities in se-
quential structure. In each case, recall for highly probable se-
quences was better than for less probable ones.

Note that, in each of the cases just reviewed, the relevant
background knowledge involves transition probabilities among
specific items. It is this that makes the observed effects difficult for
context-based models to address. Given the strong evidence
against chaining in short-term memory for serial order, context-
based models have eschewed any role for item-to-item associa-
tions. Although this allows such models to account for phenomena
such as the sawtooth error pattern described earlier, it makes it
difficult for them to account simultaneously for effects of long-
term sequence knowledge, in which information about transition
probabilities appears critical. The difficulty has prompted at least
one proponent of the context-based approach to acknowledge that
such “interactions between short- and long-term memory pose
problems for most models of serial recall” (Henson, 1998, p. 115).

The Present Work

We have contrasted two general approaches to understanding
short-term memory for serial order. One, involving weight-based
associations between context and item representations, has been
successfully applied to a broad range of behavioral phenomena but
faces difficulty in accounting for effects of background knowl-
edge. The other, involving an activation-based memory mecha-
nism, supported by recurrent connectivity, is consistent with neu-
roscientific findings but has not been tested in any detailed way
against behavioral data, a fact partly attributable to specific doubts
concerning its viability.

In the present article, we argue for the latter, recurrent
activation-based account of short-term memory for serial order.
Our approach is to implement the general account in the form of a
simple recurrent neural network and to use this model to simulate
a set of critical behavioral phenomena, all relating to the task of
ISR. The results we present support two general conclusions. The
first is that, contrary to the opinion frequently expressed in the
existing literature, recurrent networks can, in fact, account for
central benchmark phenomena, including the findings that rule out
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chaining as a mechanism for short-term serial recall. The second
conclusion is that, unlike context-based models, recurrent net-
works also provide a viable account for effects of background
knowledge on serial recall.

The Model: Core Features

Our model is a deliberately minimal implementation of the
recurrence- and activation-based account of serial memory. The
approach was simplified wherever possible, to focus on the impli-
cations of a core set of theoretical assumptions. The key aspects of
the model are summarized as follows:

1. Neural network implementation. The model takes the
form of a connectionist, or artificial neural, network,
composed of simple, interconnected processing units
with continuously varying activation values. The units in
the model are divided into an input group, used to rep-
resent list items presented during encoding; an output
group, which represents the system’s responses during
list encoding and during recall; and an internal or “hid-
den” group, which mediates between input and output
(see Figure 2).

2. Recurrent connectivity. The model’s architecture is char-
acterized by massively recurrent connectivity, forming
feedback loops over which activation can reverberate.
Specifically, feedback connections run among the units
in the model’s hidden layer, allowing the pattern of
activation in this layer on each time step to influence its
behavior on the next. A second (less critical) feedback
loop involves connections running from the output layer
back to the hidden layer, allowing the model’s outputs to
influence its subsequent states.

3. Role of domain-specific experience. The system’s con-
nection weights are set through the operation of a learn-
ing procedure, which adjusts the weights—gradually,
over many trials—so as to reduce output error during
performance of the serial recall task. This aspect of the
simulations has two key implications. First, it means that
the network’s weights are shaped only by the basic de-
mands of the ISR task; they are in no way chosen to yield
the benchmark performance patterns (e.g., primacy, re-
cency, and error patterns) that we consider. Second, and
more important, it means that if the model is trained in a
domain involving regularities of sequential structure, this
exposure can, in principle, influence the mechanism that
develops for performing the serial recall task.

4. Activation-based, rather than weight-based, encoding.
Simulations using the model are divided into training and
testing phases, each consisting of many individual trials.
Although, as just noted, the system’s weights change
during training, this is not the case in the testing phase, in
which the performance of the fully trained model is
evaluated. Here, all of the system’s connection weights
are held constant. Because the weights are not allowed to
change over the course of testing trials, the network
cannot use a weight-based mechanism for encoding and
preserving sequence information. Its successful perfor-
mance of the ISR task must rely, instead, on sustained
patterns of unit activation, supported by the system’s
recurrent connectivity.2

5. Random variability. The internal representations of the
model (i.e., patterns of activations over hidden units)
display a degree of random variability. In some simula-
tions, this variability derives from noise added to the
model’s hidden unit activations. In others, as explained
later, it derives from sampling variability in the training
process itself. In both cases, the presence of variability in
the model’s encodings plays a central role in its recall
errors.

2 Our choice to freeze the system’s weights during testing should not be
interpreted as an assertion that short-term memory mechanisms in the brain
become incapable of learning at some point. The purpose of this measure
was simply to emphasize the distinction between weight-based and
activation-based encoding. In further simulations, to be reported elsewhere
(Botvinick & Huffstettler, 2006), we have considered the performance of
the model when learning is permitted to continue during testing. Under
these conditions, the model displays the Hebb effect (Hebb, 1949). That is,
if a specific target list is presented on every third trial, performance on this
list gradually improves, whereas performance on intervening filler lists
remains stable. In recent empirical work, Cumming, Page, and Norris
(2003) compared performance on Hebb (repeated) lists to transfer lists,
which overlapped with the Hebb lists only at every other list position. As
Cumming et al. pointed out, positional theories (including the weight- and
context-based theories we have grouped together here) predict that recall
accuracy on these transfer lists should be higher at the positions matching
the Hebb list. However, this was not observed empirically. Instead, per-
formance on the transfer lists closely resembled performance on ordinary
filler lists. As we plan to report in detail elsewhere (Botvinick &
Huffstettler, 2006), the present model displays the same pattern of
performance.

Figure 2. Schematic representation of the simulation model. Arrows
represent all-to-all projections.
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Again, our approach was to simplify wherever possible, so as to
focus on the implications of these core stipulations. This strategy
has the advantage of making the basis for the model’s behavior
relatively clear. However, it also means that the model bears a
rather abstract relationship to the behavioral processes and neural
mechanisms it is meant to elucidate. The role of learning requires
specific comment, in this regard. As noted above, the model is
trained on the task of ISR. Obviously, it is not our claim that the
human capacity to perform ISR develops through direct practice
on the task. Rather, the training procedure we used is meant to
arrive at a pattern of connectivity that, in the human, would arise
from a combination of innate constraints and experience with
behavioral tasks that place a premium on sequence information—
perhaps most important, language comprehension and production.
This point, as well as the overall role of learning in our simula-
tions, are discussed further in the General Discussion section.

Full details of the model’s implementation are presented in the
next section. Following this, we provide a general description of
the sequencing mechanism the model developed through training.
Next, we detail the specific results of four simulations. Simulations
1 and 2 address a basic set of behavioral phenomena, including
list-length effects, primacy and recency effects, transposition gra-
dients, and effects of interitem confusability. In Simulations 3 and
4, the same basic model was applied to phenomena involving
interactions between short- and long-term memory.

General Method

Model Architecture

In all instantiations, the network was composed of simple units assum-
ing, on each step of processing, an activation level between zero and one.
These were partitioned into an input group of between 13 and 43 units,
depending on the simulation; an output group containing the same number
of units as the input group; and an internal or hidden layer of 200 units.
Input units were externally set to represent the input appropriate to the
current time step. Activation values for units in the other two layers were
set according to a standard approach (Rumelhart & McClelland, 1986).
Specifically, these units assumed activation levels based on their current
net input, calculated as follows:

netj � �
i

aiwij, (1)

where ai is the activation of unit i, and wij is the weight of the connection
from unit i to unit j. For units in the hidden layer, activations were based
on the logistic function:

aj �
1

1 � e�netj . (2)

As described below (see the Sources of Variability section), a small amount
of random noise was added to hidden unit activations in Simulation 4.
Activations in the output layer were based on the softmax function

aj �
enetj

¥
k

enetk
, (3)

where k indexes all of the units in the output layer. The softmax activation
function simulates a form of competition within the layer, ensuring that
overall activation in the layer sums to one. Moreover, when used with the
divergence error metric described below, it can be understood as repre-
senting the posterior probability of a particular event from a set of mutually
exclusive alternatives (Rumelhart, Durbin, Golden, & Chauvin, 1996).

The connectivity of the network, in all instantiations, was as illustrated
in Figure 2. Activation fed forward from the input layer to the hidden layer,
and from the hidden layer to the output layer. Recurrent connections also
allowed activation to flow from the output layer to the hidden layer (see the
Training and Testing sections for additional information on this projection)
and from units in the hidden layer to all other units in the same layer. For
every projection, all units in the sending layer were connected to all units
in the receiving layer. Each unit in the hidden and output layers also
received an input from a single bias unit, with a fixed activation of one.

Weights were initialized to random values between �1 and 1 (for
recurrent connections, �0.5; weights from the bias unit to hidden units
were initialized at �1, to avoid strong hidden unit activation early in
training, which can slow the learning process). Operation of the network
was in discrete time, with each step corresponding to an event in the task,
either presentation of a list item at encoding or output of an item at recall.
On each time step, activations in the hidden layer were determined prior to
activations in the output layer. Recurrent connections were associated with
a one time-step delay, as is conventional in the simple recurrent network
implementation (Elman, 1990). As a result of this conduction delay, the
pattern of activation in the hidden layer was determined by the joint
influence of (a) the pattern of activation in the input layer, (b) the pattern
of activation in the hidden layer on the previous time step, and (c) the
pattern of activation in the output layer on the previous time step (follow-
ing winner-take-all action selection, as described further below).

Task and Representations

The input and output representations used in the simulations were
straightforward. Simulations 1, 3, and 4 used single units to represent
individual list items (English letters in Simulations 1 and 3, pseudowords
in Simulation 4). To simulate presentation of an item, we assigned the input
unit standing for that item an activation of one, with all other input units set
to zero. It should be noted that this localist representation scheme was not
necessary; distributed representations could just as well have been used.
Localist representations were used for simplicity and to avoid spurious
similarities. As described in the Simulation 2 section, that study used
two-dimensional item representations, allowing inclusion of confusable
items (items identical on one dimension) and nonconfusable (nonoverlap-
ping) items. All instantiations of the model included a special unit in the
input layer to serve as the recall cue, and one in the output layer to signal
the end of recall.

The task addressed in all simulations was forward, ISR. During encod-
ing, individual item representations in the model’s input layer were acti-
vated on successive time steps, with the task being to activate the corre-
sponding item representation in the output layer. Following the final
element in the target list, the recall cue unit in the input layer was activated.
This unit remained activated throughout the recall phase, during which the
task was to output the items in the target list, one per time step and in their
original order. The recall cue was the only input unit activated during
recall. At the end of recall, the task called for the network to activate a
special output unit indicating that recall was complete. List lengths pre-
sented during training and testing varied in length from 1 to 6, 8, or 9,
depending on the simulation. (To minimize training time, the maximum list
length for each simulation was chosen to match the maximum list length in
the target empirical studies. Training to longer list lengths made little
difference in the model’s behavior.) It is important to note that, in all
simulations, the model was trained on multiple list lengths. This is not an
incidental aspect of the simulations; training the model only on a single list
length was found to produce results qualitatively different from those that
are reported here.

Training

The model was trained on the ISR task as just described. Training began
with a single-element list. Following this, list length increased by one
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element per trial until a simulation-specific maximum length was reached.
Following presentation of a list of maximum length, the list length returned
to one and the cycle repeated. In what follows, we refer to the processing
of a single list (including both encoding and recall) as a trial, and a single
pass through the full range of list lengths as a training cycle.

Lists presented during training in Simulations 1 and 2 were composed of
input elements selected randomly without replacement. Lists in Simula-
tions 3 and 4 were generated on the basis of specific transition frequencies,
as described in conjunction with the simulations themselves.

Learning was accomplished using a version of recurrent back-
propagation through time, adapted to the simple recurrent network archi-
tecture (Williams & Zipser, 1995), using binary target activations. The
divergence error metric was used:

�
j

tjlog� tj

aj
�, (4)

where j indexes across output units. When divergence error is combined
with the softmax activation function in the setting of a multinomial clas-
sification problem, such as the present ISR task, the learning procedure
yields a network that approximates a maximum a posteriori or Bayesian
classifier (Rumelhart et al., 1996), a point that becomes important in some
analyses of the model’s behavior below.

The learning rate was set at 0.001 for all simulations. Weights were
updated at the end of each trial. During training, teacher forcing was used
in generating the feedback from output to hidden layers. That is, the
activations propagated over the recurrent connections from output to hid-
den layers were based on the target values for the output units, not their
actual activation. At the beginning of each trial, activations for all units in
the hidden layer were set to 0.5, and for all units in the output layer, to 0.0
(determining the activations propagated over recurrent connections on the
first time step).

For each simulation, training proceeded until the network reached a
predetermined level of recall accuracy (proportion of lists of a selected
length recalled correctly). For this purpose, performance was evaluated
after every 10,000 trials. The reference accuracy level was drawn from the
relevant empirical studies, as detailed in subsequent sections. It should be
noted that, beyond the noise parameter used in Simulation 4, length of
training was the only parameter in our simulations that was varied so as to
optimize the fit to empirical data.

Testing

At test, the weights in the network were held constant, and further lists
were presented. Characteristics of the test lists are described in conjunction
with each simulation. As also detailed there, the probability of any list
appearing during both training and testing was, in general, very small.

The network’s response was identified by selecting the most highly
activated unit in the output layer, ignoring the end-of-list unit. The number
of responses collected was set equal to the length of the target lists. This
testing method was analogous to presenting subjects in an ISR experiment
with fill-in boxes for their responses and insisting that they provide a
response in each box, forbidding omissions. In simulations in which recall
was terminated upon selection of the end-of-list unit (not further reported
here), the network responded with the incorrect list length infrequently. For
example, in Simulation 1, this occurred on 0.0% of trials for lists of three
elements, 1.7% of trials for lists of six elements, and 8.9% of trials for lists
of nine elements. Further simulations in which a response threshold was
imposed, allowing omission errors to occur, did not change the overall
pattern of data to be reported here.

Unless otherwise noted, accuracy data presented in this report are based
on averages over 5,000 trials (at the relevant list length), a sample size
associated with negligible variance. Data presented for each simulation are
based on a single set of weights, generated in a single training run.
However, in all cases, the reported patterns of behavior were found to be
highly reproducible, reliably emerging each time the model was trained.

Evaluation of Performance

The specific behavioral phenomena to be addressed in each simulation,
and the associated approach to analysis, are introduced in conjunction with
the simulations themselves. In each case, the behavioral data provide clear
qualitative contrasts or trends, and model performance was evaluated on
the basis of the degree to which it displayed the same qualitative patterns.
Nevertheless, for completeness, root-mean-square error (RMSE) is re-
ported for fits involving more than two empirical data points. Note that,
given our use of large sample sizes, the data presented provide a fairly
precise indication of the central tendencies characterizing model perfor-
mance; our goal was not to model the degree of variability in empirical data
sets or to address individual differences.

In selecting which phenomena to address, we applied three criteria. First,
we included basic phenomena that have come to be accepted as standard
benchmarks for computational models in the domain. Second, we included
phenomena that have been considered to militate against the application of
recurrent networks to serial recall or to provide special support for accounts
different from the one presented here. Finally, we included phenomena that
highlight unique aspects of the present account, in particular the behavioral
data concerning the role of background knowledge in serial recall.

Sources of Variability

In some settings (in particular, Simulation 4), normally distributed noise,
with mean zero, was added to the network’s hidden unit activations during
testing. In other simulations, noise was not added; however, even here,
other factors led the network’s internal representations to display a degree
of random variability. The sources of this variability relate to the learning
process. As described above, during training, the model’s weights were
modified in response to each list it processes. Because learning was based
on error reduction, these modifications were guaranteed to benefit the
processing of the just-presented list. However, the weight modifications
made on each trial were not constrained by how they might affect perfor-
mance on other possible lists. Because the learning rate was small, the
weights converged on values that allowed the model to successfully pro-
cess a very large set of stimuli. However, even after the model had
converged in this way, further training caused the weights in the system to
“bounce around” to a small degree, based on the model’s recent training
history. The result was essentially equivalent to intrinsic activation noise,
in that the encodings of individual sequences varied stochastically on the
basis of their relationships to the model’s recent training history. This point
is illustrated by Figure 3, which compares hidden unit activations following
encoding of the same list on two separate trials, separated by presentations
of other lists.

Given the presence of this second source of variability, we elected for
simplicity to set the noise parameter to zero in most of our simulations.3

Further work indicated that the addition of activation noise did not change

3 It should be noted that during the testing phase in our simulations, the
weights in the model were held constant. Thus, the learning-driven “bounc-
ing around” just described was not occurring during testing. However, the
impact of this learning-driven variability is nonetheless evident in the
performance of the model when aggregated over a large set of target lists,
simply because a proportion of such lists will be incorrectly recalled as a
result of learning-induced weight changes occurring toward the end of
training. In most of our simulations, average recall performance over a
large sample of sequences could thus be used as an indirect measure of the
probability of recall for any specific list, just as in empirical studies. A
special note pertains to Simulation 4. Here, the space of possible lists was
small enough that sequence-specific learning effects had a detectable
impact on performance measured in the aggregate. To compensate for this,
activation noise was used in this simulation, allowing internal representa-
tions (and consequently performance) to vary across repeated presentations
of the same target sequence.
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the qualitative behavior of the model, as characterized in the simulations
reported in the present article. All simulations were run on a Dell Precision
computer, with dual Pentium 4 processors, using the LENS simulator
(Rohde, 1999).4

Initial Analyses: How the Trained Model Works

Although the general operation of the model has been described,
the specific mechanisms that allowed the model to perform the ISR
task were not built in a priori but instead resulted from the learning
process. A set of analyses, described in the Appendix, revealed that
the learning process consistently resulted in a particular solution to
the ISR task. In the present section, we provide an overview of this
solution, with an emphasis on points relevant to understanding the
model’s overt performance.

To facilitate the following discussion, it will help to define
several terms. We use the term element to refer to a single member
of a target list. Item will be used to refer to the content of a list
element, considered in isolation from that element’s position.
Thus, for illustration, in the list BKRLM, we would say that the
element at Position 3 contains Item R.

Internal Representation of Sequences and List Elements

A basic demand of the ISR task is the ability to establish and
maintain a representation of the target sequence. In the model,
such a representation is carried by the units in the hidden layer. At
the onset of recall, the pattern of activation in this layer must
encode information concerning each list item and its respective list
position. The model’s solution to this problem involves a super-
positional coding of list elements. Each list element is represented

with a particular pattern of activation, and the list is represented as
a superposition or summation of these patterns. The end result is a
single vector of activation over the model’s hidden units, but a
vector that can be decomposed into element vectors each repre-
senting a single list element. In what follows, we refer to these
components as element vectors or element representations.

As detailed in the Appendix, it proved possible to isolate spe-
cific element vectors through regression analyses, which indicated
how the presentation of specific list elements (e.g., Item M at
Position 4) affected the activation of each hidden unit. Examina-
tion of the resulting element vectors revealed three important
points concerning the way that individual list elements are repre-
sented within the hidden layer. First, list elements are represented
independently: The way in which a list element is represented does
not depend on the other elements in the list. This makes sense,
given the combinatorial structure of the target lists. Second, within
the model’s element representations, item and position are coded
conjunctively. That is, the way that a given item is represented
varies, depending on its position within the list. This is in fact a
computational necessity, given the superpositional code used by
the model. If item and position were represented independently,
ambiguities would arise concerning the linkage between specific
items and specific positions. Conjunctive coding thus addresses the
need to bind item information with position information.

4 Network specification files and stimulus generation scripts sufficient to
recreate the simulations presented here are available for download from
http://www.ccn.upenn.edu/�mmb/

Figure 3. Variability in sequence encoding. The x-axis indicates the activation of each hidden unit on an
arbitrarily selected presentation; the y-axis indicates the activation of the same unit, for the same stimulus list,
following 100 cycles of further training.
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The third, and perhaps most important, point concerning the
model’s element representations involves their similarity relations.
When pairs of element representations are compared, they are
found to resemble one another to an extent determined by both the
items and the positions involved. Specifically, element represen-
tations tend to resemble one another to the degree that they involve
similar items, and to the degree that they involve nearby positions.
The point is illustrated in Figure 4. This shows average correla-
tions for pairs of element vectors representing items at the same
list position, or else separated by one, two, or three positions. The
plot contains three data series, one based on pairs of vectors
representing confusable items (as defined under the General
Method section), one on pairs representing nonconfusable items,
and one on pairs representing the identical item. Note that the
correlation between element representations depends on the simi-
larity between the items they represent; at each relative position,
vectors representing the same item are more similar than vectors
representing confusable items, and these are more similar than
vectors representing nonconfusable items. However, as the figure
also illustrates, the resemblance between element vectors also
depends on the distance between the positions of the elements
represented. Elements occupying the same position are represented
more similarly than elements at adjacent positions, and with in-
creasing distance, correlations continue to fall.

This similarity structure in the model’s representations of item
and position turns out to be critical for explaining the model’s
performance in the simulations to be reported below, and we refer
to it frequently in subsequent analyses. An obvious question raised
by this similarity structure is why it arises. The answer here has to
do with the way that the model’s internal representations support
the selection of appropriate outputs, and how they evolve over the
course of a trial, as discussed next.

Selection of Successive Outputs

Given the model’s connectivity, the activation pattern in the
model’s hidden layer determines what units become active in the
output layer. The hidden layer thus has two roles. Not only must it
encode all of the elements in the target list. It must also somehow
indicate which single item representation should be activated in the
output group. These two demands add up to an interesting com-
putational challenge. At any given time, the hidden layer must
represent one element in such a way that it influences the output
layer, while representing other elements in such a way that they do
not. One might say that on each time step, one element must be
made visible to the output layer, while other elements are kept
invisible. Such “output gating” is, in fact, a generic challenge faced
by any neural system relying on an activation-based memory
mechanism (see, e.g., J. W. Brown, Bullock, & Grossberg, 2004;
Hochreiter & Schmidhuber, 1997).

To understand the mechanism underlying output gating in the
present model, consider that the influence of the hidden units on
each output unit is determined by a specific, fixed set of connec-
tion weights. As explained under the General Method section, the
input to each output unit is defined as the dot product of the
hidden-layer activation vector with this weight vector. Graphi-
cally, this constitutes a projection of the hidden layer activation
vector onto the weight vector for the output unit (see Jordan,
1986). The strength of this projection, and thus the strength of the
output unit’s activation, depends on the degree to which the hidden
layer activation vector is aligned or correlated with the weight
vector. A pattern of activation that aligns well with the weight
vector will drive the output unit strongly; it will be “visible” to the
output layer, in the above sense. Patterns less well correlated will
have less influence on the output unit. And patterns orthogonal to
the weight vector will not influence the output unit at all. Such
patterns will, in effect, be “invisible” to the output unit.

These properties of the model are what allow it to output one
item on each time step, while still managing to keep other list
elements in memory. On steps in which an element is being
encoded or recalled, the element is represented so as to be com-
paratively visible to the output layer. That is, it is represented by
a vector of activation that is relatively well aligned with the weight
vector connecting the hidden layer to the relevant output unit. On
other time steps, the element is rerepresented so as to be compar-
atively invisible to the output layer. The element still figures
robustly in the model’s overall representation of the target se-
quence, but it is represented in such a way that it does not strongly
influence activation in the output layer.

A demonstration of these points is provided in Figure 5. Each
step along the x-axis in this plot relates to a single step in process-
ing a four-element list: four steps of encoding and four steps of
recall. At each step, the data points relate to element vectors for
particular list positions (identified as described in the Appendix).
The plot shows, for each step, the degree to which element vectors
for each list position are “visible” to the output layer. This visi-
bility is quantified as the cosine of the angle between each element
vector and the weight vector for the relevant output unit (averaged
across element vectors pertaining to a single list position and a
single step of the task). The larger this cosine, the better the
alignment between element and weight vectors, and the larger the
projection of the element vector onto the output layer.

Figure 4. Mean correlations between element vectors for items at the
same list position (0), or at distances of 1, 2, or 3 positions. Correlation for
the same item at the same position, necessarily 1, is included for com-
pleteness. Confusable, nonconfusable � acoustically confusable and non-
confusable items.
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The data in Figure 5 are most easily parsed by focusing on a
single step of processing. Consider, for example, the first step of
recall. The four points plotted here indicate the visibility of ele-
ments at list positions one, two, three and four, reading from top to
bottom. Note that elements at Position 1—the position being
recalled on this step—are associated with the largest cosine, that is,
the highest visibility. At recall step two, the pattern has changed.
Here, list Position 2 has the largest cosine. Once again it is the
element being recalled that is most visible to the output layer.
Element 1, no longer immediately relevant to the system’s output,
is represented on this step so as to be quite invisible to the output
layer, with an activation vector that is almost orthogonal to the
relevant output weights.

The connected data series in the figure provide an indication of
how the representation of individual list elements evolves over the
course of a trial, from encoding through recall. On the step in
which an element is encoded, it is represented with an activation
vector that renders it relatively visible to the model’s output layer.
On the next time step, the representation of the element is strongly
transformed, so as to render it essentially invisible to the output
layer. Then, over the succeeding steps, the element’s representa-
tion gradually shifts, bringing it more and more into line with the
relevant output weights. By the time the element is to be recalled,
it is again relatively well aligned with those weights, and thus once
again relatively visible to the output layer. The overall process can
be visualized as an incremental rotation of the vectors that repre-
sent individual list elements. In a manner of speaking, these

vectors are rotated out of view just following encoding, and then
gradually rotated back into view as the time to recall them
approaches.5,6

5 The relatively dramatic representational shift occurring just after en-
coding (and after recall) is driven by feedback from the output layer, as
conveyed via the output-to-hidden projection. This can be inferred from the
finding that the weight vector connecting the output layer to any given
hidden unit tends to correlate negatively with the weight vector connecting
that hidden unit back to the output layer. Given this role, the feedback
projection from the output layer can be understood as paralleling the
“competitive filter” in the competitive queuing model of Houghton (1990),
as well as other mechanisms for post-output suppression. Note that the
output-to-hidden projection was included in the model to implement the
assumption that internal representations of serial order are influenced by
feedback from output systems. Further simulations indicated that that the
network can be successfully trained without this projection, resulting in
patterns of performance similar to those observed when the projection is
present. Under these circumstances, the hidden-to-hidden weight matrix
appears to assume the function served by the output-to-hidden weights. In
both versions of the network, the hidden-to-hidden weights are responsible
for driving the smaller, stepwise transformations that occur over the re-
maining steps of recall.

6 To say that element representations are rotated through representa-
tional space implies that their magnitudes remain constant. Further analysis
indicated that this is, in fact, true for the model. With the one exception of
the encoding step, in which element vectors tended to be relatively large,
the magnitude of element vectors remained essentially constant over sub-

Figure 5. Mean cosine of angle between element vectors and relevant hidden-to-output weight vectors. Each
time series is based on vectors representing elements at a particular list position, as indicated by the numeric
labels. Labels are included only on time steps in which the represented element is to be output.
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Factors Underlying Errors

To this point, we have spoken of element vectors as if they are
fixed and invariant. However, as discussed in the General Method
section, the internal representations in the present model are in fact
subject to some degree of variability. This means that each item–
position conjunction, rather than being represented by a fixed
pattern, instead maps to a probability distribution over the space of
possible activation patterns. Inevitably, the distributions for differ-
ent item–position conjunctions will overlap. This, in turn, makes
any given pattern of activation inherently ambiguous. Any pattern
arising within the model’s hidden layer could potentially have
been induced by any of a set of item–position conjunctions.

The way that the model responds to such ambiguity reflects a
fundamental property of neural networks. Under a standard set of
conditions—all of them met by the present model—neural net-
works approximate maximum a posteriori or Bayesian classifiers
(see General Method section; also see Bishop, 1995; McClelland,
1998; Rumelhart et al., 1996). Put simply, when faced with a novel
or ambiguous input pattern, such networks produce the response
that is most likely to be correct, given the pattern’s similarities to
the set of patterns encountered during training. In keeping with this
principle, the present model, when faced with an ambiguous in-
ternal representation, interprets it as reflecting the input that is
most likely to have generated it. Although this response policy
often results in correct outputs, it is by definition probabilistic, and
therefore sometimes results in errors.

An important corollary of these considerations, which figures
prominently in succeeding analyses, is that errors tend to involve
confusions between items and positions that are represented sim-
ilarly. As we have just noted, the variability that is present in the
model means that any element, that is, any conjunction of item and
position, maps to a probability distribution over representational
space. When two elements are represented similarly, their distri-
butions will tend to be relatively highly overlapping, making it
comparatively easy for one element to be mistaken for the other.

Simulation 1: Basic Behavioral Phenomena

Having established some general points concerning functioning
of the trained model, we turn now to the details of our first
simulation study. The target empirical phenomena for this simu-
lation were a set of fundamental behavioral observations in the
domain of ISR, concerning effects of list length, primacy and
recency, transposition gradients, repetitions, and relative errors.

Benchmark Phenomena

Effect of List Length

One highly consistent finding across studies of ISR concerns the
relation between list length and overall recall accuracy. As illus-
trated in Figure 6, based on data from Crannell and Parrish (1957),
the proportion of lists recalled perfectly falls as list length in-
creases, generally following a sigmoidal pattern.

Primacy, Recency, and Transposition Gradients

Some further key aspects of human serial recall become evident
when accuracy is measured at the level of individual list positions.
As shown in Figure 7 (left), based on Henson et al. (1998), this
typically reveals a recall advantage for items toward the beginning
of the list (the primacy effect), and a weaker advantage for the last
one or two items in the list (the recency effect; see, e.g., Jahnke,
1963; Jahnke, 1965). Moreover, when items are recalled incor-
rectly, it is less often the case that they have been omitted from the
list entirely than that they have been recalled in the wrong position.
That is, recall tends to be better for item information than for order
information (Bjork & Healy, 1974). This is reflected in Figure 7,
which shows the proportion of trials on which items from each
input position (i.e., position within the presented list) are recalled
at each output position. As the figure makes clear, when items are
relocated, there is a tendency to recall them at positions near their
original position. This tendency, which Henson (1996) has called
the “locality constraint,” can also be visualized as a transposition
gradient, as shown in Figure 8 (left), based on data from McCor-
mack, Brown, and Vousden (2000). Figure 8 shows, further, that
transposition gradient for children was less steep than that for
adults. That is, children had a tendency to relocate items further
from their original positions than adults.

Repetitions

Another benchmark empirical phenomenon concerns errors of
item repetition. When there are few or no repeats in the presented
lists, repetition errors tend to be infrequent and, more informa-
tively, the positions of the repeated item tend to be widely sepa-
rated. This regularity, which Henson (1996) has dubbed the “rep-
etition constraint,” has suggested to some researchers that there
exists a special mechanism for transiently inhibiting item repre-
sentations, once the associated response has been produced (Vous-
den & Brown, 1998).

sequent steps of processing. Element vectors for items occupying different
list positions did not consistently differ in magnitude. For recent compu-
tational work demonstrating how a process of vector rotation can support
encoding of serial order, see White et al. (2004).

Figure 6. Relationship between sequence length and recall accuracy.
Empirical data (light traces) are from Crannell and Parrish (1957). From
left to right, the data series relate to recall for words (unrestricted stimulus
set), words (restricted set), letters (unrestricted), letters (restricted), and
digits. The heavy trace shows performance for the model in Simulation 1.
From “A Comparison of Immediate Memory Span for Digits, Letters, and
Words,” by C. W. Crannell and J. M. Parrish, 1957, Journal of Psychology,
44, p. 323. Published by Heldref Publications. Copyright 1957 by the
Helen Dwight Reid Educational Foundation. Adapted with permission.
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Relative Errors and Fill-In

A final benchmark finding is the fact that relative errors do not
occur at levels above chance. As discussed in the introduction,
Henson (1996; Henson et al., 1996) evaluated the frequency of
these errors as a proportion of adjacent transpositions. His claim
was that any chaining model would, of necessity, predict a ratio
greater than 20% for six-item sequences. In a large-scale empirical
study, the proportion of relative errors was found to be lower than
this (at least, the observed proportion did not differ significantly
from 20%). A closely related observation involves what Page and
Norris (1998) described as fill-in. This refers to the finding that
when an item is displaced because of a transposition error, that
item tends to be recalled in the next position. Thus, if recall of the

sequence ABCDE were to begin AC, the next item recalled would
tend to be B. Henson (1996) examined responses following initial
errors in which an item was recalled one step too early and found
that fill-in errors accounted for 53% of such responses. In contrast,
only 21% of responses involved following the first incorrect item
with the item that followed it in the target list (ACD. . .). Henson
(1996) argued that this finding was incompatible with chaining
models, as well as with some context-based models, including that
of Burgess and Hitch (1992).

Method

The model contained 27 units in both input and output layers. The first
26 of these were used each to represent an individual English letter. The

Figure 8. Left: Empirical data from McCormack, Brown, and Vousden (2000). “Transposition distance” refers
to the distance, in either direction, between an item’s position in the target list and its position at recall. The
y-axis indicates the proportion of all target items recalled at the specified transposition distance. Right:
Performance of the model in Simulation 2. Left panel from “Children’s Serial Recall Errors: Implications for
Theories of Short-Term Memory Development,” by T. McCormack, G. D. A. Brown, and J. I. Vousden, 2000,
Journal of Experimental Child Psychology, 76, p. 237. Copyright 2000 by Elsevier. Adapted with permission.

Figure 7. Left: Empirical data from Henson (1998). Each bar indicates the proportion of items from a specific
input position that appeared at a specific position at recall. The x-axis indicates position within the target list.
Within each cluster of six bars, the first bar pertains to recall position one, the second to recall position two, and
so forth. Right: Performance of the model in Simulation 1. Left panel from “Short-Term Memory for Serial
Order: The Start–End Model,” by R. N. A. Henson, 1998, Cognitive Psychology, 36, p. 89. Copyright 1998 by
Elsevier. Adapted with permission.
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remaining unit in the input layer coded for the recall cue, and the final unit
in the output layer was used to represent the end-of-list response. The
model was trained on lists ranging in length from one to nine. Each list was
composed of a randomly selected set of letters, the only constraint being
that repeats were forbidden. Training continued until overall accuracy
levels reached levels reported in the benchmark empirical studies. Bench-
mark data pertaining to primacy and recency, transposition gradients,
repetitions, and relative errors all derived from Experiment 1 of Henson
(1996; further reported in Henson et al., 1996). Overall accuracy for lists
of six nonconfusable letters in this data set was 58%, and this provided the
stopping criterion for our simulations. This level of accuracy was reached
following 114,444 training cycles. It should be noted that this duration of
training meant that the network was exposed to less than 0.0001% of all
possible lists, and less than 0.07% of lists of six elements.

Results

Effect of List Length

As shown in Figure 6 (heavy trace), the proportion of trials
recalled perfectly by the model fell with list length, with an overall
shape comporting well with the data reported by Crannell and
Parrish (1957) for arbitrary letter lists (RMSE � 0.053).7 It should
be noted that this is not a simple frequency effect, because lists of
all lengths were presented equally often.

Primacy, Recency, and Transposition Gradients

Figure 7 (right) plots the model’s accuracy on six-item lists,
evaluated separately for each position. The curve clearly reflects a
primacy effect, with accuracy being highest for items at the head
of the list, and a smaller recency effect, benefiting the last item in
the list (RMSE � 0.038, with respect to corresponding data from
Henson, 1996). The same figure also indicates the proportion of
trials on which items from each input position appeared at each
output position. When items were not recalled correctly, it was
most often the case that they were recalled in an incorrect position,
rather than being omitted entirely. Thus, item memory was supe-
rior to order memory, as observed empirically. The model’s per-
formance also fit well with Henson’s (1996) locality constraint. As
is evident in the figure, when items were recalled in the wrong
position, there was a tendency for them to appear near to their
input position. RMSE for the entire data set plotted in Figure 7,
with respect to the empirical data from Henson (1996), is 0.025.
The pattern is illustrated in another way in Figure 8 (right), in the
form of a transposition gradient comparable to the one observed
empirically by McCormack et al. (2000). As also illustrated here,
the model generated a broader transposition gradient (RMSE �
0.086) when tested at an earlier point in training (42,222 cycles),
when its overall performance was comparable to that of the chil-
dren in the McCormack et al. study.

Repetitions

As in the empirical data, few repetition errors were observed in
the model’s performance. Henson (1996) reported a rate of 1.6
repetition errors per transposition error. The comparable value,
based on the model’s performance, was 0.7.8 In the model, as in
the empirical data, repetitions tended to span several intervening
items. In the empirical study of Henson (1996; Henson et al.,

1996), the average distance between repeated list items was 3.4; in
the model, 3.56.

Relative Errors and Fill-In

In the model’s performance, the ratio of relative errors to adja-
cent transpositions, as defined earlier, was 12%. Across training
runs, at comparable levels of training, this value was never ob-
served to approach 20%. Fill-in was evaluated following the pro-
cedure followed by Henson (1996), pooling as in that study across
sequences of 7, 8, and 9 elements. As in the empirical data reported
Henson (1996), in cases in which the model recalled at position i
an item belonging at position i � 1, the next response was more
likely to be the item belonging at position i (a fill-in error) than the
item belonging at position i � 2 (63% vs. 17% of relevant
responses).

Discussion

In this first simulation, the model was found to generate behav-
ior fitting with several key aspects of human behavior in the
domain of ISR. These included the basic relationship between list
length and accuracy, the pattern of primacy and recency commonly
observed in positional recall curves, the tendency for transposition
errors to cover short distances, and the tendency for repetition
errors to span relatively large distances. A particularly important
finding was that the model produced far fewer relative errors than
would be expected of any system relying on chaining to perform
ISR.

Each of these aspects of the model’s behavior can be ex-
plained in terms of the basic principles laid out in the Initial
Analyses section. Consider first the relationship between list
length and recall accuracy. As established in Initial Analyses,
the model’s internal representations code for multiple list ele-
ments by superposition. As also established earlier, the model’s
internal representations are subject to a degree of random
variability, a factor that creates the conditions for errors. These
two aspects of the model are jointly responsible the list length
effect. As list length increases, the number of list elements that
must be concurrently represented in the hidden layer rises (a
fact, e.g., evident in an increase in overall hidden layer activa-
tion with increasing list length). In the presence of random
variability, this in turn makes it more difficult to analyze the
model’s internal representation into its element-specific com-
ponents. As the number of list items increases, so does the

7 Because the empirical data are based on averages across subjects, the
underlying curves for individual subjects can be assumed to have been at
least slightly more sharply inflected. Happily, this seems to be true of the
curve yielded by the model.

8 The fact that the model displayed fewer repetition errors than observed
empirically (at least in the benchmark study) is explained by the fact that
the model was trained on material in which repetitions never occurred. The
frequency of repetitions during training influences the model’s tendency to
make repetition errors during recall. Thus, a higher repetition rate could
have been expected, had repetitions occurred occasionally in the training
set.
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ambiguity of the model’s internal representation, and the prob-
ability of an error rises accordingly.9

The model’s reproduction of standard transposition gradients
stems from the fact that errors in the model are most likely to
involve confusions between elements that are represented simi-
larly. As illustrated in Figure 4, positions close to one another tend
to be represented more similarly than positions further apart. As a
result, when an item is recalled in the wrong position, it is more
likely to be recalled near its input position than distant from it. By
contrast, repetition errors are rare and involve greater movement
because, once an element is recalled, its representation is rotated
“out of view” of the output layer (see Figure 5). This reduces the
probability that items will be incorrectly repeated at short delays.

Related principles underlie the primacy and recency effects.
Note that elements at both the beginning and the end of a list have
fewer positional near neighbors than items toward the middle. This
makes it relatively unlikely that the positions of elements near the
list boundaries will be mistaken for other, similarly represented
positions. In this sense, both primacy and recency are, in part, edge
effects. However, there is also another reason for these effects,
which has to do with the number of list elements held in memory
at any given time. Consider that when the first element in a list is
encoded, there are no other elements yet represented in the hidden
layer. When the second item is encoded, there is only one other
element represented there. With each successive element encoded,
the number of elements already in memory continues to increase.
This provides a partial explanation for the primacy effect. As noted
a moment ago, the more items held in memory at any given time,
the more difficult the overall representation becomes to decode.
This means that items at early list positions have an advantage,
because during the overall period from encoding to recall they
share the hidden layer with relatively few other elements. A related
principle contributes to the recency effect. Further analysis along
the lines reported in the Initial Analyses section indicates that the
representations of elements already recalled are quite distinct from
those for items not yet recalled. Thus, as recall nears the end of the
list, the representations of elements remaining to be recalled are
less and less likely to become confused with other elements being
represented in the hidden layer. This protective effect is small,
compared with the relative isolation of early list items at encoding,
explaining the asymmetry between primacy and recency.

The infrequency of relative errors stems from the fact that
individual elements are represented independently within the hid-
den layer. As observed earlier, the way that any given list element
is represented is not affected by the identity of the other elements
in the target sequence. As a result, if the representation of one list
element becomes disrupted, causing the relevant item to be re-
called at the wrong list position, it does not follow that the
element’s successor will be similarly displaced. Thus, relative
errors do not occur at high rates, as would be expected from a
system in which element representations were interdependent.

Simulation 2: Effects of Interitem Similarity

A number of important empirical phenomena in ISR concern
situations involving confusable items, such as letters with phono-
logically similar names. The present simulation extended the ap-
proach taken in Simulation 1 by introducing item representations
that varied in their degree of overlap, making it possible to apply

the model to several benchmark phenomena involving interitem
similarity.

Benchmark Phenomena

Recall Accuracy and Transposition Gradients

As originally shown by Conrad and Hull (1964), lists of con-
fusable items are recalled less accurately than identical length lists
of nonconfusable items. Henson et al. (1996) have referred to this
behavioral finding as the “similarity constraint.” Representative
empirical data, from an experiment by Baddeley (1968), are dia-
gramed in Figure 9 (left; upper- and lowermost data series). It has
also been shown that transpositions in lists of confusable items
tend to span a slightly larger distance, on average, than transposi-
tions in nonconfusable lists. This pattern is evident in the trans-
position gradients illustrated in Figure 10 (left), drawn from Hen-
son (1996).

Sawtooth Pattern for Alternating Lists

An extremely important benchmark finding is the pattern of
behavior on lists in which confusable and nonconfusable items
alternate (Baddeley, 1968). The critical finding here is that non-
confusable items in alternating lists are recalled just as accurately
as items in the same positions in pure-nonconfusable lists (see
Figure 9). As explained earlier, this finding essentially rules out
chaining-based mechanisms for ISR.

Method

The approach was identical to that taken in Simulation 1, with the
exception that list items were encoded in a fashion that allowed for two
levels of interitem similarity. Specifically, each item was represented in
terms of two features. The input layer (and output layer) contained two
groups of units, one representing values of Feature 1 (36 units), the other
values of Feature 2 (6 units). Each item was represented by activating one
unit in each of the feature groups so that each Feature 1 unit was unique to
a particular item, and each Feature 2 unit was shared by six items. Thus,
every item overlapped with 5 other items (on Feature 2) and did not overlap
with the remaining 30 items. Overlapping items were used to represent
confusable items; nonoverlapping items were used to represent noncon-
fusable ones.

The network was trained on randomly constructed lists (without repeats),
ranging in length from one to six. Items were selected from the overall set
of 36 without regard to interitem similarity; thus, training lists included

9 A separate but related question about the model concerns its capacity
or span. What determines the absolute accuracy of the model’s perfor-
mance at specific list lengths? Although we have not systematically ex-
plored this issue, some general comments can be made. Because errors in
the model result from representational degradation or variability, any factor
that affects the frequency and severity of such degradation will impact the
model’s span. Factors that increase the variability of representations (e.g.,
activation noise, learning rate, corpus size) will tend to reduce span, and
factors that lead to increased separation between the representations of
different item–position conjunctions (e.g., number of hidden units, training
time) will tend to increase span. It is interesting to speculate that the
particular solution to the ISR task that the model finds, as detailed in the
Initial Analyses section, may place bounds on the degree to which different
element representations can be separated within representational space.
However, this cannot be established on the basis of analyses conducted to
date.
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arbitrary mixtures of confusable and nonconfusable items. In simulating
the transposition gradient data from Henson (1996), training continued
until accuracies for pure-confusable and pure-nonconfusable lists of six
elements surpassed 0.39, their average in the empirical data (316,666
cycles, covering less than 0.025% of all possible six-item lists). In simu-
lating Baddeley (1968), training continued until the proportion of items
recalled in the correct position, for pure-confusable and pure-
nonconfusable lists of six elements, averaged 0.34 (202,000 cycles, cov-
ering less than 0.020% of possible lists).

Testing was with lists of six items, using pure-confusable, pure-
nonconfusable, or alternating lists as appropriate to the corresponding
experimental condition. During test runs, the model’s output was deter-
mined by using an item-based winner-take-all approach. Here, the pattern
of activity over all output units, including both feature sets, was compared
against binary representations of each of the 36 items, and the binary
pattern most closely matching the activation pattern (largest dot product)
was selected as the model’s output.

Results

Recall Accuracy and Transposition Gradients

In line with empirical observations, the model performed better
on nonconfusable lists than confusable lists (Figure 9, right) and
made longer-distance transposition errors for confusable than non-
confusable lists (Figure 10, right; RMSE � 0.076). In both cases,
the effect of confusability was stronger in the model than in the
empirical data. However, this discrepancy is a direct consequence
of the relative similarity among confusable and nonconfusable
items. For simplicity, we used item representations that involved
only two levels of overlap, 0% and 50%; intermediate values
would have yielded a smaller similarity effect. The same comment
applies to the other effects tested.

Sawtooth Pattern for Alternating Lists

Performance of the model on lists alternating between confus-
able and nonconfusable items yielded the typical sawtooth accu-
racy curve (Figure 9, right). As in Baddeley (1968) and Henson
(1998), performance on nonconfusable items in alternating lists

matched that for items in the same positions in pure-nonconfusable
lists (RMSE for overall data set shown in the figure was 0.099).10

The finding remains unchanged if error rates for each position are
computed only on trials in which no error has yet occurred, a step
recommended by Henson et al. (1996) for technical reasons.

Discussion

In the present simulation, the model reproduced several empir-
ically observed effects of interitem similarity on serial recall. With
regard to the effect of confusability on accuracy, as has been noted,
the model’s errors are most likely to involve confusions between
item–position conjunctions that are represented similarly. Because
confusable items are associated with relatively similar internal
representations (see Figure 4), they are more likely to be confused
for one another, explaining the higher error rate associated with list
of confusable items.

The model’s reproduction of the pattern reported by Baddeley
(1968), for alternating lists, can be understood in the same terms as
the low incidence of relative errors observed in Simulation 1.
Because list elements are represented independently, there is no
tendency for the transposition of one element to induce a transpo-
sition of its successor, as would occur in a system based on
chaining. Thus, when exchanges occur between confusable items
in alternating lists, this has no particular impact on the recall of the
intervening nonconfusable items.

Taken together, the results of Simulations 1 and 2 demonstrate
the ability of the present model to account for a set of empirical

10 In a similar task context, Farrell and Lewandowsky (2003) found,
contrary to Baddeley (1968), that recall for nonconfusable items in alter-
nating lists was slightly superior to items at the same positions in pure-
nonconfusable lists. The same pattern arises in the model if nonconfusable
items are represented as being more similar to one another than they are to
the confusable items. Assuming this pattern of interitem similarity appears
consistent with the interpretation Farrell and Lewandowsky offered for
their empirical findings.

Figure 9. Left: Empirical data from Baddeley (1968), comparing performance lists of confusable items
(pure-confusable lists; PC), pure-nonconfusable lists (PN), and alternating lists, beginning with either confusable
(AC) or nonconfusable (AN) items. Right: Performance of the model in Simulation 2. Left panel from “How
Does Acoustic Similarity Influence Short-Term Memory?”, by A. D. Baddeley, 1968, Quarterly Journal of
Experimental Psychology, 20, p. 260. Copyright 2005 by the Experimental Psychology Society (www.psypress
.co.uk/journals.asp). Adapted with permission.
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phenomena that are widely accepted as benchmarks in the domain
of ISR. We now turn to a set of behavioral phenomena that have
received considerably less attention from theorists. Specifically,
we focus on observations concerning the role of domain-specific
background knowledge in ISR. Such effects present an important,
although rarely acknowledged, challenge to models of ISR. As
discussed earlier, recent models have justifiably avoided any reli-
ance on item-to-item associations. However, when one turns to
effects of background knowledge, item-to-item transitions (e.g.,
transitions from one letter to the next or one phoneme to the next)
suddenly appear quite important to recall performance. Thus, the
empirical data impose seemingly incompatible constraints on mod-
els of serial recall, requiring an insensitivity to item-to-item tran-
sitions in one context and a definite sensitivity to such transitions
in another. The previous simulations demonstrated that the present
model complies with the first of these constraints, by showing that
the model does not operate through chaining. In Simulations 3 and
4, we present results demonstrating that the model complies with
the second constraint as well, displaying a sensitivity to domain-
specific regularities of sequential structure.

Simulation 3: The Bigram Frequency Effect

As introduced earlier, numerous studies have demonstrated that
the mechanisms underlying serial recall are sensitive to regularities
of sequential structure, when these are present in the material’s
source domain. In particular, several studies have demonstrated
that recall is better for lists that fit well with familiar sequencing
constraints than for lists that violate those constraints. Perhaps the
clearest, and certainly the most replicated, finding concerning
serial recall in a structured domain is the bigram frequency effect.
Here, as introduced earlier, recall is better for letter strings con-
taining bigrams that appear with relatively high frequency in
English than for strings containing low-frequency bigrams (Bad-
deley, 1964; Kantowitz et al., 1972; Mayzner & Schoenberg,
1964). The present simulation tested whether the model shows the
same sensitivity to domain structure.

Benchmark Phenomena

Although the bigram frequency effect has been reported by
others (Mayzner & Schoenberg, 1964), we adopted, as benchmarks
for modeling, data reported by Baddeley (1964) and by Kantowitz
et al. (1972). The first of these studies involved presentation of
lists reflecting the bigram frequency structure of English and also
lists constrained only by the individual letter frequencies of the
language. As shown in Figure 11, recall was superior for the
former group of stimuli. Kantowitz et al. (1972) presented nine-
item lists, each a permutation of a fixed set of nine consonants.
Lists were divided into two groups, one with higher summed
bigram frequencies than the other. As shown in Figure 12 (left),
recall was again better for high bigram frequency lists. The data
conveyed an additional detail, namely that the bigram frequency
effect impacted performance on the list-initial item less than later
items.

Figure 10. Left: Empirical data from Henson (1996). “Transposition distance” refers to the distance, in either
direction, between an item’s position in the target list and its position at recall (0 corresponds to correct recall).
The y-axis indicates the proportion of all target items recalled at the specified transposition distance. Confusable,
nonconfusable � acoustically confusable and nonconfusable items. Right: Performance of the model in
Simulation 2. Left panel from Short-Term Memory for Serial Order, by R. N. A. Henson, 1996, unpublished
doctoral dissertation, MRC Applied Psychology Unit, University of Cambridge, England, p. 33. Copyright 1996
by R. N. A. Henson. Adapted with permission.

Figure 11. The bigram frequency effect. Data � empirical data from
Baddeley (1964); Simulation � performance of the model in Simulation 3;
first order � letter sequences generated on the basis of the letter-transition
probabilities of English; zero order � letter sequences reflecting individual
letter frequencies, but arbitrarily sequenced.
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Method

The model architecture, representations, and general training and testing
procedures were identical to those used in Simulation 1. The only change
was that the lists presented, rather than being randomly constructed, were
generated according to the first-order (letter-to-letter) transition probabil-
ities of English. These were calculated on the basis of a corpus of text
drawn from the Wall Street Journal (see Marcus, Santorini, & Marcink-
iewicz, 1993). The first letter in each training list was selected on the basis
of individual letter frequency.

Simulation 3A

Baddeley (1964) compared performance on eight-item lists of letters,
reflecting the bigram frequency structure of English with that on lists
constrained only by the individual letter frequencies of the language. In
Simulation 3A, the network was trained on lists that were one to eight items
in length and performance was evaluated in terms of the proportion of
items recalled in the correct position. Training was halted at 187,500
cycles, when accuracies for zero and first-order lists of eight items sur-
passed 0.59, as in the empirical study. The model was then tested on two
stimulus sets, one composed of lists generated in the same manner as those
used during training (first-order lists), the other based only on individual
letter frequencies (zero-order lists).

Simulation 3B

Kantowitz et al. (1972) presented nine-item lists, each a permutation of
a fixed set of nine consonants. Lists were divided into two groups, one with
higher summed bigram frequencies than the other. In Simulation 3B, the
network was trained with lists one to nine items long, based on the same
first-order transition probabilities as before, but including only the letters
C, D, F, H, L, N, R, S, and T, as in the empirical study. Training was halted
at 24,000 cycles, when the positional accuracy—proportion of items re-
called in the correct position—reached 0.67 when averaged between high
and low bigram frequency lists, as in the empirical study. Testing was
conducted using lists constructed in the same manner as those used during
training. For analysis, lists were divided into two groups on the basis of a
median split on summed bigram frequency. Performance was compared
between these high and low bigram frequency groups.

Results and Discussion

Simulation 3A reproduced the central finding of Baddeley
(1964), in that recall was better for first-order lists than zero-order

lists (Figure 11, right). Simulation 3B yielded behavior similar to
that reported in Kantowitz et al. (1972), in that responses were
more accurate for high than low bigram frequency lists (RMSE �
0.075; Figure 12, right). Moreover, as in the empirical study, the
effect was stronger late in the list than at early list positions. These
results confirm that the model’s recall performance, like that of
human subjects, depends on the degree to which the structure of
target lists fits with the constraints governing previously encoun-
tered sequences. Although the model’s basic mechanism for serial
recall is not based on chaining, the model nonetheless shows a
sensitivity to item-to-item transition probabilities.

Why does the model display such sensitivity? Like many other
aspects of the model’s performance, this one is connected to the
presence of variability in the model’s internal representations. As
pointed out earlier, this variability means that the occurrence of
any item–position conjunction in the target list maps not to a single
pattern of hidden-unit activation, but instead to a probability dis-
tribution over possible activation patterns. This, in turn, makes any
particular pattern of hidden-unit activation intrinsically ambigu-
ous. Faced with such ambiguity, the model behaves like a Bayes-
ian classifier, responding with the item that is most likely to have
generated the pattern, on the basis of the pattern’s similarities to
those encountered during training (see the General Methods and
Initial Analyses sections). In discussing this probabilistic decoding
process previously, we have focused on representations of indi-
vidual list items. However, note that precisely the same account
extends to representations of multiple elements.

For illustration, assume the model is presented with a target list
containing the low-frequency bigram KC. Once these two elements
are encoded, they will continue to be represented together, through
superposition, within the model’s developing internal representa-
tion.11 Note that because the model represents adjacent positions

11 We conducted an analysis of the hidden representations arising in the
bigram frequency model, using the same procedure described in the Ap-
pendix. Somewhat to our surprise, we found that here, once again, the
encoding could be understood as a superposition of essentially independent
element vectors. This highlights the point that the model can show a
sensitivity to interitem relationships without such relationships affecting its
sequence encodings. Having said this, we nonetheless suspect that if the

Figure 12. Left: Empirical data from Kantowitz et al. (1972), for high and low bigram-frequency (BF) lists.
Right: Performance of the model in Simulation 3. Left panel from “Encoding and Immediate Serial Recall of
Consonant Strings,” by B. H. Kantowitz, P. A. Ornstein, and M. Schwartz, 1972, Journal of Experimental
Psychology, 93, p. 106. Copyright 1972 by the American Psychological Association. Adapted with permission.

216 BOTVINICK AND PLAUT



similarly (see the Initial Analyses section), the representation of
KC will resemble that for the higher frequency bigram CK. To put
it more precisely, the probability distributions for these bigrams,
within representational space, will be relatively highly overlap-
ping. This means, in turn, that many representations of KC could
also plausibly have been induced by CK. Once again, when faced
with such ambiguity, the model produces the response that is most
likely to be correct, given the resemblances between its current
internal representation and those encountered during training. A
critical aspect of this computation, which is again generic to neural
networks of the kind we are studying, is a sensitivity to frequency.
The response the model selects is influenced by the prior proba-
bility of candidate responses. Specifically, the selection process is
biased toward responses that occurred relatively frequently as
targets during training. Thus, to return to our example, when faced
with a pattern of activation that is equally likely to represent CK
and KC, the model will respond with CK, because this bigram was
encountered more frequently during training than KC.

Although this account is informal (see Botvinick, 2005, for a
more explicit, mathematical exposition), it explains why the model
shows higher accuracy on high-bigram frequency sequences. In
decoding variable, and therefore ambiguous, internal representa-
tions, the model’s outputs are biased toward sequences with a high
prior probability. This property of the model supports correct
responding on high-bigram frequency lists and undermines its
recall of low-frequency bigram lists.

Simulation 4: Serial Recall for Sequences Structured by
an Artificial Grammar

The bigram frequency effect addressed in Simulation 3 is one of
several findings indicating greater recall accuracy for sequences
that fit with domain-specific constraints on ordering. Two addi-
tional aspects of recall for structured material were demonstrated
in a recent experiment by Botvinick (2005; Botvinick & Bylsma,
2005). First, as detailed below, it was shown that recall accuracy
depends not only on the overall probability of the stimulus se-
quence but also on the neighborhood relations of that sequence
(Botvinick, 2005). Second, in addition to influencing recall accu-
racy, background knowledge was also found to influence the
content of incorrect responses. Botvinick and Bylsma (2005) found
that errors in the artificial grammar ISR task displayed a tendency
toward regularization. That is, responses on incorrect trials were
weighted toward high-probability sequences and, in particular,
sequences higher in probability than the just-presented stimulus.

Benchmark Phenomena

In the experiment, subjects were trained to perform ISR on
sequences derived from an artificial grammar. The experiment
began with a multisession exposure phase, during which subjects
performed ISR, followed by a testing phase in which a filled delay
was added to the task, to keep recall accuracy well below ceiling.
During both training and testing, each presented sequence con-

tained the same six pseudowords (dah, fie, poe, kay, tee, and noo,
presented auditorily) and any of the 720 permutations of these
items could occur. However, the grammar used to generate the
sequences caused some sequences to be more probable than others.
Under the grammar, the six pseudowords were arbitrarily divided
into two groups of three, referred to as Groups A and B, and
transition probabilities were imposed such that items from Group
A were relatively likely to be followed by items from Group B, and
vice versa. That is, the grammar created a tendency for sequences
to alternate between the two groups. As a consequence, sequences
with the structure ABABAB (or BABABA) were most frequent
(30% of trials), whereas sequences with the structure AAABBB (or
BBBAAA) were least frequent (1.9% of trials). (In what follows,
list structures should be understood as referring to their inverses as
well; e.g., AAABBB should be understood as referring to both
AAABBB and BBBAAA.) The probabilities of each of the 20
possible list structures is shown in Table 1. The probability of
occurrence for each list type can be understood as reflecting its
goodness-of-fit with the alternation constraint implicit in the gram-
mar; the more violations of this soft constraint a list contains, the
less probable the list is to occur. In view of this, Botvinick (2005)
referred to the probability of a list type as its “goodness of fit”
(with domain-specific sequencing constraints), or simply its
“goodness.” Analysis of recall performance during the testing
phase yielded three principal findings, as detailed below.

List Goodness

Analogous to the bigram frequency effect, Botvinick (2005)
found that recall accuracy was superior for lists highly consistent
with domain-specific sequencing constraints than for less consis-
tent ones (Figure 13, left).

Neighborhood Relations

Botvinick (2005) predicted that recall would be worse for se-
quences with high-goodness near neighbors than for stimulus
sequences with equal goodness having no such neighbors. The
prediction was tested by comparing recall for the stimuli with the
structure AABABB with stimuli of types AABBAB, ABBAAB, and
ABAABB. All four of these stimulus groups have the same good-

model were trained on more highly predictable sequences, its internal
representations would be likely to involve less independent (that is, more
conjunctive) item representations. The structure of the model’s internal
representations in structured domains is an important area for further work.

Table 1
List Structures and Probabilities

List structure Probability

ABABAB,BABABA .00420
ABABBA,BABAAB .00209
ABAABA,BABBAB .00209
AABBAB,BBAABA .00106a

ABBAAB,BAABBA .00106a

ABAABB,BABBAA .00106a

AABABB,BBABAA .00106b

ABBBAA,BAAABB .00052
AABBBA,BBAAAB .00052
AAABBB,BBBAAA .00026

Note. List structures are from Botvinick (2005) and Botvinick and
Bylsma (2005). Each structural category contains 72 specific stimulus lists.
Probabilities shown are for specific lists.
a Lists with high-goodness near neighbors. b Lists without high-goodness
near neighbors.
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ness or probability of occurrence (see Table 1). However, the first
category (AABABB) differs from the others in its neighborhood
relations. Specifically, each of the other stimulus types can be
transformed into a high-goodness ABABAB sequence by simply
transposing two adjacent items (Items 2 and 3 for AABBAB, Items
3 and 4 for ABBAAB, and Items 4 and 5 for ABAABB). This is not
the case for stimulus structure AABABB. Sequences of this type,
unlike the others, do not have a very high-goodness near neighbor.
Given this, the specific prediction was that recall would be better
for AABABB sequences than for the other three categories, con-
sidered as a group. This was, in fact, the pattern observed (mean
accuracy � 51% vs. 46%).

Regularization Errors

Botvinick and Bylsma (2005) compared error patterns against
those of a control group, who performed ISR on the same
pseudowords, but without the artificial grammar (i.e., all 720
permutations of the items were equiprobable). As compared with
a baseline inferred from this control group, subjects exposed to the
grammar produced error responses that were higher in goodness.
In addition, they produced a higher proportion of regularizing
responses, that is, responses higher in goodness than the to-be-
recalled stimulus sequence (see Figure 14).

Method

The model was identical to that used in the previous simulations, except
that the input and output layers contained 12-item units. Six of these were
used to represent each of the pseudowords used in the experimental task (3
A items and 3 B items). During both training and testing, lists of 1–6 items
were generated according to the grammar used in the empirical experiment,
resulting in the list-type frequencies presented in Table 1 for 6-item lists.
Training was terminated when accuracy for six-item lists reached 50%
(83,333 cycles). Testing was on 6-item lists generated in the same manner.
In keeping with Botvinick (2005), only responses that contained all 6 items
were considered; exceptions to this requirement occurred on less than 3.4%
of trials. Accuracy (proportion of lists recalled correctly) was evaluated for
lists at each level of goodness or probability of occurrence (as listed in
Table 1). To demonstrate the effect of neighborhood relations, we also

compared the accuracy between lists of type AABABB and lists of type
AABBAB, ABBAAB, and ABAABB.

The model was also trained to perform the control task from the
experiment using the remaining six input and output units. As with the first
set of units, each unit represented an item (pseudoword). However, se-
quences presented over this second set of units were arbitrarily sequenced.
Training trials alternated between lists presented over the first set of six
units (generated on the basis of the grammar) and lists presented over the
second set (unstructured lists). Training the model on both versions of the
task concurrently resulted in a larger overall training set, as compared with
training the model twice, using a single set of input and output units. This
was advantageous, because it increased the pressure to discover a general
solution to the serial recall task, rather than an idiosyncratic one tailored to
a small set of potential sequences. A more literal, but less efficient, strategy
would have been to train the model on each version of the task separately
but also to include, in both training runs, additional sequences involving
items beyond the six pseudowords from the benchmark experiment. Com-
putationally speaking, there is little difference between this approach and
the one we took, and we assume that comparable results would have been
obtained.

For the present simulation, the noise level (variance) added to hidden
units at the end of each processing cycle was 0.05 (for reasons of imple-
mentational convenience, noise was injected only at test, not during train-
ing). Analyses were based on a sample of 100,000 trials, assuring an
adequate sample for low-frequency sequences.

Results

List Goodness

Recall accuracy varied monotonically with list goodness. As in
human performance, recall in the model was better for sequences
with higher goodness (Figure 13, right; RMSE � 0.027).

Neighborhood Relations

The model reproduced the effect of neighborhood relations
observed by Botvinick (2005). Specifically, recall was superior for
stimuli with the structure AABABB than for those with the struc-
tures AABBAB, ABBAAB, and ABAABB (0.54% vs. 0.44%).

Figure 13. Left: Empirical data from the experiment of Botvinick and Bylsma (2005). Right: Performance of
the model in Simulation 4. Left panel from “Regularization in Short-Term Memory for Serial Order,” M.
Botvinick and L. M. Bylsma, 2005, Journal of Experimental Psychology: Learning, Memory, and Cognition, 31,
p. 354. Copyright 2005 by the American Psychological Association. Adapted with permission.
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Regularization Errors

The regularization effect reported by Botvinick and Bylsma
(2005) was also present in the performance of the model. As
shown in Figure 14, the errors produced by the model were higher
in goodness and included a higher proportion of regularizations,
than would be expected on the basis of the model’s performance
on the control task.

Discussion

This simulation, like Simulation 3, considered the performance
of the model in a structured domain, showing that the recall
performance of the model, like that of human subjects, is influ-
enced by prior experience with regularities of serial order. High-
goodness sequences are better recalled because, faced with vari-
able and therefore ambiguous internal representations, the model is

biased toward responses associated with a high prior probability,
that is, high-goodness sequences. The regularization effect is also
a direct consequence of this principle, because it means that low-
goodness sequences will often be reorganized at recall, yielding
higher goodness sequences. The neighborhood effect arises from
the fact that the model’s errors are most likely to involve confu-
sions between sequences that are represented similarly. This point
interacts with the model’s bias toward high-goodness outputs. All
things being equal, this bias leads the model often to transform
target lists into higher goodness sequences. However, this will
only happen if the target list and the higher goodness list tend to be
represented similarly. If the target list has no high-goodness near
neighbors in representational space, regularization will be less
likely to occur.12

The results of the simulation, taken together with the preceding
findings, underline the model’s ability to deal with two seemingly
contradictory constraints. The empirical data provide clear evi-
dence that serial recall is not based on item-to-item associations
(chaining). Yet, recall performance is nonetheless impacted by
background knowledge concerning item-to-item transition proba-
bilities. Although our initial analyses and the results of Simulations
1 and 2 showed that the present model does not function through
chaining, Simulations 3 and 4 illustrate that it is nonetheless
sensitive to the fit of item-to-item transitions with domain-specific
constraints.

General Discussion

In the current article, we have presented simulation results from
a recurrent neural network model of ISR. Simulations 1 and 2 were
aimed at establishing the basic viability of the model, by demon-
strating its ability to account for a set of key benchmark empirical
data. Simulation 1 showed that the model reproduces the empiri-
cally observed effect of list length on recall accuracy, the shape of
the serial position curve and transposition gradients, and effects
relating to item repetition and relative errors. Simulation 2 dem-
onstrated that the model’s performance, like that of human sub-
jects, suffers when list items are confusable and that this reduction
in accuracy is associated with a spread in the transposition gradi-
ent. The same simulation showed that the model reproduces the
pattern of performance reported by Baddeley (1968) on lists alter-
nating between confusable and nonconfusable items.

This last result was particularly significant, because it implies
that the model does not function through chaining. The point is
reinforced by the demonstration, in Simulation 1, that recurrent
networks need not yield relative errors at the rates predicted for
chaining models (Henson et al., 1996). The results detailed in the
Initial Analyses section show directly that the model does not rely
on interitem associations. It seems likely that these findings will
come as a surprise to many working in the field, given that recent
commentaries have routinely grouped recurrent networks with
chaining models, prematurely rejecting them as viable models of
serial recall (see G. Brown et al., 2000; Burgess & Hitch, 1999;
Henson et al., 1996; Houghton, 1990; Houghton & Hartley, 1995)

Although the present model clearly does not simply chain, it
nonetheless responds to consistent sequential relationships among

12 For a more formal development of this same account, see Botvinick
(2005).

Figure 14. Empirical data from Botvinick and Bylsma (2005) and per-
formance of the model in Simulation 4. Following the terminology used by
Botvinick and Bylsma, “observed” refers to performance on sequences
generated on the basis of the artificial grammar, following previous expe-
rience with the grammar, and “baseline” refers to the pattern of perfor-
mance that would be expected if recall were not influenced by previous
experience with the grammar. From “Regularization in Short-Term Mem-
ory for Serial Order,” M. Botvinick and L. M. Bylsma, 2005, Journal of
Experimental Psychology: Learning, Memory, and Cognition, 31, p. 355.
Copyright 2005 by the American Psychological Association. Adapted with
permission.
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the items to which it is exposed. This was demonstrated in Sim-
ulation 3, in which the model was shown to reproduce the empir-
ically observed effect of bigram frequency on recall performance.
The model’s ability to capture this effect, without positing special
mechanisms beyond those responsible for serial recall itself, sets it
apart from all other existing models of ISR of which we are aware.
The results of Simulation 3 were extended in Simulation 4, in
which the model was applied to recent data pertaining to recall of
sequences generated by an artificial grammar.

In the ensuing discussion, we compare the present account with
other models of short-term memory for serial order, review some
predictions of the account, and enumerate issues requiring further
research.

Comparison With Other Models

At the outset of this article, we characterized our model as an
implementation of one general approach to serial recall. The basic
elements of this approach are (a) use of an activation-based, rather
than weight-based, memory mechanism and (b) a central func-
tional role for recurrent connectivity. Virtually all of the other
models in the literature that adopt an activation- and recurrence-
based approach are concerned with addressing neurobiological
data rather than detailed behavioral data. It is interesting to con-
sider the relationship between such models and our own, and we
do so in a later section (Neuroscience-Based Models). However,
given that our model focuses on addressing behavioral data, the
more pressing comparison is between the present model and other
psychologically oriented models of serial recall. As noted in the
beginning of the article, the majority of such models adopts quite
a different approach to the domain, which depends on transient
Hebbian links between independent representations of item and
position or context. In what follows, we begin with a discussion of
such context-based models, then turn to other psychological mod-
els (in particular, the primacy model of Page & Norris, 1998), and
finally consider some neurobiologically inspired models.

Context-Based Models

A basic difference between the model we have presented and
context-based accounts (G. Brown et al., 2000; Burgess & Hitch,
1999; Henson, 1996, 1998; Hartley & Houghton, 1996; Houghton,
1990; Houghton & Hartley, 1995) involves the distinction between
activation-based and weight-based forms of short-term memory. A
defining aspect of the context-based framework is its dependence
on transient, trial-specific links between item and context repre-
sentations. In the model we have presented, the system’s connec-
tion weights do not change during a single trial. Recall perfor-
mance depends instead on sustained activation of relevant
representations. The distinction involved here between weight-
based and activation-based memory mechanisms has become fun-
damental in computational neuroscience. Both kinds of mecha-
nisms have been implicated, at the neural level, in supporting
memory for specific events (O’Reilly & Munakata, 2000). How-
ever, when it comes to ISR, available neuroscientific evidence
points to a more central role for activation-based memory. The
prefrontal cortex, a brain area widely believed to participate in
short-term memory for sequences (Barone & Joseph, 1989), ap-
pears to implement an activation-based memory mechanism (Fus-

ter, 1997; E. K. Miller & Cohen, 2001). Indeed, as noted earlier
(and discussed at further length below) most serial recall models
striving to account for neurophysiologic data have been based on
this type of mechanism.

Of course, although changes to the connection weights in our
model are not responsible for encoding trial-specific sequence
information, the weights are nonetheless critical to the network’s
function. Rather than being used to transiently encode information
about a specific sequence, as in context-based models, the weights
play a central role in instantiating and updating the patterns of
activation that do encode such information. One might say that the
system’s weights, rather than being shaped by the sequence pre-
sented on any specific trial, are shaped so as to support sequence
encoding and production more generally. As demonstrated in
Simulations 3 and 4, the weights are shaped, in addition, by any
regularities of sequential structure that may be present in fre-
quently processed material. The inherent sensitivity of the model
to such regularities, as demonstrated in those simulations, is
among its most distinctive aspects. Indeed, this may be the most
critical point of contrast between the account we have presented
and the context-based account now prevalent in the psychological
literature. As has been acknowledged by a number of modelers
pursuing the context-based paradigm (e.g., Henson, 1998), phe-
nomena relating to domain structure present a challenge for this
framework, given its strict avoidance of item-to-item associations.
It should be acknowledged, though, that tentative efforts have been
made to shore up this aspect of the context-based approach, and we
discuss such efforts in a subsequent section.

A second basic way in which the present account differs from
context-based accounts pertains to the kinds of representations
each approach posits. Context-based models assume separate and
independent representations of item and position (i.e., context). By
the account we have presented, item and position are instead
represented conjunctively, within a single distributed representa-
tion. The distinction between conjunctive versus independent rep-
resentations of item and position has some important functional
implications. In particular, the separation of item and position
codes in context-based models has frequently been linked to the
claim that serial recall involves a two-stage process: a first stage
involving retrieval of position information, at which positional
confusions may occur, and a second stage at which item identifi-
cation occurs and at which confusions between similar (e.g., pho-
nologically related) items may occur (Farrell & Lewandowsky,
2002; Henson, 1998; Page & Norris, 1998). The model we have
presented demonstrates that one need not assume such a two-tiered
process to account for human recall behavior. Within the model,
similarity-based confusions between items originate at the same
level of processing—indeed, within the same distributed represen-
tations—that support order memory.

The idea that item and order information are represented to-
gether may appear to conflict with certain empirical findings that
have been interpreted as reflecting dissociations between item and
order memory. For example, Saint-Aubin and Poirier (1999;
Poirier & Saint-Aubin, 1995) showed that ISR performed on lists
of words all relating to the same semantic category tend to improve
item recall but not order recall. How could such a dissociation be
captured by the present model? Saint-Aubin and Poirier’s own
analysis provides a straightforward answer. They concluded that
the effect reflects a strategy whereby only words belonging to the
relevant category are considered viable candidates for recall. Such
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a strategy can be simulated in the present model if each input and
output unit is considered to represent a word, and only category-
relevant output units are permitted to become active. The result
(confirmed through simulations in which this approach was taken)
is to improve item recall, without affecting order recall.

Another apparent dissociation between item- and order-related
performance comes from neuropsychological work. Shallice and
Butterworth (1977; patient JB) and Vallar and Baddeley (1984;
patient PV) both reported patients with impaired serial order
memory (digit span) but who could reliably repeat single words.
Burgess and Hitch (1999) addressed this finding in their model by
lesioning the link from input phoneme representations to the
model’s core short-term memory mechanism, leaving intact a
direct pathway from input to output phoneme representations. The
same effect can be produced in the present model by lesioning a
proportion of the model’s hidden units. A small amount of damage
impairs performance mainly at longer list lengths. With increasing
damage, performance begins to deteriorate at shorter list lengths,
and at some point, only single items can be reliably recalled. Of
course, this account (like Burgess & Hitch, 1999), provides no
explanation for why the relevant patients retained knowledge of
word meanings, or for why at least one of them (JB) showed
essentially normal spontaneous speech. Nor does it explain why
these patients show relatively preserved serial recall for visually
presented items. Accounting for this larger pattern of findings
would clearly require a theory considerably wider in scope than the
one we have put forth here.

The Primacy Model

Page and Norris (1998) proposed a model of ISR that differs
fundamentally from context-based models. Here, order is encoded
only on the basis of an activation gradient across item represen-
tations. The encoding process involves activating item representa-
tions in such a way that the first item in the sequence is most
highly activated, with a progressive decrease in activation across
the remaining items in the sequence. The recall process exploits
this activation gradient, by selecting for recall the most active item.
Once selected, item representations are inhibited, allowing recall
to move on to the next item (for related work, see Grossberg, 1977,
1978).

This account, which its authors have named the “primacy
model,” shares a number of features with the account we have
presented. Perhaps most important is that, unlike context-based
accounts, both models are activation-based, and encode item and
position information using the same units. However, whereas the
primacy model encodes position information purely through the
activation level of item representations, the model we have pre-
sented represents position in a richer way, exploiting a continuous,
multidimensional representational space within which item and
position can be represented along different dimensions.

The distinction here between unidimensional (localist) and mul-
tidimensional (distributed) representation has important conse-
quences when it comes to addressing effects of item similarity.
Like the context-based theories discussed earlier, Page and Norris
(1998) proposed a two-stage account, according to which posi-
tional errors occur at a first stage of selection, which is insensitive
to item similarity, with similarity-based item errors arising at a
second stage. As Page and Norris themselves admit, their imple-
mentation of this two-tiered process required a number of awk-

ward assumptions, including multiplication of the item activations
at the second level by those in the first, and suppression of selected
items at both levels, even if these do correspond. In defense of
these apparently ad hoc aspects of their model, Page and Norris
wrote

The choice of a two-stage process to account for the effects of
phonological similarity might strike some as inelegant. However, it is
a choice that has been dictated by the complexities of the data. On the
assumption that a one-stage model would be more parsimonious, we
devoted a great deal of time to an attempt to develop a simpler account
of the data. However . . . none of the one-stage models we tested were
able to give a proper simulation of the data. [Our] analysis, demon-
strating the necessity for two stages of suppression to model the
alternating-list data, highlights the central problem faced by one-stage
models. We believe these data force the use of a two-stage model. (p.
774)

The model we have presented clearly demonstrates that, in fact,
a single-stage model can account for effects of item similarity,
including the alternating list data to which Page and Norris (1998)
refer.13

Another important difference between the primacy model and
the model we have proposed is that the former, like context-based
models, is not inherently sensitive to regularities in sequential
structure. As a consequence, it is not clear how the model would
account for such findings as the bigram frequency effect or the
artificial grammar data discussed in the present Simulation 4. As
with context-based models, it is possible that the primacy model
could be augmented to make contact with such data, perhaps
through the inclusion of superordinate “chunk” nodes, as in the
work of C. L. Lee and Estes (1981). However, until such steps are
taken, effects of domain structure must be seen as an outstanding
challenge to the Page and Norris (1998) account.

Other Psychological Models

ISR, as a field of study, has produced a remarkable number of
theoretical models, so many in fact that an exhaustive review
simply cannot be undertaken here. Instead, we concentrate on
accounts that, like our own and those provided by context-based
models and the primacy model, posit a concrete mechanism for
encoding and recalling serial order information.

One of the earliest efforts to specify the mechanisms supporting
serial recall was by Estes (1972; see also C. L. Lee & Estes, 1977,
1981). Here, item representations are activated at encoding and
undergo a cycle of suppression and reactivation during list re-
hearsal. This reactivation process is subject to “perturbations,”
giving rise to transpositions between adjacent items. This pioneer-
ing account faces difficulty with some subsequent empirical data,
which call into question the central role Estes (1972) accords to

13 It may be tempting to view the model we have put forth as two-tiered,
in that the model contains, in addition to the stage of internal representa-
tion, a stage at which responses are selected in a winner-take-all fashion. It
is important to emphasize, however, that these two stages do not corre-
spond to those Page and Norris (1998) consider obligatory: A first,
position-based stage that is insensitive to item similarity and a second stage
that is sensitive to item similarity. In our model, the representational factors
that give rise to item confusions inhere in the same level of the system in
which position information is encoded.
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rehearsal (Baddeley, 1986), and which challenge the theory’s
account of transpositions (e.g., Baddeley, 1968). Furthermore, the
theory provides no explanation for item similarity effects. None-
theless, many of the account’s most promising aspects have found
continued application in the primacy model of Page and Norris
(1998), who portray their model as a “direct descendant” of Estes
(1972).

Another influential account of serial order memory is the TO-
DAM model of Lewandowsky and Murdock (1989; Murdock,
1997). This model shares at least one critical feature with the one
we have put forth, which is that it uses a single, distributed
memory representation, into which information about all list items
is integrated. Despite this parallel, there are other aspects of
TODAM that differentiate it strongly from the model we have
presented. First, TODAM relies to a significant degree on inter-
item chaining, an approach that, as we have discussed, appears to
conflict with certain empirical findings. Second, TODAM displays
the primacy effect only as a result of an ad hoc parameter, included
essentially to produce this effect. Third, TODAM has never been
used to model transposition gradients, currently considered a basic
benchmark for models of ISR. Together, these and other problems
have raised doubts about the viability of TODAM (Mewhort,
Popham, & James, 1994; Nairne & Neath, 1994). Indeed, one of
the theory’s creators has recently proposed a model of serial recall
that is quite different in character, to which we turn next.

Farrell and Lewandowsky (2002) put forth a model of serial
recall (dubbed the “SOB model”) that takes the form of an attractor
network. Items, represented in the network by distributed patterns
of activation, are encoded through weight changes that give the
network a tendency to settle into the appropriate pattern through
auto-association. Critically, the magnitude of these weight changes
is modulated by a factor (Hopfield energy) that decreases with
each successive list item. Recall is performed by imposing a
random pattern of activation and allowing the network to settle
into a stable state, which typically turns out to be the pattern
corresponding to the first item presented. Following each step of
recall, weight changes are made to counter those that occurred
when the just-recalled item was originally encoded, and the net-
work is again allowed to settle. The SOB model is intriguing for
the novelty of its encoding and recall mechanisms, and it will be
interesting to see whether it can be extended to the full set of
benchmark phenomena pertaining to ISR. At the present stage of
development, however, it bears several limitations. One is that it
relies on strictly orthogonal item representations, making it diffi-
cult to deal with issues of item similarity. Second, it relies on a
suppression process that essentially expunges already-recalled
items from the system’s memory, making it uncertain how the
model would account for the phenomenon of rehearsal. Third, it
relies in several places on novel, domain-specific, and sometimes
elaborate assumptions (e.g., the modulation of encoding strength
by energy), whose plausibility will depend on experimental vali-
dation. Finally, because it uses a weight-based memory mecha-
nism, shaped anew on each trial of learning, it is not clear how the
SOB model could be used to address effects of domain structure,
like those to which we have called attention.

Anderson and Matessa (1997) proposed an account of serial
recall based on the ACT-R production system architecture. Here,
list elements are encoded by linking representations of item and
position to a common “node” in memory. Recall involves activa-
tion of a production (labeled get-next). This consults a pointer

indicating the current position of recall, to locate the node associ-
ated with the same list position. Once this node is identified, the
item associated with it is accessed and recalled, and the position of
the pointer is incremented. It is difficult to compare this ACT-R
account with the model we have presented, or with the context-
based neural network models now prevalent in the literature,
because several critical aspects of the account (such as the func-
tioning of the position pointer and the basis for similarity between
position representations) are directly stipulated, without an explicit
account of the underlying mechanisms or representational struc-
ture. However, the Anderson and Matessa model appears, at a
fundamental level, to implement a context-based account, as we
have defined this, because of its reliance on trial-specific links
between item and position representations. As such, the points
made in the earlier discussion of context-based models can argu-
ably be extended to the ACT-R theory, in particular such models’
lack of intrinsic sensitivity to domain structure. This being said,
the Anderson and Matessa model, unlike the context-based models
we have cited, can also be viewed as portraying item and position
information as being stored together, as part of a single, structured
representation. If viewed from this perspective, the theory has a bit
more in common with the account we have put forward.

Related comments apply to the feature-based models of serial
recall proposed by Nairne (1990) and by Neath (2000). Here, list
elements are represented as feature vectors encoding both item
identity and list position. The encoding of an entire list is described
by Nairne (1990, p. 253) as a “vector of vectors,” a description that
resonates with our characterization of the sequence encodings
arising in the present model.14 Order errors at recall stem from
perturbations in the representation of position information within
the element-specific feature vectors, an account that again bears
some relation to our own. Indeed, at the level of representational
structure, the model we have presented appears rather close to the
feature model of Nairne and of Neath. Similar comments apply to
the recently proposed SIMPLE model, in which list elements are
represented as points within a multidimensional similarity space,
with dimensions relating to item and position or time (G. D. A.
Brown, Neath, & Chater, 2005; Lewandowsky, Brown, Wright, &
Nimmo, in press). A central assumption of this model is that recall
errors result from interference between element representations
being held concurrently in memory, an idea that also plays an
important role in the model we have presented.

Notwithstanding these similarities, the present account can be
distinguished from feature and SIMPLE models in several ways.
First, the representations involved in the present account emerged
from more basic assumptions about system architecture and task
structure, rather than being directly stipulated. More important, the
present account implements a concrete mechanism for generating
and acting on the relevant sequence representations. A detailed
consideration of this mechanism, as it bears on the process of
recall, reveals differences from the algorithmic account of recall

14 A subtle but important distinction is that the superpositional code
involved in our model requires conjunctive representation of item and
position. Because no such conjunctive coding is used in the feature model,
the phrase “vector of vectors” must refer to some method of combining
element-specific vector representations other than vector summation (su-
perposition).
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presented by Nairne (1990) and Neath (2000), a point we unpack
in the following section.

Models Addressing the Role of Background Knowledge

We have emphasized the ability of the present model to account
for effects of background knowledge, arguing that such phenom-
ena present a challenge for other models of serial recall. In view of
the latter claim, it is important to consider previous theories that
have engaged the issue of background knowledge.

One place where this issue has been discussed is in connection
with the idea of trace redintegration. Numerous theories have
suggested that long-term memory representations are brought to
bear in the process of recall, to help disambiguate degraded short-
term traces (Hulme, Maughan, & Brown, 1991; Hulme et al., 1997;
Lewandowsky, 1999; Nairne, 1990; Neath, 2000; Schweickert,
1993). Although the idea of trace redintegration does address the
relation between short-term memory and background knowledge,
the vast majority of relevant work has focused on the issue of item
recall (considering, e.g., effects of item frequency and lexicality).
In contrast, very little work has focused on the effect of back-
ground knowledge on recall for order, the issue with which we
have been concerned in the present work. Gathercole et al. (1999)
have extended the idea of redintegration to the domain of order,
accounting for phonotactic effects on short-term sequence memory
by suggesting that long-term knowledge concerning constraints on
serial order is brought to bear in disambiguating degraded short-
term sequence representations. A similar idea has been pursued by
Botvinick (2005), which frames the idea of redintegration within a
more general, Bayesian account of serial recall. At an abstract
level, both this account and the one provided by Gathercole et al.
(1999) fit well with the one we have presented in the current
article. Indeed, we have characterized the present model’s perfor-
mance as involving the decoding of noisy sequence representa-
tions, with the help of long-term knowledge. However, the present
model goes beyond these related accounts, in that it implements an
explicit mechanism that accomplishes the posited decoding
process.

We are aware of only one other published account that has been
similarly explicit concerning the mechanisms through which long-
term knowledge may influence recall for serial order, specifically,
a study by Hartley and Houghton (1996) modeling short-term
memory for nonwords (see also Glasspool & Houghton, 1997;
Gupta & MacWhinney, 1997). The primary empirical phenome-
non addressed in this work was the tendency of error responses to
preserve the consonant–vowel structure of targets. To model this,
Hartley and Houghton (1996) used a context-based model but also
allowed this to interact with a “syllable template” mechanism. The
effect of this mechanism was to provide top-down support, during
recall, to the most appropriate subset of phonemes, given the
outputs already produced (e.g., encouraging the selection of a
vowel after production of a consonant). In essence, the approach
was to supplement the familiar context-based mechanism with a
chaining mechanism that biased response selection.

Although this model has not been applied to such phenomena as
the bigram frequency effect, it is possible that it might prove
sufficient for this. After all, Baddeley (1964) originally character-
ized the bigram frequency effect as depending on the predictability
of each letter given its predecessors. By the same token, the
approach might prove capable of addressing the behavior dis-

cussed in connection with our Simulation 4. If this is the case, then
further data would be needed to adjudicate between the theory we
have presented and the approach suggested by Hartley and Hough-
ton (1996). It should be emphasized, however, that the two ac-
counts are, in principle, empirically distinguishable. In what fol-
lows, we discuss one prediction that differentiates the present
account from that of Hartley and Houghton, which we refer to as
the retrograde compatibility effect.

Consider two sequences, presented as targets for serial recall.
Let us assume that both sequences begin the same way, or as we
put it, that the two share the same “base” sequence. However, the
two sequences end in different ways, that is, they have different
“codas.” Assume, furthermore, that the coda for one list is highly
consistent with the preceding base sequence; that is, the base and
coda together yield an overall sequence that is relatively high in
probability, given sequencing constraints familiar to the subject
from previous experience. The coda for the other list is less
consistent with the base, yielding a lower probability sequence.
Given these two hypothetical stimuli, we now ask whether recall
for the base sequence will be affected by its consistency with the
coda. According to the theory of Houghton and Hartley (1996), the
answer to this question should be no, because background knowl-
edge is brought to bear only through forward chaining during
recall. Therefore, recall for the base sequence should be equally
accurate, regardless of the coda. In contrast, the model we have put
forth predicts that the base sequence should be recalled more
accurately when it is followed by a highly consistent coda than
when it is followed by a less consistent coda.

To demonstrate this, we return briefly to the task discussed in
Simulation 4. Recall that, here, sequences presented for recall were
generated on the basis of an artificial grammar, which gave rise to
a tendency to alternate between items assigned to two groups A
and B (see Table 1). For present purposes, we focus on target lists
beginning with the structure ABAB. Given the sequencing con-
straints implicit in the grammar, such sequences can end with
either of two coda sequences, structured AB or BA. Using the
terminology just established, the coda AB is more consistent with
the base ABAB, because it yields an overall sequence (ABABAB)
that is higher in goodness than the one yielded by the coda BA
(ABABBA). According to the model of Hartley and Houghton
(1996), this difference between the two codas should have no
effect on recall accuracy for the four-item base sequence. How-
ever, this is not true for the model we have presented; when
applied to the artificial grammar task, as described in Simulation 4,
the model showed better recall for the order of the first four items
of ABABAB lists than for the first four items of ABABBA lists (73%
vs. 63% accuracy).15

15 A detailed consideration of the Hartley and Houghton (1996) account
indicates that it might, in fact, predict a greater number of exchanges
between positions four and five in sequences of type ABABBA. This would,
in turn, lead the theory to predict poorer recall for positions one through
four. One way of controlling for this factor is to compare accuracy for the
first four items, considering only cases on which stimulus items one
through four appear, in some permutation, in the first four positions of the
response sequence. In the case of this subset of trials, the Hartley and
Houghton theory does appear to predict strictly equivalent recall accuracy
for the initial four item subsequence. For the present theory, this approach
provides a very conservative test of the retrograde compatibility effect,
because it counts as correct trials in which the coda was not recalled
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As it turns out, this aspect of the model’s behavior matches the
performance of human subjects performing the artificial grammar
task. A new analysis of data from the experiment conducted by
Botvinick (2005) indicates that, as in the model, recall was better
for the first four items in ABABAB sequences than ABABBA
sequences (accuracy 64% vs. 57%, paired t test, p � .001, two-
tailed).16 This finding provides an initial piece of empirical support
for the retroactive compatibility effect predicted by the present
model and presents a challenge to the competing theory presented
by Hartley and Houghton (1996).

Another opportunity to distinguish between the Hartley and
Houghton (1996) account and the one we have presented stems
from the fact that, in the former model, the mechanisms that are
sensitive to domain structure are structurally dissociable from the
mechanisms responsible for short-term serial order memory. The
Hartley and Houghton model thus predicts that it should be pos-
sible for focal brain damage to eliminate effects of background
knowledge, while leaving serial recall performance otherwise in-
tact. For example, it should be possible to identify patients who
show normal memory span, when tested on lists of consonants, but
who show no bigram frequency effect. According to the account
we have put forth, such a dissociation should not occur, because
the processing system’s sensitivity to domain structure inheres in
the same mechanisms that support basic serial recall.

Neuroscience-Based Models

In addition to the expressly psychological models reviewed so
far, a number of models of serial recall have come out of the
neuroscience literature (Beiser & Houk, 1998; Dominey, 1995,
1997; Dominey et al., 1995; Jaeger, 2001; O’Reilly & Soto, 2001).
The central goal of these modeling efforts has been to engage
neuroanatomic and neurophysiologic data, showing how certain
neuroanatomical structures might support the basic function of
serial recall, or how such structures might give rise to the patterns
of neural activity observed in experiments using serial recall tasks.
With regard to accounting for behavior, the goals of such models
have been modest. For example, Beiser and Houk (1998), although
providing a detailed account of single-unit recording data, dealt
only with encoding, providing no account of how sequences are
recalled. Dominey (1995) went a step further, providing a basic
account of recall but not of generalization to never-before-seen
sequences. O’Reilly and Soto (2001) addressed this aspect of
behavior but, like the other models cited, did not address any of the
behavioral patterns that have been of central interest to psycholo-
gists, such as primacy and recency, transposition gradients, simi-
larity effects, or effects of domain structure.

Despite this difference in focus, there is a fundamental connec-
tion between the neuroscientific models just cited and the theory
we have presented here, in that both use an activation-based
memory mechanism supported by recurrent connectivity. In view
of this common basis, the present model should not be viewed as
directly competing with the neuroscience-based models we have

cited. Rather, we view the two approaches as complementary.
Although the neuroscientific models show how a recurrence- and
activation-based account can be derived from neuroanatomic and
neurophysiologic data, our work shows how such a framework can
be used to explain detailed aspects of behavior.

Having said this, it is possible to point to differences between
the account we have presented and those that have come out of
neuroscience. One important contrast relates to the question of
how relevant patterns of connectivity are established, and in par-
ticular, what role is played by learning.

The role of learning. Again, like the theory we have put forth,
most neuroscience-based models use massively recurrent connec-
tivity. However, in models such as those of Beiser and Houk
(1998) and Dominey (1995, 1997), the specific pattern of connec-
tion weights involved in recurrent projections is fixed from the
outset. Indeed, one interesting aspect of these accounts is that they
assume patterns of connectivity that are in certain respects random.
Subsequent theoretical work supports the idea that networks with
essentially arbitrary recurrent connectivity can encode sequences
of inputs (Jaeger, 2001; Maass et al., 2002; White et al., 2004).
Such observations raise the question of whether the neural cir-
cuitry supporting memory for serial order might emerge indepen-
dent of learning. Along these lines, Beiser and Houk (1998)
suggested that the brain “has an innate ability to encode serial
events into integrated concepts represented in spatial patterns of
neural activity” (p. 3182).

It is interesting to note that learning, in our model, gave rise to
patterns of connectivity corresponding, in fundamental ways, to
those posited as innate by Beiser and Houk (1998). The latter
model involved two recurrent projections: (a) excitatory feedback
between prefrontal cortex and thalamus and (b) a circuit running
from prefrontal cortex through basal ganglia and thalamus, and
back to prefrontal cortex, which includes both excitatory and
inhibitory connections (see Figure 1). The former circuit was made
up of closed, parallel loops; that is, units in thalamus sent excita-
tory inputs only to those prefrontal units from which they receive
excitatory inputs. The second circuit was more integrative, allow-
ing activation in each prefrontal unit to impact many others. An
inspection of the pattern of connection weights within our own
model revealed a striking parallel to this dually recurrent pattern of
connectivity. In particular, following training, there was a marked
difference in distribution between (a) weights running from each
unit to itself (self-connections) and (b) weights running between
two different units (heteroconnections). As illustrated by the his-
togram shown in Figure 15, self-connections were almost all
excitatory, whereas heteroconnections were smaller, with a mag-
nitude distribution including both excitatory and inhibitory values,
and centered near zero. The parallel between these two populations
of connections, and the two recurrent pathways posited by Beiser
and Houk is readily apparent.

Although Beiser and Houk (1998) suggested that innate patterns
of connectivity may underlie the capacity to encode sequences,
they added the following caveat:

This is not to say that adaptive mechanisms do not play a role; for
example, they would be quite useful for tuning the competitive pattern

16 The same comparison was conducted focusing on the subset of trials
specified in the preceding note, with similar results (accuracy 79% vs.
74%, paired t test, p � 0.05, two tailed).

correctly (final two items transposed). Nevertheless, the model presented in
Simulation 4 continues to show a small but reliable difference in perfor-
mance between sequence types ABABAB vs. ABABBA, even when only the
specified subset of trials is considered (90% vs. 88%). This difference was
consistently observed across training runs.
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classification stage so as to improve the encoding performance of the
network. This might provide a more efficient code or it might em-
phasize serial events that are of particular relevance to the organism.
(p. 3181)

Indeed, some experience-based tuning of connectivity seems to be
required to give rise to effects of background knowledge, such as
the bigram frequency effect. Even in arbitrary domains, some
learning appears to be needed to implement the process of recall;
at least, to our knowledge, learning has played some role in every
neuroscience-based account of serial recall that has addressed the
recall process (Dominey, 1995, 1997; Jaeger, 2001; O’Reilly &
Soto, 2001; White et al., 2004).

Given the important role that learning plays in our theory in
shaping the mechanisms underlying serial recall, it must be asked
to what extent the specific kind of learning involved in our sim-
ulations might correspond to learning in the brain. Our use of
back-propagation learning, in particular, raises questions concern-
ing biological plausibility. It is important to note that previous
research (e.g., Zipser & Anderson, 1988) has demonstrated that
back-propagation can give rise to patterns of activity closely
resembling those observed in actual neural systems. However, it
must be acknowledged that certain aspects of back-propagation, in
particular the transfer of error signals backward across synapses,
have not yet been linked to known biological mechanisms.

In this regard, it is interesting to note that some neuroscience-
based models of serial recall have used learning algorithms more
closely tied to biological mechanisms. In particular, Dominey
(1995, 1997) used a Hebbian reinforcement learning algorithm
arguably grounded in neuroscientific data. One limitation of this
algorithm, which discouraged its use in our simulations, is that it
does not support learning of internal representations, within which
inputs are recoded in a task-specific fashion. A wealth of compu-
tational work, in both psychology and neuroscience, suggests that
the ability to recode information internally may be critical to
performance in numerous domains (examples in the realm of
sequencing include Botvinick & Plaut, 2004; Cleeremans, 1993;
Elman, 1990). Thus, until it can be shown that the learning
approach adopted by Dominey (1995, 1997) can be used to ac-
count for detailed patterns of behavior, such as those addressed by
our own simulations, its viability in the domain of serial recall
must remain open to question.

There do exist biologically plausible learning algorithms that
support the learning of internal representations (O’Reilly & Mu-
nakata, 2000; Xiaohui & Seung, 2003). However, currently avail-
able algorithms are limited in their capacity to learn sequences.
This limitation has been stressed by O’Reilly (2003), who pro-
posed that it may be overcome, in the brain, by a special gating
mechanism. Indeed, O’Reilly and Soto (2001) directly addressed
how this gating mechanism might support ISR. At a general level,
the account they put forth is not inconsistent with the one we have
provided. However, at the current stage of development, the
O’Reilly and Soto account relies on storage of item information in
independent position-specific slots. It is difficult to see how such
an implementation could account for such aspects of serial recall
as the locality constraint.

As the foregoing comments imply, there is, as of yet, no account
of learning that is both biologically validated and computationally
adequate to the domain of serial recall. In using back-propagation,
we express a commitment to an account of learning that involves
gradual, error-based adjustments in connection weights and that
gives rise to a task-relevant recoding of inputs in the form of
distributed internal representations. Whether such an account can
be grounded in neurobiology is, of course, an important question
currently under investigation by numerous researchers in
neuroscience.

Hippocampal models. In addition to the models cited so far,
there is another group of neuroscience-based models of serial
recall, which invoke rather different sequencing mechanisms.
These models relate specifically to the function of medial temporal
lobe structures including the hippocampus (e.g., Levy, 1996; Lis-
man, 1999). Arguably, such models are not of immediate relevance
to the behavioral phenomena we have focused on. This is because
neuropsychological evidence indicates that serial recall perfor-
mance (at or below memory span) is essentially unaffected by
lesions to such temporal lobe structures (Baddeley & Warrington,
1970; Drachman & Arbit, 1966; Warrington, 1982). Thus, serial
recall appears to depend on other neural mechanisms, such as the
cortico-basal-ganglionic loops addressed by such models as those
of Beiser and Houk (1998) and Dominey (1995).

This being said, it is of course not our claim that hippocampal
mechanisms are entirely irrelevant to understanding sequence
memory in general. Neurophysiologic evidence clearly indicates

Figure 15. Distribution of weight magnitudes for self-connections (connections from a unit to itself) and
heteroconnections (connections from one unit to another).
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that the hippocampus does encode sequences (Fortin, Agster, &
Eichenbaum, 2002; A. K. Lee & Wilson, 2002; Lisman, 1999), and
medial temporal lobe lesions have been associated with marked
deficits in sequence memory above span (Drachman & Arbit,
1966). Even at or below span, a contribution of medial temporal
lobe memory mechanisms to serial recall cannot be ruled out;
indeed, we consider below at least one phenomenon (protrusion
errors) that may reflect an impact of medial temporal lobe struc-
tures in ISR performance, even at relatively short list lengths.
However, whatever the contribution of the hippocampus and as-
sociated structures, because these mechanisms are not necessary to
most aspects of span-level ISR, the primary mechanisms underly-
ing this function must be sought elsewhere.

Predictions

An important aspect of the account we have put forth is that it
gives rise to distinctive and testable predictions. Several such
predictions have already been introduced, including the retrograde
consistency effect and the indissociability of domain-specific ef-
fects from basic serial memory function. As detailed above, the
first of these predictions has already been preliminarily tested and
confirmed. The latter stands as a falsifiable claim of the account.

Further predictions can be derived from our analysis of the
model’s sequence representations, as laid out in the Initial Anal-
yses section. Specifically, these translate directly into predictions
concerning neural activity during performance of the ISR task. At
the most general level, the model predicts that the encoding pro-
cess should result in a distributed pattern of neural activation that

contains information about all items in the target sequence and
their respective positions. As noted earlier, this is consistent with
some neuroscience-based models of sequence encoding (Beiser &
Houk, 1998; Dominey, 1995; O’Reilly & Soto, 2001). At a more
specific level, the current model predicts that individual neurons
participating in the representation of sequences will code not only
for a specific item or position, but also, in a graded fashion, for
items or positions that are similar. This prediction has direct
corollaries at the level of overall sequence representations. If one
considers the patterns of activation arising at the end of encoding,
these are predicted to show the following properties: (a) patterns
for lists containing the same items in different orders are predicted
to resemble one another to the extent that the orderings are similar
and (b) sequence representations for lists composed of the same
elements, in different orders, will be more similar if the items
involved are confusable than if they are not. These predictions,
which are illustrated in Figure 16 on the basis of model output,
might be testable using techniques such as functional magnetic
resonance imaging, which has recently been applied to evaluate
similarity relations between distributed neural representations (see,
e.g., Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004).

A final prediction concerns the way that item and position
information combine at the neural level. The model predicts that at
any given point in time, the way that target items in the list are
represented will depend on their list position. Furthermore, the
representation of any item–position conjunction should evolve
over successive steps of encoding and recall. Thus, for example,
the presence of item i in position p will be represented by a

Figure 16. Distance in hidden-unit space between encodings for lists with a range of similarities. “Cumulative
transposition distance” refers to the total number of shifts between adjacent positions that would be required to
transform one of the lists being compared into the other. Boxes indicate interquartile range and median. Whiskers
indicate range. The asterisk indicates the median for pairs of lists containing nonoverlapping sets of items.
Confusable, nonconfusable � acoustically confusable and nonconfusable items.
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different (although possibly overlapping) set of neurons at encod-
ing step p � 2 than on step p � 1. This prediction of the model
may appear implausible, given that most neuroscientific studies of
working memory have stressed the role of tonic, sustained activa-
tion in preserving information over time. However, although less
often discussed, empirical studies have also routinely observed
activations that change gradually over time (see Batuev, 1994;
Fuster, 1997). Indeed, a recent study by Brody, Hernandez, Zainos,
and Romo (2002), in which the evolution of working memory
codes was analyzed in detail, prefrontal neurons appeared to im-
plement something very close to the rotational coding scheme we
described within the Initial Analyses section. Moreover, in another
recent single-unit recording study (Inoue & Mikami, 2006), the
neural representation of items in a sequence was observed to
change over successive steps of encoding. How general such
evolving working memory codes are, and the extent to which they
are involved in serial order memory, are questions for future
empirical research.

The model’s predictions concerning representational structure,
as detailed both in the preceding analysis and elsewhere in the
article, could in principle be evaluated through neurophysiologic
experiments with monkeys, along the lines of those performed by
Barone and Joseph (1989) and Ninokura et al. (2003, 2004).
However, there is an important qualification to make, in this
regard. We have, along with others, interpreted such existing
studies as providing support for an activation-based memory
mechanism. However, in our view, it is more difficult to evaluate
the information such studies have provided concerning specific
patterns of neural activation. The problem is that existing neuro-
physiologic studies have involved massive experience with a very
small set of sequences (a total of six, in both Barone & Joseph,
1989, and Ninokura et al., 2003, 2004). It seems almost inevitable
that such conditions would give rise to highly sequence-specific
representations (see Tanji & Shima, 1994), possibly quite different
in character from those that would be used to encode less familiar
sequences of items. To be sure, this is what would occur in our
model were it to be trained on such a limited corpus. For this
reason, without modification, existing paradigms in animal neuro-
physiology do not appear to guarantee a suitable basis for evalu-
ating the model’s predictions concerning representational struc-
ture. A substantive test of these predictions will thus depend on
future methodological innovations.

Addressing Further Behavioral Phenomena

Aspects of ISR Not Modeled

Although we have aimed to address a broad set of benchmark
phenomena pertaining to ISR, there are, of course, a number of
findings against which the theory has not yet been tested. These
include effects of stimulus timing (Neath & Crowder, 1996),
stimulus modality (Crowder, 1972), response delay (Bjork &
Healy, 1974), suffix effects (Baddeley & Hull, 1979), item fre-
quency (Hulme et al., 1997), articulatory suppression (Murray,
1967), irrelevant speech (Neath, 2000), and recall order (including
reverse and free recall; Klein, Addis, & Kahana, 2005; Li &
Lewandowsky, 1995), just to name a few. Whether the theory we
have presented will prove sufficient to deal with such additional
phenomena stands as a question for future work.17

This being said, there are two empirical phenomena that call for
further comment, given the importance that has been accorded to

them in recent theoretical work on serial recall. These are (a) the
effect of grouping and (b) intrusions from preceding lists.

Grouping

A variety of studies have shown that subjects performing ISR
often spontaneously adopt a strategy of partitioning items into
smaller groups. Experiments focusing on this phenomenon have
shown that such grouping can benefit recall accuracy (Wickelgren,
1967) but also gives rise to distinctive error patterns. A particularly
important finding is that grouping alters the usual transposition
curve, such that the frequency of transpositions between items
occupying corresponding positions within their respective groups
rises to levels close to those for transpositions between adjacent
items (Henson, 1998; C. L. Lee & Estes, 1981; Ryan, 1969a,
1969b; Wickelgren, 1967; Figure 17, left). This pattern has been a
focus of recent theoretical discussions, partially as a result of the
claim by Henson (1999) that it rules out models that do not use an
explicit positional code. Thus, it is important to address how
intergroup transpositions might be addressed by the model we
have proposed.

Figure 17 (right) shows a transposition curve for nine-item lists,
generated using the model described in Simulation 2, but using
nine-item sequences with a special structure. Specifically, Items 1,
4, and 7 were selected so as to be mutually confusable but
nonconfusable with other items in the list, and similarly for Items
2, 5, and 8, and for Items 3, 6, and 9. The resulting pattern of errors
resembles that observed empirically for lists grouped by threes.
What this shows is that the model can account for transpositions
between items in the same within-group position, if an assumption
is made concerning the encoding of grouped items. Specifically,
the assumption is that items occupying the same within-group
position are represented similarly at encoding. Page and Norris
(1998; see also Wickelgren, 1967) have suggested that items in
groups are marked with a coarse indication of their position
(distinguishing only among beginning, middle, and end). If this
labeling is assumed to affect the way that items are encoded, then
it could provide a basis for the grouping effect, as reflected in
Figure 17. However, there are other reasons that items in corre-
sponding within-group positions might be encoded similarly. One
that strikes us as particularly plausible is that items occupying
identical positions within different groups tend to receive a similar
intonation or emphasis. This could provide another basis for the
assumption that such items are represented similarly. In favor of
this idea, Reeves, Schmauder, and Morris (2000) showed that
stress patterns in serial recall stimuli can induce specific grouping
strategies (see also Frankish, 1995). Even more to the point,
Palmer and Pfordresher (2003) showed that, in music performance,

17 In some cases, the present model could apparently be applied directly
to further phenomena: for instance, item frequency or suffix effects. In
others, a more elaborate implementation would clearly be needed. For
example, Lewandowsky and colleagues (Lewandowsky & Brown, 2005;
Nimmo & Lewandowsky, 2005) have presented data arguing for an event-
based processing mechanism, as opposed to a time-based mechanism. Such
a distinction is difficult to address using the present model, given its very
coarse discretization of time. However, the present model could in princi-
ple be implemented using a more continuous representation of time,
allowing exploration of the relevant issues.
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errors in note selection tend to involve confusions between notes
with similar stress.

Although the pattern of errors reflected in Figure 17 has re-
ceived the most attention in recent theoretical debates, there are
many other interesting consequences of grouping that we do not
address here (see Frick, 1989; Hitch, Burgess, Towse, & Culpin,
1996; Ryan, 1969a). Such phenomena represent an area for future
work with the model.

Protrusions

Subjects performing ISR have been shown to make errors, at
above chance levels, that involve an intrusion into the current list
of an item appearing on the previous trial (Conrad, 1959, 1960;
Henson et al., 1996). It is interesting to note that when such
intrusions (or, as Henson et al., 1996, call them, protrusions) occur,
the intruding item tends to occupy the same list position that it held
in its original context. Context-based models (e.g., Henson, 1998)
account for this finding by assuming that the Hebbian associations
between items and context states persist between trials. Because
the context representation follows the same temporal trajectory on
each trial, such persisting links will lead to the reactivation of
items occurring at the same list position on the preceding trial.

Our model does not provide an account of protrusions, at least
not as currently implemented. It is interesting to consider that, in
other work, recurrent neural networks with continuous time dy-
namics and adjustable weights have been used to model priming
phenomena (Cree, McRae, & McNorgan, 1999; Plaut & Booth,
2000). It is possible that the principles involved in such modeling
work might be integrated with the framework we have established
here, resulting in an account of the protrusion effect.

However, other considerations suggest that it may not be nec-
essary, or even appropriate, to apply the present model to protru-
sion errors. Page and Norris (1998) have argued, in agreement with
Estes (1991), that protrusions may reflect the contribution of
memory mechanisms separate from those primarily responsible for
supporting short-term sequence memory. They pointed out, first,
that because protrusions span successive trials, they reflect an
influence of memory traces covering intervals considerably longer

than short-term sequence memory mechanisms are typically con-
sidered to span. Indeed, as Page and Norris pointed out, there is
evidence suggesting that the short-term availability of phonemic
codes (Baddeley, 1986) may actually protect against proactive
interference in ISR. This, Page and Norris suggest, is at least
consistent with the idea that protrusion errors derive from some
mechanism other than the one primarily responsible for carrying
sequence information over the short term. A firm foundation for
this argument could be provided if it were shown that some form
of neurological injury resulted in an elimination or reduction of
protrusion errors, in the face of otherwise normal short-term serial
recall. Amnesia based on medial temporal lobe injury provides an
obvious context in which to test this prediction. Although, as noted
earlier, amnesic patients typically show normal short-term memory
span, it has not, to our knowledge, been asked whether they display
the same frequency of protrusion errors as normal controls. If this
were found to be the case, then it might be reasonable to consider
a hybrid model of short-term serial order memory, containing both
an activation-based component, along the lines we have proposed,
and a weight-based component, understood as involving the me-
dial temporal lobe. Such a hybrid approach has in fact already been
taken, with considerable success, in recent research on free recall
(Davelaar, Goshen-Gottstein, Ashkenazi, Haarmann, & Usher,
2005). Depending on where the empirical data point, such work
could potentially serve as a template for potential further devel-
opments in modeling serial recall.

Conclusion

Short-term memory for serial order has been of central interest
to psychologists for many years. However, we believe the study of
this form of memory currently stands at a very interesting and
promising juncture. First, thanks to decades of behavioral research
on ISR, we now possess an exquisitely detailed and theoretically
constraining picture of what human performance is like in this
domain. Second, thanks to increasingly sophisticated efforts to
develop computational models of serial recall, and an intensifica-
tion of such efforts in the last decade, a coherent set of plausible
and compelling theoretical alternatives has come into focus. Third,

Figure 17. Left: Empirical data from Henson (1998), for lists grouped by threes. “Transposition distance”
refers to the distance, in either direction, between an item’s position in the target list and its position at recall.
Right: Performance of the model discussed in Simulation 2, trained on nine-item lists, and tested on sequences
with a special similarity structure, as described in the text. Left panel from “Short-Term Memory for Serial
Order: The Start–End Model,” by R. N. A. Henson, 1998, Cognitive Psychology, 36, p. 96. Copyright 1998 by
Elsevier. Adapted with permission.
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highly informative data have gradually begun to emerge from
neuroscientific studies of serial recall. Finally, there has been the
growing recognition of a deep connection between short-term
sequence memory and the processing of language (Baddeley,
2003), a development that both amplifies the importance of serial
recall as an object of psychological inquiry and brings to the fore
the neglected question of how short-term memory for serial order
may interact with domain-specific background knowledge.

The theory of recall that we have presented is situated where
these four developments intersect. The account picks up some
fundamental themes arising from neuroscientific research, imple-
menting these in a form that brings them into contact with detailed
behavioral data. Analysis of the resulting model revealed a novel
mechanism for short-term serial order memory, one that contrasts
in fundamental ways with currently prevalent psychological ac-
counts, and which makes numerous predictions both about recall
behavior and about the neural representation of sequence
information.

Of course, for all of its successes, the work we have presented
leaves numerous open questions. In recognition of this, we have
endeavored to point out aspects of the model that are in need of
further development. Even in its current form, however, the model
establishes a distinctive theoretical perspective, one that appears
worthy of serious consideration in future research on serial recall.
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Appendix

In the section Initial Analyses: How the Trained Model Works, we
summarized the conclusions of a set of analyses that were aimed at
elucidating the functioning of the model. The details of those analyses are
presented here.

The superpositional nature of the model’s sequence representations was
established through a regression analysis, focusing on the hidden unit
activations of the model presented in Simulation 2. The patterns analyzed
were generated by running the model on a set of 5,040 four-item lists,
which together contained all orderings of a limited set of items (five
confusable items and five mutually nonconfusable items). For each target
sequence, the pattern of hidden unit activation was recorded on the first
step of recall, a point where the entire four-element list must be repre-
sented. The activation of each unit within these sequence representations
was then linearized, applying the inverse of the sigmoidal unit activation
function. A linear regression was then performed on the transformed
activation of each unit, across all lists, with an indicator variable for each
specific letter-position conjunction.

(Note: Performing linear regression on linearized unit activations was
equivalent to performing logistic regression on raw unit activations. We
describe the analysis in terms of linear regression because it is convenient,
in what follows, to express our results as they apply to linearized unit
activations. Although the regression results are described in terms of what
they reveal about the model’s internal representations, it should be noted
that at a technical level, such descriptions apply directly to the linearized
activation patterns that formed the basis of the regression. Clearly, our
conclusions from the linearized activations capture the model’s represen-
tational scheme only if the contribution of the nonlinearity involved in the
hidden units’ activation function can be legitimately ignored. Three obser-
vations support this assumption. First, the cosine analysis illustrated in
Figure 5 indicates that the model’s internal representations relate sensibly
to the output weights, even if linearized. Second, following encoding, the
vector representing a specific list element remained more or less constant
in length or magnitude over the remaining steps of the trial [see Footnote
5]. This indicates that the representations of list elements were not com-
pressed at any stage of processing, as would be expected if nonlinearities

in the hidden layer were being heavily relied on. Finally, in separate
simulations, we observed that the model can be successfully trained using
linear hidden units. Indeed, under these conditions, the model continued to
display primacy, recency, typical transposition gradients, and other behav-
ior patterns shown by the version of the model we report in detail here.)

For every unit in the hidden layer, this regression accounted for over
98% of activation variance. Because the indicator variables included in the
regression model correspond only to individual list elements (item–
position conjunctions), this finding implies that the hidden representation
can be understood as a linear superposition of activation vectors represent-
ing individual list elements. The result also indicates that element repre-
sentations are unaffected by list context; they do not depend on which other
elements in the same target list. If there were such a dependency, then our
regression analysis would not have captured such a large proportion of the
activation variance.

The Initial Analyses section presents data concerning the similarity relations
among element vectors (see Figure 4). The element vectors used in those
comparisons were identified on the basis of the regression analysis just
described. For each item–position conjunction, the regression yielded a coef-
ficient for each hidden unit, reflecting the way in which the presence of the
conjunction in a target list impacted that unit’s activation. When the coeffi-
cients for all of the hidden units, for any specific item–position conjunction,
were concatenated, they formed a vector indicating the way that the conjunc-
tion was represented inside the overall sequence encoding, that is, an element
vector. The comparisons discussed under Initial Analyses were based on a set
of 40 element vectors (crossing 10 items with 4 positions) derived from one
instance of the model described in Simulation 2.

Note that, in principle, the pattern of similarities in Figure 4 could arise
from a coding scheme in which some hidden units code for item (inde-
pendent of position) others code for position (independent of item), and
still others code exclusively for a single item–position conjunction. How-
ever, further analysis indicated that the vast majority of hidden units
showed coding properties intermediate among these extremes. This was
shown by a multivariate analysis of variance (MANOVA), testing the
degree to which position and item could predict the activation of each
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hidden unit. Each dependent variable was the activation of a specific
hidden unit, as this varied across all specific item–position conjunctions.
The values here were drawn from the element vectors already described.
That is, at each hidden unit, the data being fit were not literal activation
values but instead were the portions of unit activation attributable to the
occurrence of a specific item at a specific position. Factors were included
for item and for serial position, with no interaction term.

This analysis yielded two informative results. First, the vast majority of
hidden units showed main effects of either position or item, or both. This
indicates that very few, if any, units coded in an exclusive manner for a
single item–position conjunction. Second, the r-squared values for indi-
vidual units, from this MANOVA, tended to be far from maximal (M �
0.72, range � 0.25–0.99). This indicates that although most units carried
some information about item (independent of position) or position (inde-
pendent of item), most units also coded conjunctively for item and position.

Together, these findings indicate the use of a graded, coarse conjunctive
code, as characterized by Cer and O’Reilly (in press).

Figure 5 in the Initial Analyses section displays data concerning the
relationship between element vectors and output weights over successive
steps of processing. The element vectors analyzed here were generated by
repeating the earlier regression analysis at each step of encoding and of
recall. This yielded a set of 320 element vectors, one for each of 10 items,
at each of 4 positions, and at each of 8 time steps. Each of these vectors was
compared with the vector of weights connecting the hidden layer to the
(Feature 2) output unit representing the same item.
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