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J. S. Bowers, M. F. Damian, and C. J. Davis (2009) critiqued the computational model of serial order

memory put forth in M. Botvinick and D. C. Plaut (2006), purporting to show that the model does not

generalize in a way that people do. They attributed this supposed failure to the model’s dependence on

context-dependent representations, translating this argument into a general critique of all parallel

distributed processing models. The authors reply here, addressing both Bowers et al.’s criticisms of the

Botvinick and Plaut model and the former’s assessment of parallel distributed processing models in

general.
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In Botvinick and Plaut (2006), we proposed a novel neural

network model of short-term memory for serial order. We reply

here to a critique of this work put forth by Bowers, Damian, and

Davis (2009).

We are grateful to Bowers et al. (2009) for clearly acknowledg-

ing a distinctive strength of the Botvinick and Plaut (2006) model:

its ability to account for the impact of domain-specific background

knowledge on serial recall. As discussed at length in Botvinick and

Plaut, immediate serial recall in humans is strongly affected by the

structure of the sequences to be remembered. When this structure

fits well with the statistics of previously encountered material,

enhanced recall is generally observed. The fact that the Botvinick

and Plaut model also displays this characteristic allows it to

account naturally for effects of bigram frequency and phonotactic

regularity and also to simulate a rich set of results from studies

examining memory for sequences generated from artificial gram-

mars (Botvinick, 2005; Botvinick & Bylsma, 2005).

Although Bowers et al. (2009) did acknowledge this aspect of

our model, they then went on to portray it not as an asset but as a

fatal flaw. The Botvinick and Plaut (2006) model, they argued, is

“too sensitive” to the details of previous experience. In particular,

they suggested, the model shows an insufficient ability to encode

arbitrary new sequences, including sequences containing previ-

ously unencountered items. Bowers et al. attributed this supposed

difficulty to the way in which the Botvinick and Plaut model

represents sequence information. As detailed in our original arti-

cle, the model relies on conjunctive representations of item and

order, in which the way that an item is represented depends on the

ordinal position at which it appears. Bowers et al. saw dire prob-

lems in such “context-sensitive” representations. Indeed, portray-

ing context-sensitive representation as a hallmark of connectionist

or parallel distributed processing (PDP) models, they asked the

reader to accept their observations concerning the Botvinick and

Plaut model as grounds for rejecting connectionist models in

general.

In principle, we welcome the kind of theoretical debate Bowers

et al. (2009) sought to generate. However, their specific assertions

simply do not hold up to scrutiny. As we explain in the sections

below, their critique of the Botvinick and Plaut (2006) model

is directly contradicted by abundant empirical data and rests upon

simulation results that are either innocuous or irrelevant. Their

larger critique of connectionist modeling is predicated on false

premises concerning the functional implications of context-

dependent representation, as well as a basic misunderstanding of

the connectionist approach. All in all, we worry that their critique

of our work may have done more to obscure the important issues

than to illuminate them.

Taking Account of the Empirical Data

Despite the skepticism Bowers et al. (2009) expressed toward

context-dependent representations, once all the relevant empirical

data are considered, it becomes very nearly impossible to deny the

involvement of such representations in serial order memory. In

particular, although Bowers et al. made no mention of it, there

have been at least seven studies examining neural activity during

serial recall in nonhuman primates (Barone & Joseph, 1989;

Funahashi, Inoue, & Kubota, 1997; Inoue & Mikami, 2006; Ker-

madi & Joseph, 1995; Kermadi, Jurquet, Arzi, & Joseph, 1993;

Ninokura, Mushiake, & Tanji, 2003, 2004), and a central finding

in every one of these has been that item information is encoded in

a way that depends on serial position. A representative finding

from the work of Inoue and Mikami (2006) is shown in Figure 1

(for further discussion, see Botvinick & Watanabe, 2007).
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Unless Bowers et al. (2009) wish to assert that these neurosci-

entific data are spurious, or that they are not germane to human

immediate serial recall, it seems unproductive to debate the rele-

vance of context-dependent representations in this domain. Present

evidence overwhelmingly suggests that the brain employs such

representations. Barring the emergence of contradictory evidence,

the scientific challenge is to determine how these representations

are instantiated and updated during encoding, how they are main-

tained during retention, how they are read out during recall, and

how they may be shaped by experience.

It is these questions that the Botvinick and Plaut (2006) model

strives to address. Of course, its success in doing so must be

judged against how well it accounts for the details of human

performance in serial recall. Bowers et al. (2009) argued that the

model fails in important ways and claimed to document its failure

in a set of follow-up simulations. It is to these we now turn.

Simulation Results

Bowers et al. (2009) presented a series of seven simulations. It

is surprising that the first six of these present no problem at all for

the Botvinick and Plaut (2006) model. Together, these simulations

simply show that the model generalizes to new sequences more

readily when distributed, rather than localist, item representations

are used. The fact that distributed representations support gener-

alization has been a central message of connectionist modeling

since the 1980s. To see this point substantiated yet again, in the

context of serial recall, is satisfying, if not particularly surprising.

In any case, we fail to see what challenge is implied to the

Botvinick and Plaut account. Indeed, we noted in that article (p.

205) that our use of localist item representations was an imple-

mentational convenience, rather than a core aspect of the account,

and indeed, some of the simulations reported in Botvinick and

Plaut actually used distributed item representations.

This brings us to Bowers et al.’s (2009) Simulation 7. This

simulation was intended to model a thought experiment, which lies

at the heart of the critique. Bowers et al. asked the reader to

imagine a scenario in which someone learns a new letter-name,

“ree,” and is asked to repeat back a short sequence containing this

new item in the first ordinal position (e.g., “ree, B”). Having

completed this task, they noted, the same individual should have

no trouble then repeating back a sequence in which “ree” appears

in another ordinal position (e.g., “B, ree”). In Simulation 7, Bow-

ers et al. purported to show that the Botvinick and Plaut (2006)

model cannot simulate this scenario. The model was first trained

on a set of 25 items. A 26th item was then introduced, and the

model received massive training on sequences in which this item

appeared at position one. The model was then shown to have

difficulty recalling sequences in which the new item appeared in

other positions.

A little reflection should reveal that this simulation bears little

relation to the scenario described in the thought experiment. The

individual in that experiment did not receive massive training on

sequences containing the novel item. Instead, he or she immedi-

ately repeated back one sequence (“ree-B”), and then another

(“B-ree”). A proper simulation of the thought experiment would

therefore involve presenting the model with a novel item and

seeing whether it can recall that item at any ordinal position

immediately, without any interposed training.

In fact, the model handles this situation just fine. To demon-

strate this, we trained the model on items meant to represent

syllables (reasoning that most letter names take this form). The

input layer contained three sets of 10 units, respectively represent-

ing onset, nucleus, and coda.1 A syllable was represented by

activating one unit from each of these groups. The model was

trained to recall sequences of syllables following the procedures

used in Botvinick and Plaut (2006). It is important to note that one

specific syllable was avoided during training. By analogy to Bow-

ers et al.’s (2009) thought experiment, let us refer to this syllable

as “ree.” Following training, the model’s weights were held con-

stant, and it was tested on sequences in which ree appeared in

position one (e.g., “ree, B”). The model recalled these sequences

without error. Not surprising, the model then went on to perform

perfectly on sequences in which ree appeared at other ordinal

positions (e.g., “B, ree”).

Naturally, we take no issue with the assertion that “a participant

who recalls ree-B can also succeed on the sequence B-ree” (Bow-

1 The model contained 75 hidden units and was trained on sequences

from length one to three. Further simulation details are available from the

lead author upon request.

Figure 1. Response profiles for two prefrontal neurons, reported by Inoue

and Mikami (2006), during sequential presentation of two visual shape

cues. Both neurons displayed differential responses to preferred (black) and

nonpreferred (grey) shapes, as well as differential responses across ordinal

positions. The neuron contributing to the upper panels (A) responded

preferentially to items occupying the first ordinal position; the neuron in

the lower panels (B) responded preferentially to items in the second

position. From “Prefrontal Activity During Serial Probe Reproduction

Task: Encoding, Mnemonic and Retrieval Processes,” by M. Inoue and A.

Mikami, 2006, Journal of Neurophysiology, 95, p. 1014, Figure 4. Copy-

right 2006 by The American Physiological Society. Adapted with

permission.
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ers et al., 2009, p. 17). What we have demonstrated here, contrary

to the claims of Bowers et al., is that the Botvinick and Plaut

(2006) model has absolutely no difficulty in simulating this

scenario.2

False Premises Concerning Context-Dependent

Representations

Having dispensed with the more concrete and specific points

made by Bowers et al. (2009), we may now briefly address their

main high-level theoretical assertions. Bowers et al. used their

simulation results as a springboard to a broad critique of context-

dependent representation. Their central thesis is that context-

independent representations support the formation of arbitrary

associations, whereas context-dependent representations do not.

The only problem with this formulation is that it is not true.

Indeed, both of its two premises are belied by existing computa-

tional models in the area of serial order memory. The first premise

is contradicted, for example, by the model recently proposed by

Burgess and Hitch (2006), which relies on links between context-

independent item and position representations, but which shows

recall performance strongly affected by earlier learning. The sec-

ond premise, in turn, is contradicted by the primacy model pro-

posed by Page and Norris (1998), which uses conjunctive repre-

sentations of item and order, but which is capable of encoding

arbitrary sequences. (Note that Bowers et al. incorrectly grouped

the primacy model with models that employ context-independent

representations of item and order. Unit activation in the primacy

model depends on both the occurrence of a specific item and the

ordinal position in which the item occurs. The model thus, by

definition, employs a conjunctive code. Indeed, our 2006 model

shares some important properties with the primacy model. The

nature of the connection between the two models is suggested by

Figure 5 from Botvinick & Plaut, 2006, which shows something

very much like a primacy gradient.)

There is, of course, an interesting and important relationship

between representational form and generalization behavior, a re-

lationship that has been explored throughout the connectionist

literature and well beyond. The nature of this relationship is,

however, not as simple as the one Bowers et al. (2009) described.

A Straw-Man Critique of Connectionist Modeling

By criticizing the use of context-dependent representations,

Bowers et al. (2009) intended to call into question connectionist

modeling at large. However, by conflating connectionist/PDP

modeling with context-dependent representation, Bowers et al.

revealed a fundamental misunderstanding. They asserted that “a

core claim of the PDP approach is that all knowledge is coded in

a context dependent manner” (p. 7). This is simply untrue. In fact,

the approach takes no specific stance on the degree to which the

representation of an entity is dependent or independent of the

contexts in which it occurs. Rather, one of the main tenets of

the approach is to discover, rather than stipulate, representations

(Plaut & McClelland, 2000). Internal representations are learned

under the pressure of performing specific tasks, and the degree to

which they exhibit context dependence is a consequence of basic

network mechanisms, the learning procedure, and the structure of

the tasks to be learned. For example, Plaut and Gonnerman (2000)

trained a network to comprehend morphologically complex words

that varied in semantic transparency (i.e., the degree to which the

meaning of a word is consistent with the independent meanings of

its component morphemes). When a set of words was embedded in

an artificial language in which other words were transparent, the

representations of their morphemes were largely context-

independent (as reflected by patterns of morphological priming).

By contrast, when the same words were embedded in a language

in which other words were opaque, morphemes were given

context-dependent representations in which the degree of depen-

dence varied as a function of the word’s transparency. Thus,

contrary to Bowers et al.’s claims, PDP networks are not restricted

to learning context-dependent representations but can develop

representations that span the full range from context dependence to

context independence. Indeed, Botvinick and Plaut (2006) specif-

ically noted that their networks carried some context-independent

information about item and order (p. 228) and discussed the

potential role of weight-based associations between context-

independent representations in serial order memory (p. 233).

Conclusions

In this brief reply, we have rejected the comments and conclu-

sions of Bowers et al. (2009) on several grounds. First, we have

noted the existence of abundant empirical data contradicting their

arguments. Second, we have shown why their simulation results in

fact present no challenge to our model. Third, we have questioned

several basic premises underpinning their theoretical polemic.

If Bowers and colleagues are serious about modeling short-term

memory for serial order, then the ball now bounces back to them

and others who advocate for context-independent representations

of item and order. Having failed to show that the Botvinick and

Plaut (2006) model has unreasonable difficulty with arbitrary

sequences, the burden of proof now falls upon Bowers and col-

leagues to demonstrate that models using context-independent

representations can capture the effects of background knowledge

that are so well captured by the Botvinick and Plaut model. Bowers

and colleagues appealed to the notion that introducing “chunks”

might allow this. This idea has been bandied about informally

since at least the early 1980s, but we still await a serious attempt

2 Out of curiosity, we reran Simulation 7 from Bowers et al. (2009),

using the item representations just described. This yielded starkly different

results from those reported by Bowers et al. Specifically, even after

extensive training where ree only ever appeared in position one, the model

had absolutely no trouble recalling that item at other ordinal positions. It

turns out that the difficulty Bowers et al. observed in their Simulation 7 had

nothing to do with serial order memory but related instead simply to item

encoding. Upon initial presentation of the initially withheld item in their

simulation, the model did not even correctly shadow the item during

encoding, nor did the model correctly recall when it was presented in

isolation (i.e., as a one-item list; J. Bowers, personal communication,

March 13, 2009). The correlations among item features, given the structure

of the training set, were evidently strong enough during initial training that

the model had effectively been trained not to be able to encode the novel

item, much as human subjects find it difficult to encode syllables that are

phonotactically highly irregular, as shown, for example, by Brown and

Hildum (1956). The results Bowers et al. reported thus reflect, in part, an

idiosyncratic (and arguably ecologically invalid) aspect of their item rep-

resentations.
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to implement it in a runable model so that it can be tested against

existing empirical data.
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Postscript: Winnowing Out Some Take-Home Points

Matthew M. Botvinick
Princeton University

David C. Plaut
Carnegie Mellon University

Some arguments made in Bowers, Damian, and Davis’s (2009)

rebuttal can be dispensed with quickly. For example, they made

much of the fact that the neurophysiological studies that have

reported conjunctive coding for item and order have also often

reported neurons that code for item independent of order and vice

versa. However, this is immaterial; as noted both in our Reply and

in our original article, the Botvinick and Plaut (2006; BP06) model

contains units with the same coding profiles. We can also dispense

quickly with the assertion that the primacy model of Page and

Norris (1998) uses order-independent item representations. The

units in that model do respond to specific items, but they assume

different activation levels depending on the ordinal position at

which items occur. That is, by definition, conjunctive coding for

item and order.

This clears the way for us to consider the new simulations that

Bowers et al. (2009) presented in their rebuttal. Their first two

simulations sought, in part, to highlight a point we hoped was

obvious from the simulation we presented in our earlier reply: The

BP06 model can recall an item at an ordinal position where that

item has not previously occurred if the item is represented in terms

of a set of subordinate features, and each of those features has

previously occurred at the relevant position. It was perhaps worth-

while for Bowers et al. to emphasize this point (see also Marcus,

1998), but it hardly seems a blow to the BP06 model. What they

show is that, if the environment is diabolical enough to place a

low-level feature in a position where it has never occurred during

the millions of events that make up the entire history of experience

of the system, poor recall performance will result. However, we

doubt that the environment human learners inhabit is quite so

adversarial. Moreover, even if it were, there is no evidence that

humans can generalize on the basis of features that have no overlap

at any level of representation with previously encountered features

(see McClelland & Plaut, 1999, for discussion).

This leads us to one take-home point, which is that the adequacy

of the BP06 model, like that of all parallel distributed processing

(PDP) models, must be assessed in the context of an ecologically

valid training set, a set of training examples that reflects the

relevant statistical properties of a real-world learning environment

(see Botvinick & Plaut, 2006). By focusing on highly contrived

and implausible training contexts, Bowers et al. (2009) shed little

light on the psychologically relevant properties of our model. As

the saying goes, garbage in, garbage out.

Based on their final simulation, Bowers et al. (2009) went on to

pose a false dilemma. They argued that PDP models can retain

either the ability to encode arbitrary new patterns or the ability to

benefit from previous experience with specific patterns, but not

both. There is certainly a logical tradeoff between these two

capacities, because as increasing influence is accorded to previous

experience, there is an inevitable reduction in the flexibility needed

to process novel events (see McClelland, McNaughton, &

O’Reilly, 1995). However, this tradeoff represents a graded con-

tinuum, not a polar contrast. In their simulation using the BP06
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model, Bowers et al. seem to have found a corner of parameter

space where compositional coding predominates, and previous

experience with specific feature combinations has little impact on

recall performance. However, a cursory glance at the PDP litera-

ture makes clear that, given a reasonable training environment,

PDP models are quite capable of striking a balance between

flexibility on the one hand and sensitivity to structure on the other.

Indeed, this point has been made in precisely the domain Bowers

et al. staked out for their own demonstration: word versus nonword

reading (see Plaut & McClelland, 1993).

There is some irony in the fact that Bowers et al.’s (2009)

closing criticism of our model focused on the issue of sensitivity to

previous learning, because, as we emphasized in BP06, this is an

area where traditional “context-independent” models face substan-

tial difficulty. To our gratification, the last couple of years have

seen a resurgence of interest in the role of learning in short-term

memory for serial order (see Thorn & Page, 2008). The critique of

our model offered by Bowers et al. contributes to this welcome

development by drawing attention to the inherent tradeoff between

learning and flexibility. In so doing, however, the critique does

little to challenge the viability of the BP06 model.
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Correction to Smith and Ratcliff (2009)

In the article, “An Integrated Theory of Attention and Decision Making in Visual Signal Detection,”

by Philip L. Smith and Roger Ratcliff (Psychological Review, 2009, Vol. 116, No. 2, pp. 283–317),

there is an error on p. 284 in the right-hand column. In the sentence “On each trial, the angular

position of the cue, a, (0 , a # 360°), was selected randomly; the uncued locations were at a 1

120°”, the plus sign should have been a plus/minus symbol. The correct sentence is presented below.

“On each trial, the angular position of the cue, a, (0 , a # 360°), was selected randomly; the

uncued locations were at a 6 120°.”
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