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The study of the N400 event-related brain potential has provided fundamental insights into the nature of
real-time comprehension processes, and its amplitude is modulated by a wide variety of stimulus and
context factors. It is generally thought to reflect the difficulty of semantic access, but formulating a pre-
cise characterization of this process has proved difficult. Laszlo and colleagues (Laszlo & Plaut, 2012;
Laszlo & Armstrong, 2014) used physiologically constrained neural networks to model the N400 as
transient over-activation within semantic representations, arising as a consequence of the distribution
of excitation and inhibition within and between cortical areas. The current work extends this approach
to successfully model effects on both N400 amplitudes and behavior of word frequency, semantic rich-
ness, repetition, semantic and associative priming, and orthographic neighborhood size. The account is
argued to be preferable to one based on ‘‘implicit semantic prediction error” (Rabovsky & McRae,
2014) for a number of reasons, the most fundamental of which is that the current model actually
produces N400-like waveforms in its real-time activation dynamics.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

The N400 is a negative deflection in event-related brain poten-
tials (ERPs) that occurs approximately 400 ms post-stimulus onset
in response to a wide range of meaningful or potentially meaning-
ful stimuli, including written and spoken words and pseudowords,
and drawings, photos and videos of objects and actions (for
reviews, see Federmeier & Laszlo, 2009; Kutas & Federmeier,
2009, 2011). It was originally identified as a response to semanti-
cally anomalous sentence endings (e.g., ‘‘I take coffee with cream
and dog”; Kutas & Hillyard, 1980) but, over the years, has been
shown to be sensitive to a wide variety of stimulus and context
manipulations, including cloze probability (the number of possible
sentence endings), sentence and discourse congruity, repetition,
semantic priming, lexical association, concreteness and semantic
richness, word frequency, orthographic neighborhood size, and
many more. On the other hand, N400 amplitude is relatively insen-
sitive to manipulations that broadly preserve meaning, including
physical changes (e.g., in font or case) and syntactic violations
(e.g., in number agreement). Understanding the N400 is important
because it offers a real-time measure linking underlying neural
mechanisms to behavior that has provided fundamental insights
into core issues in the study of cognitive and neural processing,
including the immediacy and incrementality of comprehension,
the integration of bottom-up and top-down sources of information,
the organization and dynamics of semantic memory, and the bases
for variability and atypicality in performance across individuals
and in special populations (Kutas & Federmeier, 2011).

The wide range of factors that modulate the N400 is, unfortu-
nately, matched by an equally wide range of theoretical accounts
of the phenomena. One proposal is that the N400 reflects post-
lexical semantic integration or unification, linking semantic infor-
mation from a current word with meaningful information from
previous words and context (Brown & Hagoort, 1993; Hagoort,
Baggio, & Willems, 2009). This broad theory accounts for the
N400’s largely meaning-specific modulation, but fails to account
for many of its subtleties. For instance, it is unclear why an N400
is generated by words in isolation, or even by pseudowords
(Deacon, Dynowska, Ritter, & Grose-Fifver, 2009; Laszlo &
Federmeier, 2007, 2011), and why its amplitude is modulated by
form-based properties such as orthographic neighborhood size
(Laszlo & Federmeier, 2009). Other researchers (Deacon,
Dynowska, Ritter, & Grose-Fifer, 2004) have suggested that the
N400 reflects orthographic/phonological analysis that is attenu-
ated by top-down semantic feedback. In complementary fashion,
this account explains sensitivity to lexical and form-based factors
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but provides a less satisfactory account of sentence- and discourse-
level effects (see van Berkum, 2009).

Perhaps the most common perspective falls between these two
extremes: that the N400 reflects something like the difficulty of
semantic access (Kutas & Federmeier, 2000, 2011). This proposal
is supported in part by attempts to localize the neural generators
of the N400 component (e.g., Halgren et al., 2002; Lau, Phillips, &
Poeppel, 2008; Van Petten & Luka, 2006), which generally impli-
cate brain regions involved in semantic processing, including the
superior/middle temporal gyrus, the temporal-parietal junction,
and the medial temporal lobe. It has, however, proved difficult to
formulate a precise characterization of ‘‘semantic access” that is
capable of accounting for the full range of empirical effects. Indeed,
in an attempted synthesis from this perspective, Kutas and
Federmeier (2011) offered only a very general characterization:

Rather than reflecting the activation of ‘‘a word’s meaning,”
then, the N400 region of the ERP is more accurately described
as reflecting the activity in a multimodal long-term memory
system that is induced by a given input stimulus during a
delimited time window as meaning is dynamically constructed.
(p. 640)

Laszlo and Plaut (2012) put forth a specific proposal for the
basis of the N400 and supported their account with an explicit
computational simulation using a neurophysiologically con-
strained neural network. On their view, the N400 does, in fact,
reflect the activation of a word’s meaning, but this process is sen-
sitive to a variety of bottom-up and top-down influences and also
exhibits specific temporal dynamics due to the organization of
excitation and inhibition within cortex. In particular, it is well
established that the projections of pyramidal cells between cortical
areas are restricted to be excitatory, whereas inhibitory interneu-
rons operate locally to modulate overall activity levels within each
area (Kandel & Schwartz, 1985). As a result, bottom-up input
causes an initial over-activation of neurons within an area, which
is subsequently resolved into a coherent representation with lower
activation through competitive (and cooperative) interactions (see
Zheng et al., 2012). Laszlo and Plaut proposed that the N400 deflec-
tion reflects this transient over-activation of neurons in cortical
areas representing word meaning, and that its magnitude depends
both on the nature of co-activated information due to the similar-
ity structure of word forms and meanings, as well as on pre-
activated information from prior context.

To support this account, Laszlo and Plaut (2012) developed a
neural network simulation of word comprehension that incorpo-
rated the relevant constraints on excitation and inhibition between
and within layers. In the model, visual input mapped to ortho-
Fig. 1. (a) Empirical data from Laszlo and Federmeier (2011) showing N400 magnitudes
over time exhibited by the Laszlo and Plaut (2012) simulation for the same stimulus cla
graphic, hidden, and semantic representations in turn. At each
layer, excitatory units received positive-only bottom-up input
from the layer below, and projected positive-only connections to
the next layer as well as to an inhibitory unit which projected back
with negative-only connections. The model was trained to recon-
struct the visual input and to generate the semantic representa-
tions for 62 CVC words as well as 15 acronyms (containing a
central consonant). Acronyms were included in order to model
single-item ERP data gathered by Laszlo and Federmeier (2011)
in which they independently varied meaningfulness and ortho-
graphic regularity by comparing words (e.g., HAT), pseudowords
(e.g., KOF), acronyms (e.g., DVD), and illegal strings (e.g., NHK).
Somewhat surprisingly, Laszlo and Federmeier found that N400
magnitude depended on orthographic regularity but not on mean-
ingfulness (see Fig. 1a). Moreover, across all stimulus types, there
was a strong correlation between N400 amplitude and ortho-
graphic neighborhood size, regardless of lexical status. These
results are particularly important because they would seem to be
at odds with accounts of the N400 as reflecting semantic access
per se.

As it turns out, however, the Laszlo and Plaut (2012) compre-
hension model shows the same pattern of performance when
tested on analogous stimuli (see Fig. 1b). Laszlo and Plaut mea-
sured mean semantic activation over time as a proxy for the
population-based post-synaptic potentials thought to underlie
EEG signals in general, and the N400 component in particular
(see Fabiani, Gratton, & Federmeier, 2007). Although the model
ultimately settles to stronger semantic representations for mean-
ingful stimuli (words and acronyms), it produces greater transient
semantic activation—and, hence, greater N400 amplitudes—for
orthographically regular stimuli (words and pseudowords). The
reason is that orthographic forms provide bottom-up excitation
not only for their specific semantic features but also for the seman-
tic features of orthographically similar forms. Thus, words and
pseudowords, with many orthographic neighbors, generate much
greater transient semantic over-activation than do acronyms and
illegal strings, with few if any neighbors. Laszlo and Plaut showed
that the separation of excitation and inhibition is essential to pro-
ducing these dynamics; an otherwise equivalent but uncon-
strained network failed to exhibit the empirically observed
pattern. In this way, the model provides a specific, neurally explicit
instantiation of comprehension processes in which the N400 can
be understood as reflecting ‘‘semantic access”, and yet can
nonetheless explain why it occurs as strongly for pseudowords as
for words, and why its amplitude depends on form-based proper-
ties rather than on meaningfulness. In follow-up simulations,
Laszlo and Armstrong (2014) added a fatigue function to the
to words, pseudowords, acronyms, and illegal strings; (b) Mean semantic activation
sses. (Reprinted with permission from Laszlo and Plaut, 2012.)



Fig. 2. Rabovsky and McRae’s (2014) results using cross-entropy error to simulate the effects on N400 amplitude of (a) word frequency and (b) repetition. (Reprinted with
permission from Rabovsky and McRae, 2014.)
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excitatory units to account for the reduction in N400 amplitude
due to stimulus repetition (e.g., Nagy & Rugg, 1989), which can
be viewed as a first step toward accounting for effects of prior
context.

Recently, Rabovsky and McRae (2014) proposed an alternative
account of the N400 based on a different type of neural network
simulation, and applied it to a much broader range of phenomena
than addressed by Laszlo and Plaut (2012) and Laszlo and
Armstrong (2014). On their account, semantic activation forms
the basis for task performance (e.g., lexical decision), whereas the
N400 reflects ‘‘implicit prediction error” over semantics—the dis-
crepancy between the semantic information derived from a stimu-
lus and the information predicted or anticipated from prior context
(where this ‘‘prediction” is not conscious or explicit). Rabovsky and
McRae supported their account using an attractor network model
of word comprehension (Cree, McNorgan, & McRae, 2006). The
model consists of a fully connected network without hidden units
that was trained to map the orthographic forms of 541 words (over
30 units) to their semantic feature representations (over 2526
units, derived from McRae, Cree, Seidenberg, & McNorgan, 2005).
Implicit semantic prediction error was operationalized in terms
of task performance error—the discrepancy at any point in time
between the semantics generated by the network and the correct
semantic pattern for the target stimulus.1

Rabovsky and McRae did not attempt to reproduce the actual
morphology of the N400 deflection. Rather, they considered only
the direction of changes in N400 amplitude, and of behavioral per-
formance, in the context of seven empirical effects: semantic prim-
ing, semantic richness (i.e., number of semantic features), word
frequency, repetition, and the interactions of repetition with rich-
ness and with frequency, and orthographic neighborhood size.2

They showed that, for each of these effects, the error measure is
influenced in the same direction as N400 amplitude, whereas overall
semantic activation is influenced in the same direction as behavior.
For example, Fig. 2 shows how semantic error in their model varies
over time as a function of word frequency and repetition.

Although the Rabovsky and McRae (2014) model is impressive
in its breadth of coverage of phenomena relating to both N400
1 Rabovsky and McRae (2014, p. 70) suggest that the network’s activation
corresponds to the prediction, and the correct semantic targets (of unspecified
origin) correspond to the actual outcome. However, on this view, in order for the real-
time value of prediction error to correspond to the real-time value of the N400, the
‘‘outcome” (correct semantic targets) must be available at the very start of the
generation of the ‘‘predictions” (network activations), which seems awkward to us.
For this reason, we prefer an interpretation in which prior context provides the
prediction that is then compared against the actual semantics generated by the word
itself, and this is how our discussion is framed throughout the paper.

2 The specific patterning of these effects will be considered in detail later, in the
context of presenting the corresponding modeling work.
amplitude and behavior, a number of aspects of its design and per-
formance are less than satisfactory. First and foremost, of course, is
that the model doesn’t actually produce N400 morphology. This is
a fundamental limitation because the N400 is not simply a single-
valued dependent measure like accuracy or reaction time—it
reflects the moment-to-moment changes in activity (post-
synaptic potentials) of neural populations that directly contribute
to performance, and thus provides a wealth of information linking
brain processes to behavior as they occur in real time. A model that
fails to address actual N400 dynamics can provide little insight into
these deeper issues.

Second, many of the effects in the Rabovsky and McRae model
are very small and/or hold only over somewhat different ranges
of processing cycles in the model; while this is less a concern about
the behavioral measure, it is a serious issue for an account of the
N400, as one of its hallmark characteristics is that its latency is rel-
atively stable (Kutas & Federmeier, 2011). Third, it is questionable
how semantic prediction error could actually be computed in cor-
tex, and how it would manifest as neural activity—so as to be mea-
surable by EEG—distinct from semantic activation. The Rabovsky
and McRae (2014) simulation computed error using explicit targets
for semantic features, but even if such targets had an actual neural
instantiation—which seems unlikely (Crick, 1989)—they are not
directly available in a standard lexical decision paradigm, nor is
there any context from which to derive them. Finally, for words
in unrelated contexts, such as an unordered list, it is difficult to
understand how the system could make sensible predictions of
their semantics, and it is unclear how the notion of semantic pre-
diction error applies in the case of pseudowords, which have no
semantics and yet produce N400 amplitudes as large as those for
words (Laszlo & Federmeier, 2011).

Given these concerns, it seems preferable to us to account for
the relevant empirical phenomena within an approach in which
the N400 corresponds directly to (semantic) neural activity. In fact,
there are reasons to believe that semantic activation in the Laszlo
and Plaut (2012) model would behave in ways similar to what
Rabovsky and McRae (2014) claim for implicit semantic prediction
error (while avoiding its pitfalls). For example, insofar as prior con-
text—including a preceding prime word—activates information
that supports the features of the target, those features may inhibit
competing features (of orthographic neighbors), thereby reducing
N400 amplitude.

Accordingly, in the current work, we set out to account for the
same breadth of phenomena as Rabovsky and McRae (2014), con-
cerning effects on both the N400 and behavior, but using the gen-
eral approach of Laszlo and Plaut (2012) and Laszlo and Armstrong
(2014). In the first simulation, the N400 is again modeled by over-
all semantic activation within a physiologically constrained neural
network. In Simulation 2, we augment this network with a trained



Fig. 3. The architecture of the network used in Simulation 1. Names of hidden
layers are in square brackets. The bottom two layers form a feedforward
autoencoder with separate input and output layers, but these are depicted as a
single ‘‘Visual Input” layer with bidirectional connectivity for simplicity.
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response system similar to Usher and McClelland’s (2001) leaky
competing integrator model of decision making in order to model
behavioral effects (in lexical decision).

2. Simulation 1: N400 effects

Simulations were run using a modified version of the Lens neu-
ral network simulator developed by Doug Rohde (http://tedlab.mit.
edu/dr/Lens/). The code for the modified simulator and all neces-
sary training and testing files are available for download at
http://www.cnbc.cmu.edu/plaut/CheyettePlaut-N400.

2.1. Methods

The simulation had roughly the same design as in Laszlo and
Plaut (2012, hereafter LP12), with the following main modifica-
tions: (1) a larger vocabulary (to allow for variations in word fre-
quency and semantic richness); (2) a concomitant increased in
numbers of excitatory and inhibitory units; (3) the introduction
of an activation-based decay function similar to that employed
by Laszlo and Armstrong (2014); and (4) the introduction of a
response system that makes lexical decisions based on semantic
input. For completeness, though, we include all simulation details
below.3 Although the new model differs from these previous ones in
a number of detailed respects (e.g., exact ratios of excitatory-to-
inhibitory units; specific decay function), it retains the same core
theoretical commitments: (a) distributed representations of orthog-
raphy and semantics, and no localist word units; (b) a separation of
excitation and inhibition with connectivity constraints that gives rise
to early excitation followed by late inhibition; and (c) a form of neu-
ral fatigue driven by sustained activation (see also Gotts & Plaut,
2002).

2.1.1. Stimuli
The network was trained to map visual (orthographic) input to

semantic output for 176 words with consonant-vowel-consonant
(CVC) structure. Visual input was coded over 24 units (8 per letter)
with each of 15 possible letters (10 consonants, 5 vowels) activat-
ing 2 of 8 units in each slot. Semantic representations were
encoded over 70 semantic units, with words varying in semantic
richness: half had 6 features and half had 3 features. This made
the semantic representations highly sparse, but still allowed for
some degree of overlap (to reflect semantic relatedness). Within
each richness level, words also varied in frequency, with half
occurring 5 times more often during training than the other half.
Visual inputs were assigned to semantic outputs randomly to
ensure that there was no systematic relationship between the
forms of words and their meanings.

2.1.2. Network architecture
The architecture of the network is depicted in Fig. 3. The bottom

layers form an autoencoder which is trained to reconstruct each
24-element visual input pattern via an intermediate group of 24
hidden units (labeled ‘‘Orthographic Autoencoder” in the figure).
These hidden units then map via another group of 90 hidden units
to 70 semantic units. These between-layer connections are con-
strained to excitatory. Each of these groups of units has a corre-
sponding group of inhibitory units. As in the LP12 model, the
hidden and output groups within the orthographic autoencoder
each has a single inhibitory unit that receives excitatory connec-
tions from its corresponding excitatory layer and sends inhibitory
3 The findings to be reported are generally stable over small variations in network
parameters and over initial random weight values. We report on a single simulation
to more clearly convey the network dynamics and behavior of an individual network,
which we take to approximate something like a modal participant.
connections back to it. In order to cope with the larger vocabulary,
however, the semantic layer and the hidden layer just below it
have 3 inhibitory units each (but with the same connectivity con-
straints). In addition, they each are bidirectionally connected with
positive-only weights to their own set of ‘‘clean-up” units (35 for
both the hidden and semantic layers) that help the network learn
higher-order structure among semantic patterns (Hinton &
Shallice, 1991). Including bias connections for all non-input layers,
the network has a total of 22,154 connections.

Each excitatory unit computes its activation as the standard
logistic (sigmoid) function of its time-averaged net input from
other units, which is then subject to multiplicative decay as a func-
tion of its time-averaged activation:

nt
j ¼ s

X
i

at�1
i wij þ ð1� sÞ nt�1

j ð1Þ

otj ¼ k f nt
j

� �
þ ð1� kÞ ot�1

j ð2Þ

atj ¼ f nt
j

� �
1� otj 1� bð Þ

� �
ð3Þ

where wij is the weight on the connection from unit i to unit j, nt
j is

the net input of unit j at time t, at
j is the instantaneous activation of

unit j at time t, ot
j is the time-averaged activation of unit j at time t,

s ¼ 0:5 is the time constant for averaging net inputs, k ¼ 0:06 is the
time constant for averaging activations, b ¼ 0:8 is the upper bound
on decay, and f ðxÞ ¼ 1=ð1þ e�xÞ is the sigmoid function. Note in
Eq. 3 that there is no decay if a unit’s time-averaged activation otj
is 0.0 but full decay of b if the time-averaged activation is 1.0. This
type of activation-based decay is simpler than the alpha function
used by Laszlo and Armstrong (2014) but has very similar proper-
ties.4 We chose the values of s; b and k somewhat arbitrarily, but
with the intent that the decay from the peak activation of one word
would influence that of the next. Moreover, these parameters give
rise to dynamics in which the drop in a unit’s activation is relatively
rapid after one or two repetitions of a stimulus and then reach
asymptote quickly, which agrees with empirical studies of neural
repetition suppression (see, e.g., Miller, Gochin, & Gross, 1991).
4 We chose not to employ the alpha function directly because it determines an
envelope within which unit activation is constrained, and so—at least in principle—
limits a unit’s activation both early and late in the course of processing.
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Inhibitory units employed the same multi-linear ‘‘elbow” func-
tion used in LP12 that approximates the combined influence of two
inhibitory populations: an immediately active linear population,
and a thresholded linear population that becomes active only
under stronger net input. The functional consequence of this unit
function is that excitatory activation tends to stabilize at a level
that is in balance with the amount of inhibition produced at the
inflection point (elbow) of the inhibitory function and, in this
way, serves as a graded form of k-winner-take-all (see LP12 for fur-
ther discussion).

2.1.3. Training procedures
As in LP12, the network was trained to take the visual represen-

tations of each word as input and to reconstruct this representa-
tion via the autoencoder units in Fig. 3. However, unlike LP12,
the autoencoder and the rest of the network are trained simultane-
ously. During this training, words were presented in pairs, with all
possible 176 � 176 = 30,976 pairs occurring during training. How-
ever, certain pairs had elevated frequencies of occurrence relative
to others. In particular, we introduced lexical associations between
words in order to address certain aspects of the empirical findings
on semantic priming, as will be discussed in detail in the Results
section below. Specifically, each word had another word desig-
nated at its associate, such that the word was followed by its asso-
ciate on 30% of its presentations, and by some other word on the
remaining 70% of presentations (see also Plaut, 1995; Plaut &
Booth, 2000). In addition, the frequency of each word pair was
adjusted to enforce the word-specific frequency manipulation that
high-frequency words occurred 5 times more often than low-
frequency words—this required that words and their associates
were matched in frequency.

The timingof presentationof a givenwordpairwas the sameas in
LP12 in that the input for each word was presented over the Visual
Input units for 16 ticks (unit updates), with a single tick with zeros
as input in between. Semantic targets were applied for the last 12
ticks during the presentation of each word. Unit activations (and
the integrated activations that govern decay) were reinitialized
betweenword pairs. The networkwas trained on 750,000 presenta-
tions of word pairs, sampling randomly but according to their spec-
ified frequencies of occurrence, using back-propagation for
continuous-timenetworks (Pearlmutter, 1989), cross-entropy error,
a batch size of 1, no momentum, and a gradually lowering learning
rate: 0.015 for 250,000 presentations, 0.01 for 250,000, and 0.005
for 250,000.5 The clean-up layers used a reduced learning rate
(0.001) for the first 100,000 presentations, as recurrent connections
are often not beneficial until some training has occurred (Marr, 1971).

2.1.4. Testing procedures
Following training, we tested the network on all 176 words as

target when preceded each of the 176 words as prime (including
itself), measuring the total activation within semantics at every
unit update during target presentation. As a proxy for N400 ampli-
tude, we determined the peak in summed activation within the
semantic layer after the presentation of each target, and then aver-
aged the sum over a 3-tick window around the peak.6 The peak
5 Although back-propagation is not biologically plausible in literal form, it
nonetheless can give rise to internal representations with substantial similarity to
neural representations (Khaligh-Razavi & Kriegeskorte, 2014; Kriegeskorte, 2015;
Yamins et al., 2014; Zipser & Andersen, 1988), and can be thought of as a
computationally efficient approximation of more plausible error-correcting proce-
dures (see O’Reilly, 1996).

6 All of the simulated N400 results to be reported hold if only the peak itself is used
as the dependent measure, but summing over a 3-tick window around the peak
provides a more stable measure of the dynamics of semantic activation, and is
somewhat more analogous to how empirical data are analyzed. Equivalent results
hold if a 5-tick window is used instead.
always occurred somewhere between 4 and 9 ticks post-onset (out
of 16), with a median occurrence at tick 6. Incidentally, assuming
that the presentation of each word corresponds to about a second,
this range of timing is roughly similar to the actual N400, which is
known to occur somewhere between 250 and 500 ms post-
stimulus (see Kutas & Federmeier, 2011). Our analyses will consider
how N400 amplitude in the model is influenced by the frequency,
semantic richness, and orthographic neighborhood size of targets,
as well as by whether the prime and target are identical, semanti-
cally related (i.e., overlapping in semantic features), associatively
related (i.e., the prime-target pair had elevated frequency during
training), or unrelated.
2.2. Results and discussion

After training, for 98.7% of target presentations, all semantic
units with targets of 1 were more active than all those with targets
of 0 on the last tick. All remaining trials involved low-frequency
targets and, of these, most involved only one or two incorrect unit
activations. Although not perfect, we considered this level of com-
prehension performance sufficient to warrant testing N400 and
behavioral effects in the model.

We will first consider the joint effects of word frequency,
semantic richness, and repetition, and then turn to effects of
semantic and associative priming and orthographic neighborhood
size.
2.2.1. Word frequency, semantic richness, and repetition
The relevant empirical effects on N400 amplitudes are as

follows:
Frequency. Low-frequency words produce larger N400s than do

high-frequency words (Barber, Vergara, & Carreiras, 2004; Rugg,
1990; Van Petten & Kutas, 1990).

Richness. Words with greater semantic richness—that is, with
more semantic features, sometimes operationalized as greater con-
creteness—yield larger N400s (Kounios & Holcomb, 1994; Kounios
et al., 2009; West & Holcomb, 2000) than do words with lower
richness.

Repetition. Immediate repetition of a stimulus decreases N400
amplitude (Laszlo & Federmeier, 2007, 2011; Nagy & Rugg, 1989;
Sim & Kiefer, 2005).

Frequency � repetition. The effect of repetition in reducing N400
amplitude is greater for low-frequency compared to high-
frequency words (Rugg, 1990; Young & Rugg, 1992).

Richness � repetition. The effect of repetition in reducing N400
amplitude is larger for words with greater compared with lesser
semantic richness (Rabovsky, Sommer, & Abdel Rahman, 2012;
see also Kounios & Holcomb, 1994).

To determine the extent to which the model shows the same
pattern of effects, we carried out a three-factor analysis of variance
(ANOVA) using the peak amplitude in overall semantic activation,
averaged over a 3-tick window (corresponding to the N400 in the
model) as the dependent measure. The analysis involved data for
each word as target preceded by each word as prime, with target
word as the random variable, word frequency and semantic rich-
ness as between-item factors, and repetition as a within-item
factor.

The pattern of results is shown in Fig. 4. The ANOVA revealed
main effects of word frequency (F1;172 ¼ 48:23; p < :001) semantic
richness (F1;172 ¼ 336:0; p < :001) and repetition (F1;172 ¼ 862:4,
p < :001). In accordance with empirical findings, the simulated
N400 was greater for low-frequency words (5.95) compared to
high-frequency words (5.15), for high-richness words (6.60) com-
pared to low-richness words (4.50), and for non-repeated words
(6.47) compared to repeated words (4.64). In addition, repetition



Fig. 4. Means (and standard errors) of simulated N400 amplitudes in the model as a
function of word frequency (HF = high-frequency; LF = low-frequency), semantic
richness, and repetition.
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interacted with both frequency (F1;172 ¼ 22:78; p < :001) and with
richness (F1;172 ¼ 7:49; p < :01) such that the reduction due to rep-
etition was greater for low-frequency (2.12) than high-frequency
words (1.53) and for high-richness (1.99) than low-richness words
(1.65). These interactions are also in agreement with empirical
Fig. 5. Summed semantic activation profiles for words varying in frequency and richness
line). Unit updates (ticks) are numbered from the onset of the word.
findings. Neither the two-way interaction of frequency and rich-
ness (F1;172 ¼ 3:66; p ¼ :057) nor the three-way interaction of fre-
quency, richness and repetition (F < 1) were reliable.

In a separate ANOVA using peak time as the dependent
measure, there were no reliable effects of frequency, richness, or
repetition, nor any interactions.

As many of the relevant empirical studies involved the presen-
tation of words in isolation, rather than in pairs, we also examined
the performance of the network on words with no preceding
‘‘prime” word. An ANOVA of summed semantic activity (averaged
over 3 ticks centered on the peak) with frequency and richness
as within-item factors showed reliable effects of both factors (fre-
quency: high 4.70 vs. low 5.66, F1;172 ¼ 59:07; p < :001, (richness:
high 6.29 vs. low 4.07, F1;172 ¼ 313:4; p < :001) but no interaction
(F < 1).

To illustrate that the model, like LP12, produces semantic
activation profiles that mirror actual N400 waveforms, as well as
to convey a sense of the variability underlying the network’s
dynamics, Fig. 5 shows the individual activation profiles all words
presented in isolation, plotted separately as a function of frequency
and richness.

In the model, low-frequency words produce a larger N400
because they are less well learned than high-frequency words
and so are less effective at suppressing the features of their ortho-
graphic neighbors. High-richness words produce a larger N400
simply because they themselves activate more features than do
low-richness words. Repetition reduces the N400 because the
target’s features suffer decay due to being activated by the prime.
This repetition suppression is greater for both low-frequency and
high-richness words because the prime-based activation is greater
for these two stimulus types. Finally, these variables have little if
when tested in isolation (lighter lines), along with the average of these curves (black



Fig. 6. Mean simulated N400 amplitudes in the model to targets following
semantically (but not associatively) related versus unrelated primes, and associa-
tively (but not semantically) related versus unrelated primes. The paired differences
between unrelated and related conditions are also plotted (against the right axis).
The unrelated conditions differ because they are based on different numbers of
observations (176 vs. 129).
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any effect on the latencies of the N400 because the network
dynamics depend far more on the architectural organization of
excitation and inhibition than on the amount of activation present
at any point in time.

2.2.2. Semantic and associative priming
The empirical findings related to semantic priming are made

complicated by the fact that different types of relations can fall
under the broad notion of ‘‘semantic” relatedness (see Moss,
Ostrin, Tyler, & Marslen-Wilson, 1995). In particular, researchers
have distinguished associative relatedness, often measured by free
association norms (e.g., DOG-BONE; Postman & Keppel, 1970) from
a purely semantic relation in which words have similar meanings,
such as category coordinates (e.g., DOG-PIG). The problem is that
these types of relatedness often co-occur (e.g., DOG-CAT) and, in
many studies, stimulus pairs that are characterized as semantically
related typically involve both types of relatedness (see Jones,
Kintsch, & Mewhort, 2006).

In ERP research, there have been a number of demonstrations
that semantic priming decreases N400 amplitude (see Bentin,
McCarthy, & Wood, 1985; Federmeier & Kutas, 1999; Kutas,
1993; Kutas & Iragui, 1998; Kutas & Van Petten, 1988) but very
few of these studies have attempted to dissociate semantic from
associative relatedness. Interestingly, two specific attempts to do
so (Koivisto & Revonsuo, 2001; Rhodes & Donaldson, 2008) found
clear reductions in N400 amplitude due to associative priming
but little if any reduction for pure semantic priming. However,
widespread evidence for a modulation of N400 amplitude as a
function of congruity of word meanings in context (e.g., ‘‘I take cof-
fee with cream and dog/pizza/sugar”, Kutas & Hillyard, 1980; see
Kutas & Federmeier, 2011 for review) would seem to implicate sen-
sitivity to semantic relatedness as well.

Taken together, then, the empirical evidence from word-word
priming paradigms suggests that both associative and semantic
relatedness influence N400 amplitudes, with at least some sugges-
tion that the former may be stronger.

The Rabovsky and McRae (2014) model implemented semantic
priming in terms of feature overlap between prime and target, but
did not address associative priming. The current model includes
both associative and semantic relatedness and so their influences
can be assessed independently.

Semantic relatedness—semantic feature overlap—was not
manipulated as an orthogonal factor in the simulation but varied
randomly among word pairs (ranging from 0 to 4 features; with
23.2% of non-identical pairs sharing 1 feature, 2.64% sharing 2 fea-
tures, and 0.162% sharing 3 or 4 features). Thus, to compare seman-
tic versus associative priming, we calculated mean N400 values for
each target when preceded by three types of primes (excluding
repetitions): semantic primes that were not associatively related
but had one or more shared semantic features; associative primes
that were associates during training but had no semantic feature
overlap; and unrelated primes that were neither semantically nor
associatively related. Forty-seven associates shared one or more
semantic features, leaving 129 (pure) associated primes. As shown
in Fig. 6, the model shows a small but reliable effect of semantic
relatedness on N400 magnitudes (means: 6.38 for semantic
primes, 6.50 for unrelated primes; paired t175 ¼ 5:55; p < :001).
There is also weak evidence that the degree of relatedness mat-
tered: related pairs with two overlapping feature produced numer-
ically smaller N400s (mean 6.29) than those with only one (mean
6.40), although the difference was only marginally reliable (paired
t175 ¼ 1:76; p ¼ :08). The model also showed a clear and somewhat
larger effect of associative relatedness (means: 6.09 for associated,
6.35 for unrelated; paired t128 ¼ 3:10; p < :005).

The N400 reduction due to semantic priming is essentially
caused by repetition suppression of the shared semantic feature
(s). Associative priming reduces the N400 because the prime pre-
activates its associated target’s features to some degree, causing
them to suffer from increased decay on presentation of the target.
The pre-activation also facilitates learning to suppress the features
of the target’s orthographic neighbors (much like a high-frequency
word).

It should be acknowledged, though, that the relative magnitude
of semantic versus associative priming in the model depends on
relatively unconstrained properties of the simulation—degree of
semantic feature overlap, and prime-target dependencies during
training—and, thus, should not be weighted too heavily in evaluat-
ing our more general account.
2.2.3. Orthographic neighborhood size
Laszlo and Plaut (2012) showed that simulated N400 ampli-

tudes in their model increased with orthographic neighborhood
size for both words and pseudowords, as found empirically
(Holcomb, Grainger, & O’Rourke, 2002; Laszlo & Federmeier,
2011). Rabovsky and McRae (2014) observed a small but reliable
effect in their model as well. In the current model, as in LP12, there
is a small but reliable correlation between orthographic neighbor-
hood size (calculated over words in the training corpus) and N400
amplitude for targets (averaged over all primes;
r ¼ :18; t174 ¼ 2:37; p < :05). This effect is due to the feedforward
excitation coming from the orthographic features that are shared
with neighbors; words with more neighbors will thus partially
activate the features of a larger number of other words.
2.3. Summary

When a measure of summed semantic activation is used as a
proxy for N400 amplitude, the current model exhibits all the rele-
vant empirical effects: a decrease in N400 amplitude for (a) high-
vs. low-frequency words; (b) low- vs. high-richness words; (c)
repeated vs. non-repeated words; (d) words preceded by semanti-
cally or associatively related vs. unrelated primes; and (e) words
with smaller vs. larger orthographic neighborhoods, as well as
greater repetition effects for (f) low- vs. high-frequency words,
and for (g) high- vs. low-richness words. The dynamics of summed
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semantic activation also provide a reasonable approximation to the
shape of the N400 waveform.
7 Indeed, if the outgoing connections from the time-averaged semantic units are
constrained to be positive-only, the model shows poorer rather than better
performance under repetition, as expected.

8 We do not, of course, believe that human participants need to be explicitly
trained on lexical decision in order to achieve accurate performance on the task,
although we do believe that they base their decisions, at least in part, on semantic
information (see, e.g., Plaut, 1997). Our use of explicit training on lexical decisions is
intended solely to provide a basis for measuring the relative difficulty of saying ‘‘yes”
to word targets as a function of their properties and relationship to prime words.
3. Simulation 2: Behavioral effects

Certain issues arise in the current context with regard to mod-
eling behavior. Rabovsky and McRae (2014) used total semantic
activation to model behavioral performance in lexical decision,
whereas the current model uses this measure to approximate the
N400. The problem is that some manipulations, like repetition,
actually reduce neural activity while improving performance.
Rabovsky and McRae sidestepped this issue by essentially dissoci-
ating model activity from neural activity. We, on the other hand,
are committed to preserving this relationship.

The mechanism by which reduced neural activity can lead to
improved behavioral performance is far from well understood
(for discussion, see Gotts, 2015; Gotts, Chow, & Martin, 2012;
Henson, Eckstein, Waszak, Frings, & Horner, 2014). A common view
is that the overall reduction in neural activity caused by repetition
reflects a ‘‘sharpening” of neural representations by differentially
eliminating the responses of neurons that are relatively poorly-
tuned to the stimulus (Desimone, 1996; Wiggs & Martin, 1998).
However, careful measurements of neural suppression due to
short-term repetitions (on the order of seconds) appear to be more
consistent with proportional scaling rather than sharpening
(McMahon & Olson, 2007; Miller, Li, & Desimone, 1993; Weiner,
Sayres, Vinberg, & Grill-Spector, 2010), and a recent test of this
account using an fMRI-adaptation paradigm (Gotts, Milleville, &
Martin, 2014) found broadening rather than sharpening of repre-
sentations following repetition.

An alternative possibility is that the reduction in overall neural
activity is accompanied by an increase in spike synchrony between
active neurons that make themmore effective in driving the down-
stream neurons responsible for behavior (Ghuman, Bar, Dobbins, &
Schnyer, 2008; Gilbert, Gotts, Carver, & Martin, 2010). Although the
precise mechanism that gives rise to increased synchrony under
repetition has yet to be worked out in detail, there is broad sup-
portive evidence for this account from single-cell recordings
(Brunet et al., 2014; Kaliukhovich & Vogels, 2012; Wang, Iliescu,
Ma, Josić, & Dragoi, 2011) MEG (Ghuman et al., 2008; Gilbert
et al., 2010), and intracranial EEG (Engell & McCarthy, 2014).

Although our computational formalism does not have a means
of expressing neural synchrony directly, we formulated a means
of generating responses in lexical decision that could take advan-
tage of the information that might drive increased synchrony—
namely, the activity-dependent reduction in neural activity. Given
that the degree of decay in our model is determined by the time-
averaged semantic activations (see Eq. 2), we made these values
available to the response system as a proxy for the induced degree
of neural synchrony. We recognize that the approximation is not
likely to be fully adequate, but considered it the best approach
available to us for modeling behavior under repetition suppression.

3.1. Methods

We trained a response network to distinguish words and pseu-
dowords using both time-averaged and instantaneous semantic
activation as input. In some ways, the response system can be
thought of as a trained approximation of Usher and McClelland’s
(2001) leaky competing accumulator model of decision making
within our neurophysiologically constrained modeling formalism.

3.1.1. Network architecture
We fixed the weights in the comprehension network, and added

a new hidden layer of 25 excitatory units and a response (output)
layer of 2 excitatory units, corresponding to ‘‘yes” and ‘‘no”
responses. These hidden units received positive-only connections
from the semantic units and sent positive-only connections to
the response units. The hidden units also had an associated group
of 10 ‘‘clean-up” units with which it was bidirectionally connected
with positive-only weights. The hidden units had an associated
inhibitory group of 3 units, and the two response units had a single
associated inhibitory unit. Each group sent positive-only connec-
tions to, and received negative-only connections from, their corre-
sponding inhibitory group. We also added a copy of the semantic
units whose activations were set to the time-averaged activations
of the original semantic units (otj in Eq. 2) at every tick. Unlike in
the rest of the network, however, the connections from these units
to the new hidden layer were not constrained to be positive-only.
As discussed earlier, our intent in introducing these units was to
make decay-related information available to the response network
in whatever way may be useful for improving performance.
Although the relationship between the resulting changes in neural
synchrony and behavior is not well understood, it is unlikely to
reduce to a standard positive-only projection between groups of
neurons, and hence there’s no reason to constrain the influence
of decay-related information in the model in the same way.7

Apart from learning rate and momentum, all other parameters
were the same as in the comprehension network.
3.1.2. Training procedures
The response network was trained on the 176 words and also

on 176 pseudowords that were matched orthographically to the
words by selecting randomly from the remaining 324 CVC inputs
that were not used as words. Inputs consisted of pairs of stimuli
in which a word or pseudoword was followed by a word or pseu-
doword, where targets were applied only during the last 10 ticks of
the second stimulus. The same timing of inputs was used as for the
comprehension network—and, for word presentations, the same
frequency and associative constraints. The network was trained
to activate only the ‘‘yes” unit in response to each word, and to
activate only the ‘‘no” unit in response to each pseudoword.8 The
network was trained for 50,000 presentations of stimulus pairs,
using cross-entropy error, a batch size of 1, momentum of 0.8, and
a gradually reducing learning rate (0.1 for 25,000 presentations,
0.05 for 25,000 presentations; clean-up layers were again trained
with a reduced initial learning rate of 0.001 for the first 5000
presentations).
3.1.3. Testing procedures
We tested the network on all words as targets preceded by all

words as primes. As a measure of behavioral performance, we used
the sum over the last 6 ticks of the difference between the ‘‘yes”
and ‘‘no” unit activations in response to the target—positive values
reflect greater ‘‘yes” than ‘‘no” activation. We chose this measure
because it implicitly reflects both accuracy and latency, as words
that activate the ‘‘yes” unit and deactivate the ‘‘no” unit more
quickly and accurately will have higher yes-no sums than words
that respond more slowly or less accurately. We used the last 6
ticks because they reflect the steady-state activations reached by
the response units after the transient over-activation of the
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N400-like wave (although other numbers of ticks give similar
results).
3.2. Results and discussion

3.2.1. Word frequency, semantic richness, and repetition
The relevant empirical effects on behavior are that lexical deci-

sion performance is better—in terms of accuracy and/or latency—
for high- compared to low-frequency words (Forster & Chambers,
1973; Gardner, Rothkopf, Lapan, & Lafferty, 1987), for high- com-
pared to low-richness words (Pexman, Hargreaves, Siakaluk,
Bodner, & Pope, 2008; Yap, Pexman, Wellsby, Hargreaves, & Huff,
2012), and for repeated compared to non-repeated words
(Ratcliff, Hockley, & McKoon, 1985; Scarborough, Cortese, &
Scarborough, 1977). Importantly, the effects for frequency and rep-
etition are opposite to those for N400 amplitude. The benefit from
repetition has been reported to be greater for low- versus high-
frequency words (Forster & Davis, 1984; Norris, 1984; although
see Versace & Nevers, 2003). Similarly, the repetition benefit has
been reported to be greater for high- versus low-richness words
(Rabovsky et al., 2012; although see Kounios & Holcomb, 1994).

We carried out a three-factor ANOVA using our behavioral mea-
sure (summed yes-no activation) as the dependent measure, target
word as the randomvariable,word frequency and semantic richness
as between-item factors, and repetition as a within-item factor (see
Fig. 7). The analysis revealed reliablemain effects of word frequency
(F1;172 ¼ 17:98; p < :001), semantic richness (F1;172 ¼ 6:968;
p < :01), and repetition (F1;172 ¼ 28:56, p < :001). As found empiri-
cally, the network’s performance was better for high-frequency
words (4.54) compared to low-frequency words (3.61), for high-
richness words (4.37) compared to low-richness words (3.79), and
for repeated words (4.37) compared to non-repeated words (3.79).
Moreover, repetition interacted with both frequency
(F1;172 ¼ 4:573; p < :05) and richness (F1;172 ¼ 30:88; p < :001),
such that the repetition benefit was greater for low- than
high-frequency words (0.810 vs. 0.347), and greater for high- than
low-richness words (1.1803 vs.�0.0231, with the latter not reliably
different from 0.0). Frequency and richness did not interact, but the
three-way interaction of frequency, richness and repetition was
Fig. 7. Means (and standard errors) of the simulated behavioral measure in the
model (summed difference in activation between the ‘‘yes” and ‘‘no” unit in the
response system) as a function of word frequency (HF = high-frequency; LF = low-
frequency), semantic richness, and repetition.
reliable (F1;172 ¼ 13:24; p < :001), because the repetition-by-
frequency interaction was much stronger for high- than low-
richness words. There is no empirical evidence bearing on the
three-way interaction, but the remaining findings are all consistent
with those fromempirical studies,with the exception of the absence
of a repetition effect for low-richness words (cf. Rabovsky et al.,
2012).

In the model, words generally activate semantics to a greater
degree than pseudowords (after the N400), which means that they
suffer from greater decay, as reflected by greater integrated seman-
tic activations in the model. The network thus learns to use these
integrated values to support making word responses, and this sup-
port is stronger for high- compared to low-frequency words, and
for repeated compared to non-repeated words. Semantic activation
itself is also informative, which aids high- compared to low-
richness words. The interactions arise because the integrated val-
ues—which drive the repetition effect—are greater for words with
larger N400s: low-frequency words and high-richness words.
3.2.2. Semantic and associative priming
When behavioral studies have tested priming among words

that are that are semantically but not associatively related
(Fischler, 1977; Moss et al., 1995; Seidenberg, Waters, Sanders, &
Langer, 1984; Shelton & Martin, 1992), the priming effect is gener-
ally smaller than that found for purely associatively related words,
particularly in lexical decision (see McNamara, 2005; Neely, 1991
for reviews; although see Thompson-Schill, Kurtz, & Gabrieli,
1998, for conflicting results).

Using the same analyses as for N400 amplitude but now applied
to the behavioral measure (see Fig. 8), the model shows reliable
benefits in performance for both semantic priming (means: 3.909
for semantic primes, 3.735 for unrelated primes; paired
t175 ¼ 5:505; p < :001) and associative priming (means: 4.314 for
associative primes, 3.897 for unrelated primes; paired
t128 ¼ 3:704; p < :001), with the latter being larger in magnitude.
Thus, in behavior as well as in the N400, the model shows stronger
associative than semantic priming, as observed empirically. As was
true of the N400 results, semantic priming was numerically greater
for primes with two versus one overlapping feature with the target
Fig. 8. Mean simulated behavioral measures in the model to targets following
semantically (but not associatively) related versus unrelated primes, and associa-
tively (but not semantically) related versus unrelated primes. The paired differences
between unrelated and related conditions are also plotted (against the right axis).
The unrelated conditions differ because they are based on different numbers of
observations (176 vs. 129).
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(3.892 vs. 3.735) but the difference was not reliable (paired
t175 ¼ 1:356; p > :10).

Both priming effects are driven by greater integrated semantic
activations for targets preceded by related compared to unrelated
primes.

3.2.3. Orthographic neighborhood size
The effects of orthographic neighborhood size on lexical deci-

sion performance are, as Rabovsky and McRae (2014) discuss,
rather complicated (see Andrews, 1997; Carreiras, Perea, &
Grainger, 1997; Siakaluk, Sears, & Lupker, 2002; Ziegler & Perry,
1998) and depend on factors outside the scope of either model.
Interestingly, in the current model the correlation of orthographic
neighborhood size and performance is numerically positive and
reliable (r ¼ :29; t174 ¼ 4:0365; p < :001), due to sensitivity of
word responses to greater integrated semantic activations for
high-N compared to low-N words.

3.3. Summary

The performance of the response system is broadly successful at
modeling the relevant empirical effects. It correctly exhibits better
performance for high- versus low-frequency words, high- versus
low-richness words, repeated versus non-repeated words, and
semantically or associatively primed versus unprimed words, and
it also exhibits the empirically observed interactions of repetition
with frequency and richness (except that it failed to exhibit a rep-
etition benefit for low-richness words).
4. General discussion

The study of the N400 ERP component, and how it is (or isn’t)
influenced by various stimulus and context manipulations, has
provided a wealth of information on the nature of online compre-
hension processes (Kutas & Federmeier, 2011), but developing a
precise formulation of its mechanistic basis has proved elusive.
Laszlo and Plaut (2012; see also Laszlo & Armstrong, 2014) pro-
posed that the N400 corresponds to transient over-activation
within semantics due to the distribution of excitation and inhibi-
tion found in cortex, and supported their account with a neural
network simulation of word comprehension that accounted for
effects of orthographic regularity (but not meaningfulness) on
single-item N400 amplitudes (Laszlo & Federmeier, 2011).

In contrast to this account, Rabovsky and McRae (2014) pro-
posed that the N400 reflects implicit semantic prediction error,
and showed that semantic error in an attractor model of word
comprehension (Cree, McRae, & McNorgan, 1999) is influenced in
the same manner as is N400 amplitude by a wide range of manip-
ulations, involving word frequency, semantic richness, word repe-
tition, semantic priming, and orthographic neighborhood size.
Moreover, semantic activation in their model does a reasonable
job of accounting for behavioral effects under the same manipula-
tions. However, in our view, the model and account suffer from a
number of shortcomings, the most notable of which are that (a)
semantic (prediction) error is not plausibly available under many
of the conditions that evoke N400s (e.g., in response to pseu-
dowords); and (b) the dynamics of the error measure over time
does not pattern at all similarly to the dynamics of the N400 wave-
form (see Fig. 2 and compare with Fig. 1a).

In the current work, we apply an extension of the Laszlo and
Plaut (2012) model to the same phenomena that Rabovsky and
McRae (2014) modeled—adding, among other things, a variant of
Laszlo and Armstrong’s (2014) activation-based decay function,
and an explicit response system. Overall, the current model
provides a more satisfactory account of the relevant phenomena.
Perhaps most critically, the model—like its predecessors (Laszlo &
Armstrong, 2014; Laszlo & Plaut, 2012)—actually produces
N400-like deflections in an activation-based measure that could
plausibly correspond to the population post-synaptic potentials
that underlie ERP components.

It is important to point out that this is not simply a case in
which there are two models that both account for the same set
of findings—the nature of what it means to ‘‘account” for a finding
is fundamentally different on the two approaches. Rabovsky and
McRae (2014) identified variables in their model—error and
summed semantic activation—that are influenced in the same
directions as empirically observed effects on N400 amplitude and
behavioral performance, respectively. However, doing so does not
provide a mechanistic account of the empirical phenomena—not
withstanding the use of computational modeling—unless the
model variables can be linked to participants’ neural and cognitive
mechanisms in a plausible manner. The fact that semantic error is
based on information that is unavailable to participants, and does
not exhibit the signature temporal dynamics of the physiological
measure to which it putatively corresponds, undermines for us
the relevance of the model to understanding comprehension
mechanisms in brain and behavior. By contrast, the current
model—despite its many limitations (as discussed below)—pro-
vides a more direct and therefore more informative mapping
between real-time activation processes in the model and real-
time activation processes in the brain. In this way, the approach
offers the beginning of an explanation of the relevant empirical
phenomena.

4.1. Relation to Rabovsky and McRae (2014) account

To be clear, we think there is much to recommend Rabovsky
and McRae’s (2014) theoretical emphasis on prediction (see also
Kuperberg & Jaeger, 2015), and, in fact, it aligns with our own per-
spective under many conditions. Consider associative priming. In
terms of prediction error, the prime leads to an elevated expecta-
tion of the occurrence of the target’s features, and thus when the
target actually occurs there is less prediction error than when
the target is unexpected following an unrelated prime. Note,
though, that the same thing is true in terms of degree of over-
activation of semantics (under the proper constraints on excitation
and inhibition): the prime partially pre-activates features of the
associated target, giving those features an advantage in—and, thus,
shortening—the subsequent competition when the target presen-
tation activates features of its orthographic neighbors. On this lat-
ter account, any source of pre-activation of appropriate semantic
features, including sentence-level and discourse-level context,
would be expected to reduce N400 amplitudes. Indeed, the
word-level effect of semantic/associative priming on the N400 is
indistinguishable from the sentence-level effect on final words of
congruent versus incongruent sentences (Kutas, 1993). Thus, our
account and one based on prediction error agree in cases where
any kind of prior context pre-activates (or ‘‘predicts”) semantic fea-
tures. We prefer our account account in part because it maintains a
clear relationship between simulated neural activity and the EEG
signal. Neurally explicit formulations of predictive coding (e.g.,
Friston, 2010; Park & Friston, 2013) typically employ a population
of ‘‘prediction error” neurons that are separate from more conven-
tional ‘‘representational” neurons, but it is unclear why, on the
RM14 account, the EEG signal would reflect only the former
(although see Friston, 2005).

Another advantage of an account based on transient over-
activation is that it also applies in the absence of informative con-
text and, hence, in the absence of a basis for making predictions.
Consider the word frequency effect. In our model, low-frequency
words generate larger N400s because they have not learned to
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suppress their neighbors’ features as well as have high-frequency
words. According to Rabovsky and McRae (2014), implicit predic-
tion error can explain the word frequency effect because:

An internal model should encode the fact that, in general, it is
less probable to encounter a low frequency as compared to a
high frequency word. Therefore, implicit prediction error would
be higher for low frequency words. (p. 71)
This soundsplausiblebutworksonly if oneassumes localistword
representations, so that the units for high-frequency words can be
pre-activated more than those for low-frequency words. It doesn’t
work for the distributed (semantic) representations in their model
andours: the featuresof high-frequencywords are nomore common
(and hence would not bemore strongly pre-activated) than those of
low-frequency words. Thus, the word MILK is very high-frequency
but ‘‘produced by cows” is certainly not; AQUIFER is very low-
frequency but being ‘‘related to water” is relatively common.

The Rabovsky and McRae (2014) model produces lower predic-
tion error for high-frequency words because the stronger activa-
tions for such words are compared against correct semantic
targets, even though these are unavailable from implicit predic-
tion. Stronger semantic activation might very well produce higher
error if compared against the type of generic predictions that are
actually possible in random word lists.

This issue is, of course, even starker in the case of nonwords,
including illegal strings and pseudowords, which don’t have cor-
rect semantic values to compute error against. Rabovsky and
McRae (2014) did not apply their model to any nonword stimuli,
but suggested (p. 84) that ‘‘illegal strings presumably correctly
elicit very little expectation for semantic features at all, so that
implicit prediction error would be low”. The problem with this
suggestion is that prediction error is low only if the presumed
low levels of semantic activation are compared against ‘‘correct”
semantic targets of all zeros, and yet the system has no way to
know that these are the correct targets until after the stimulus
has been processed and determined to be a nonword. The N400
itself reflects this processing, and thus an account of the N400 can-
not presume it has already occurred.

Repetition effects are perhaps the clearest example of reduction
in N400 amplitude due to pre-activating semantic features. On our
account, though, this alone is insufficient to give rise to the pattern
of interactions of repetition with semantic richness and, in partic-
ular, with word frequency. In both cases, reductions are greatest
for the items that produce the largest initial N400—high-richness
words and low-frequency words. But in the latter case, the source
of the larger N400 is the activation of neighbors’ features, not those
of the word itself. Pre-activation of competitors’ features gives no
advantage to the features of the low-frequency word on the second
presentation (to resolve the competition more quickly)—quite the
opposite in fact. Rather, the interactions with repetition, and much
of the main effect of repetition itself, are due to the operation of
activation-dependent decay. Greater overall activation during the
first presentation leads to greater decay on those active features,
and thus a larger reduction in N400 on the second presentation.

Laszlo and Armstrong (2014) introduced the idea that activity-
dependent decay formed the basis for reductions in N400 ampli-
tudes following repetition. They employed an alpha function which
is used to model fatigue effects in post-synaptic potentials
(Bugmann, 1997), which underlie ERP signals (Fabiani et al., 2007),
and related functions have been shown to approximate activation
dynamics in actual neurons (David et al., 2006; see also Gotts &
Plaut, 2002, for relatedmodelingof the relevanceof synaptic depres-
sion to comprehension impairments).We chose to adopt a versionof
activity-dependent decay that is somewhat simplified relative to the
alpha function but gives rise to qualitatively similar effects.
Although the specific decay function may not matter much, we do
think that some formof repetition suppression is critical to account-
ing for repetition effects on the N400, and context effects more
generally.

Following Rabovsky and McRae (2014), we attempted to model
not just the electrophysiological consequences of the various fac-
tors but also their impact on behavior. Rabovsky and McRae
assumed that greater semantic activation corresponds to better
performance, and showed that this largely aligned with human
performance for their model (although sometimes very weakly,
and not always over the time range corresponding to response gen-
eration). However, this approach in untenable in our model—and,
we believe, in any model that incorporates repetition suppres-
sion—because some conditions that give rise to better perfor-
mance, such as repetition, actually produce weaker overall
activation. As discussed earlier, there is as yet no clear explanation
for improved performance under repetition suppression (see Gotts
et al., 2012), but one promising possibility is that the reduced neu-
ral activation increases neural synchrony which, in turn, increases
the efficacy of downstream communication (Ghuman et al., 2008;
Gilbert et al., 2010).

Given these considerations, we decided against stipulating a
particular measure as corresponding to behavioral performance,
but rather provided a response system with potentially relevant
information and allowed it to learn to produce accurate behavior.
As our framework does not have a means of expressing neural
synchrony directly, we provided the response system with infor-
mation that is thought to govern synchrony—the degree of
activation-based decay, as determined by each semantic unit’s
time-averaged activation.

The performance of the resulting trained response system does
accord with the observed empirical effects (apart from the repeti-
tion benefit for low-richness words; Rabovsky et al., 2012). Even
so, further work is needed to replicate these findings using better
approximations to the effects of repetition on neural synchrony,
and of neural synchrony on response generation.

4.2. Limitations and future directions

There is no question that our model of word comprehension
suffers from a number of limitations in its design and scope, and
understanding these is critical to informing the development of
better models in the future. In addition to the issues related to neu-
ral synchrony just mentioned, the small size of the vocabulary, the
artificiality of the semantic representations, and the implausibility
of the learning procedure are all aspects that could be improved.
But perhaps more fundamental than these is the restriction to
sequences of pairs of words, and to deriving isolated word mean-
ings rather than sentence- or discourse-level interpretations. A
large proportion of the literature on the N400 concerns its sensitiv-
ity, or lack thereof, to sentence-level contexts and manipulations.
For this reason, a critical extension of the current work would be
to apply the same computational principles and account within a
model of sentence comprehension (e.g., McClelland, St. John, &
Taraban, 1989; St. John & McClelland, 1990). It is also important
to extend the approach to address the properties of other
comprehension-related ERP components, such as the P600 and
its apparent complementary sensitivity to syntactic but not
semantic violations (Friederici, 1995; Hagoort, Brown, &
Groothusen, 1993; but see Brouwer & Hoeks, 2013; Brouwer,
Fitz, & Hoeks, 2012; Brouwer, Crocker, Venhuizen, & Hoeks,
accepted for publication; Kuperberg, 2007 for an interesting alter-
native perspective in which the relevant distinction is between
lexical-level vs. sentence-level integration).

It is also important to acknowledge that the current treatment
of the relationship between model activity, neural activity, and
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the EEG signal is highly simplified and in need of elaboration. We
make the standard assumption that the real-valued sigmoid activa-
tion function approximates neural firing frequency relative to
some maximal rate (Cohen & Servan-Schreiber, 1992), and our
activation-based decay function can be interpreted as approximat-
ing neural adaptation due to synaptic depression (Abbott, Varela,
Sen, & Nelson, 1997; Gotts & Plaut, 2002; Varela et al., 1997). We
also assume that summed activation within a layer of the model
is a sufficient approximation of the population-based post-
synaptic potentials underlying EEG signals (Fabiani et al., 2007).
However, these assumptions are clearly inadequate in light of a
consideration of neural oscillations. First, the efficacy of neural
communication is not solely a function of firing rate but also of
the degree of synchrony among incoming action potentials (see
Konig, Engel, & Singer, 1996; Salinas & Sejnowski, 2001; Singer,
1999), and our introduction of integrated semantic activity is, at
best, a poor approximation to this. Moreover, a number of
researchers have argued that neural oscillations are directly rele-
vant to interpreting ERP components like the N400 (see Makeig
et al., 2002; Roehm, Schlesewsky, Bornkessel, Frisch, & Haider,
2004; Sauseng et al., 2007). Nonetheless, we believe it is prudent
to explore and understand the limitations of simpler accounts
(i.e., overall neural activity) before introducing more complexity.
We see no fundamental problem with extending a model based
on neural activity to include a consideration of neural oscillations
and synchrony.

4.3. Conclusions

We have presented an extension of computational work by Las-
zlo and colleagues (Laszlo & Armstrong, 2014; Laszlo & Plaut, 2012)
in which the N400 ERP component corresponds to transient over-
activation within semantics, due to the intrinsic distribution of
excitation and inhibition within and between cortical areas. The
model accounts for the same range of ERP and behavioral findings
as an alternative model based on semantic prediction error
(Rabovsky & McRae, 2014). The two accounts broadly agree on
the basis for the effects of prior context on the N400. However,
we believe that the current account has a number of important
advantages, including the fact that it actually produces N400 mor-
phology, is based solely on neural activation rather than implausi-
ble access to correct semantic information, and can explain N400
effects even for meaningless stimuli (e.g., pseudowords). Although
considerable work remains in improving the scale of the simula-
tion and in applying the approach to a broader range of phenom-
ena, including sentence-level effects, the current findings further
contribute to establishing the value of developing computationally
explicit theories of the relationship between brain function and
behavior.
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