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Dynamic decision tasks include important activities such as
stock trading, air traffic control, and managing continuous pro-
duction processes. In these tasks, decision makers may use out-
come feedback to learn to improve their performance “on-line” as
they participate in the task. We have developed a computational
formulation to model this learning. Our formulation assumes that
decision makers acquire two types of knowledge: (1) How their
actions affect outcomes; (2) Which actions to take to achieve
desired outcomes. Our formulation further assumes that funda-
mental aspects of the acquisition of these two types of knowledge
can be captured by two parallel distributed processing (neural
network) models placed in series. To test our formulation, we
instantiate it to learn the Sugar Production Factory (Stanley,
Mathews, Buss, & Kotler-Cope, Quart. J. Exp. Psychol., 1989) and
then apply its predictions to a human subjects experiment. Our
formulation provides a good account of human decision makers’
performance during training and two tests of subsequent ability
to generalize: (1) answering questions about which actions to
take to achieve goals that were not encountered in training; and
(2) a new round of performance in the task using one of these
new goals. Our formulation provides a less complete account of
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decision makers’ ability after training to predict how prespeci-
fied actions affect the factory’s performance. Overall, our formu-
lation represents an important step toward a process theory of
how decision makers learn on-line from outcome feedback in
dynamic decision tasks. q 1997 Academic Press

1. INTRODUCTION

Dynamic decision tasks include important activities such as stock trading, air
traffic control, and managing continuous production processes. These dynamic
decision tasks can be distinguished from one-time decision tasks, such as buying
a house, by the presence of four elements: (1) The tasks require a series of
decisions rather than one isolated decision; (2) The decisions are interdepen-
dent; (3) The environment changes both autonomously and as a result of deci-
sion makers’ actions; (4) Decisions are goal-directed and made under time
pressure, thereby reducing the decision-maker’s opportunities to consider and
explore options (Brehmer, 1990, 1992, 1995; Edwards, 1962; Rapoport, 1975).

These four properties frequently render dynamic decision tasks analytically
intractable from a practical standpoint (Klein, Orasanu, Calderwood, & Zsam-
bok, 1993). However, an important feature of many dynamic decision tasks is
that they provide decision makers with feedback on the outcomes of their
actions. Decision makers may use this outcome feedback to learn to improve
their performance “on-line” as they participate in the task even without an
analytic solution (Hogarth, 1981). This said, a consensus has emerged among
researchers that decision makers in dynamic tasks fail to adjust their behavior
on-line in response to feedback in a way that fully takes into account the task
structure (Brehmer, 1995; Sterman, 1994; Kleinmuntz, 1993). To inform efforts
to improve decision makers’ learning in these tasks, Brehmer (1995) has called
for a theory that addresses how decision makers process outcome feedback and
learn from it on-line.

As a first step toward such a theory, we have developed a computational
formulation that builds on previous theoretical work in dynamic decision mak-
ing by Brehmer (1990, 1992, 1995) and motor learning by Jordan and Rumel-
hart (1992; Jordan, 1992, 1996; Jordan, Flash, & Arnon, 1994; Wolpert, Ghahra-
mani, & Jordan, 1995). Our formulation proposes two central assumptions
(Gibson & Plaut, 1995). First, decision makers use outcome feedback to form
two interdependent, internal submodels of the task as they participate in it.
These two submodels represent knowledge about: (1) how the decision maker’s
actions affect outcomes, and (2) which actions to take to achieve desired out-
comes. Our formulation’s second major assumption is that the acquisition of
these two types of knowledge from outcome feedback can be simulated by on-
line learning in parallel distributed processing (PDP) or neural network models.

The advantage of constructing a computational formulation is that we can use
it to instantiate the assumptions we have just presented to generate testable
predictions about human performance in different task manipulations and
settings. We do this using the Sugar Production Factory (SPF), a simple dy-
namic decision task in which subjects, using outcome feedback alone, learn to
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manipulate an input (typically workforce) to achieve target levels of sugar
production. The task has been widely used to investigate hypotheses about
how decision makers learn on-line in dynamic decision environments (Berry,
1991; Berry & Broadbent, 1984, 1987, 1988; Berry & Dienes, 1993; Buchner,
Funke, & Berry, 1995; Dienes, 1990; Dienes & Fahey, 1994, 1995; Gibson, 1996;
Gibson & Plaut, 1995; Hayes & Broadbent, 1988; Marescaux, Luc, & Karnas,
1989; McGeorge & Burton, 1989; Sanderson, 1990; Stanley, Mathews, Buss, &
Kotler-Cope, 1989; Squire & Frambach, 1990).

In studies using the SPF, subjects reliably learn to improve their performance
using outcome feedback but show much less reliable improvement in subse-
quent measures of their ability to generalize to situations not encountered
during training. Measures of generalization ability include subjects’ ability to
predict the factory’s response to novel inputs and to specify inputs that will
drive the factory to the production goal in situations they did not encounter
during training. The poor ability to generalize based on learning from outcome
feedback in the SPF is characteristic of others’ observations that decision mak-
ers in dynamic environments fail to fully take into account task structure (e.g.,
Diehl & Sterman, 1995; Brehmer, 1995; Sterman, 1989).

Our formulation suggests three properties of learning from outcome feedback
that may explain poor generalization in dynamic decision tasks like the SPF:

• Learning is approximate. Decision makers become more accurate but do
not eliminate error in specifying actions to achieve goals.

• Learning is most applicable locally. Decision makers are the most accurate
in specifying actions to achieve goals near the area of their greatest experience.

• Because of this approximate, local learning, transfer of knowledge to
achieving a new goal is graded by its proximity to the training goals.

In the first study we report, we perform a computational simulation in which
our formulation learns to control the SPF by using outcome feedback to adjust
its decisions on-line. We use the results of the simulation to predict the course
of subjects’ performance during training as well as three measures of their
ability to generalize from their experience after training: (1) control: how sub-
jects will differentially respond to questions where they are asked to provide
inputs to achieve new production goals; (2) prediction: how subjects will differ-
entially respond to questions where they are asked to predict the factory’s
response to specific inputs given different levels of current production; and (3)
transfer: how subjects will perform in the SPF when they are asked to achieve
goals they did not experience during training. In the second study reported
below, we test these predictions using a human subjects version of the task.

2. THE SUGAR PRODUCTION FACTORY

Subjects in the SPF manipulate an input to a hypothetical sugar factory to
attempt to achieve a particular production goal. At every time step t, subjects
must indicate the input (measured in hundreds) for time t 1 1 and are usually
limited to 12 discrete values ranging from 100 to 1200. Similarly, the output
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of the factory is bounded between 1000 and 12000 (generally measured as tons
of sugar) in discrete steps, and is governed by the following equation (which
is unknown to subjects):

Pt11 5 2Wt11 2 Pt 1 e, (1)

where Pt+1 represents the new production at time t 1 1 (in thousands), Wt+1 is
the input specified at t 1 1 (in hundreds), and e is a uniformly distributed
random error term, taking on the values of 21, 0, or 1. Over a series of such
trials within a training set, subjects repeatedly specify a new input and observe
the resulting production level, attempting to achieve the prespecified produc-
tion goal.

Note that subjects with knowledge of Equation 1 are always able to reach
within 1000 of the production goal by rearranging its terms and substituting
as follows to directly compute the input:

Wt11 5
P*t11 1 Pt

2
, (2)

where P*t+1 is fixed at the production goal the subject wants to achieve. The
random element, e, does not figure in Eq. (2) because, by definition, it cannot
be controlled.

The SPF has dynamic elements that are challenging to subjects who are
attempting to learn it using outcome feedback alone (Berry & Broadbent, 1984,
1988; Stanley et al., 1989). In particular, due to the lag term Pt, two separate,
interdependent inputs are required at times t and t 1 1 to reach steady-state
production. Furthermore, there are two elements of autonomous change in the
system that the subjects do not directly control by their actions. First, because
the lag term Pt influences Pt+1, subjects must learn to condition their actions
Wt+1 on Pt to reach a given goal Pt+1. Otherwise, Pt+1 oscillates. Second, the
random element forces subjects to adapt to unanticipated changes in the SPF’s
state. If subjects are allowed to set their input in increments of 50, the random
element also bounds the expected percentage of trials within one thousand of
goal performance to between 11% (for randomly selected input values; Berry &
Broadbent, 1984) and 100% (for a perfect model of the system; Stanley et
al., 1989).

Notice from this description that the SPF contains all of the elements of
more general dynamic decision-making tasks defined by Brehmer (1990, 1992,
1995), with the exception of time pressure. One effect of time pressure is to
limit decision makers’ ability to consider and explore options, forcing them to
react immediately to task contexts with the options available (Klein et al.,
1993). This effect of time pressure is captured explicitly in our computational
formulation of learning described in Section 3. In the human subjects study,
we add a form of time pressure to the SPF to drive subjects to react immediately
to environmental contexts.
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2.1. Previous Empirical Results

An important pattern of results that recurs in studies using the Sugar Produc-
tion Factory is that while subjects improve their ability to reach the production
goal with moderate experience using outcome feedback alone, other measures
of their knowledge about the task improve much less reliably (Gibson, 1996).
These measures include subjects’: (1) correctness in predicting the SPF’s re-
sponse to specific input values in given levels of current production (Berry &
Broadbent, 1984, 1987, 1988; Berry & Dienes, 1993; Buchner et al., 1995), (2)
performance in providing inputs to drive the factory to a production goal given
the current production (Dienes & Fahey, 1995; Marescaux et al., 1989), and
(3) ability to generate useful heuristics for the task (McGeorge & Burton, 1989;
Stanley et al., 1989).

In their original work with the SPF, Berry and Broadbent (1984, 1988) found
that while subjects improved in their ability to reach the production goal with
practice, their subsequent ability to correctly answer prediction questions about
the task was no better than that of subjects who had no task experience. In
the prediction questions, subjects were presented on paper with three periods
of past production and workforce values as well as the currently set workforce
and asked to predict the next period’s production. Answers were counted as
correct if they were within 1000 of the value computed substituting the relevant
data into Eq. (1) and computing the result before application of the random ele-
ment.

However, using a somewhat more complicated variant of the task than that
presented by Eq. (1), Berry and Broadbent (1987, p. 13) found that subjects
learned with experience to better predict the direction of change for relation-
ships that did not accord with their prior experience when the prediction ques-
tions were presented in the same modality that subjects had used to perform
the task. This result suggests that, within the context of a given task, subjects
do develop approximate knowledge about task responses to their inputs based
on experience with the task and accords well with Funke’s (1992) findings in
other, similar dynamic decision tasks. Further contrasting with the initial
results on prediction, Buchner et al. (1995) discovered that subjects had a
higher likelihood of predicting correctly, using Berry and Broadbent’s (1984)
measure, if they had seen the question situation during training. Otherwise,
these subjects had a probability of answering correctly similar to that of subjects
who had received no training.

Together, Buchner et al.’s (1995) and Berry and Broadbent’s (1987) results
suggest that subjects may develop their ability to predict system responses
most accurately, but still not perfectly, in the region of their greatest experience.
Prediction ability degrades quickly with distance from the training region to
the point where subjects with training appear no better than subjects without
training using Berry and Broadbent’s (1984) measure of correct performance.

Marescaux et al. (1989) and Dienes and Fahey (1995) tested the concordance
of the workforce values subjects provided to questions after 80 trials of training
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on the SPF with the workforce values they had specified during training.1 As
in the prediction questions we have just described, each of these questions
presented subjects with the current level of sugar production, the current
workforce level, and the past three production values. Subjects had to specify
the workforce that would bring production to goal. Dienes and Fahey (1995)
found that in questions where current workforce and current production were
both within one level of a situation encountered during training and where
the workforce given in the training situation had led to hitting the production
goal, subjects tended to provide the workforce they supplied during training
in response to the question (positive concordance). Otherwise, subjects tended
not to provide the workforce they supplied during training in response to the
question (negative concordance). These results suggest that subjects: (1) are
able to improve their accuracy in specifying workforce using outcome feedback
without fully eliminating error and (2) develop a limited ability to generalize
based on their experience learning from outcome feedback. This latter ability
is reduced with increased distance from the training region. The limited ability
to generalize mirrors Sterman’s (1989) anecdotal finding that subjects learning
in a much more complex dynamic decision task were able to improve their
performance with experience but had very limited ability to transfer any knowl-
edge they had gained to new situations with the same task.

Stanley et al. (1989) asked subjects in their original learners condition to
write rules for other, naı̈ve yoked subjects after each set of 10 training trials.
This process was repeated for 60 sets of 10 trials. The rules of 11 subjects who
achieved a performance criterion were systematically tested on naı̈ve subjects.
Stanley et al. found that only the rules of 3 of the 11 rule-writing subjects had
a positive impact on naı̈ve subjects’ performance. Additionally, for the subjects
who wrote rules, Stanley et al. determined breakpoints after which these sub-
jects’ performance increased at a faster rate than before. However, subjects’
rules after the breakpoints did not have a positive impact on naı̈ve yoked
subjects. Only the rules generated after 570 trials of training had a positive
impact on naı̈ve subject performance. In a somewhat different manipulation,
McGeorge and Burton (1989) asked subjects to write rules after 90 trials of
training. When the researchers implemented these rules as computer pro-
grams, they found that a small number of them appeared able to outperform
the subjects who had written them.

These findings suggest two important features of learning from outcome
feedback in the SPF. First, even when explicitly directed to do so, the vast
majority of subjects appear not to generate explicit hypotheses about the task,
at least that would have a positive impact on naı̈ve subjects’ performance. This
point accords well with Diehl and Sterman’s (1995) observation that subjects
quickly threw down their pads and pencils and trusted to intuition in learning
to solve a somewhat more complicated dynamic decision task. Second, since
the rules collected immediately after the breakpoints did not have a positive

1 Concordance is specifically defined as the percentage of times that subjects gave the same
response to the question as they had in training.
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impact on naı̈ve subjects’ performance, the ability to generate such explicit
rules is unlikely to precede improved performance.

The previous findings we have reported here lead to four important observa-
tions about learning in the SPF which are characteristic of more general results
in the dynamic decision making literature. First, learning is approximate.
Berry and Broadbent’s (1987) findings suggest that, with training, subjects
may become more accurate without eliminating all error in how they predict
the SPF’s behavior. In this vein, Dienes and Fahey’s (1995) findings suggest
that, with training, subjects also become more accurate but do not totally
eliminate error in selecting actions to achieve their goal. Second, subjects’
learning is local. Although Buchner et al. (1995) do not discuss near matches,
their findings suggest that subjects’ prediction performance is best for exactly
the questions they have seen before. Dienes and Fahey (1995) find that, on
workforce questions, nearness to past correct experience is critical to perfor-
mance. Third, if learning is local and approximate, then subjects’ ability to
transfer knowledge they learn by doing the task will be best in areas very
similar to their previous experience. Finally, Stanley et al.’s (1989) results
suggest that improving performance during training in the SPF may not be
the result of explicit hypothesis testing. In the next section, we provide a
computational formulation of learning in dynamic decision tasks that can ac-
count for these observations.

3. A Computational Formulation of Learning

Our computational formulation combines a control theory framework with
parallel distributed processing models to account for the local, approximate
learning with graded transfer ability that subjects display in the Sugar Produc-
tion Factory. In this section, we focus on each element of the computational
formulation and how it contributes in general to the style of learning subjects
display. In the next section, we generate and test predictions that the computa-
tional formulation makes about human subject learning in the task.

3.1. A Control Theory Framework

Brehmer (1990, 1992) proposes a control theory framework that characterizes
decision makers in dynamic tasks as attempting to control a dynamic process
in order to achieve desired outcomes. A problem for learning in this framework
is that decision makers frequently do not receive direct feedback on what
they should have done to achieve their desired outcome in a given situation.
Therefore, Brehmer hypothesizes that decision makers’ ability to adapt in
dynamic decision-making tasks depends critically on their mental model of the
environment for interpreting outcome feedback. In particular, Brehmer’s (1990,
1995) laboratory subjects who possess less well-developed environment models
have significant difficulty learning in more complex environments. However,
Brehmer and other researchers have not specified the nature of decision mak-
ers’ internal models, how decision makers learn these models while performing
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the task, and how decision makers use these models to improve their perfor-
mance.

The issue of how internal models of the environment might be learned using
outcome feedback was addressed by Jordan and Rumelhart (1992; Jordan,
1992, 1996) in motor learning, a standard application area for control theory.
They used a strategy of dividing the problem of learning from outcome feedback
into two interdependent subproblems: (1) learning the consequences of actions
in given contexts and (2) learning what actions to take to achieve specific goals.
In decision-making research, this division corresponds roughly to the difference
between judgment and choice (Hogarth, 1981). With the learning problem
subdivided this way, decision makers in dynamic environments may use knowl-
edge about the consequences of actions to guide learning about what actions
to take to achieve goals.

3.2. The Simulation Model

Building on this control theory hypothesis, we have constructed a computer
simulation model (henceforth, the model) of how decision makers learn in
dynamic decision tasks. In essence, the model learns by doing and deals with
the two learning subproblems described above by placing two PDP submodels,
forward and action, in series (see Fig. 1).

The submodels share a similar structure. The ovals in each submodel repre-
sent individual layers of simple processing units that take the outputs of other,

FIG. 1. A computational formulation of how decision makers learn from outcome feedback in
dynamic tasks (derived from Jordan & Rumelhart, 1992). As described in the text, processing
flows forward along the arrows from the input units through the middle layer to the output units.
The action units are both an output of the action submodel and an input to the forward submodel.
The environment processes the actions generated by the action units to produce the actual outcome.
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connected processing units as their inputs, and aggregate them to produce their
own output (Rumelhart, Hinton, & Williams, 1986b). The arrows represent
weighted connections from all of the units in the layer at the tail of the arrow
to all of the units in the layer at the head of the arrow. This connection structure
constrains each submodel to map from inputs (earlier labeled ovals) through
an internal representation of the inputs (unlabeled ovals) to outputs (later
labeled ovals). Thus, by construction, all actions in the simulation model are
based on immediate reactions to environmental situations. Based on our own
(Gibson, Fichman, & Plaut, 1996) and others’ observations (e.g., Klein et al.,
1993), this assumption appears to accord well with actual practice in field set-
tings.

The way the individual units aggregate their input to produce outputs deter-
mines the type of mapping between input and output that each submodel
produces. In the work reported here, the units in the input layers of both
submodels simply take the values placed on them and pass them forward as
their output to the units in the middle layer. The output layers consist of units
that compute a weighted sum of their inputs from the middle layer to produce
their outputs as shown in the following equation:

outputi 5 o
j

wij outputj, (3)

where outputi is the ith unit’s output, wij is the weight on the input connection
from unit j’s output to unit i’s input, and outputj is the output of unit j that i
receives as input.

However, the units in the middle layers of each submodel pass the weighted
sum of their input connections through a nonlinear logistic function to produce
their outputs as shown in the following equation:

outputi 5
1

1 1 e2Sjwij outputj
, (4)

where outputi, wij, and outputj are as in Eq. (3). This nonlinearity removes the
constraint that the mapping computed by each submodel be linear.

For the simulations reported here, we use backpropagation to adjust the
weighted connections between the units in the successive layers (Rumelhart
et al., 1986b). Backpropagation is a gradient descent learning algorithm that
calculates how to adjust the connection weights to reduce the difference between
environmental outcomes and the model’s outputs at the output layer for each
set of inputs. Our use of backpropagation coupled with the weighted summation
process shown in Eq. (3) and (4) causes the two submodels to produce mappings
that exploit the intercorrelational structure of their inputs and outputs (Rumel-
hart, Hinton, & Williams, 1986a).2 Thus, each submodel is driven to produce

2 Readers familiar with the backpropagation procedure will observe that the computation of the
derivative for units using Eq. (3) and for units using Eq. (4) is different. Proper computation of
these derivatives assures that backpropagation performs gradient descent (Rumelhart, Durbin,
Golden, & Chauvin, 1995).
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similar outputs for similar inputs in a way that reduces error at the output
layer and that may be nonlinear.

Although the internal structure of the forward and action submodels is
identical, their different inputs and outputs cause them to perform different
tasks within the overall model. The action submodel takes as input the current
state of the environment and the specific goal to achieve, and generates as
output an action that achieves that goal. This action then leads to an outcome
which can be compared with the goal to guide behavior. However, as we have
noted, the environment does not provide direct feedback on how to adjust the
action so as to improve the corresponding outcome’s match to the goal.

Such feedback can be derived from the forward submodel. This network
takes as input the current state of the environment and an action, and generates
as output a predicted outcome. This predicted outcome is compared with the
actual outcome to derive an error signal. Backpropagation is then used to adjust
the connection weights between layers of the forward submodel to improve its
ability to predict the effects of actions on the environment.

The forward submodel provides the action submodel with feedback for learn-
ing in the following way. The actual outcome produced by the action is compared
with the goal to derive a second error signal. Backpropagation is again applied
to the forward submodel (without changing its own connection weights) to
determine how changing the action would change the error. This information
corresponds to the error signal that the action submodel requires to determine
how to adjust its connection weights so as to reduce the discrepancy between
the goal and the actual outcome produced by its action. Note from this descrip-
tion that the accuracy of the forward submodel determines the quality of the
error signal provided to the action submodel. Furthermore, the range of actions
generated by the action submodel determines the range of the forward submo-
del’s experience.

In summary, we have elaborated Brehmer’s (1990, 1992, 1995) original pro-
posal that an internal model of the environment plays a critical role in learning
in dynamic decision tasks with three critical components. First, we hypothesize
that learners acquire an internal model of the environment that may be charac-
terized in terms of two PDP submodels, forward and action, that learn interde-
pendently. Of these, the forward submodel, which learns how actions affect
outcomes in given environmental contexts, appears to be the closest to Brehm-
er’s original proposal. Second, we hypothesize that both the forward and action
submodels are learned on-line as the task is performed using a method of error-
correcting learning such as backpropagation. Third, the forward submodel aids
the action submodel to learn by producing an error signal for the action submo-
del even though the environment does not directly provide this information.

4. COMPUTATIONAL PREDICTIONS AND EMPIRICAL EVIDENCE

In this section, we describe the computational simulation and subsequent
human subjects experiment beginning with the general approach and then
going to the particulars of each study.



DYNAMIC DECISION TASKS 11

4.1. General Approach

4.1.1. Task

As shown in Fig. 2, we presented human subjects with a graphical display
of the SPF. This display was intended to supply two pieces of information about
the current state of the factory which were likewise supplied to the model in
the computational simulation. The first piece of information was the goal which
was indicated by a horizontal bar spanning the production graph. The second
piece of information was current production which was represented explicitly
on the screen with a numerical value.

Both the model and subjects indicated the input for the next period in incre-
ments of fifty. In the case of subjects, they typed in the new input for the next
period on the line provided near the bottom of the screen. This format closely
resembles that used by several researchers (e.g., Berry & Broadbent, 1984;
Buchner et al., 1995; Dienes & Fahey, 1995).

4.1.2. Procedure

We provided learners (both the model and subjects) with three sessions of
training on the SPF. At the end of the third session of training, we had them
perform three additional activities. First, they answered control questions
where they were given current production and had to supply a new control
input to drive the factory to a production goal that they had not encountered
during training. Second, learners answered prediction questions where they
were given current production and a control input and had to predict the
resulting production level for the next trial. Third, learners performed a trans-
fer task where they had to achieve one of the goals that they had encountered
in the control questions. The details of each stage are as follows.

Training. Similarly to Stanley et al. (1989), we trained our learners over

FIG. 2. Screen-shot of the Sugar Production Factory task as used in the human subjects study.
At the beginning of each trial, subjects observed their performance relative to the production
graph. Subjects indicated their control action (in this case, vat pressure) on the line below each
trial. The sequence of numbers below this line represented a countdown clock that indicated to
subjects how much time in seconds they had remaining in each trial.
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600 trials. This training regimen is an order of magnitude longer than used
in many studies (e.g., Berry & Broadbent, 1984, 1987; Buchner et al., 1995).
The long training period allowed us to examine learning beyond the initial
stages exhibited in shorter experiments.

We broke the 600 training trials into three sessions of 20 sets of 10 trials.
At the start of each set of 10 trials, production (Pt) was initialized to a random
value and the goal was set to 3000 or 5000 lbs of sugar. Over the course of a
session, learners experienced each goal a total of 10 times. We used multiple
goals to provide learners with a broader basis for generalization from experience
than that provided by using one goal during learning. Multiple goals have been
used in this task by Buchner et al. (1995) and McGeorge and Burton (1989)
but with a much shorter learning period.

Control questions. Immediately following the 200 training trials in session
three, learners answered ten randomly ordered control questions. They were
not given feedback about the correctness of their answers. The questions were
evenly divided within learners between two production goals that were later
used in the transfer task, 4000 lbs (Near to the training region) and 9000 lbs
(Far from the training region) of sugar production. Learners had not seen
these goals during training. Each question provided learners with the current
production and the goal at the start of a set of ten trials in the same format
that the learners had used to learn to control the factory. Learners were asked
to provide a control input that would drive the factory to the indicated goal in
the next trial. The Near goal of 4000 lbs was crossed with current production
values 2000, 3000, 4000, 5000, and 6000 lbs of sugar. The Far goal of 9000 lbs
was crossed with current production values of 7000, 8000, 9000, 10000, and
11000 lbs of sugar. In this way, the questions tested learners’ ability to specify
a control action that would keep them at or near goal performance once they
had come within 2000 lbs. of a transfer goal that they had not seen before.

Prediction questions. Next, learners were presented with 18 randomly or-
dered questions that asked them to predict the effects of prespecified workforce
values given different current production values at the start of a set of 10
trials. There were two sets of nine questions in the series. The first (Near) set
consisted of current production values of 2000, 4000, and 6000 lbs of sugar
crossed with control actions of 200, 400, and 600. The second set (Far) consisted
of current production values of 7000, 9000, and 11000 lbs crossed with control
actions of 700, 900, and 1100 to produce an additional nine scenarios. Both
ranges of questions were designed to test learners’ knowledge of the system’s
performance centered around the two transfer production goals of 4000 and
9000 lbs of sugar.

These questions were presented in a format as close as possible to the format
that the learners used to learn the task. However, as described below, there
were some differences in the format that human subjects used to answer these
questions and the one they used for training.

Transfer. Finally, learners were asked to perform four sets of 10 trials of
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the task. They were assigned to either the Near condition with a production
goal of 4000 lbs of sugar or the Far condition with a production goal of 9000
lbs of sugar. Starting production values for each set of 10 trials were chosen
randomly without replacement from 3000, 6000, 7000, and 10000 lbs of sugar.

4.2. Computational Simulation

Here, we describe the computational simulation that generated predictions
for the subsequent human subjects experiment. The predictions consisted of
two components: (1) the pattern of performance in training, control, prediction,
and transfer and (2) the level of performance in these activities.

4.2.1. Method

We instantiated the model (see Fig. 1) in the following way to learn to control
the SPF as it performed the task. The goal production value was indicated as
a real value on a single goal unit. The current production was represented as
a real value on a separate input unit. Each of these inputs was scaled linearly
to between 0 and 1. Finally, the middle layers in both the forward and action
submodels each contained 30 units with their individual outputs computed by
the logistic function in Eq. (4) scaled to 61. The number of middle layer units
was established based on a series of pilot simulations intended to determine
the minimum middle layer units required to learn a slightly more complex
version of the task.

As described earlier, the forward and action submodels were trained with
two different error signals. The predicted outcome generated by the forward
submodel was subtracted from the actual (scaled) production value generated
by Eq. (1) to produce the error signal for the forward submodel. The error signal
for the action submodel was generated by subtracting the actual production
generated by Eq. (1) from the goal level and backpropagating this error signal
through the forward submodel as described earlier.

One training trial with the full model occurred as follows. The initial input
values, including the goal, were placed on the input units. These then fed
forward through the action middle layer. A single action unit using Eq. (3) took
a weighted sum of the action middle unit activations, and this sum served as
the model’s indication of the workforce for the next time period. This workforce
value was used in two ways. First, conforming to the bounds on workforce
stipulated earlier, the value was used to determine the next period’s production
using Eq. (1). Second, the unmodified workforce value served as input into the
forward submodel, along with the current production value. These inputs fed
through the forward middle layer. A single predicted outcome unit computed
a weighted sum of the forward middle unit activations using Eq. (1) and this
sum served as the model’s prediction of production for the next period. It is
important to note that the forward and action submodels were trained simulta-
neously.

At the start of training, the connection weights of both the forward and
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action submodels were set to random initial values sampled uniformly between
60.5. However, Berry and Broadbent (1984) observed that naive human sub-
jects appear to adopt an initial “direct” strategy of moving workforce in the
same direction that they want to move production. Our assumption was that
this strategy resulted from prior experience with systems where it was adap-
tive. To approximate this prior experience, we pretrained our model for two
sets of ten trials on a system in which change in production was directly
proportional to change in workforce without lagged or random error terms. This
pretraining biased our model toward ignoring the role of current production in
producing the next period’s production contrary to the relation stipulated in
Eq. (1). Gibson and Plaut (1995) found that models with this bias better fit
human data.

The use of initial random connection weights also caused each model to show
individual learning characteristics, even after pretraining. Therefore, to get
an accurate estimate of the abilities of the model, 40 instances (with different
initial random weights prior to any pretraining) were trained. In all cases, the
predictions for human performance attributed to the model are point estimates
computed as averages of the performance of these 40 instances.

In the course of training, backpropagation (Rumelhart et al., 1986b) was
applied and the weights of both the forward and action submodels were updated
after each trial with a learning rate of 0.025 and no momentum.3 We set the
learning rate in such a way that the average training performance scored by
the model closely approximated the average score of three human subjects in
a pilot study.

We simulated the model’s response to the tests after training as follows. For
control questions, we placed values on the units representing the goal and
current production for the model and measured the value on the action unit.
For prediction questions, we placed the corresponding values on the model’s
units representing current production and action, we then interpreted the
model’s anticipated output unit as its prediction. Note that in this second
variety of question, no value was placed on the goal unit. As described earlier,
this unit does not affect processing in the forward submodel. Finally, the trans-
fer task was simulated as another four sets of training with one of the two
transfer goals. As described earlier for the general case, the four initial starting
conditions were presented in random order without replacement.

4.2.2. Results

We tested each prediction using 1 df planned comparisons. To deal with the
issue of nonindependence of repeated measures within models, we used Judd
and McClelland’s (1989, pp. 403–453) technique of orthogonal, polynomial con-
trast codes to create a single difference score for each model for each comparison.
When dealing with proportions, we used arcsin transformations to account for
non-constant variance.

3 The learning rate parameter determines how quickly the weights change on each trial. Zero
momentum means that there is no influence of past weight changes.
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FIG. 3. Total correct and exact control for models and human subjects. Data items labeled S
represent human subject data. Data items labeled M represent model data. The graph shows data
from 24 human subjects and 40 models. The error bars represent one standard error for each data
set. Human subject data are discussed in Section 4.3.

Model training. Model training results are presented in Fig. 3. The first
set of predictions relates to Total Correct, the average number of trials within
6 1000 lbs of the production goal expressed as a count out of 10 (used in most
SPF studies, e.g., Berry & Broadbent, 1984; Buchner et al., 1995). The linear
trend is highly significant (t38 5 6.4270, p , .0001). In spite of the non-linearity
in the figure, the quadratic trend is not significant (t38 5 1.8039, p 5 .0792).

The second set of predictions in Figure 3 concerns Exact Control, the average
number of trials that the learner specified the exact control action that would
have been computed using Eq. (2), again expressed as a count out of 10. The
linear trend for Exact Control is highly significant (t38 5 5.8245, p , .0001).
There is no quadratic trend apparent in the figure (t38 5 0.0264, p 5 .9791).

The third predicted pattern of results for training is contained in Fig. 4
which shows Training Deviation tabulated by session. Training Deviation is

FIG. 4. Subjects’ and models’ reduction in training deviation. Data are from 24 human subjects
and 40 models. The error bars represent one standard error for each data set. Human subject
data are discussed in Section 4.3.



16 GIBSON, FICHMAN, AND PLAUT

the average absolute deviation per set of ten trials of the learner’s action from
the exact action required to bring the factory to the production goal as computed
using Eq. (2). This predicted pattern of results is different from the pattern
related to Exact Control because it is possible to have a reduction in Training
Deviation without a corresponding increase in Exact Control. As shown in the
figure, the linear trend is highly significant (t38 5 7.3040, p , .0001). Again,
in spite of the the nonlinearity apparent in Fig. 4, the quadratic trend is not
significant (t38 5 21.7746, p 5 .0840). Subjects will decrease the discrepancy
between their actions and those required to always bring the factory to within
6 1000 of goal production during training.

Control questions: action submodel knowledge at the end of training. In
light of the training results, what is the extent of the knowledge the model
gains about the system? Figure 5a shows average Control Deviation for the
ten control questions. Control Deviation is the sum of the absolute difference
between the learner’s response and the response generated using Eq. (2). Note
that the lowest average Control Deviation is in the Near column, where the
transfer goal is nearest the training production goals of 3000 and 5000 lbs.
The model predicts a significant positive difference for human subjects of 17.3
(t39 5 12.653, p , .0001) between the Near and Far conditions. This result
illustrates the local nature of the model’s learning. The model selects actions
to achieve the production goals. As it becomes better at this task, it spends
more and more time learning about system responses and refining its own
responses near the production goals without regard to its general performance
because it receives no error signal about that performance.

Nonetheless, the model does predict that subjects will adjust their responses
for context as indicated by the significant difference in Control Response, the
average of each learner’s responses, between Near and Far questions (t39 5

5.8412, p , .0001). As seen in Fig. 5b, in the column labeled Near, the model’s
average response is very near the average of 400 produced using Eq. (2) and
not significantly different from it (t39 5 20.7046, p 5 .4852). However, in the
column labeled Far, the model’s average response is much farther from the
average of 900 produced using Eq. (2) and is significantly less than it (t39 5

213.0595, p , .0001). Human subjects will not adjust their responses suffi-
ciently for the Far questions relative to what might be achieved using Eq. (2).

Prediction questions: forward submodel knowledge at the end of train-
ing. Figure 6a shows the model’s average Prediction Deviation for Near and
Far questions. Prediction Deviation is the sum of the absolute difference be-
tween the learner’s response and the response generated using Eq. (2). The
difference of 21.66 between the two columns is highly significant (t39 5 9.8913,
p , .0001). As with the control questions, the model predicts that subjects will
adjust their Prediction Response (average response over questions) for context
as shown by the significant difference in this measure between Near and Far
questions (t39 5 3.0466, p 5 .0041).

As shown in Fig. 6b, the difference in Prediction Deviation between Near
and Far questions is that the model predicts that human subjects will not
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FIG. 5. Two charts representing control deviation and control response. In both charts, the
columns labeled Near relate to a transfer goal of 4000 lbs of sugar. Those labeled Far relate to a
transfer goal of 9000 lbs of sugar. Data are from 24 human subjects and 40 models. Error bars
represent one standard deviation for each data set. Human subject data are discussed in Section 4.3.

adjust their responses sufficiently for the Far questions relative to what might
be achieved using Eq. (1). In the column labeled Near, the model’s average
response is very near the average of 4,440 produced using Eq. (1) although
significantly different from it (t39 5 22.1546, p 5 .0374). In the column labeled
Far, the model’s average response is much farther from the average of 8560
produced using Eq. (1) (t39 5 14.8038, p , .0001).

Transfer. Given the large differences in performance between Near and Far
questions for both control and prediction questions, effective transfer perfor-
mance with the Far goal over a small number of sets of trials would seem
unlikely. As suggested by Fig. 7b, the difference for Total Correct between
models in the Near and Far conditions is significant (t38 5 23.5842, p 5 .0009).
Near subjects should outperform Far subjects. The linear trend (t38 5 2.7177,
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FIG. 6. Two charts representing average prediction deviation and average prediction response.
In both charts, the columns labeled Near relate to a transfer goal of 4000 lbs of sugar. Those
labeled Far relate to a transfer goal of 9000 lbs of sugar. Data are from 24 human subjects 40
models. Error bars represent one standard error for each data set. Human subject data are discussed
in Section 4.3.

p 5 .0098) is also significant as is the interaction between this trend and the
transfer condition (t38 5 2.8391, p 5 .0072). Far subjects should improve over
the four sets while Near subjects should not. As for the other trends, neither
the quadratic trend (t38 5 1.4630, p 5 .1517) nor its interaction with the
transfer condition (t38 5 1.6392, p 5 .1094) are significant. Additionally, neither
the cubic trend (t38 5 0.4329, p 5 .6676) nor its interaction with transfer
condition (t38 5 20.9502, p 5 .3480) are significant.

4.2.3. Summary of Results

We now review the computational simulation results in light of the approxi-
mate, local learning with graded transfer suggested by previous research using
the SPF.
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FIG. 7. Subject and model performance for the total correct measure in the Near and Far
condition. Data are from 24 human subjects and 40 models. Human subject data are discussed
in Section 4.3.

Approximate learning. As shown in Fig. 3, approximately two-thirds of
trials counted in Total Correct during training result from inexact control
actions. Although Exact Control increases as learning progresses and Training
Deviation decreases, a large portion of performance results from actions that
differ from those that would result from consistent application of Eq. (2).

In our formulation, learning is approximate for two reasons. First, the for-
ward submodel only provides an approximate error signal to the action submo-
del. Second, the form of error-correction we are using reduces error more slowly
as learning progresses, leaving learning in some sense always approximate.
In the SPF, both of these effects are compounded by the random element (e)
in Eq. (1) that distorts feedback.

Local learning. As shown in Figs. 3 and 4, models appear to have the most
accurate knowledge of the underlying system in the areas near where the
production goals are during training. By accurate knowledge, we mean the
least amount of error in choosing actions or predicting system response. In
general, the difference in performance between Near and Far questions appears
to derive from the learning bias inherent in the model learner’s architecture.
The model is a goal-driven learner. As it improves, it learns to stay in a region
near its training goals. It is not adjusting its connection weights relative to
some global measure of performance but only relative to its current goal based
on information presented in the last trial.

Graded transfer ability. In the first transfer set, performance is graded by
the proximity of the transfer goals to the original training goals. This result
derives from the approximate, local learning exhibited by the model during
training. The model only acquires approximate knowledge of the system. This
knowledge is most accurate in the area of its greatest experience. The transfer
goal of 9000 lbs. was chosen to be the maximum distance possible from the
training region with the constraint that it be more than 2000 lbs. from the
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maximum production of 12,000.4 Therefore, it is not surprising that perfor-
mance is lower for this goal.

In spite of this approximate and biased learning, the model exhibits improv-
ing performance for the goal of 9000 lbs. to the point that performance for this
goal is very close to performance for the goal of 4000 lbs. by the fourth set.
This quick adaptation derives from the model’s ability to continue learning
from feedback in new contexts.

4.3. Human Subjects Experiment

In this section, we describe a computer-controlled experiment designed to
test the simulation model’s predictions.

4.3.1. Method

The human subjects experiment was implemented in cT (Sherwood, 1994)
on an Apple Macintosh computer using a 256 color display. Except as noted
below for the prediction questions, subjects indicated their control inputs and
question answers using an Apple extended keyboard.

We now consider features of the human subjects study that were different
from the simulation study.

Time pressure. Initial pilot studies indicated to us that, while most subjects
seemed to perform in the SPF taking little time to mentally explore or consider
options, a few seemed to be mentally exploring options at great length. The
best evidence of this difference in approach is the distribution of times it took
subjects to complete one session of the task. This distribution ranged from 20
min to 1 h. We used time pressure to remove the option of spending long
amounts of time mentally exploring or reconsidering options. Time pressure
used in this way is a general feature of dynamic decision tasks (Brehmer, 1990,
1992, 1995; Klein et al., 1993).

We added time pressure to the SPF by limiting subjects to three seconds per
trial to take a control action.5 We enforced this time limit by providing subjects
with a counter directly beneath the input area for each trial that told them
how much time they had left. If subjects did not specify a control action within
this time, a bright red screen covered the production graph and a beep sounded
repeatedly until the subject responded. These two events were designed to stop
subjects from considering the task and to encourage them to answer as quickly
as possible.

To further limit the chances to mentally review the task, after each set of
10 trials, the screen used to present the task to subjects was blanked and

4 This choice ensured that subjects could not achieve an average score of 3.33 Total Correct by
simply maximizing their input at each trial.

5 We derived this time limit based on analogy to real decision makers’ performance in the field
of credit collections, a dynamic decision task. Credit collectors make decisions on average every
2.0 s during a conversation (Gibson et al., 1996). We increased the limit to 3.0 s based on experience
during pilot studies.
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subjects were allowed up to 10 s to initiate a new set of 10 trials at their
discretion. Once 10 s had passed, a new set of 10 trials automatically began.
Blanking the screen inhibited subjects from actively contemplating their ac-
tions from the previous set of 10 trials. Limiting time between sets of 10 trials
further constrained subjects’ ability to contemplate the task without the aid
of the display.

The cover story. By construction, our simulation model is not sensitive to
the cover story used in the task. However, the addition of time pressure forced
us to construct a cover story so that the task would make sense to human
subjects. To this end, subjects were told that they were process control engineers
at a sugar production factory. Their job was to set the pressure on a sugar-
refining vat to achieve a target production level. A safety mechanism on the
vat required that the engineer specify the pressure every 3 s, otherwise pressure
might rise to dangerous levels. After 3 s, a red safety screen would descend,
and an alarm would sound.

Procedure. Subjects for the experiment consisted of 24 Carnegie Mellon
students who were paid $18 for their participation. These subjects were ran-
domly assigned to either the Near (4000 lbs) or Far (9000 lbs) transfer condition
upon beginning the experiment.

The experiment was conducted in three sessions over three consecutive days.
The procedure differs from the computational study because subjects had a
24-h break between sessions, whereas models did not. This break is potentially
significant because it could have led to performance differences between models
and subjects. For instance, the break could have led to forgetting on the part
of subjects. On the other hand, some pilot subjects reported actively replaying
the events of the experiment in their mind between sessions, possibly leading
to improved performance. We did not confine the experiment to one session to
remove these possible influences on subjects’ performance because we found
subjects becoming fatigued between 200 and 400 training trials, and we wanted
to maintain the extent of training.

At the end of training in the third session, the control questions were pre-
sented using the same display subjects had used to learn the task. Each set of
questions was presented in random order, and subjects did not receive feedback
about the correctness of their response. Again the three second time limit
was enforced.

After the control questions, subjects were asked the prediction questions.
Subjects had not been asked prediction questions during the experiment and
therefore were not used to giving this type of response. However, given the
structure of our simulation model, we believed subjects could anticipate how
the system would respond to their actions and observe the difference between
their anticipation and the actual outcome. Based on this assumption, we asked
subjects to use their computer mouse to indicate the area where they thought
production would fall given current production and the workforce that we had
specified in the question. A similar procedure was used by Wolpert et al. (1995)
when they measured people’s ability to predict the visual position of their
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hands after movement using only proprioceptive feedback. Subjects seemed
able to perform our procedure readily. Their mouse clicks were captured by
the computer and used to calculate the estimated production level to the nearest
thousand. This value was then displayed to the subject. Finally, the transfer
task immediately followed the questions.

4.3.2. Results

Timing. Our model does not account for how subjects will react to different
levels of time pressure nor the timing of their responses during the experiment.
The goal of adding time pressure elements to the task was to force subjects to
react quickly to the situation at hand. Subjects averaged 2.07 (SE 5 0.078),
1.76 (SE 5 0.07), and 1.69 (SE 5 0.067) per decision for sessions one, two, and
three, respectively, during training. Additionally, time per decision showed a
significant decreasing linear trend (t22 5 24.7647, p , .0001) and quadratic
trend (t22 5 23.1578, p 5 .0046) across subjects. Not only were subjects able
to initially make the three second time limit, but they became faster as train-
ing progressed.

Subjects also made the three second time limit in answering the control
questions (mean 5 2.71, SE 5 0.102), the prediction questions (mean 5 2.42,
SE 5 0.093), and the transfer task (mean 5 1.81, SE 5 0.095). The rest of
this section focuses on the account the model is able to give of the human data.

Training. Figure 3 allows comparison of human subject and model learning
over the three sessions of training. Looking at Total Correct, human subjects
show a significant, positive linear trend in performance (t22 5 5.6885, p ,

.0001) without a significant quadratic trend (t22 5 20.2440, p 5 .8095). Both
results conform to the model’s predictions. Furthermore, the significant im-
provement across sessions replicates Stanley et al.’s (1989) results for this
length training regimen.

Turning to Exact Control, human subjects again show a significant, positive
linear trend in performance (t22 5 4.5025, p 5 .0002), without a significant
quadratic trend (t22 5 20.3440, p 5 0.7341). Again, both results conform to
the model’s predictions.

Looking again at Fig. 3, the model and human subject performance means
appear very close for both the Total Correct and Exact Control measures.
We performed post-hoc comparisons for both variables between models and
subjects. For this type of comparison, the Bonferroni adjustment is inappropri-
ate. By increasing the size of the confidence interval around each subject mean,
it raises the likelihood of false confirmations that the model’s predictions lie
in this confidence interval. Furthermore, one may want to use a narrower band
than the 95% confidence interval to make this comparison (Stasser, 1988).
Therefore, for this type of post-hoc comparison, we simply report the unadjusted
t and p values.

For Total Correct, there is a significant difference between subjects and the
model (t62 5 2.0566, p 5 .0439) in the first session. For sessions two and three
there is not a significant difference between subject and model means (t62 5
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0.6309, p 5 .5304 for session two; t62 5 0.7618, p 5 .4491 for session three).
For Exact Control, there is a significant difference between subjects and models
for session one (t62 5 2.9793, p 5 .0041) and session two (t62 5 2.0285, p 5

.0486). There is not a significant difference for session three (t23 5 1.6006, p
5 .1146).

We also tested whether each subject mean differed significantly from the
performance of ten that could be achieved with consistent application of Eq.
(2). The three session means all differed significantly from this level of perfor-
mance (t23 5 235.3624, p , .0001 for session one; t23 5 230.1679, p , .0001
for session two; t23 5 224.2775, p , .0001 for session three).

Figure 8 presents average human subject and model learner performances
for the 60 training sets for the variables Total Correct and Exact Control. We
tested the correlation between average human and model performance over
the 60 sets using a Bonferroni adjustment on the confidence level. For Total
Correct, the correlation of 0.80 is highly significant (t58 5 10.2142, p , .0001).
For Exact Control, the correlation of 0.62 is also highly significant (t58 5 5.9499,
p , .0001). Thus, model performance tracks human performance well across
training sets for both Total Correct and Exact Control.

Figure 4 shows human subjects’ average Training Deviation per set of ten
trials for each session of training. As predicted by the model, human subjects
show a significant linear trend in performance (t22 5 28.1159, p , .0001) with
no quadratic trend (t22 5 20.2764, p 5 .7848). Finally, as suggested by the
figure, none of the human subject means is close to being significantly different
from the model’s predictions in post-hoc comparisons (t62 5 20.1422, p 5 .8874
for session one; t62 5 0.2526, p 5 .8014 for session two; and t62 5 0.0972, p 5

.9229 for session three).
However, there is a highly significant difference between average subject

performance and the performance of zero deviation that could be obtained
through consistent application of Eq. (2) (t23 5 19.019, p , .0001 for session
one; t23 5 14.6204, p , .0001 for session two; t23 5 15.4941, p , .0001 for session
three). As predicted by the model, subjects reduce the difference between their

FIG. 8. Improvement in performance with training broken down for the two measures total
correct and exact control. The graph represents data from 24 human subjects and 40 models.
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actions and the action produced using Eq. (2) without bringing the difference
to zero.

Figure 9 compares human subjects’ average Training Deviation by set during
training with that predicted by the model. The correlation of 0.86 is highly
significant after Bonferroni adjustment (t58 5 12.8532, p , .0001) again indicat-
ing that the model tracks human performance well across sets.

Finally, as noted earlier, many studies (e.g., Berry & Broadbent, 1984;
McGeorge & Burton, 1989; Buchner et al., 1995) show that human subjects
improve their performance over a relatively short 60 to 90 trials. We tested
whether models and subjects improved performance over 60 trials in our train-
ing regimen by dividing the trials into three sets of twenty and testing the
appropriate contrasts. For Total Correct, both models and subjects showed
significant linear trends in performance (t38 5 3.0399, p 5 .0043 for models;
and t22 5 3.2046, p 5 0.0041 for subjects) and insignificant quadratic trends
(t38 5 0.099, p 5 0.9217 for models; and t22 5 0.2937, p 5 .7717 for subjects).
The model shows significant performance improvements over 60 trials, and
human subjects display a similar trend in performance improvement over the
same number of trials.

Control questions. Figure 5a shows subjects’ Control Deviation measured
in hundreds for Near and Far control questions. As predicted by the model,
the difference in Control Deviation is significant for subjects (t23 5 5.2182, p
, .0001). We also performed post-hoc tests to determine whether the Control
Deviation predicted by the model for each set of questions fell within the
confidence interval of the mean performance across subjects. For Near ques-
tions, the average deviation across subjects is not significantly different from
the model’s prediction (t62 5 0.5178, p 5 0.6064), but this deviation is signifi-
cantly different from zero (t23 5 7.0732, p , .0001), the result that would have
been obtained with consistent use of Equation 2. For Far questions, the average
deviation across subjects is significantly different from the model’s prediction
(t62 5 22.9456, p 5 .0045) and again from zero (t23 5 6.061, p , .0001).

FIG. 9. Subjects’ and model’s reduction in training deviation. Data are from 24 human subjects
and 40 models.
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Recall from Fig. 5 that the model predicts a positive difference between
the average Control Response provided in the Far and Near conditions. This
difference is significant across human subjects (t23 5 7.0635, p , .0001). We
also compared the average Control Response taken in the Near and Far ques-
tions across subjects with the model’s predictions and with the average control
response generated by using Equation 2 consistently. For the Near questions,
subjects’ answers were not significantly different from the model’s predictions
(t62 5 20.5337, p 5 .5955) nor from the average response obtained by using
Equation 2 (t23 5 21.6636, p 5 .1098). For the Far questions, subjects’ average
Control Response was significantly different from both the model’s predictions
(t62 5 2.5579, p 5 .013) and from the average Control Response given by
consistently using Eq. (2) (t23 5 25.5509, p , .0001). Thus, while the average
responses produced by models, subjects, and consistent application of Equation
2 are not significantly different for Near questions, they are so for Far questions.
For Far questions, subjects average Control Response lies between that pro-
duced by the model and that produced by consistent application of Equation
2 but is much closer to the average produced by the model.

The training goals of 3000 and 5000 lbs of sugar are much nearer together
than the goals in the Near and Far control questions. Do models and subjects
respond differently to the smaller differences in goals during training? Both
models (t39 5 3.4647, p 5 .0013) and subjects (t23 5 8.0963, p , .0001) show
a significant positive difference between responses to the 3000 and 5000 lbs
training goals. This result augments our findings by showing that subjects and
models are sensitive to even the smaller differences in goals present during
training. Nevertheless, the key result of this analysis remains that neither
subjects nor models adjust their response sufficiently to goals and production
values that are far from the training region.

Finally, many previous studies of performance in the SPF (e.g., Berry &
Broadbent, 1984) have shown little or no correlation between performance
during training and correctness in answering post-task questionnaires. An
exception to this result occurs when the questions are presented in the same
modality used during training and correctness is measured as whether the
response is in the proper direction (e.g., Berry & Broadbent, 1987). Similarly
to Berry and Broadbent (1987), we asked the control questions in the same
modality subjects had used to perform the task and used a deviations measure
that was more sensitive than simply determining that subjects were or were
not exactly correct. Both models (t38 5 26.9924, p , .0001) and subjects (t22 5

22.2101, p 5 .0378) show negative correlations of 20.75 and 20.43 respectively
between average Total Correct during training and total Control Deviation on
the control questions. This is the direction that would be expected if better
training performance were correlated with better question answering. This
result accords well with Berry and Broadbent’s (1987) finding on question
answering. However, although in the right direction to suggest a cause for this
result, there is no significant correlation between training performance and
a smaller difference in Control Deviation between Near and Far questions
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(correlation 5 20.39, t38 5 20.3937, p 5 .6960 for models; correlation 5 20.32,
t22 5 21.5610, p 5 .1328 for subjects).

Prediction questions. Figure 6 shows subjects’ Prediction Deviation mea-
sured in thousands for Near and Far prediction questions. Contrary to the
model’s prediction, the difference in Prediction Deviation, while in the correct
direction, is not significant for subjects (t23 5 1.6784, p 5 .1068). We also
performed post-hoc tests to determine whether the Prediction Deviation pre-
dicted by the model for each set of questions fell within the confidence interval
of the mean performance across subjects. For Near questions, the average
Prediction Deviation across subjects is not significantly different from the
model’s prediction (t62 5 20.4204, p 5 .6757). The average Prediction Deviation
is significantly different from 0 (t23 5 11.3823, p , .0001), the result that would
have been obtained by consistent use of Eq. (1) before application of the random
element. For Far questions, the average Prediction Deviation across subjects
is significantly different from the model’s prediction (t62 5 25.6021, p , .0001)
and again from 0 (t23 5 19.9428, p , .0001). However, as is apparent in Fig.
6a, the average Prediction Deviation across subjects for Far questions is not
significantly different from what the model predicts for the Near questions (t62

5 0.8391, p 5 0.4046).
Recall from Fig. 6 that the model predicts a small positive difference between

the average Prediction Response given for the Far and Near questions. This
difference is significant across human subjects (t23 5 5.022, p , .0001). We
also compared the average Prediction Response given in the Near and Far
questions across subjects with the model’s predictions and with the average
response generated by using Eq. (1). For the Near questions, subjects’ average
Prediction Response was not significantly different from either that of the
model (t62 5 1.908, p 5 .061) or from the average answer obtained by using
Eq. (1) (t23 5 0.7253, p 5 0.4756). For the Far questions, subjects’ average
Prediction Response was significantly different from the model’s Prediction
Response (t62 5 6.9312, p , .0001) as well as from the average response given
by using Eq. (1) (t23 5 22.5547, p 5 .0177).

Again, we tested the correlation between training performance and question
answering with the expectation that better training performance would be
correlated with better question answering. As for the control questions, both
models (t38 5 25.6683; p , .0001) and subjects (t22 5 22.301; p 5 .0312) show
strong negative correlations of 20.67 and 20.50, respectively, between average
Total Correct and total Prediction Deviation, confirming our expectation. Again,
better training performance is not significantly correlated with a smaller differ-
ence between Near and Far questions for Prediction Deviation, although it is
in the right direction for models (correlation 5 20.17, t38 5 21.0852, p 5 .2847)
but not for subjects (correlation 5 0.01, t22 5 0.0703, p 5 .9446).

Thus, the model did predict the non-zero Prediction Deviation for both Near
and Far questions as well as the difference in average Prediction Response
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between Near and Far questions. Furthermore, the correlation between train-
ing and question answering is significant for both subjects and models. How-
ever, the difference for subjects in Prediction Deviation between Near and Far
questions, though in the right direction, was not significant. Furthermore, the
model’s predictions for average Prediction Response were significantly different
from subjects’ averages for both Near and Far questions.

Transfer. Figure 7 contrasts average human and model performance in the
transfer task using the Total Correct measure for the Near (4000 lbs) and Far
(9000 lbs) transfer conditions. Recall that the model makes essentially two
predictions about human performance. First, there will be a significant negative
difference between subjects in the Far and Near transfer conditions. Although
the difference is in the right direction for human subjects in the two conditions,
it is not significant (t22 5 21.2134, p 5 .2379). Second, the model predicts an
interaction between transfer condition and the evolution of performance using
the Total Correct measure over sets. Learners in the Far condition should show
an improvement in performance over the four sets and learners in the Near
condition should not. This prediction is in the right direction for the interaction
between transfer condition and the linear trend across the four sets but is not
significant (t22 5 1.8691, p 5 .0750). Additionally, the significant linear trend
predicted by the model is not found in human subjects (t22 5 20.5751, p 5

0.5734). As with the model, human subjects do not show significant quadratic
(t22 5 20.7144, p 5 .4825) or cubic (t22 5 0.2709, p 5 .7890) trends nor do they
show significant interaction effects between these trends and transfer condition
(t22 5 20.5215, p 5 .6072 for quadratic; t22 5 21.0274, p 5 .3154 for cubic).

The interaction between transfer condition and the linear trend in perfor-
mance across sets observed in the model suggests that, using the Total Correct
measure, differences in performance between the subjects in the Near and Far
conditions should be more easily observed in the earlier sets of the transfer
task (see Fig. 7a). The difference between transfer conditions is not significant
for either set one or set two after adjustment (t22 5 22.3380, p 5 .0435 for set
one; t22 5 21.6017, p 5 .128 for set two).

We also performed post-hoc comparisons of average human subject perfor-
mance with the model’s predictions. All of the model’s predictions lay within
a 95% confidence interval of the relevant subject means.

Note, however, in comparing Fig. 7a and 7b, that the model does not account
for an important trend in the human subject data. Performance of subjects in
the Near transfer condition decreases after set two, and performance for sub-
jects in the Far condition fails to improve after set three. We believe that this
trend can be explained by the fact that subjects knew that the transfer task
was the last task they would perform in the experiment and so left off trying
at the end of the experiment. Such “horizon” effects have been noted in other
dynamic decision tasks (Sterman, 1989).

As with the control and prediction questions, we tested the correlation be-
tween training and transfer performance for both models and subjects. Again,
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both models (t38 5 6.1624; p , 0.0001) and subjects (t23 5 8.2091; p , .0001)
showed positive correlations of 0.73 and 0.87 respectively between better train-
ing and better transfer performance. Furthermore, this relationship holds when
we control for whether learners are in Near or Far conditions using an analysis
of covariance (b 5 0.8151, t36 5 8.0922, p , .0001 for models; b 5 0.7998, t20

5 5.8288, p , .0001 for subjects).
For the transfer task, the model provides, as its strongest account of human

performance, the interaction between transfer condition and the linear trend
in performance. Subjects in the Far condition start significantly lower than
subjects in the Near condition but improve to parity with these subjects by the
third set. Furthermore, both the model and subjects show significant correla-
tions between better training and transfer performance.

Summary and Discussion of Human Subjects Results

The model provides a good account of human subject performance for train-
ing, control questions, and transfer. For training, the model correctly predicted
the strong linear trends in performance for Total Correct, Exact Control, and
Training Deviation. Post-hoc comparisons showed the model’s average perfor-
mance by session to be insignificantly different from that of human subjects
for two out of three sessions using Total Correct, for one out of three sessions
using Exact Control, and for three out of three sessions using Training Devia-
tion. Furthermore, over the 60 training sets, model and human subject perfor-
mance were highly and significantly correlated for all three measures.

All three of the measures improved during training, but none of them reached
the level that could be achieved using Eq. (2). Like models, subjects only learned
to achieve approximate control of the system. As we noted earlier, this result
is consistent with prior results using the SPF.

Subject performance in the control questions provides further evidence for
human subjects’ approximate learning while also demonstrating the local na-
ture of their learning. First, as predicted by the model, the difference between
subjects’ average Control Deviation and 0 is highly significant for both Near
and Far control questions. Second, as predicted by the model, the difference
in Control Deviation between Near and Far questions is also highly significant
and positive. After 600 trials of training, subjects have not acquired, or at
least are not consistently using, an accurate understanding of the mechanism
underlying the SPF’s performance in answering these questions. On average,
subjects perform better in situations that most closely match their previous
training experience and worse in situations that are further from it, demonstra-
ting the local nature of subjects’ knowledge. These results are again consistent
with those found in previous studies (Buchner et al., 1995; Dienes & Fahey,
1995; Marescaux et al., 1989).

In spite of the approximate, local nature of subjects’ knowledge demonstrated
by these findings, subjects, like models, are sensitive to context. The difference
between Control Response between Near and Far questions is significant for
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human subjects. However, like models, subjects tend to underadjust for the
Far control questions.

Finally, as regards the control questions, both models and subjects show
correlation between better training performance and question answering, con-
sistent with Berry and Broadbent’s (1987) finding. For models, the result can
only occur because, during training, some models have better acquired the
structure of the task than others. This observation also holds for the correlations
exhibited by models between better training performance and better perfor-
mance in prediction and transfer. For these same correlations exhibited by
human subjects, the explanation that applies to models is plausible. Addition-
ally, there may be explanations relating to motivational and other possible
factors. We did not test these other explanations for human subjects and so
cannot say definitively whether the model’s explanation holds for them.

While the results for transfer performance do not reach the same level of
statistical significance as those described for training and control questions,
they do provide additional support for local, approximate learning with the
addition of graded transfer. Like the model, in both the Near and Far transfer
conditions, subjects’ mean Total Correct is significantly different from the per-
formance that would have resulted from consistent application of Eq. (2) demon-
strating that subjects have acquired only approximate knowledge about the
SPF. Second, while the contrast between conditions using Total Correct was
not significant for human subjects, it was in the direction predicted by the
model. Furthermore in this regard, a post-hoc comparison between the means
for the first set of the transfer task showed a difference in the direction predicted
by the model, although this difference was not significant after adjustment of
the confidence interval. Both of these last two pieces of evidence point to the
greater validity of human subjects’ knowledge in the locality of their training
experience. Third, the model correctly predicted the direction of the interaction
between transfer condition and the linear trend in the Total Correct measure.
This illustrates the graded nature of transfer. Subjects are able to adapt to
the Far goal, but they start at a lower level of performance and require more
time to adapt than subjects with the Near goal.

However, the model does not provide a good account of two aspects of human
performance. First, while the model does predict the difference between Near
and Far conditions for control questions, it underpredicts subjects’ level of
performance in the Far condition of both tasks. The model does not correctly
predict the level of Control Deviation in the Far condition which is larger than
for human subjects, nor does it correctly predict the level of Control Response
which is less for models than human subjects. In short, the model appears less
adaptive to the Far questions than are human subjects.

The second area where the model does not predict human performance well
is for the prediction questions. The model predicts a difference in Prediction
Deviation between Near and Far questions that is not statistically significant
but in the predicted direction for subjects and a difference in Prediction Re-
sponse between Near and Far questions that is significant. It also predicts a
non-zero deviation for both Near and Far questions for subjects. However, the
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model fails to capture the level of Prediction Response for either the Near or
Far conditions and the level of Prediction Deviation indicated for models in
the Near condition is indistinguishable from that of subjects in Far condition.

The two shortcomings we have just described serve as an indication of areas
for future research. Overall, the model’s approximate, local learning with
graded transfer provided a strong, predictive account of subject performance
in training, control questions, and transfer where both subjects and models
consistently used the same modalities across tasks. Our results concerning
approximate, local learning in these tasks are consistent with prior empirical
results using the SPF. Our transfer results are an extension of these prior re-
sults.

5. GENERAL DISCUSSION

In this article, we have presented evidence that a computational model that
instantiates approximate, local learning with graded transfer provides a good
account of how subjects learn on-line from outcome feedback in the SPF, a
simple dynamic task. We base this conclusion on the model’s ability to predict
subjects’ performance during training and on two subsequent tests of their
ability to generalize, the control questions and the transfer task. We now
explore the limitations of our efforts and discuss two alternative approaches
to understanding human performance before concluding on our own ap-
proach’s merits.

5.1. Limitations of Our Approach

There are three principal limitations of our approach. First, our model does
not provide a good account of how subjects perform after training in prediction
questions. One possibility is that the prediction task differed from the training
task sufficiently that subjects simply abandoned the knowledge they had gained
during training and began guessing based on one of the cues. In other words,
our manipulation failed. In this regard, it is worth noting that Wolpert et al.
(1995) demonstrate that a biased forward model provides a good account of
human subjects’ ability to predict the hand location that results from attempts
to move their arms given proprioceptive feedback alone. The difference between
their approach and ours is that their subjects provided the input for which
they predicted the consequence. This difference in manipulation may have
ensured that their subjects used the same knowledge that they normally would
when moving their arms. We are actively looking into ways to adapt this
approach to our SPF experiments.

The next two limitations to our approach touch directly on its applicability
to real-world dynamic tasks. The first of these is that our approach only covers
on-line learning from outcome feedback. We undertook specific steps during
training to restrict subjects to this mode of learning and justified these steps
based on the observation that there frequently is not much spare time in
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dynamic task environments. However, it is clear, even in dynamic task environ-
ments, that decision makers do have respite for reflection, if at no time else,
during their off-hours. During this time, decision makers might review their
previous actions and the resultant outcomes with an aim toward improving
their actions. We could easily implement this extension in our model by replay-
ing some of the training data. However, we deliberately limited this possibility
in both the computational and human subjects experiments because it is diffi-
cult to control the extent or the relevance of subjects’ thoughts without the
impetus of time pressure driving them to stay focused on the task.

The third limitation to our approach is that all of the relevant data for
making a decision must be immediately available in the environment. There
are frequently delays between actions and outcomes such that the action pro-
ducing a given outcome is no longer immediately available to be related to that
outcome once it is known (Brehmer, 1995). While decision makers display some
capacity for adaptation in such environments, this capacity is limited (Brehmer,
1995; Sterman, 1994). We are currently investigating ways to extend our ap-
proach to provide an account of human performance in such delayed feed-
back environments.

5.2. Alternative Approaches

Two alternative approaches to ours have been explored for explaining perfor-
mance in the SPF. First, Stanley et al. (1989) have examined the possibility
that subjects are using explicit hypothesis testing to generate their perfor-
mance. Recall that in Stanley et al.’s original learners condition, they concluded
that breakpoints, after which subjects’ performance began to improve at a
significantly faster rate had not been preceded by a communicable insight and
were therefore not likely the result of explicit hypothesis testing.

More generally, Stanley et al.’s (1989) findings relate to the twin issues of
explicit and implicit learning, the focus of a large number of studies using the
SPF (e.g., Berry & Broadbent, 1984, 1987; McGeorge & Burton, 1989). When
learners performance improves, and they are explicitly aware of task structure
and how they are using it to make decisions, they are said to be engaged in
explicit learning (Cleeremans, 1993). Evidence of explicit learning includes
subjects’ ability to verbally communicate how they are making decisions and
their ability to provide accurate, relevant information about the task (Berry &
Broadbent, 1984; McGeorge & Burton, 1989; Stanley et al., 1989). When learn-
ers’ performance improves and they are not explicitly aware of task structure,
as measured by their ability to provide useful verbal information about the
task, they are said to be engaged in implicit learning.

Our model is composed of two mental submodels, neither one of which de-
pends on explicit awareness of task structure as it learns (see Cleeremans &
McClelland, 1991 and Cleeremans, 1993 for a fuller discussion of PDP models
in this regard). However, even with this assumption embedded in our model,
we are not aware of results conclusively ruling out that subjects use some form
of explicit learning (perhaps poorly communicable). This said, based on the
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pattern of results we obtained in training, the control questions, and the trans-
fer task, it would seem that any such explicit learning mechanism would have
to account for the approximate, local learning with graded transfer that we
found in average subject responses. This statement is nontrivial because forms
of explicit learning such as insight learning lead to the induction of precise,
globally accurate rules concerning the system under study or rules that are
obviously wrong (e.g., Kaplan & Simon, 1990).

The second alternative approach has been adapted from Logan (1988) by
Dienes and Fahey (1995) to explain learning in the SPF over 80 trials with
one goal. In Dienes and Fahey’s approach there are two cognitive mechanisms
within the learner competing to provide control inputs at each trial. The first,
termed the algorithm by Logan (1988), is a fixed body of general knowledge
that comes into play when the learner encounters a situation that has not been
seen before. In Dienes and Fahey’s implementation, the algorithm provides a
model of the assumptions naive subjects bring to the SPF. The second cognitive
mechanism in Dienes and Fahey’s approach is responsible for learning. It is a
lookup table that adds context-action exemplars every time an action leads to
within 1000 of the production goal.

Dienes and Fahey’s approach has provided a compelling account of learning
and performance in their training regimen. The chief difference between our
approach and that of Dienes and Fahey is apparent in how we dealt with the
initial biases subjects bring to the SPF. Our assumption was that these biases
were due to subjects’ experience with other superficially similar systems that
behaved differently from the SPF. Therefore, instead of having recourse to an
additional cognitive mechanism such as the algorithm, we pretrained our mod-
els in a system where these biases were adaptive, as a proxy for subjects’ prior
experience. Thus, we were able to provide an account of subject behavior in
our training regimen that relied on only one performance and learning mecha-
nism. Of course, our results do not rule out that multiple performance or
learning mechanisms may be needed to explain behavior in other tasks or even
in this task under other circumstances.

Although Dienes and Fahey’s (1995) approach does not address the issue of
prediction, we believe it could have replicated at least our training results. In
their approach, we note that approximate performance results from the rule
used to match context to action. Local learning results from their use of a
lookup table to encode specific context-action pairs. The issue that remains to
be explored is how Dienes and Fahey’s approach would have performed in the
control questions and the transfer task. Due to important differences between
the information we provided to learners and that provided by Dienes and Fahey,
informed speculation on this issue is difficult.

Dienes (personal communication) has suggested that one way to address
these two issues would be to query naive subjects about the task implementa-
tion we used. Dienes and Fahey’s model could then be run in our training and
testing regimen allowing us to make a direct comparison between the different
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predictions for the control questions and the transfer task.6 Predictions concern-
ing response times and attentiveness to different elements of context, two
features that distinguish Dienes and Fahey’s approach, could also be tested.
We believe that a direct comparison between our approach and that of Dienes
and Fahey is a useful path for future work.

5.3. Conclusion

Our results suggest that the behavior that decision makers display in dy-
namic decision tasks can be captured by a formulation where two PDP submo-
dels learn on-line, joined in series. One submodel learns to take actions to
achieve goals. The other learns the consequences of actions in different contexts
and guides the first model’s learning. The fact that both submodels are PDP
models provides a mechanism for learning from feedback and graded general-
ization from the specific examples seen in training (Rumelhart et al., 1986a).
In this way, our formulation provides both a structure and a single learning
mechanism for how decision makers might form and use approximate, locally
valid knowledge of task structure while performing dynamic decision tasks.

Our simulation model improves its performance within a given range of
objectives during training. However, after training, transfer of this knowledge
to achieving a new objective in the same task was graded by the nearness of
the new objective to those used during training. Both of these patterns of
results were confirmed in our human subjects experiment, and they accord
well with the observation that subjects do not adjust their behavior on-line in
response to feedback in a way that fully takes into account task structure
(Brehmer, 1995; Sterman, 1994; Kleinmuntz, 1993). Given these results, our
formulation presents an important step toward a process theory of how decision
makers learn on-line from outcome feedback in dynamic tasks.
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