
Connectionist Approaches to Understanding
Aphasic Perseveration

StephenJ.Gotts, Ph.D.,1,3,4 andDavidC. Plaut, Ph.D.1^3

ABSTRACT

Aphasic patients make a variety of speech errors, including perse-
verations, in tasks that involve a linguistic component. What do persever-
ative and other errors imply about the nature of the neurologically damaged
and intact language systems? Here we discuss the insights into the
mechanisms of aphasic perseveration afforded by connectionist models. As
a base for discussion, we review the Plaut and Shallice model of optic aphasic
errors in object naming, which relies primarily on short-term learning
mechanisms to produce perseverations. We then point out limitations of
the model in addressing more recent data collected on aphasic perseveration
and explain how incorporating information about the interaction of neuro-
modulatory systems and learning in the brain may help to overcome these
limitations.
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Learning Outcomes: As a result of this activity, the participant will be able to (1) identify the mechanistic

principles of connectionist models that lead to recurrent perseverations; (2) characterize how these principles

differ from those that produce other types of errors, such as ‘‘visual’’ and ‘‘semantic’’; and (3) describe limitations

of the current principles and how they might be modified to incorporate neuroscientific findings on neuromodula-

tion and learning.

After stroke or brain injury, aphasic pa-
tients commonly exhibit a range of errors in
spontaneous speech and in tasks requiring a
verbal response. One of the most intriguing
error types for language researchers is persevera-

tion—the inappropriate repetition or continua-
tion of a previous utterance or response when a
different response is expected.1 Aphasic perse-
verations often differ in character from those
elicited by patients with other types of deficits,
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such as frontal-lobe executive dysfunction, in
that they can occur after several correct inter-
vening utterances or responses, leading them to
be labeled recurrent as opposed to stuck-in-set
or continuous.2,3 Although recurrent persevera-
tions in aphasia may occur after intervening
responses, empirical studies have shown that
they are most common after little or no delay
and attenuate gradually in likelihood over sub-
sequent trials.4,5 Recurrent perseverations can
be on whole words, partial words, or even on
parts of drawings,3,6 and they can be influenced
by several stimulus factors, including word
length,7 lexical frequency,5,8 relationship to
the target stimulus,3,9,10 stimulus repetition,5

and presentation rate.8 However, not all of
these factors necessarily affect all patients in
all behavioral circumstances, and which factors
influence performance for any given patient
may depend on the particular locus of impair-
ment in the cognitive system, as well as on the
particular tasks employed.4,5,10–12

These observations raise a couple of funda-
mental questions: What does the occurrence of
perseverations in aphasia tell us about the
nature of language processing in the brain?
Are the mechanisms that underlie persevera-
tions necessarily tied to language in some way
or are they common to other cognitive do-
mains? This article examines what insights
connectionist modeling can provide into these
deeper questions.

Connectionist models are composed of
relatively simple, neuron-like processing units
that engage in parallel interactions through
weighted connections. Units can be organized
into groups that represent different types of
information to be associated, such as acoustic,
phonological, or semantic, within the domain
of language. Connectionist models of cognitive
processes have effectively addressed empirical
results from a wide variety of different cognitive
domains, including visual perception and atten-
tion,13,14 reading and language,15–17 semantic
processing,18–21 learning and memory,22–24

working memory and cognitive control,25,26

and routine sequential action.27 One of the
strengths of these models has been their ability
to address not only behavioral results from
neurologically intact adults but also basic
behavioral impairments and patterns of errors

following neurological damage and behavioral
changes during the course of normal develop-
ment.15,28–33

The model most relevant for the current
discussion is one proposed by Plaut and Shal-
lice34 to account for the large number of recur-
rent perseverations and semantic errors made by
optic aphasic patients in visual object naming.
The model was trained to identify visual objects
by mapping information about an object’s visual
appearance to its corresponding semantic in-
formation. Learning in the model included
short-term correlational weights that were
strengthened each time an object was pro-
cessed; these weights tended to bias activity in
the model toward recently identified objects,
producing perseverations under damage to the
model’s connections. The bulk of this article
will be a review of the details of this model and
a discussion of its implications for our under-
standing of aphasic perseveration. Some limita-
tions of the model in explaining patient
variability and in addressing more recent
experimental findings on aphasic persevera-
tion5,35 are then briefly discussed. We conclude
by suggesting modifications to the model that
might address these limitations, taken from our
understanding of how neuromodulatory
systems in the brain interact with learning
processes.

MODEL OF NAMING ERRORS
IN OPTIC APHASIA
Before discussing the details of the Plaut and
Shallice model,34 we must first consider briefly
the neuropsychological pattern of the optic
aphasia that motivated it. Optic aphasic pa-
tients characteristically have difficulty naming
objects presented visually but are able to name
from other sensory modalities, such as from
verbal description or touch. Unlike patients
with visual agnosia, they show relatively pre-
served comprehension from vision in that they
are able to appropriately mime object use for
items they are unable to name.9,36 It is also
difficult to attribute this spared comprehension
entirely to object ‘‘affordances’’ (actions biased
by the object shape) or preserved high-level
visuostructural information37 (although see
Hillis and Caramazza38 and Riddoch and
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Humphreys39). Patients with optic aphasia pro-
duce predominantly semantic and perseverative
errors in picture naming, along with a smaller
number of pure visual and other errors. This is a
very different pattern from that of patients with
visual associative agnosia, who tend to produce
visual errors in naming.40

In their study of optic aphasic patient JF,
Lhermitte and Beauvois9 conducted one of the
most thorough characterizations of recurrent
perseveration in naming. These authors drew
a distinction between horizontal and vertical
influences in naming errors, referring to an
error’s relationship to the current stimulus—
be it semantic, visual, or unrelated—and its
relationship to a previous stimulus or response,
respectively. More than 50% of JF’s errors in
naming pictures were perseverations (i.e.,
showing a vertical influence), with most of
them also showing semantic or combined visual
and semantic horizontal influences. Those of
JF’s errors that showed only a horizontal influ-
ence also tended to be semantic or combined
visual and semantic errors with fewer pure
visual errors. It should be noted here that the
terms horizontal and vertical should not be
confused with notions such as ‘‘paradigmatic’’
or ‘‘syntagmatic,’’ semantic relations that have
been discussed by other researchers (and refer to
similarity versus contiguity relations, respec-
tively, among stimuli).

The Plaut and Shallice model was pro-
posed to address this particular pattern of

horizontal and vertical influences in impaired
naming, a pattern that emerges in the model
from its basic learning mechanisms and how
these mechanisms interact with properties of
visual and semantic representations.34 Because
patients with optic aphasia do not appear to
have language impairments other than their
impaired visual naming, the model focused on
the visual recognition component of the nam-
ing task. The model touches on issues of
language processing, mainly in its inclusion of
semantic or comprehension processes.

Model Architecture

The architecture of the model that simulates
the recognition of visual objects is shown in
Figure 1. The overall organization of the model
consists of several different groups of units:
44 visual, 40 intermediate, 86 semantic, and
40 cleanup units. These groups were sparsely
connected to each other, with the visual units
connecting forward to the intermediate units
and the intermediate units connecting forward
to the semantic units. The semantic units con-
nect both forward to and backward from the
cleanup units, allowing feedback or recurrent
interactions.

Through training, the model learns to
generate the appropriate pattern of semantic
activity across the semantic units when input
representing a visual object is presented to the
visual units. Thus, prior to any damage, the

Figure 1 Architecture of the Plaut and Shallice34 connectionist model.
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model is set up to reflect the visual comprehen-
sion processes of non–brain-damaged, normal
participants. The intermediate units serve to
transform each visual input into an initial
pattern of activity across the semantic units
that then interact bidirectionally with the
cleanup units to arrive at the final correct
semantic pattern corresponding to the meaning
of the visual object and the model’s response.
Artificial visual and semantic representations
were generated for 40 common indoor objects
from the categories of kitchen objects (e.g.,
cup), office objects (e.g., pen), furniture (e.g.,
chair), and tools (e.g., saw). Each visual pattern
was distributed across 44 individual features
that were intended to represent high-level vis-
ual information critical for object recognition.
These patterns corresponded roughly to visual
structural descriptions,41,42 enhanced by infor-
mation about color, texture, size, and additional
general visual characteristics. Semantic patterns
were distributed across 86 semantic features,
28 of which represented information about an
object’s visual semantics (e.g., abstract versions
of the visual input features, including color,
texture, size, shape, and other general visual
characteristics), 2 representing the object’s
consistency (hard, soft), 8 representing the
material from which it is made (metal, wood,
cloth, and so on), 10 representing where it is
found (home, office, kitchen, bedroom, and so
on), 9 representing its general function
(cooking, eating, leisure, aesthetic, and so on),
22 representing its specific function (chopping/
cutting, measuring, container, and so on),
and 7 representing its general action (use
with one arm, use with two arms, and so on).
To better appreciate the numerical calculations,
understand that each visual and semantic
feature took an ‘‘on’’ or ‘‘off’’ value of 1 or 0
for each object (see Appendix B of Plaut and
Shallice34 for a complete feature listing).
Although these representations were clearly
not exhaustive of all of the information people
know about such objects, they were detailed
enough to capture basic visual and semantic
similarity relations among objects such that
similar objects tended to share more of the
same on and off values compared with
unrelated objects and were thus related by
similar numerical values.

Short-Term and Long-Term Learning

Learning is a critical feature of this and most
other connectionist models. Rather than di-
rectly stipulating the values of weights on con-
nections between groups of units, the model
learns on its own the appropriate weights that
ultimately allow it to map (to connect and
relate) visual input to semantic output. Learn-
ing in the model between each pair of con-
nected units j! i has two basic components:
(1) standard long-term weights, wij, that are
modified slowly over the course of training
through supervised error-correcting learning
and back propagation,43,44 and (2) short-term
weights, cij, that are modified through unsuper-
vised correlational learning and that decay pas-
sively toward zero with the processing of each
subsequent stimulus. The long-term and short-
term weights wij and cij jointly influence the
input to unit i at time t (denoted as xi

(t)) from
all units j that are connected to it through a
simple weighted sum:

x
ðtÞ
i ¼

X
j s
ðt�1Þ
j ðwij þ �c

½n�
ij Þ; ð1Þ

where sj is the activity state of sending unit j at
time t–1 that ranges continuously from 0 up to
1, � is a parameter that determines how
strongly the short-term weight contributes to
the total connection weight (set here to a small
value of 0.1), and cij

[n] refers to the current value
of the short-term weight that is recalculated at
the end of processing each stimulus n. Learning
of the long-term weights wij proceeds in the
following manner. Weights are initially set to
small, random values at the beginning of train-
ing. A visual input pattern is presented to the
visual units, and unit activities in subsequent
groups of units are updated iteratively (changed
progressively) as a function of their summed
inputs xj

(t), allowing activity to spread along the
weighted connections first to the intermediate
units and then to semantic and cleanup units
(see Appendix A of Plaut and Shallice34 for
more details). The semantic activity pattern
actually produced by the input pattern at each
time update is then compared with the desired
or ‘‘teacher’’ semantic pattern (discussed in the
previous section), and the resulting error signals
are then used to make small adjustments to all
of the long-term weights in the network to
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reduce the error. In other words, the semantic
patterns that were chosen by the researchers
help to guide or constrain learning of the
appropriate long-term weights in the model.
Gradually, after many presentations of each
training pattern, the model generates semantic
unit activities to within 0.1 of the correct values
at each unit for the all of the 40 objects.

In contrast to the learning of the long-term
weights, the learning of the short-term weights
cij depends on the recent correlations of unit
activities: There is no supervision of what is
actually produced compared with some target
activity pattern. In this sense, the learning in
the short-term weights is automatic and un-
supervised. If si and sj are the activity states of
units i and j at the end of processing stimulus n,
then the learning of short-term weight cij occurs
in the following way:

c
½nþ1�
ij ¼ �s0is

0
j þ ð1 � �Þc½n�ij ; ð2Þ

where s0 ¼ 2s – 1, which realigns unit
activities between –1 andþ 1 from 0 and 1 to
allow agreeing unit activities of 1¼ 1 or 0¼ 0
to cause positive weight changes and disagree-
ing unit activities of 0 6¼ 1 to cause negative
weight changes (intermediate activities of 0.5
cause no change). � is a parameter that deter-
mines how much the unit states for the current
stimulus n contribute to the new short-term
weight relative to the weight’s existing value
cij

[n]. The value of � used in the simulations was
0.5, implying that the weight changes due to a
particular stimulus would decay rapidly toward
0 over two to three subsequent stimuli. This
weight-change rule implements a simple form
of correlation (si

0 sj
0) that tends to reinforce the

current pattern of unit activity, ‘‘biasing’’ the
network’s current processing toward prior acti-
vation states when the same units are activated
again by the current stimulus. For example, if
units i and j were both activated by the previous
stimulus and the current stimulus reactivates
one of the two units, the positive short-term
weight cij will cause positive input to be sent to
the other unit (see equation 1), increasing its
likelihood of being active; similarly, if unit i was
active during the previous stimulus but unit j
was inactive, reactivation of unit i by the current
stimulus will provide negative input to unit j

through weight cij, biasing it to be inactive
again. We will see in the next sections that
this bias toward prior activity states by the
short-term weights is the critical factor that
leads to recurrent perseverations under damage
to the model’s connections (damage analogous
to the notion of ‘‘deafferentation’’ (Cohen and
Dehaene4).

Simulating Brain Damage and

Error Responses

As in other connectionist models of neuropsy-
chological impairments,29,31,32 brain damage in
the model was simulated by removing a fraction
of the connections between groups of units after
the training phase (for example, removing 30%
of the connections between intermediate and
semantic units). The model’s recognition per-
formance under damage was tested in two-item
sequences of prime-target pairs by presenting
each of the objects as prime and fully crossing
the primes with each object as target (for a total
of 40� 40¼ 1600 prime-target pairs). Further-
more, the presentation of each object as prime
was redone for multiple samplings of damage
to the model at each set of connections (visual
! intermediate, intermediate! semantics, se-
mantics! cleanup, cleanup! semantics) and
over a range of damage severities (from 5 to
70% of connections at each location). The
short-term weights were set to zero prior to
the presentation of each prime in the prime-
target pair, they were updated at the end of the
prime presentation, and they were held fixed
during the presentation of the target. The
model was taken to have made a recognition
response to the prime or target stimulus (be it
correct or an error) if the resulting semantic
unit states were sufficiently close to one of the
trained semantic patterns, defined by a correla-
tion or distance measurement across the seman-
tic units. Otherwise, the model was taken to
have produced an omission. If the model made
an overt response, the response was considered
correct if the generated semantic pattern was
closest to the correct trained pattern, and it
was considered an error if the generated pattern
was closest to a different trained pattern than
the correct one. Each error response to a target
stimulus could then be classified with respect to
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its horizontal relationship to the target (e.g.,
visual, semantic, combined visual and semantic,
or unrelated), and its vertical relationship could
be classified with respect to the prime response
(e.g., identical ¼ perseveration, semantically
related to the prime but not identical¼ co-
ordinate, or unrelated to the prime). It is im-
portant to reiterate that horizontal and vertical
here are in the terminology of Lhermitte and
Beauvois.9 The terms essentially designate the
temporal relationship between an error and a
stimulus, with horizontal referring to an error’s
relationship to the correct response to the
current stimulus and vertical referring to its
relationship to the response to a prior stimulus
(here, actually the immediately preceding prime
stimulus). They are different from and should
not be confused with notions of ‘‘paradigmatic’’
and ‘‘syntagmatic’’ semantic errors that have
been used in some previous analyses of semantic
errors.

Of the explicit error responses made by the
model across all of the different damage loca-
tions and severities, more than 90% shared a
semantic or combined visual and semantic hor-
izontal relationship to the stimulus (e.g., re-
sponding ‘‘spoon’’ to the stimulus fork) whereas
less than 8% were pure visual errors (e.g.,
responding ‘‘awl,’’ a pointed tool for making
holes in wood or leather, to the stimulus fork).
Errors with a perseverative vertical relationship
to the prime response accounted for approxi-
mately 29% of all errors, most of which also
shared a semantic or visual and semantic rela-
tionship to the target (e.g., responding ‘‘spoon’’
to the target stimulus fork when the prime
response was spoon). An additional 15% of
the errors did not share an exact perseverative
vertical relationship with the prime response
but were instead semantically related to
the prime (e.g., responding ‘‘fork’’ to the target
stimulus desk when the prime response was
spoon). This left slightly more than 50% of
errors sharing no vertical relationship to the
prime response at all, with most of these errors
sharing a semantic or visual and semantic
horizontal relationship to the target (e.g.,
responding ‘‘chair’’ to the target stimulus desk
when the prime response was spoon) (see Bayles
et al,45 for a similar error typology in persevera-
tion in Alzheimer’s disease—EDS).

Why Does the Model Make Semantic

and Perseverative Errors?

It appears then that, similarly to optic aphasic
patients, many of the errors that the model
makes in visual object identification following
damage are semantic errors on the current
stimulus or perseverations on the previous sti-
mulus, or both. What are the mechanisms in
the model that lead to this particular error
pattern? A critical concept in understanding
the functioning of this and other connectionist
models with recurrent feedback connections is
the notion of an attractor. When a visual pattern
is presented to the visual units, activity in the
semantic units changes over time. The initial
pattern of semantic activity generated by the
feed-forward pathway from the visual and in-
termediate units may be very different from the
final pattern. The semantic units interact with
the cleanup units to ‘‘clean up’’ the initially
noisy or inaccurate semantic pattern. The final
semantic states that result from the interactions
with the cleanup units can be referred to as
attractors, because the model will tend to be
pulled into these states when the initial seman-
tic states get close to them. The tendency to
clean up noisy initial patterns into a known
response is why the model tends to produce
actual complete responses under damage rather
than response blends or the semantic equivalent
of neologisms. The range of initial semantic
activities that will tend toward a final attractor
semantic state are often referred to as the basin
of attraction for that state. An idealized graphi-
cal depiction of this process is shown in
Figure 2 for three stimuli: chair, spoon, and
fork. This diagram depicts a geometric inter-
pretation of the settling process, in which any
given pattern of activity over a group of units
corresponds to a particular point in a high-
dimensional ‘‘state’’ space. Thus, visual and
semantic patterns would correspond to points
in spaces that have 44 and 86 dimensions,
respectively (although Fig. 2 depicts only two
dimensions for each). In each domain, the
points for similar (overlapping) patterns share
many coordinate values and hence are close to
each other. For instance, stimuli such as spoon
and fork are both visually and semantically
similar to each other but dissimilar to chair.
Notice that the points in vision and in
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semantics that correspond to spoon and fork are
closer to each another than they are to chair.
The arrows in the figure from vision to seman-
tics show the initial activity points in semantic
space generated by the feed-forward pathway
from the visual and intermediate units. The
semantic activity then moves along the jagged
arrows because of the interactions with cleanup
units to the final attractor state (shown by a
dark, filled point) that correspond to the exact
meaning of each visual object. The solid ovals
represent the basins of attraction for each
stimulus.

The long-term learning mechanisms of the
model are responsible for the development of
these arrows and attractor basins. Through
learning, the model has to form the basins in
such a way that it can correctly move from any
point to any other with the initial push from the
feed-forward pathway and the use of its seman-
tic-cleanup interactions, despite a bias to re-
main in the previous activity state, due partially
to the model’s attractor dynamics and partially
to the influence of the short-term correlational
weights in reinforcing the last activity pattern.
Correct performance requires the learning of

long-term weights that are strong enough to
push the model out of its previous attractor
state and into the attractor basin for the
new stimulus, overcoming the influence of the
short-term weights, which act like noise when
stimuli randomly follow one or another during
training. Indeed, the influence of the short-
term weights can be thought of as widening or
deepening the basin of attraction temporarily
for recent stimuli, shown in Figure 2 by the
dashed oval for spoon. For these particular visual
and semantic patterns, the learning pressures
are different than they would be if this model
were trained to recognize visual words, as was
the connectionist attractor network studied by
Hinton and Shallice.29 The reason is that
visually similar objects tend to be semantically
similar too, such as spoon and fork, whereas the
relationship between visual and semantic simi-
larity is relatively arbitrary and unsystematic for
visual words and their meanings.34 This means
that visual patterns representing similar visual
objects do not need to be separated into very
different initial semantic patterns by the feed-
forward pathway; they can be relayed with less
transformation. Similar visual objects will tend

Figure 2 Geometric interpretation of the Plaut and Shallice34 model settling into semantic attractors. Similar
visual patterns (spoon and fork) tend to arrive at similar initial points in semantic space that are then progressively
‘‘cleaned up’’ through interactions between semantic and cleanup units to their final semantic states. Solid ovals
in the semantic space define the basins of attraction for each object, and the dashed oval for spoon indicates the
expansion of the normal basin due to the short-term correlational weights (see text for details).

CONNECTIONIST APPROACHES/GOTTS, PLAUT 329



to project to similar initial points in semantic
space, as shown in Figure 2 for spoon and fork,
and their respective attractor basins will tend to
be close to one another compared with unre-
lated objects. In the event that two particular
objects are visually similar but semantically very
different, learning in the feed-forward pathway
will tend to separate the visual activity patterns
relatively early on in the pathway by developing
strong weights from the visual units that are
distinctive for the two objects (i.e., units that
have different activity states), because this small
number of units will have to override all of the
shared visual feature information that is nor-
mally useful at determining the semantics of the
objects.

When connections in the feed-forward
pathway are removed to simulate brain damage,
errors predominantly share a semantic or visual
and semantic horizontal relationship to the
target stimulus because the attractor basins for
objects that are both visually and semantically
similar are close together. The effect of damage
is to distort by some amount the initial pattern
of semantic activity for an object, potentially
allowing it to fall in a nearby attractor basin that
will be cleaned up to the exact meaning of a
semantically similar or a visually and semanti-
cally similar object. Thus, the model will tend
to produce semantic or combined visual and
semantic errors. It will be much less likely to
produce semantically unrelated or pure visual
errors because these attractor basins are much
further away from the correct basin than are
ones corresponding to semantic associates.
When connections between semantics and
cleanup units are damaged, the model produces
fewer explicit errors overall and more omis-
sions, because these are the connections that
implement the attractor dynamics and allow the
model to arrive at exact object meanings.
The explicit errors that the model does produce
under these circumstances similarly tend to be
semantic or combined visual and semantic
errors.

Damage leads the model to produce per-
severations on the response to the prime sti-
mulus for a couple of reasons. The first and
main one is that the short-term correlational
weights effectively lead to a wider and deeper
basin of attraction for the previous attractor

state. This makes it difficult to leave the pre-
vious attractor state, particularly when the cur-
rent stimulus is semantically or visually and
semantically related to the prime. If the prime
stimulus was spoon and the current target is fork,
the basin of attraction for fork may now overlap
partially with the enlarged basin for spoon
because of the short-term weights (shown in
Fig. 2 by the dashed oval), leading the model to
return to the attractor for spoon again. As in the
case of purely horizontal errors, perseverations
will also tend to share a horizontal semantic
relationship with the current target because of
the proximity of attractor basins for semantic
associates. Phrased more directly in terms of
unit activity, when the current stimulus shares
many of the same active semantic units with the
previous stimulus (as in the case of semantic
associates), the short-term correlational
weights from these shared features start to
reactivate units from the previous stimulus
that should be off for the current stimulus and
start to turn units off that should be on (see
equation 2 earlier), leading the additional inter-
actions between semantic and cleanup units to
return the model to the previous semantic state.
A second reason that the model may produce
perseverations on the immediately preceding
response is simply that it is less able to push
out of its previous attractor state with weakened
input resulting from damage to the feed-for-
ward pathway. However, if this were the only
reason that the model perseverated, then it
would be unable to produce truly recurrent
perseverations, those occurring after interven-
ing trials and responses. Although the model
was only assessed in two trial sequences of
prime and target stimuli, the slowly decaying
property of the short-term weight values (see
equation 2) across subsequent stimuli would
permit it to show perseverations after a small
number of intervening stimuli, with persevera-
tions becoming less likely with each intervening
stimulus (matching empirical characteristics of
recurrent perseveration4,5).

IMPLICATIONS AND LIMITATIONS
OF THE CURRENT MODEL
Although the Plaut and Shallice model34 is a
model of visual recognition and only touches
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directly on issues of language processing
through its inclusion of semantic processing,
it can account for many of the documented
characteristics of aphasic perseveration. Its de-
caying short-term correlational weights will
allow it to produce recurrent perseverations
following a small number of intervening stimuli
with fewer perseverations across longer de-
lays.4,5 It can also produce perseverations that
share a horizontal relationship with the current
target stimulus such as semantic ones,3,10 and
its tendency to produce perseverations will be
influenced by factors in training or testing,
such as stimulus repetition and lexical fre-
quency.5,15,35 These abilities to address char-
acteristics of aphasic perseveration imply that
similar mechanisms of learning, distributed
representations, and attractor dynamics may
underlie normal language processing. In other
words, recurrent perseverations in aphasia may
not reflect domain-specific language processes
but instead reflect domain-general learning
mechanisms that apply in both vision and
language alike. This is consistent with the
general connectionist approach to understand-
ing cognition46 that has attempted to show how
a small set of domain-general computational
principles can account for the richness of em-
pirical data from a variety of different cognitive
domains, including visual perception, attention,
reading, language, memory, semantic memory,
and working memory.

However, the Plaut and Shallice model34

in its current form has a couple of major
limitations that might undermine these conclu-
sions. The first is that it fails to explain why
some patients perseverate more than others. All
locations of damage in the model produce a
similarly high proportion of perseverations,
roughly 30 to 40% of all explicit error responses.
Although some patients exhibit rates of perse-
veration this high, such as the optic aphasic
patient JF9 or the aphasic patients EB5 and
CJ,35 most patients with language impairments
perseverate much less markedly. For example,
tasks like picture naming elicit average perse-
veration rates well under 5% of total errors
across patients from different aphasic cate-
gories.47 It is unlikely that this patient varia-
bility is explained solely by severity of
impairment. The second is that it is unable to

explain more recent empirical findings on apha-
sic perseveration,5,35 such as the demonstration
that perseverative responses following interven-
ing stimuli can be unrelated to their target
stimuli, instead reflecting the earlier sequential
and temporal proximity of the same stimulus
and response (i.e., if the response ‘‘fork’’ was
given the trial before or after the stimulus chair
on a previous occasion, the stimulus chair might
later elicit the response ‘‘fork’’ again). The
model is not able to form associations between
sequentially presented stimuli or responses be-
cause the short-term correlational weights are
updated only at the end of stimulus processing,
after any hint of the prior semantic state has
been pushed out by the processing of the
current stimulus. It should be noted that these
same limitations also apply to existing priming
theories of perseveration, which explain perse-
verations as a failure of the current stimulus to
override intact facilitatory mechanisms that
lead to behavioral priming effects in normal
subjects.4,10 Indeed, the Plaut and Shallice
model34 is really a particular form of priming
theory for which learning by the short-term and
long-term weights will lead to the same stimulus
being identified more rapidly and accurately
after stimulus repetition. So it appears that,
although connectionist models have the poten-
tial to provide deep insight into the mechanisms
of aphasic perseveration, they may also have
something to learn from their shortcomings in
accounting for the entire range of characteristics.

Gotts and colleagues5 outlined a remedy to
both of these limitations in appealing to the
possible neurophysiological and neurochemical
bases of recurrent perseveration (see also
McNamara and Albert48—EDS.). Several
researchers have suggested previously that
recurrent perseverations result from neuromo-
dulatory deficits and low levels of acetylcho-
line.49,50 Studies of the functional role of
acetylcholine in the brain suggest that it serves
to modulate the dynamics of cortical processing
and learning, making cells more sensitive to
bottom-up sensory signals by suppressing
feedback or ‘‘recurrent’’ signals (see Haselmo51

for a review). Under a cholinergic deficit, per-
severations will be produced because cells are
less sensitive to bottom-up sensory signals,
making it harder for processing of the current
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stimulus to override persistent neural activity
that is enhanced by stronger recurrent feedback.
Based on this view, the reason that some
patients might perseverate more than others is
that their brain damage may have affected
subcortical cholinergic fibers that provide the
brain with acetylcholine. Other patients might
produce perseverative errors at a much lower
rate because of a relative sparing of their neu-
romodulatory afferents. It is interesting to note
on this point that the patients mentioned earlier
who perseverated at high rates (such as JF and
EB) had white matter damage that could have
affected their cholinergic pathways (see Selden
et al52 for a review of the anatomy of choliner-
gic pathways). It is also possible to explain
temporal or sequential effects of stimulus pre-
sentation on perseverations through abnormal
learning that might occur under a neuromodu-
latory deficit. When feedback signals are strong
at lower levels of acetylcholine, neural activity
will effectively behave like the attractor dy-
namics exhibited by the Plaut and Shallice
model.34 As each new stimulus is presented, it
will have to drive neural activity out of the
previous state and into the correct new one. If
the neural representations of two stimuli are
coactive simultaneously as the new stimulus
drives the old one out, rapid correlational learn-
ing among the active cells throughout this
transition might allow the formation of inap-
propriate associations between sequentially pre-
sented stimuli (as in the fork and chair example
in the previous paragraph). When one of the
stimuli is presented again later, it might reacti-
vate the representation of the other stimulus,
producing a perseveration. This is not to say
that sequential or temporal contiguity effects
in learning are entirely abnormal. Indeed,
the automatic learning of temporal contiguity
is reflected in normal associative priming
effects53,54 (e.g., identifying butter can prime
knife) and is undoubtedly critical for normal
language and sequence learning. Nevertheless,
neuromodulatory deficits might explain the
marked and intrusive presence of such effects
in some patients.

What modifications would be needed to
the Plaut and Shallice model34 to implement
these properties of neuromodulation? First, it
would be necessary to specify more about the

relationship between connectionist models and
real neural processes. A recent model by Gotts
and Plaut55 serves as a reasonable starting point.
This model used a basic relationship between
connectionist models and biophysical models of
neural firing rate activity to suggest ways in
which connectionist models can be made to
incorporate neurophysiological and neuromo-
dulatory mechanisms. Each group of units in
the Plaut and Shallice model34 would represent
neural activity in anatomically distinct cortical
regions that are functionally specialized for
processing different types of information (e.g.,
the semantic units might represent neural ac-
tivity in anterior, inferior temporal lobes that
encodes semantic knowledge). The suppressive
effect of acetylcholine then might correspond to
a process that shuts down or suppresses inter-
actions between the semantic and cleanup units
that implement the model’s attractor dynamics.
Under a deficit of acetylcholine, attractor dy-
namics between the semantic and cleanup units
would be much stronger, occasionally dominat-
ing the visual input from the feed-forward
pathway. To account for the sequential effects
of stimulus presentation on perseveration,
short-term weights would have to be modified,
not just at the end of stimulus processing but
throughout processing. This would allow the
short-term weights to behave more like real
activity-dependent neural plasticity mechan-
isms (see Nelson et al56 for a recent review)
and would permit units activated by the current
stimulus to form associations with units that
were activated by the previous one, allowing
perseverations to show sequential or temporal
contingencies.

Importantly, the incorporation of neural
principles such as neuromodulation and how
it interacts with learning would not undermine
the model’s basic explanation of recurrent per-
severation. These errors would still result from
mechanisms of learning, distributed represen-
tations, and attractor dynamics. Instead, it
would raise new questions about the impact of
neuromodulatory mechanisms in language pro-
cessing. How do these mechanisms shape the
learning of representations in language and
other domains? As we explore further the work-
ings of connectionist models and bring them
more into alignment with our understanding of
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neural processes, they may provide useful reve-
lations into these questions, too.
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