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Abstract

People make both semantic and visual errors when trying to recognise the meaning of

degraded words. This result mirrors the ®nding that deep dyslexic patients make both seman-

tic and visual errors when reading aloud. We link the results with the demonstration that a

recurrent connectionist network which produces the meaning of words in response to their

spelling pattern produces this distinctive combination of errors both when its input is degraded

and when it is lesioned. The reason why the network can simulate the errors of both normal

subjects and patients lies in the nature of the attractors which it develops as it learns to map

orthography to semantics. The key role of attractor structure in the successful simulation

suggests that the normal adult semantic reading route may involve attractor dynamics.

q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Neuropsychology contains many `signature' phenomena, surprising patterns of

error that occur after an information processing mechanism is damaged. If the same
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pattern occurs when normal subjects process degraded stimuli then it is natural to

conclude that both patient and normal data re¯ect malfunctioning of the same

mechanism. This conclusion would be strengthened if the two patterns could be

linked by a common model in which lesioning (simulating the patient data)

produced qualitatively the same effects as degrading input to it (simulating the

normal data). If the computational model exhibits other qualitative characteristics

broadly in line with normal performance, then such a convergence provides

evidence that the cognitive system contains a mechanism which operates by a

related computational algorithm.

This paper demonstrates just such a link between errors in the identi®cation of

written words by normal subjects, neurological patients and a connectionist model.

This type of three-way link was ®rst established by Mozer, Behrmann, and collea-

gues in the context of neglect dyslexia. Lateralized damage to the attentional

mechanism of MORSEL, a connectionist model of word and object recognition

(Mozer, 1991) reproduced the pattern of word reading errors exhibited by neglect

dyslexic patients (Mozer & Behrmann, 1990), and a lateral bias on attention in the

normal model reproduced analogous effects on the latencies of normal subjects

when their attention was similarly biased (by underlining the ends of letter strings;

Behrmann, Moscovitch & Mozer, 1991). The current work establishes an analogous

convergence in the context of deep dyslexia. We begin by brie¯y reviewing earlier

work which established that lesions to a connectionist model which maps spelling

patterns onto semantics can account for both the semantic errors which are the

striking aspect of reading by deep dyslexic patients and the visual errors which,

surprisingly, accompany them. The key to the network's ability to simulate the

performance of patients is the structure of the attractors which it acquires as it learns

to map orthography to semantics. We then report experiments in which normal

subjects make both semantic and visual errors when searching for semantically

de®ned target words under degraded viewing conditions. In the third section we

demonstrate that the model which mimicked the patient data produces the same

effects if, instead of being lesioned, its input is degraded by being masked before a

response has been produced. In the ®nal section we show that the similarities of the

effects of damage and the effects of input degradation to the model are a result of the

computational principles of attractor networks. This leads to the conclusion that the

mechanism which identi®es words via their meaning in people has attractor

dynamics.

2. The co-occurrence of semantic and visual reading errors in deep dyslexia

Deep dyslexia is an acquired disorder in which patients make semantic errors in

oral reading. For example, a patient shown the word ILL read it as `sick' (Marshall

& Newcombe, 1966). Explanations of the syndrome are generally cast within

models of the reading system in which phonological and semantic routes from

print to sound can be distinguished. It is assumed that the phonological route(s)

used in normal oral reading are inoperative in the patients and they must rely on the
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semantic route. In addition, the semantic route is generally assumed to be impaired.

Deep dyslexics vary in where the impairment lies in the semantic route. In the

`input' variety reading comprehension is inferior to auditory comprehension

which points to the locus of damage being prior to the semantic system (see Fried-

man & Perlman, 1982; Shallice & Warrington, 1980).

In the literature on acquired dyslexia since 1973 over 50 patients have been

described who make semantic errors in reading. While the existence of semantic

errors is the cardinal symptom of deep dyslexia, it has been shown to occur with a set

of other symptoms. The ®rst is that these patients also make visual errors (e.g.

SCANDAL read as `sandals')1. A variety of other symptoms have been described:

greater con®dence in visual errors than in semantic errors; `surprisingly good'

lexical decision (Coltheart, 1980); the existence of visual-then-semantic errors

(e.g. SYMPATHY read as `orchestra'); better performance reading concrete (image-

able) than abstract words. (For a general discussion of deep dyslexia see Coltheart,

Patterson & Marshall, 1987; Shallice, 1988; Van Orden, 1987).

A theoretical explanation for the co-occurrence of these symptoms was provided

by Hinton and Shallice (1991) and by Plaut and Shallice (1993a) who investigated

the effects of damage to connectionist networks that mapped orthography to seman-

tics on the basis of the following computational principles:

(a) orthographic and semantic representations are distributed over separate groups

of units such that similar patterns represent similar words in each domain, but

similarity is unrelated between domains;

(b) Learning operates by adjusting weights on connections between units so as to

perform gradient descent in a measure of performance on the task of mapping

orthography to semantics;

(c) The process of mapping orthography to semantics in the trained system is

accomplished through the operation of attractors. In an attractor network, the

weights on connections between units cause particular patterns of activity to be

stable. When the network is placed in an initial state by an input the interactions

among units will cause the network to settle, over time, into the nearest stable

state. This state corresponds to its interpretation of the input.

The primary discovery by Hinton and Shallice was that, wherever the networks

were lesioned, the result was the co-occurrence of semantic errors (e.g. the input

string CAT producing the output `dog') and visual errors (e.g. the input string LOG

producing the output `dog'). That is, the lesioned network produced the same pattern

of errors as found in deep dyslexia2. Plaut and Shallice (1993a) went on to establish

the generality of these ®ndings across different network architectures and learning
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Caramazza (1990) who make semantic errors without visual errors. For discussion of these exceptional

cases see Plaut and Shallice (1993a).
2 Newton and Barry (1997) have argued that in deep dyslexia visual errors can arise from an unrelated

visual de®cit. But this is implausible in input deep dyslexics, where the errors occur more frequently on

words in the semantic categories which are most dif®cult for the patient to read (see Shallice &Warring-

ton, 1980); in other words the impairments at semantic and visual levels interact.



algorithms and to demonstrate that the full range of symptoms of deep dyslexic

patients described above arise when attractor networks are lesioned. But the funda-

mental ®nding from lesioning the attractor networks was the ubiquitous co-occur-

rence of visual errors and semantic errors following damage. The use of attractors

for performing the task was critical for obtaining the pattern of errors which

mimicked that produced by the patients. These errors occurred because damage to

the network altered the layout of the attractors in such a way that an input might be

captured by the attractor for a related word.

This co-occurrence is a consequence of the necessity to overcome the funda-

mental bias in connectionist networks to give similar responses to similar inputs.

This bias supports effective generalization in most domains (e.g. mapping ortho-

graphy to phonology in oral reading; see Plaut, McClelland, Seidenberg and Patter-

son (1996)), but is problematic when mapping between arbitrarily related domains

like orthography and semantics. Apart from morphological variants, words that

look the same do not tend to have similar meanings. Developing attractors for word

meanings can help a network overcome the detrimental effects of a bias based

towards similarity. Speci®cally, in an attractor network, visually similar words are

free to generate similar initial semantic patterns as long as these patterns fall within

different basins of attraction. The attractors serve to pull these initially similar

patterns apart into the appropriate distinct ®nal patterns. One consequence of

this solution, however, is that there is are regions in semantic space where neigh-

bouring attractors correspond to visually similar words.3 Damage may distort these

basins, occasionally causing the normal initial semantic pattern of a word to be

captured within the basin of a visually similar word. In other regions of semantic

space, neighbouring attractors correspond to semantically related words, and

damage may cause initial patterns of activation in these regions to give rise to

semantic errors. Essentially, the layout of attractor basins must be sensitive to both

visual and semantic similarity, and so these metrics are re¯ected in the types of

errors that occur as a result of damage.

If human word reading via meaning operates via attractors that are sensitive to

both visual and semantic similarity it is possible that, with appropriate presentation

conditions, normal skilled readers would, like deep dyslexic patients, exhibit visual
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3 It might seem counter intuitive that the attractor basins for two visually similar words can be nearby in

semantic space even though the words are semantically unrelated. The reason this is possible stems from

the geometric properties of high dimensional spaces (see Hinton and Shallice (1991), Appendix A). The

attractor patterns for two semantically unrelated words can be thought of as two random points in semantic

space. The natural region in this space for the attractor basins of the two words to be close together is about

halfway between the attractor points for the words. If this midpoint were closer to the attractor for another

word (and, hence, likely to fall within its basin) the network would have dif®culty avoiding errors. Hinton

and Shallice showed, however, that the likelihood that the midpoint between two random points in a space

is closer to any of a large number of other random points than it is to the original points becomes

vanishingly small as the dimensionality of the space increases. Thus it is relatively easy for the network

to shape the attractor basins of visually similar words so that they are nearby in semantic space without the

basins for other words getting in the way and causing errors.



and semantic effects in their reading behavior. The following experiments explore

this possibility.

3. The co-occurrence of semantic and visual errors by normal subjects
following rapid serial visual presentation of words

If a similar pattern of errors were shown by normal subjects with degraded input

as were made by patients the assumption might be made that the errors stemmed

from malfunction of the same mechanism, in one case as a result of damaging it, in

the other the result of giving it inadequate input. The predictable result that degraded

visual input leads to visual errors has been observed many times (e.g. Morton, 1969).

The suggestion that normal subjects reading brief masked words might, like deep

dyslexic patients, also produce errors which were semantically related to the stimuli

was ®rst made by Allport (1977). However, the conventional masked words para-

digm is not ideal for the demonstration of semantic errors. A trial typically consists

of a single word followed by a mask. Any semantic errors which are generated are

unlikely to be orthographically or phonologically related to the stimulus. So poten-

tial semantic paralexias might be rejected by a postperceptual editing process

because they did not ®t some of the letters which had been detected. To investigate

the production of semantic errors following brief masked presentation it is necessary

to use an experimental paradigm where the role of recognised letters in checking

candidate responses is minimized.

We required subjects to perform a semantic search among words presented under

conditions of rapid serial visual presentation (RSVP). In this technique a string of

words is presented successively, at the same spatial location, each for too short a

time to be clearly identi®ed. The subject must report whether any word satis®es a

pre-speci®ed semantic criterion. Phenomenologically the presentation conditions

create a dense, confusable, and continuously changing set of visual traces at the

letter level. Although the viewer gets a jumbled impression of both letters and

words, it is dif®cult to use letter-level information to guide or monitor word-level

report because it is dif®cult to tell when the various traces occurred. For example, the

belief that you had seen the word DOG would not necessarily be ruled out by the

belief that there was an initial C because that might have occurred in the previous or

subsequent letter string.

Since we wished subjects to access semantics with visual information (to mimic

the use of the semantic route by deep dyslexic patients) we employed a procedure

which should reduce the possibility of phonological semantic access (see Van

Orden, 1987). We used a rate of presentation faster than standard speech input

and we included polysyllabic words since rapid online phonological accessing of

semantics using all phonemes in parallel seems likely to be limited to single syllable

words. Finally, the use of a paradigm in which targets are separated from the back-

ground words in terms of semantic ®elds rather than on the basis of phonology

makes the Orthographic ! Semantic mapping for the target less subject to inter-

ference than the Orthographic ! Phonological ! Semantic mapping.
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3.1. Experiment 1

3.1.1. Method

3.1.1.1. Subjects These were 20 people aged between 20 and 40 years selected

from the subject panel of the MRC Applied Psychology Unit.

3.1.1.2. Stimuli Subjects viewed a list of words presented under RSVP conditions.

Their task was to identify any word satisfying the semantic criterion `things not

normally found inside a house'. Words meeting this criterion were selected from a

wide range of semantic categories. For example, targets included aeroplane,

manure, wolf, pier and meadow. This criterion produces a very wide ®eld of

potential targets, so an error produced at random is unlikely to be semantically

related to the target. This makes the detection of real semantic errors possible.

The non-target words in the list were the names of things which would commonly

be found in a house. They were roughly matched for word length (four to nine

letters) with the targets. They also fell in many different semantic categories. For

example, background items included cat, chocolate, scissors, earring, and parsley.

Each list contained between 15 and 25 words. There were either one or two targets

in each list. A target never appeared in the ®rst ®ve or last ®ve words in the list but

was equally likely to appear in any other position. There was a pool of 240 back-

ground words. A random selection from these was made up on each trial to provide

the required number of ®ller items. Background words were repeated at random

across trials, but never occurred twice in the same list.

3.1.1.3. Procedure Prior to the experimental session subjects were given practice

at the task. Subjects received 12 lists with the interword interval (IWI) gradually

decreasing from 1 s to 160 ms. This was followed by 16 practice trials at 160 ms. The

experimental session consisted of 100 lists with an interword interval of 160 ms.

List presentation lasted 3±4 s followed by an intertrial interval of about 10 s.

Subjects reported any target or partial information about possible targets verbally to

the experimenter. They were given no feedback about the accuracy of their reports.

The words were displayed on an Electronic Visuals oscilloscope driven by a

Cambridge Electronic Design computer. They were composed of upper case letters

generated from a 9 £ 5 dot matrix. The system took approximately 1 ms to display a

®ve-letter word. The oscilloscope display was refreshed at 20 ms intervals. Subjects

were seated roughly 80 cm from the display: a ®ve-letter word occupied about 38 of

visual angle. The background illumination of the room was very dim: the characters

appeared bright against a blank screen.

3.1.2. Results and discussion

Sixty-one percent of targets were correctly identi®ed. To the remaining targets

subjects either made no response or they reported a word which had not been

presented. The errors could re¯ect the pickup of visual information from background

words (or the target), or semantic information from the target word. The aim of the
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initial analysis was to separate those errors which appeared to be in¯uenced primar-

ily by visual information before testing the remaining errors for evidence of the

in¯uence of semantic information derived from the target word.

An error response was classi®ed as a candidate Visual error if it had only one

letter different from any background item on the trial (e.g. `bomb' given as a

response to a list containing the word COMB), or if it contained a block of four

or more consecutive letters in common with any background item (e.g. `antelope'

given as a response to a list containing ENVELOPE). An error response was classed

as a candidate Mixed Visual and Semantic error if it had three or more consecutive

letters in common with the target or differed overall by no more that one letter.

(Different criteria were used to take into account the differing baseline probabilities

of a response being visually similar to any item in the list compared to its being

similar speci®cally to the target.)

Fifty-®ve error responses were produced. Of these four were eliminated because

they were not outdoor objects, 15 were classi®ed as Visual errors and two were

candidates for Mixed Visual and Semantic errors. This left 34 errors without a strong

visual relation to any word in the list for the semantic relatedness analysis.

3.1.2.1. Semantic errors The non-visual errors and the targets on the trials when

they were produced are given in the Appendix A. Inspection of these shows many

immediately striking examples which suggest semantic links between target and

response: DEER produced the response `stag'; CLOUD produced `helicopter';

SNOW produced `to do with storms, weather' and so on. Convincing as such

examples may seem, the probability of two words drawn at random from the

English language appearing to have a semantic relation is not negligible (see Ellis

& Marshall, 1978; Williams & Parkin, 1980). It is therefore necessary to establish

what the chance rate for semantic relatedness would be between our stimuli and the

putative semantic error responses, and to test the rate found in the experiment

against this.

Each error produced in the experiment was paired with the target(s) which

appeared on that trial (e.g. deer ± stag) and was also randomly paired with one of

the other targets which had produced an error (e.g. cloud ± stag). The lists of target 1
error pairs were given to judges who were given a rough outline of the experiment.

They were told that half the word pairs on the list were errors generated in the

experiment and half were random reassignments of errors to stimuli. Their task

was to classify the semantic relatedness of each pair into one of the four categories:

Very Close, Close, Possible or None. The classi®cation pattern of the randomly

assigned pairs gives a measure of the degree of semantic relatedness which might

occur by chance. This pattern can be compared with that obtained from pairings

produced by subjects in the experiment. Table 1 shows the ratings pooled across four

judges for the semantic relatedness of the real target 1 error pairs and the random

stimulus response pairings. Semantic relation between target and error was far more

likely for pairs obtained in the experiment than would be expected by chance

(x2 � 40:1, P , 0:001). (This value was calculated pooling the scores for Very

Close, Close and Possible as evidence of semantic relatedness, and contrasting
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this with Not. The same conclusion is reached if the division is made between Very

Close and Close versus Possible and Not.) We may conclude that people produce

error responses which are semantically related to the targets when they try to identify

the meaning of words under conditions of Rapid Serial Visual Presentation. This

echoes the ®nding by Potter and Lombardi (1990) that words which have been

primed by prior presentation may be reported when a semantically related word is

presented in an RSVP string.

3.1.2.2. Visual errors Fifteen putative visual errors were observed. Despite the

strict criterion - four or more consecutive letters in common between stimulus and

response or only one letter different ± it is possible that they might arise from a

response being visually similar to one of the words in a list by chance rather than

from a visual misidenti®cation process. The procedure of Ellis and Marshall (1978)

of random reassignment of error responses to stimuli was followed, and then visual

similarity was assessed with the criteria previously adopted for visual similarity to

background items. Random reassignment of the errors pairs produced four

pseudovisual errors by comparison with the 15 errors generated in the

experiment. Real Visual errors are signi®cantly more frequent than pseudovisual

errors (McNemar Test, P , 0:001). They are therefore a real phenomenon not an

artifactual effect of chance association.

3.1.2.3. Mixed errors Too few putative Mixed Visual and Semantic errors

occurred to allow analysis of this error type.

3.1.3. Conclusion

Subjects were exposed to a rapidly changing string of words and tried to report

any which fell into a particular semantic category. With a display in which it was

dif®cult to use letter-level information to check responses, they produced both

semantic errors and visual errors. That is, they reported seeing words which were

not there, but which were related either semantically or visually to those that were.

Thus, normal subjects produced an error pattern with the degraded input conditions

produced by RSVP that is qualitatively similar to that produced by deep dyslexic

patients.
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Table 1

The probability of a target-response pair being rated as having a given degree of semantic relatedness in

Experiment 1 (Section 3.1). Results are given for experimentally obtained responses and for random re-

pairing of these with the targets

Experiment Random re-pairing

Very close 0.29 0.05

Close 0.21 0.04

Possible 0.26 0.18

Not 0.24 0.72



3.2. Experiment 2

In Experiment 1 (Section 3.1) the inter-word interval was set at a level where pilot

experiments suggested people were just beginning to be unable to perform the task

of search for semantically de®ned words under RSVP conditions with certainty. In

Experiment 2 we explored the generality of this result by testing whether the

phenomenon revealed in Experiment 1 (Section 3.1), the co-occurrence of visual

and semantic errors, would continue to occur across a range of stimulus durations,

down to a point where the task could hardly be performed at all.

3.2.1. Method

3.2.1.1. Subjects There were 15 subjects taken from the Oxford University

Psychology Department panel, age range 20±48.

3.2.1.2. Stimuli These were the same as those used in Experiment 1 (Section

3.1.2). There was only one target per list.

3.2.1.3. Procedure The procedure was the same as Experiment 1 (Section 3.1.3)

except that in the practice phase the inter-word interval was reduced in steps of 100

ms from 1000 to 300 ms and then in steps of 20 to 100 ms. The experimenter then

calculated the stimulus duration at which an individual subject started to miss

targets. If this was T ms, the subjects was then run with inter-word intervals of

(T-40), 0.75(T-40) and 0.5(T-40) ms. The three conditions produced median inter-

word intervals across subjects of 156, 112 and 75 ms respectively. Then they were

shown 20 lists at each of the three durations. The order of presentation of the three

conditions was randomised across subjects.

3.2.2. Results

Table 2 shows overall performance at the different stimulus durations. Naturally

the probability of detecting the target falls as the stimulus duration is reduced,

although even at a median presentation rate of about 12 words per second 20% of

the targets were identi®ed. As performance fell both errors and omissions (trials on

which the subjects made no response) increased by a roughly comparable amount.

There were 27 errors at 156 ms, 49 at 112 ms, and 92 at 75 ms. The increased error

rate at shorter stimulus durations is reliable across subjects by the Wilcoxon test
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Table 2

Performance in Experiment 2 (Section 3.2) as a function of stimulus duration

Stimulus duration (ms) P(correct) P(omission) P(error)

75 0.23 0.44 0.33

112 0.45 0.37 0.18

156 0.60 0.30 0.10



(P(error) at 112 ms . P(error) at 156 ms, T � 15:5, P , 0:01; P(error) at 75 ms .
P(error) at 112 ms, W � 15, P , 0:01).

The increase in error rate as stimulus duration is reduced is, on some theories,

surprising. On one traditional view of information processing, as represented by

the logogen model (Morton, 1969) for example, stimulus information integrates

over time until a threshold is exceeded. A response is then produced. When the

stimulus duration is reduced to one at which there is insuf®cient evidence to

produce a response on every trial the expected result would be fewer responses

of any sort. That is, as stimulus duration reduces it would be expected that omis-

sions would rise and responses, whether correct or erroneous, would fall.

3.2.2.1. Visual errors The same procedure was used for classifying errors as

Visual (i.e. four letters in common with a background or target word, or only one

letter different) as in Experiment 1 (Section 3.1). This accounted for 9, 12 and 14 of

the errors at 156, 112 and 75 ms, respectively. In each case the number of visual

errors found in the experiment was greater than expected by chance using the rate of

production of pseudovisual errors produced with the same stimuli and background

items as in Experiment 1 (2, 3.4 and 5, respectively) (x2 � 26:4, 23.4 and 17.4.

respectively, P , 0:001 in each case).

3.2.2.2. Semantic errors This left 19, 37 and 78 errors at 156, 112 and 75 ms. As

before there were a number of striking errors, suggesting an in¯uence of the

semantic ®eld of the target word on the response: CHURCH produced the

response `steeple', SAND produced `beach', SPIRE produced `Nelson's column'.

The errors were assessed for semantic relatedness to the target word using the same

4-point scale as in Experiment 1 (Section 3.1). Table 3 shows the proportion of

errors falling in each of the semantic relatedness classes, for the three judges. Using

the assessments of the random pairings in Experiment 1 (Section 3.1) as the basis for

the number expected in each category by chance with this stimulus set there was

positive evidence of semantic in¯uence of target on response at 75 ms (x2 � 13:3,

P , 0:001) and at 112 ms (x2 � 16:6, P , 0:001) but not at 156 ms (x2 � 2:19,

n.s.)4. The failure to ®nd a semantic relatedness effect in the condition which is

closest to Experiment 1 (Section 3.1) in terms of stimulus duration and percent
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Table 3

The probability of a target-response pair being rated as having a given degree of semantic relatedness in

Experiment 2 (Section 3.2) at three stimulus durations

Stimulus duration

156 ms 112 ms 75 ms

Very close 0.00 0.05 0.05

Close 0.00 0.22 0.14

Possible 0.42 0.30 0.29

Not 0.58 0.43 0.52



correct performance is surprising. However, since Experiment 1 (Section 3.1) was

based on a sample six times the size of the one here we will assume that the result of

Experiment 1 (Section 3.1) is correct.5

3.2.3. Conclusions

The three experiments with normal subjects show that over a range of stimulus

durations which give a probability of target detection from about 0.6 to about 0.25

the probability of both omissions and errors increases as the probability of target

detection decreases. Across this range of stimulus duration the errors which subjects

produce are related to both the visual and semantic characteristics of stimulus words.

4. The co-occurrence of semantic and visual errors in a connectionist model
following brief masked presentation

The co-occurrence of semantic and visual errors in deep dyslexic patients and in

normal readers trying to identify the meaning of words under degraded viewing

conditions supports the view that the data from patients re¯ect the malfunction of a

mechanism used in normal reading. Since the patient data has been mimicked

successfully with a model in which orthography is mapped to semantics via attrac-

tors (Plaut & Shallice, 1993a) it might seem appropriate to model the semantic route

in normal reading in the same way. It would then become necessary to demonstrate

that a network which exhibits the deep dyslexic error pattern when damaged will

also produce the co-occurrence of error types in normal operation when inputs are

presented too brie¯y to be processed accurately.

Ideally, the network would perform the same task on stimuli presented as they

were to the human subjects. However, the networks trained by Plaut and Shallice

(1993a) can only process one word at a time so a direct analogue of the RSVP task is

not possible. Also the network does not have the attentional and control mechanisms

necessary for maintaining an ad hoc semantic category to de®ne targets (`things not

found indoors'). However, we assume that the main limitation to identifying words

under RSVP conditions is that the time available to process each item is insuf®cient

to guarantee correct identi®cation, and that the subsequent word serves as a visual

mask for the previous word. So we used a mode of stimulus presentation that
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semantic relatedness, and contrasting these with Not. The same conclusions are reached if the division is

made between Very Close and Close versus Possible and Not.
5 To check this conclusion we ran a replication of Experiment 1 (Section 3.1) (i.e. an experiment with a

®xed IWI of 160 ms) with a new group of 16 subjects and some minor changes in procedure. There was an

overall probability of target detection of 0.48. There were 96 errors of which 52 were classi®ed as Visual

and four were eliminated as they were not in the appropriate semantic class. The remaining 40 were tested

for semantic relatedness to the target using the same technique as in Experiment 1 (Section 3.1). The

number of semantically related responses produced in the experiment was signi®cantly greater than would

be expected by chance (x2 � 17:4, P , 0:001).



approximated the effects of RSVP on individual stimulus items ± naming under brief

masked exposure, where the mask consists random combinations of letters which

can be interpreted as a proxy for the integrated orthographic representations of non-

target words.

4.1. Method

4.1.1. Network and task

The network mapped from orthography to semantics to phonology (see Fig. 1). As

there is no direct mapping between orthography and phonology, the model repre-

sents reading by the semantic route alone. Sets of 40 hidden units were present

between orthography (28 grapheme units) and semantics (68 sememe units) and

between semantics and phonology (33 phoneme units). There was full bidirectional

connectivity between adjacent layers of units, as well as between units within the

grapheme, sememe, and phoneme layers. During processing, each unit adopted a

real-valued activation between 21 and 11 which was a monotonic, non-linear

(logistic) function of its summed weighted inputs from other units. The network,

input and output representations, learning algorithm and training procedure were the

same as employed in the Deterministic Boltzmann Machine simulations of Plaut and

Shallice (1993a).6 The Deterministic Boltzmann Machine was used because this has

a ®ne time grain so it is possible to adjust mask and target durations precisely to

produce any desired level of performance.

The network was taught a set of 40 words, eight each in the semantic categories

indoor objects, animals, body parts, foods, and outdoor objects. All words contained
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Fig. 1. The network used in the simulations. Ovals represent groups of units, and arrows represent full

bidirectional connectivity within or between these groups.

6 They are described in detail in Section 4.1 and Appendix 1 of that paper.



three or four letters, with a restricted set of letters being used in each letter position.

This limited the number of alternative letters in the four possible letter positions to a

total of 28. Semantics consisted of 68 features intuitively generated to ®t the seman-

tic characteristics of the 40 words. Each word was represented by a positive value on

a subset of these features. On average a word had 15 positive features out of the

possible 68. The phonological representation of a word was speci®ed in terms of 33

position-speci®c phoneme units.7

4.1.2. Stimulus presentation

To implement brief masked exposure, a word was presented to the network for a

®xed number of iterations and then replaced by a random mask for ten iterations. In

the mask each grapheme had a probability of 0.12 of being active. This was equal to

the probability of a grapheme being active averaged across the whole stimulus set.

After the mask was removed all units in the network continued to update their states

until the settling process had reached asymptote.

4.2. Results

Table 4 shows the performance of the network, with the probabilities of correct

response, omissions and errors at different numbers of iterations before the mask

was applied, corresponding to successively longer stimulus durations. Each set is the

average result across 50 runs using a different random mask, where each word in the

stimulus set was presented once per run. The P(correct) column shows how well the

network performed. Naturally the longer it was allowed to settle before the mask

was clamped to the input in place of the stimulus word the better was its perfor-

mance. The output was categorized as an Omission if for any phoneme position no

phoneme was activated above the threshold. The output was classed as an Error

when one phoneme was activated in each position but at least one of these did not

correspond to those in the correct response.8
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7 The words, semantic features and phonological representations are the same as those used by and

listed in Plaut and Shallice (1993a).
8 Averaged across stimulus duration and error type the error response is also the best match at the

semantic level on 99% of trials. Thus the results are not dependent on using `reading aloud' as the

behavioural task for the network.

Table 4

Performance of the network as a function of stimulus duration

Stimulus duration P(correct) P(omission) P(error)

5 0.02 0.43 0.55

15 0.13 0.46 0.41

30 0.39 0.31 0.30

50 0.64 0.19 0.17

70 0.90 0.04 0.06



4.2.1. Error classi®cation

When the network produced a error it was almost always one of the words it

learned during the training phase (the maximum rate of responses which were not in

the training set was 0.2%). Following the system used by Plaut and Shallice (1993a)

the errors were categorized into four types.

² Visual: responses that were visually (but not semantically) similar to the stimulus

(e.g. CAT ! `cot'). They had at least one letter in the same position as in the

stimulus but the response came from a different semantic category from the

stimulus.

² Semantic: responses that were semantically (but not visually) similar to the

stimulus (e.g. CAT ! `dog'). They were words from the same semantic cate-

gory as the stimulus, without any letter in the same position in stimulus and

response.

² Mixed: responses that were both visually and semantically similar to the stimulus

(e.g. CAT ! `rat'). They were words from the same semantic category as the

stimulus with at least one letter in the same position.

² Unrelated: responses which came from the stimulus set but fell into none of the

three categories above (e.g. CAT ! `dune').

4.2.2. Comparison with chance error rate

The frequencies of error types are shown in Table 5 for ®ve different stimulus

durations. If the model were to produce responses from the training set at random

they would fall into one of the error categories. The base rate for error types which

would be found if the model produced random responses was computed by pairing

each word in the training set (treated as a stimulus) with each other word in the

training set (treated as a response), and seeing how many of these random pairings

fell into each error category. According to this calculation, the chance rates of each

error type are: Visual, 30%; Semantic, 12%; Mixed, 6%; Unrelated, 52%. After ®ve

iterations the stimulus has had very little effect on the network and the proportions of

errors are those which would be expected by chance ± Visual 29%; Semantic 14%;

Mixed 7%; Unrelated 49%. By 15 iterations the stimulus has started to in¯uence the
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Table 5

Performance of the network when presented with a brief input followed by a mask. The table shows the

percentage of correct responses at each stimulus duration. The errors are shown as the percentage of those

occurring which fell into each classi®cation

Stimulus duration (iterations) % Errors by type

Visual Semantic Mixed Unrelated

5 29 14 7 49

15 26 30 15 31

30 12 50 18 20

50 10 67 14 8

70 10 70 15 3



outcome of the network before the imposition of the mask, and the pattern of errors

has begun to deviate from chance.

The question is whether the nature of the stimulus ± its orthographic structure and

the semantic class it came from ± in¯uenced the error responses produced during the

simulation. Were the error types which involve a relationship between stimulus and

response (Visual, Semantic or Mixed) produced more frequently than would be

expected given the base rate for their occurrence? This can be determined by taking

the ratio of the rate of occurrence of a particular error type to the rate of Unrelated

errors and comparing the ratio produced in the simulation with that expected by

chance. Thus, for example, in the 50 iteration condition, Semantic errors are 8.4

times more frequent then Unrelated errors (i.e. 67%/8%). Their expected ratio by

chance is 0.23 (12%/52%). Clearly, in this condition, Semantic errors are more

frequent than would be expected by chance.

The ratio of Semantic errors to Unrelated errors was 0.97, 2.5, 8.4 and 23.3 for

exposure durations of 15, 30, 50 and 70 iterations, respectively. In each case these

values are reliably higher than the value of 0.23 which would be expected if Seman-

tic errors occurred by chance (x2 $ 260; P , 0:001 in each case).

Visual errors would be expected to occur by chance on 0.57 (30/52) times as many

occasions as Unrelated errors. They occurred on 0.84, 0.6, 1.3 and 3.3 times as many

occasions at the four exposure durations. All but the 30 iteration value are signi®-

cantly more frequent than would be expected by chance (x2 � 16:9 (P , 0:001);

x2 � 0:3 (P . 0:05); x2 � 7:9 (P , 0:01); x2 � 10:1 (P , 0:01), respectively).

Thus whether Visual errors occur signi®cantly more often than would be expected

by chance depends on exposure duration.

Mixed errors also occur more frequently than would be expected by chance. By

chance they would be expected to occur on 0.12 (6/52) as many occasions as

Unrelated errors: in fact they occurred on 0.48, 0.9, 1.8 and 5 times as often at

the four exposure durations (x2 $ 120; P , 0:001 in each case).

4.3. Conclusion

The critical ®nding is that, whatever the stimulus duration, there is a higher rate of

Semantic and Visual errors than would be expected by chance. This mimics the

®nding in the experiments with normal subjects. The pattern of errors resulting from

presentation of brief masked stimuli to the undamaged network is qualitatively

similar to that which occurs when the network is lesioned and presented with

unmasked stimuli. In both cases the relative proportions of Visual and Semantic

errors varies between conditions, stimulus duration in one case, lesion site or magni-

tude in the other. Lesions close to the graphemic units produce more Visual errors;

lesions close to the sememe units produce more Semantic errors (Plaut & Shallice,

1993a). In the simulation reported in this paper the relative proportion depends on

the stimulus duration before the mask. After 15 iterations Visual and Semantic errors

are produced in roughly equal proportions; after 70 iterations Semantic errors

outnumber Visual 7:1.

A second ®nding is that when a stimulus is input brie¯y to the network and
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followed by a pattern mask before it has produced a response, failure to make the

correct response leads to both omissions and errors, and that the rate of both

increases as overall performance drops from 90% correct to 13% correct. This

mimics the performance of normal subjects over a range of stimulus durations

giving correct performance ranging from 60±20%.

5. General discussion

Deep dyslexic patients, who are assumed to read by the semantic route in isola-

tion, make both semantic and visual errors when reading aloud. Normal subjects also

make both semantic and visual errors when trying to identify the meaning of words

under degraded input conditions which were intended to make them rely primarily

on the semantic route. A connectionist model which maps the spelling patterns of

words onto their meaning produces this pattern of errors both when it is lesioned

(simulating the patients) and when it is presented with degraded input (simulating

the normal subjects). This suggests that the cognitive system contains a mechanism

which operates on a related principle to that of the model.

It should be acknowledged that the model incorporates a number of simpli®ca-

tions and approximations relative to the situation for human subjects. The model

contains no implementation of early perceptual processes (prior to orthographic

input) or later articulatory processes (subsequent to phonological output). It also

does not contain the memory, attentional and control mechanisms required to carry

out the task of reporting members of an ad hoc semantic category under RSVP

conditions. Our approximation of RSVP by naming under brief masked exposure

thus does not incorporate errors due to failures of these processes. It also does not

permit in¯uences from preceding words in processing the current word (although

see Becker, Moscovitch, Behrmann and Joordens (1997); Masson (1995); Plaut and

Booth (1999); Plaut and Shallice (1993b) for ways in which such perseverative

in¯uences can be instantiated in attractor networks). Finally, the 40-word vocabu-

lary of the model is, of course, vastly reduced relative to that of the subjects. These

approximations leave open the possibility that factors outside the implemented

model contribute to the error pattern shown by normal subjects and by brain-

damaged patients. The fact that, despite these limitations, our model provides a

good approximation of both normal and impaired performance suggests that it

captures the critical principles underlying human performance in these contexts.

5.1. Attractor basins

The key to understanding why the model produces the `signature' error pattern

(the co-occurrence of visual and semantic errors) both when it is lesioned and when

it is given inadequate input to produce a correct response lies in the nature of the

attractor basins which are created as it learns to map orthography to semantics. In a

feed-forward connectionist network (that is, one without recurrent connections) the

output is determined by a single computational pass, triggered by the input pattern,

through the weighted connections. In contrast, in a network with recurrent connec-
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tions, activity continues to pass between units for several processing cycles after

activation has been initiated by processing of the external input. Thus the ®nal state

of the network will not necessarily be that produced by the initial processing of the

external stimulus. However, only certain states (i.e. patterns of activity across the

units) are stable in recurrent networks. Whatever state arises initially in the network

following an input, the interactions between units as activity cycles around the

recurrent connections will cause the system to move towards one of the stable

patterns. Consequently, these are known as attractors. If the learning phase has

been successful the state corresponding to the semantics of each word in the input

set will have its own attractor. The set of states which eventually settle to a given

attractor pattern is known as its basin of attraction. If the state of the network ever

enters a basin, further processing (changes produced by activity circulating in the

recurrent connections) will take the state of the network towards that represented by

the attractor.

5.2. Mapping orthography to semantics

As discussed in the introduction, connectionist networks have a fundamental bias

to give similar responses to similar inputs. This is the basis of their ability to

generalise, that is, to produce plausible responses to novel inputs. But the similarity

bias is problematic in tasks like mapping orthography to semantics where the rela-

tionship between input and output is arbitrary. The initial response of a network to

visually similar words will be to generate similar semantic patterns. As visually

similar words are not usually related in meaning, the similar initial states generated

by visually similar words must be separated into the dissimilar patterns correspond-

ing to the dissimilar semantics of the words. Developing attractor basins within

semantic space allows the network to do this. Changes caused by subsequent proces-

sing with the recurrent connections can cause initially similar patterns to become

distinct as the state of the system moves within a basin to its attractor.

Fig. 2 illustrates the behavior of the model as orthography is mapped onto seman-

tics in terms of trajectories through semantic state space. At any instant, the current

state of the system (the pattern of activity in the semantic units) is represented as a

point in this space (with a position shown in the horizontal and depth dimensions).

The height of the point represents the energy of the state ± the degree to which it

violates the constraints imposed by the input and the network's knowledge. (Energy

is the inverse of how good the state is as an interpretation of the input). The energy

values for every possible pattern of activity form a surface in state space. As activa-

tion passes around the recurrent connections and the network settles in response to

an input, the point corresponding to the current pattern of semantic activation moves

downhill on this surface. This is represented by the paths of the solid lines.

The effect of the orthographic input takes time to diffuse into the network and

in¯uence semantics, so the trajectories all start along a similar path. Once orthographic

in¯uence starts to have an effect, the trajectories following the input of visually similar

words likeDOGorLOG remainsimilar andunlike that following the input of avisually

dissimilar word such as CAT. The network must learn to overcome this effect of visual
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similarity inorder toderive thecorrect semantics for theword.The trajectory following

the input DOG must end up close to that following the input CAT and far from that

following the input LOG. This is accomplished by adjusting the connection weights ±

and thus the basins in the energy landscape ± so that the initially similar trajectories for

visually similarbut semanticallyunrelated wordsarepulledapartandeventuallyarrive

at distant attractors. The attractor basins for any given word must at some point

approach the basinsofvisually related wordsandatothers thoseofsemantically related

words. Thus, for example, some parts of the DOG basin must be close to the LOG basin

while other parts must be close to the CAT basin. This is the key feature of the model

which ensures that it will produce a combination of visual and semantic errors follow-

ing either input masking or lesioning.

5.3. The co-occurrence of visual and semantic errors

An orthographic mask drives semantic activity in a direction unrelated to that

produced by the stimulus word. As a result, the normal trajectory in semantic space

begins to be de¯ected from the point reached when the mask comes on. The crucial

point is that the effect of the mask is to de¯ect the trajectory in state-space, not to

cause it to jump to a new, random position.9 The de¯ection, shown by the dashed
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Fig. 2. Hypothetical trajectories in the semantic state space of the system resulting from input of the

words DOG, LOG, and CAT. The solid lines show the trajectories following normal, unmasked presenta-

tion of the word. The dashed lines show how the trajectory following DOG might be affected if the

stimulus was replaced by a mask at two different times after stimulus onset.

9 Fig. 2 is somewhat misleading as it shows the mask de¯ecting the trajectory of the network state over a

®xed energy landscape. In fact, the network state always follows the direction of steepest descent; the mask

de¯ects the trajectory by altering the landscape itself, thereby changing the direction of steepest descent.

This change is dif®cult to convey in a static ®gure so we have opted for the format in Fig. 2.



lines in Fig. 2, may be suf®cient to take the trajectory out of the basin which would

take it to the correct response and into the surrounding regions of state space. If it

enters a basin for a word it will produce an error. Since basins for related words

occupy adjacent areas of state space, the basins close to another will be those of

words which are related either visually or semantically to the input. Consequently,

masking the input produces visual and semantic errors. As far as the network is

concerned, words only vary in terms of visual and semantic similarity, so proximity

of attractor basins re¯ects only these dimensions. Presumably in the human lexicon

there are other dimensions of similarity. But visual and semantic similarity are

suf®ciently important that their in¯uence can be seen in the errors which occur

when performance breaks down.

Lesioning the network changes the shape of the attractor basins rather than

distorting the trajectories. Changing the shape of the DOG basin causes it to lose

some trajectories to nearby basins, and to capture other trajectories from nearby

basins. Since nearby basins are predominantly for words which are related either

visually or semantically to the word for which this is the basin, the altered trajec-

tories will mostly go to or come from basins which are either visually or semanti-

cally related to the basin they were in originally. As a result, lesioning the network

leads to the occurrence of both visual and semantic errors. Thus, although the

mechanisms by which lesioning and input masking have their effects are different,

they both lead to trajectories being lost to nearby basins, and thus lead to similar

error patterns.

5.4. Attractor dynamics and cognitive processes

That the pattern of semantic and visual errors in patients and normal subjects can

be accounted for by the same model suggests that it is based on principles which are

at work in the human cognitive system. The key principle in the model is that the

mapping between successive layers of representation (in this case between repre-

sentations of orthography and semantics) is achieved through the operation of

attractors. In an attractor network, once processing has been started by stimulus

input, further processing will continue irrespective of the presence of the stimulus.

Were the stimulus present it would, of course, continue to in¯uence the processing,

ensuring that the correct response was produced. But in its absence processing does

not stop. Whether errors or omissions are produced when the stimulus is removed

depends on the nature of the state space. Once a trajectory leaves the basin which it

entered under the in¯uence of initial processing of the stimulus its ®nal destiny will

depend on what occupies the regions of space around the attractor basins ± basins for

other words, or basins for spurious attractors which would not produce a response.

The ®rst will produce errors, the second omissions.

The model predicts both the increase in errors as performance declines and the

kind of errors which are produced. However, there is one way in which its behaviour

does not resemble that of human subjects. The production of both errors and omis-

sions in roughly equal proportions continues in the simulation down to stimulus

durations which give effectively 0% correct performance. It is unnecessary to do an
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experiment with normal subjects to demonstrate that this would not be true for them.

At very short stimulus durations people would decline to produce any response, so

they would produce only omissions, not errors. One reason the model fails to mimic

every aspect of human performance in the RSVP task is that the model was not

designed speci®cally to perform this task; it was an existing model taken `off the

shelf', designed for a different task, and tested in a novel context, unanticipated by

its original designers. The fact that, in general, it copes so well, is one of its

strengths. However, it would be straightforward to adapt the model so that it

could produce this aspect of human performance by training the network to develop

an attractor around the initial semantic state. To escape from this attractor would

require the energy landscape to be altered for a suf®cient length of time by a

stimulus, implementing a temporal threshold before responding occurred. (Such

an attractor would also be useful in ensuring that the network started its processing

from more or less the same state each time thus minimizing variations in the ®nal

state caused by variations in the initial state).

Interestingly, one other example of the use of a connectionist model to account for

similarities in the behaviour of normal and brain-damaged subjects ± the work of

Mozer and Behrmann (1990) (Behrmann et al., 1991) on neglect dyslexia ± also

relies on attractor dynamics. In those studies the relevant phenomena concern lexical

in¯uences on the performance of patients who also show evidence of a peripheral

impairment (to an early attentional mechanism). For example, patients are less likely

to exhibit neglect for a word than for a non-word (Sieroff, Pollatsek & Posner, 1988)

or for the leftmost of two words if they form a compound word (e.g. COW BOY)

than if they do not (e.g. SUN FLY; Behrmann, Moxcovitch, Black & Mozer, 1990).

In MORSEL, the model used by Mozer and Behrmann (1990) to account for these

effects, bidirectional interactions between higher order orthographic units and lexi-

cal/semantic units form attractors for familiar words. When bottom-up perceptual

information is degraded by an attentional impairment, these attractors serve to clean

up and complete the information, but are more effective in doing so for words

(including compounds) than for non-words. Thus the ®ndings from the modelling

work on neglect dyslexia concur with those from the current work in suggesting that

attractor dynamics play an important role in lexical processing (see also Plaut et al.,

1996). The convergence demonstrated in the current work between the behaviour of

neuropsychological patients, normal subjects, and a connectionist attractor network

provides additional support for the central role of attractor dynamics in cognitive

processing.

Why should the system use attractors? Take a feed forward connectionist system

which does not have an attractor structure. If a small change occurs to the stimulus,

or to any general modulatory input to the weights related, for instance, to the

operation of some biochemical pathway, then there will be a corresponding small

change in the output. If, however, there is an attractor structure these small changes

in the input variables or the weights will lead to correspondingly smaller changes in

the output unless the boundary of an attractor basin is crossed. This leads to a

relative equivalence in the effect of the output on subsequent systems for a given

set of inputs. The system shows an effect analogous to categorical perception.
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Moreover this discreteness of effect on other systems gives this type of connectionist

system one property in common with symbol systems.

In fact, the relevance of attractors within cognitive psychology goes far beyond

lexical processing. They allow best ®t matching of input to possible categories to be

based on multiple effective dimensions of relevant input. Purely symbolic systems

force the theorist to make an unpalatable choice between allowing decomposition

within the representations, which produces paradoxes, or rejecting it which seems

counter intuitive (see Roelofs, 1997). Attractors allow decomposition into elements

± using the distributed representations at one level ± but at the same time produce

equivalence of effects, within categories, at the next level and also qualitative

differences in effects from one category to another at the next. Thus they allow

decomposition of semantic representations into elements, but also in their effects on

later representations they have some of the characteristics of symbolic representa-

tions (see van Gelder (1990) for discussion).
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Appendix A

Errors other than those classi®ed as visual in Experiment 1 (Section 3.1). Targets

(two on some trials, indicated by 1 , one on others) are italicised. Responses are in

quotes. .... before a response indicates that the subject did not report a single word as

the target but suggested some attribute of the target or the general semantic region in

which it fell.

² street 1 spade `something garden-wise like wheelbarrow'

² pier `....beach or seaside'

² tiger `hawk'

² marsh `.... garden'

² harbour 1 fountain `.... seaside..lighthouse'

² cloud `helicopter'

² chapel 1 lawnmower `.... church'

² spade 1 wagon `shovel'

² snow `.... storms, weather'

² deer `stag'

² cinema 1 chapel `.... church, synagogue'

² sail 1 lion `yacht'

² sand `street'

² river `trailer'

² fence `animal'
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² pavement `house'

² lorry 1 airport `.... aeroplanes and runways'

² rocket 1 pier `.... sea'

² buttercup `.... seaside'

² submarine `.... space capsule'

² cherrytree `honeysuckle'

² submarine 1 waterfall `.... aeroplanes'

² street 1 ship `yacht or boat'

² theatre `museum sort of building'

² grass `rock'

² lane `.... street'

² rock `cobbles'

² tortoise 1 brook `like a ditch'

² tower `tall monument'

² lane 1 thrush `tree of some sort'

² statue `archway'

² raft 1 satellite `astronaut'

² mist 1 turret `.... tall'

² grass 1 cemetery `games'
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