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Current research on the neurobiological bases of reading points to

the privileged role of a ventral cortical network in visual word pro-

cessing. However, the properties of this network and, in particular,

its selectivity for orthographic stimuli such as words and pseudo-

words remain topics of significant debate. Here, we approached

this issue from a novel perspective by applying pattern-based ana-

lyses to functional magnetic resonance imaging data. Specifically,

we examined whether, where and how, orthographic stimuli elicit

distinct patterns of activation in the human cortex. First, at the cat-

egory level, multivariate mapping found extensive sensitivity

throughout the ventral cortex for words relative to false-font

strings. Secondly, at the identity level, the multi-voxel pattern

classification provided direct evidence that different pseudowords

are encoded by distinct neural patterns. Thirdly, a comparison of

pseudoword and face identification revealed that both stimulus

types exploit common neural resources within the ventral cortical

network. These results provide novel evidence regarding the invol-

vement of the left ventral cortex in orthographic stimulus proces-

sing and shed light on its selectivity and discriminability profile. In

particular, our findings support the existence of sublexical ortho-

graphic representations within the left ventral cortex while arguing

for the continuity of reading with other visual recognition skills.
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Extensive research has established the involvement of the left
human ventral cortex in reading, specifically with regard to
orthographic processing (for meta-analyses, see Fiez and Pe-
tersen 1998; Turkeltaub et al. 2002; Jobard et al. 2003; Me-
chelli et al. 2003). However, the existence of dedicated neural
circuitry subserving the encoding and processing of high-level
orthographic representations continues to provoke vigorous
debate (Dehaene and Cohen 2011; Price and Devlin 2011).

First and foremost, the existence of a left ventral region
specialized in processing orthographic stimuli has been the
source of significant disagreement—by “orthographic stimuli”
we refer here to alphabetic strings such as words and pseudo-
words that obey orthographic rules, unlike consonant strings.
This region, known as the “visual Word Form Area” (vWFA;
Cohen et al. 2000), responds robustly and consistently to
word stimuli (Turkeltaub et al. 2002; Vigneau et al. 2005) and
exhibits invariance to a number of visual characteristics such
as case (Dehaene et al. 2001; Polk and Farah 2002), language-
specific script (Bolger et al. 2005; Baker et al. 2007) and types
of visual stimulation (Rauschecker et al. 2011). Invariance to
such characteristics unrelated to stimulus identity (i.e. inde-
pendent of the specific word displayed) is particularly telling
in that it suggests that the vWFA encodes high-level ortho-
graphic representations that abstract away from the specifics
of the visual display (for short, “visual word forms”). On the
other hand, the inconsistent response profile of this region

across different studies (e.g. when contrasted with objects)
casts doubt on its domain specificity (Price and Devlin 2003;
Wright et al. 2008). For instance, a number of studies failed to
find an advantage in the left ventral cortex for words over pic-
tures (Wright et al. 2008; Van Doren et al. 2010) or over ortho-
graphic control stimuli such as unfamiliar scripts (Xue and
Poldrack 2007; Vogel et al. in press). Such findings prompt a
reassessment of the vWFA in terms of more general visual
processing that does not imply functional specificity for
orthographic stimuli.

Secondly, the involvement of the vWFA in sublexical rather
than full-fledged lexical processing has also been disputed
(Kronbichler et al. 2004; Glezer et al. 2009; Schurz et al.
2010). The original proposal for a vWFA (Dehaene et al.
2002, 2005) argued for its encoding of sublexical structures,
that is, linguistic structures such as pseudowords that obey
orthographic and phonotactic rules without necessarily
forming actual words. This proposal found ground in the
equivalent levels of activation detected for words and pseudo-
words at the level of the vWFA (Dehaene et al. 2002; Binder
et al. 2006; Vinckier et al. 2007). However, more recent
results challenged the original proposal after finding marked
sensitivity to words over pseudowords in the vWFA through
the use of finer-grained analyses and tools such as fMRI adap-
tation (Glezer et al. 2009). Such findings suggest that the role
of the vWFA is more specific than initially thought. More pre-
cisely, these data speak to its involvement in the storage and
recognition of lexical items (i.e. of actual words).

The debates summarized above are fueled by empirical dis-
crepancies arising from multiple sources, including the type
of stimuli tested (Szwed et al. 2011), the spatial resolution of
the neural data (Baker et al. 2007) and the statistical rigor
underlying the analysis (Wright et al. 2008). More generally,
these discrepancies may also reflect the intrinsic limitations of
the univariate analyses on which the results are based. Uni-
variate estimates of neural responses aggregate activation
across entire regions at the cost of the rich pattern of infor-
mation encoded within each region. In a different domain,
that of face recognition, these limitations have been success-
fully overcome by using multivariate pattern analyses to
evaluate the selectivity and domain specificity of relevant cor-
tical areas (Haxby et al. 2001; Spiridon and Kanwisher 2002;
Kriegeskorte et al. 2007; Nestor et al. 2011). Similarly, the
present work employed novel multivariate analyses and con-
trasted their results with those of standard univariate analyses,
in order to clarify and potentially resolve ongoing debates
concerning the neural basis of visual word form processing.

Our investigation took a 2-pronged approach. First, we
used multivariate “searchlight” mapping (Kriegeskorte et al.
2006) to locate ventral regions able to support category-level
discrimination (i.e. distinguishing words from false-font
strings). Secondly, we applied pattern classification to assess
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identity-level discrimination (i.e. distinguishing a particular
pseudoword from others despite variations in font). The
ability to discriminate among different orthographic stimuli ir-
respective of extraneous visual properties (e.g. font) rep-
resents a critical aspect of reading. Thus, our analysis tested a
direct implication of current theories of reading by determin-
ing whether and where different orthographic stimuli are
encoded by distinct neural patterns. In addition, since ortho-
graphic stimuli and faces appear to compete for resources
within the left ventral cortex (Dehaene et al. 2010; Plaut and
Behrmann 2011), we conducted similar analyses within the
reading network to assess its contribution to individual face
discrimination.

In summary, the present work investigates coarse category-
level as well as fine-grained identity-level encoding of ortho-
graphic stimuli within the ventral cortex and assesses the
specificity of the neural mechanisms for orthographic stimu-
lus processing by means of multivariate analysis.

Materials and Methods

Subjects

Each of 8 subjects (age range 18–22, 5 females) was scanned across 3
different sessions carried out on different days. All subjects were
right-handed native English speakers with normal or corrected-to-
normal vision and no history of neurological or cognitive disorders.
Data were collected for 2 additional subjects who were excluded from
the analysis due to large head movements (more than a voxel) on at
least 1 out of 3 sessions. All subjects provided written informed
consent. The Institutional Review Board of Carnegie Mellon Univer-
sity approved all imaging and behavioral procedures.

Stimuli

To investigate category-level differences in discriminability and selec-
tivity, subjects viewed stimuli belonging to 5 visual categories: words,
false-font strings, faces, houses, and objects.

Word stimuli consisted of 5-letter high-frequency nouns (Kucera–
Francis frequency >60) extracted from the MRC psycholinguistic
database (Coltheart 1981). As a visual control for these stimuli, we
constructed false-font strings by rearranging the strokes of each
Roman letter into a new character (1 false font per letter) and as-
sembled them in groups of 5 (see Fig. 1A for example). Thus, the 2
categories are comparable in terms of visual complexity as measured
by the type and number of features in their makeup. Also, both cat-
egories were presented in high contrast (white characters against a

black background). In addition, subjects were presented with color
images of front-view faces, houses, and common objects. These
images were normalized with respect to mean luminance, contrast,
and size.

Each of the stimulus categories described above contained 104
images that were presented exactly once to each subject. To be clear,
false-font strings served as a control category for words, while houses
and objects served as control categories for faces. However, false-font
strings and words, on the one hand, and the remaining categories, on
the other hand, were markedly different with respect to their visual
properties and were not optimized for comparison against each other.

To investigate identity-level differences, participants were shown
images of 4 different pseudowords designed to be highly and equiva-
lently word-like (with high summed positional bigram and trigram
frequencies). Pseudowords are used, instead of actual words, to em-
phasize the visual rather than the semantic aspect of reading. To
address invariance to image changes, each pseudoword was pre-
sented in 4 different types of font (Arial Black, Comic Sans MS,
Courier, and Lucida Handwriting), as illustrated in Figure 1B. The use
of different fonts is relevant here in that it introduces a variety of low-
level changes in different magnitudes unlike other factors responsible
for visual appearance (e.g. the use of upper/lower case is restricted to
2 classes). With respect to orthographic structure, pseudowords were
similar in that they were all composed of 5-letter strings (structured
CCVCC) but were dissimilar from each other in that they did not share
letters in the same position (or within onsets/codas). In addition, par-
ticipants were also presented with faces. Specifically, they were
shown front-view images of 4 unknown young adult male faces (Sup-
plementary Fig. S1)—each face was presented in 4 different versions
(displaying different emotional expressions: happy, sad, disgusted,
and neutral).

Procedures

Each subject was scanned for a total of 21 functional runs collected
across 3 different sessions to acquire a sufficient number of obser-
vations for the purpose of multivariate analysis.

Four of the scans employed a block design (14 s blocks, 933 ms
trials). During these runs, participants performed a 1-back task
(same/different image as the previous one). Binary responses were
made using the index fingers of the 2 hands (right for “same” and left
for “different”). Stimulus blocks were separated by 10 s of fixation. An
additional 10 s fixation interval was also introduced at the beginning
of each run. Any given run contained a total of 10 blocks, 2 for each
of the 5 categories: words, false-font strings, faces, houses, and
objects. The total duration of a run was 250 s.

The remaining 17 scans employed a widely spaced event-related
design. Each trial had the following structure: a bright fixation cross
was presented in the middle of the screen for 100 ms, then a stimulus
appeared for 400 ms, and a lower-contrast fixation replaced it for 9.5
s until the end of the trial. Participants were instructed to identify
each of 32 stimuli (16 images of pseudowords and 16 of faces) at the
individual level across changes in font/expression by pushing a
button associated with each identity. More precisely, for each subject,
the 4 pseudowords (Fig. 1B) were randomly assigned to the fingers of
one hand and the 4 facial identities (Supplementary Fig. S1) were as-
signed to the fingers of the opposite hand. Similarly, the 2 categories,
faces and pseudowords, were randomly assigned to the 2 hands. All
stimuli were shown exactly once in each scan. The stimulus order was
pseudo-randomized so as to maximize the entropy of the sequence
with respect to stimulus identity and category under the constraint
that no more than 2 stimuli of the same identity could be presented
consecutively (Wager and Nichols 2003). The length of a run was 330 s
(including 10 s of fixation at the beginning).

Stimuli were presented in the center of the screen against a dark
background and subtended a visual angle of 3.2° × 4.1°. Stimulus
presentation and response recording relied on Matlab (Mathworks,
Natick, MA, USA) and Psychtoolbox 3.0.8 (Brainard 1997; Pelli 1997).

All subjects were familiarized with the stimuli and practiced each
task until identification accuracy reached ceiling (>95%). Additional
tests confirmed that subjects maintained this level of performance

Figure 1. Experimental orthographic stimuli. (A) Examples of words and false-font
strings. (B) Pseudoword stimuli (4 pseudowords × 4 types of font).

1674 The Neural Basis of Visual Word Form Processing • Nestor et al.

 at C
arnegie M

ellon U
niversity on Septem

ber 9, 2014
http://cercor.oxfordjournals.org/

D
ow

nloaded from
 

http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhs158/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhs158/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhs158/-/DC1
http://cercor.oxfordjournals.org/


throughout the experiment. No reliable differences were also found
in either accuracy or reaction time across different stimulus identities
—see Supplementary Material for more details on behavioral pro-
cedures and results. As such, our study was aimed at investigating the
neural basis of visual processing underlying effortless and (near-)
faultless recognition performance.

MRI Data Acquisition

Subjects were scanned in a Siemens Allegra 3T scanner with a single-
channel head coil. Functional images were acquired with an echo-
planar imaging (EPI) pulse sequence (TR 2 s, TE 31 ms, flip angle
79°, 2.5-mm isotropic voxels, field of view 240 × 240 mm2; 27 slices
parallel with the AC-PC line covered the ventral cortex of each
subject). A T1-weighted anatomical image (1-mm3 voxels; 192 slices of
size 256 × 256 mm2) was also acquired on each session.

Preprocessing and Conventional Univariate Mapping

All preprocessing and univariate analyses were carried out using
AFNI (Cox 1996). Preprocessing of functional data consisted in the
following steps: slice scan-time correction, motion correction,
co-registration to the same anatomical image, and normalization to
percentage of signal change. For the purpose of univariate analysis,
data were also smoothed with a Gaussian kernel of 7.5 mm FWHM.
No spatial or temporal smoothing was performed on the data pre-
vious to multivariate analyses to preserve the high-frequency infor-
mation in the activation patterns (Swisher et al. 2010).

Conventional univariate analysis was conducted on the data by
fitting each type of stimuli with a boxcar predictor, convolving it with
a gamma hemodynamic response function and applying a general
linear model to estimate voxelwise coefficients for each stimulus cat-
egory. Statistical maps were computed by pairwise comparisons
between different categories (e.g. words versus false-font strings) and
corrected for multiple comparisons using the false discovery rate
(FDR).

Region of Interest Selection

Multiple regions were localized both at the individual and at the
group level by means of univariate analysis. Specifically, 3 different
regions were consistently localized across subjects based on estimates
of activation elicited by orthographic stimuli relative to fixation (q <
0.001). We note that, while extensive areas of visual cortex are acti-
vated by such stimuli, the stringent correction for multiple compari-
sons ensured that only regions with the highest and most robust
response were selected by this contrast. For the purpose of region of
interest (ROI) analyses, a spherical mask with a 5-voxel radius was
placed at the peak of each region in the native space of each subject
(see Supplementary Material for more details regarding the design of
the masks). A control ROI also located in the early visual cortex (EVC)
was constructed by placing a spherical mask at the center of the ana-
tomically defined calcarine sulcus of each subject.

Multivariate Mapping

Multivariate searchlight mapping (Kriegeskorte et al. 2006) was
carried out using a cortical mask similar to that deployed for ROI se-
lection and construction. The mask was exhaustively walked
voxel-by-voxel across the volume of each subject (restricted to a corti-
cal mask) and was used to constrain the local information available
for pattern classification.

Category-level Discrimination

Observations corresponding to each block were constructed by aver-
aging local patterns of activation across time (4 s through 18 s from
block onset in order to accommodate the delay of BOLD responses).
Binary classification was then applied across observations for each
pair of categories using linear support vector machines (SVM) with a
trainable c term—c was optimized by nested cross-validation using a
grid search (Chang and Lin 2011). Unbiased discriminability estimates
were computed using a leave-one-pair-out cross-validation scheme:

each time, 1 block of either type was left out for testing while the
classifier was trained on the remaining blocks. Finally, classifier per-
formance was encoded as d0 sensitivity (Green and Swets 1966) and
aggregated into subject-specific information-based maps (Krieges-
korte et al. 2006; Nestor et al. 2011). Specifically, each voxel in a map
was labeled with the discrimination performance computed relative
to the mask centered on that voxel.

For the purpose of group analysis, all subject-specific maps were
normalized to Talairach space, averaged across subjects, and sub-
mitted to voxelwise statistical tests—FDR-corrected t tests against
chance (d0 = 0).

Identity-level Discrimination

Patterns of activation corresponding to each stimulus were con-
structed by concatenating voxel responses elicited by the correspond-
ing stimulus at 4, 6, and 8 s after its onset (Mourão-Miranda et al.
2007). In this respect, concatenation (as opposed to averaging)
ensures the availability of temporal as well as spatial information for
classification purposes, a procedure particularly suitable for widely
spaced designs (Nestor et al. 2011). As far as temporal masking is con-
cerned, the 4–8 s window was selected to capture the peak of the he-
modynamic response function (Friston et al. 1994).

Next, single observations were constructed for each run by aver-
aging activation patterns across presentations of the same identity
(e.g. a given pseudoword displayed with different fonts). Pairwise dis-
criminability maps were then computed following a procedure similar
to that used for category-level discrimination—in order to extend
binary classification to a multi-class case (i.e. 4 different stimulus
identities), we used a “one-against-one” procedure by discriminating
each class from every other one (see Supplementary Material).
Finally, these maps were averaged across pairs (6 pairs corresponding
to 4 individual stimuli) to deliver identity-level information-based
maps for each type of within-category discrimination (i.e. of pseudo-
words across font or of fonts across pseudowords).

The procedure above was applied both for mapping purposes
(using a searchlight approach) and for ROI analysis (using regions se-
lected based on univariate mapping).

Of note, the possibility that discrimination estimates are overopti-
mistic due to autocorrelation (i.e. by affecting the similarity of test
and training observations) (Pereira and Botvinick 2011) is not of
concern here. This is clear in the case of identity-level discrimination
since test and training observations of the same category are con-
structed from different functional runs. Also, this is unlikely for our
category-level results since, in our design, different blocks of the
same type are separated by at least 34 s (and an intervening block of a
different type).

Multivariate analyses were carried out in Matlab 7.12, using the
Parallel Processing Toolbox and the SVMLIB 2.88 library for pattern
classification (Chang and Lin 2011) running on a ROCKS+ multiserver
environment.

Multivariate Ranking of Voxel Diagnosticity

The contribution of each voxel to a given type of discrimination was
ranked by means of recursive feature elimination (RFE). This multi-
variate technique (Guyon et al. 2002) has been previously applied to
fMRI data in the attempt to reduce the dimensionality of activation
patterns (De Martino et al. 2008) and to map voxel diagnosticity
(Hanson and Halchenko 2008). Here, we use it to assess and compare
the contribution of a set of voxels (within a given ROI) to indepen-
dent types of discrimination.

The method works by repeatedly eliminating the feature that is
least diagnostic for a given type of classification—diagnosticity here
was measured by a common metric, the square of the classification
weights computed across features (Hanson and Halchenko 2008). In
detail, the method proceeded as follows: (i) a linear SVM classifier
was trained on a given feature set, (ii) a ranking score was computed
for all features (based on classification weights), (iii) the feature with
the smallest rank was eliminated, and (iv) the procedure was repeated
until feature depletion. Thus, for any discrimination, the method pro-
duces a ranking of classification features from the least diagnostic
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(eliminated first) to the most diagnostic (eliminated last). In our case,
it produces a ranking of voxel-time features, that is, the ranking of all
voxels for any of the 3 given time points (4, 6, and 8 s after stimulus
onset). For this reason, additional averaging across time points was
carried out resulting in voxel-specific ranking for each type of
classification.

In order to compare the contribution of the same voxels for pseu-
doword and face discrimination, RFE-based ranking was computed
separately for the 2 types of classification and the results were then
correlated with each other. This analysis was separately applied to
each subject and each ROI (more precisely, to each ROI able to
support above-chance pseudoword and face discrimination). Finally,
correlation values were converted to z-scores using Fisher’s z trans-
form and were compared against chance across subjects.

Of note, RFE ensures a more robust and reliable ranking than that
based on single-pass classifications (e.g. by ordering the weights of a
single classification model). However, it is computationally more de-
manding since classification is performed n times (where n is the
number of features in the set) instead of just a single time.

Results

Category-level Mapping of Orthographic Processing:

Univariate Analysis

First, in order to localize regions responsive to orthographic
stimuli in the ventral cortex, we contrasted activation for
words versus fixation. This approach is commonly used to
target regions that respond robustly albeit not necessarily ex-
clusively to orthographic stimuli (Cohen et al. 2000; Dehaene
et al. 2002; Glezer et al. 2009). Three clusters were consist-
ently identified by this approach both at the individual level
and at the group level following a stringent correction for
multiple comparisons (q < 0.001). Two of these clusters,
located in the left hemisphere, had peaks in the inferior occi-
pital gyrus (IOG) on the border with the posterior fusiform

gyrus and in the inferior frontal gyrus (IFG) pars triangularis,
while a third cluster was found in the right IOG. Table 1
shows the coordinates of individually defined ROIs and
Figure 2A displays the corresponding results of the group-
based mapping.

To relate the location of these regions to the traditional co-
ordinates of the vWFA, we note that the left IOG peak falls
within the boundaries of the vWFA (−50 < x <− 30, −80 < y <
− 30, z < 0) (Cohen et al. 2002) in the posterior proximity of
the average vWFA peak coordinates (x, y, z =−44, −58, −15)
(Cohen et al. 2002; Vigneau et al. 2005). Thus, the left IOG
ROI is a plausible vWFA candidate. More generally, consistent
with our knowledge about the reading network (Turkeltaub
et al. 2002; Mechelli et al. 2003; Bolger et al. 2005), the bilat-
eral IOG regions are presumably involved in orthographic
processing. As far as the role of the IFG is concerned, this
region is known to be involved in lexical and phonological
processing (Fiez and Petersen 1998; Jobard et al. 2003). Its
activation in relation to orthographic processing is not sur-
prising though, given the importance of the mapping
between orthographic and phonological representations for
reading and for efficient processing at the level of the VWFA
in particular (Brem et al. 2010).

Secondly, we attempted to localize regions that are selec-
tive, rather than merely responsive, to orthographic stimuli,
namely regions that respond with higher activation levels to
orthographic stimuli relative to control categories exhibiting
complex and comparable visual structures (for a recent dis-
cussion of selectivity and functional specialization, see Kanw-
isher 2010). Selectivity thus construed is usually assessed by
contrasting words with objects (e.g. Szwed et al. 2011), unfa-
miliar types of script (e.g. Reinke et al. 2008) or other
orthographic-like stimuli (e.g. Ben-Shachar et al. 2007). To
this goal, our analysis contrasted words and false-font con-
trols. The results found sensitivity to words in bilateral middle
temporal (MTG) regions (q < 0.05; Figure 2B). The MTG
regions involved in reading are commonly found to mediate
lexical processing (Jobard et al. 2003). However, no fusiform
or occipital regions typically associated with sublexical pro-
cessing were detected by this contrast. These findings are
illustrative of the difficulty of mapping selectivity for ortho-
graphic stimuli by means of univariate analysis (Price and
Devlin 2003; Wright et al. 2008; Vogel et al. in press).

Thirdly, to verify the replicability and robustness of our
mapping results, we performed a separate analysis based on
the data from our event-related scans. Specifically, we
attempted to locate regions responsive to orthographic
stimuli by contrasting pseudowords and fixation in each

Table 1.

Regions responsive to orthographic stimuli

Region Coordinates %SC

x y z

L IOG (W) −43 (±4) −71 (±3) −16 (±3) 1.03 (±0.25)
L IOG (PW) −37 (±5) −68 (±8) −9 (±4) 1.60 (±0.69)
R IOG (W) 26 (±2) −86 (±3) −10 (±3) 1.17 (±0.24)
R IOG (PW) 32 (±6) −77 (±5) −7 (±4) 1.43 (±0.41)
L IFG (W) −36(±3) 23 (±3) 6 (±2) 0.31 (±0.08)
L IFG (PW) −30 (±6) 20 (±4) 12 (±5) 1.32 (±0.74)

Note: The table shows average Talairach peak coordinates (±1SD) and response amplitudes

in percent signal change (%SC) for individually defined ROIs responsive to words (W) and

pseudowords (PW) relative to fixation.

Figure 2. Univariate mapping of word processing (group results). (A) Words elicit extensive activation in the bilateral ventral cortex (q< 0.05). Activation peaks (q<0.001) are
located in the bilateral inferior occipital gyrus (IOG) and the left inferior frontal gyrus (IFG). Crosshairs mark the location of the peaks (left IOG: −41, −69, −16; right IOG: 26,
−84, −9; left IFG: −34, 26, 4). (B) Words elicit higher activation than false-font strings in the bilateral middle temporal gyrus (MTG) but not in more ventral occipital/fusiform
regions (q< 0.05). Crosshairs mark the location of the peaks in the right (51, −31, −1) and left (−49, −36, −1) hemispheres.

1676 The Neural Basis of Visual Word Form Processing • Nestor et al.

 at C
arnegie M

ellon U
niversity on Septem

ber 9, 2014
http://cercor.oxfordjournals.org/

D
ow

nloaded from
 

http://cercor.oxfordjournals.org/


subject (q < 0.05). This comparison is of interest in that both
words and pseudowords have been shown previously to elicit
vWFA activation, often of comparable magnitude (Dehaene
et al. 2002; Polk and Farah 2002; Vinckier et al. 2007). Criti-
cally, our pseudowords were composed of high-frequency
letter strings, a factor enhancing the similarity of the activation
profiles characteristic of pseudowords and actual words
(Vinckier et al. 2007). In agreement with our initial results, we
identified bilateral IOG regions in all subjects. A left IFG region
was also found in all but 1 subject; however, its location was
markedly superior to that of our initial estimate (Table 1).

Fourthly, the response of these individually defined regions
to 5 different categories was independently estimated based
on the data collected in our block-design runs. Consistent
with our initial mapping results, no ROI revealed higher acti-
vation to words compared with false fonts (Fig. 3). Also, no
ROIs exhibited face selectivity as indicated by higher acti-
vation to faces than houses or objects. To further quantify our
observations, a 2-way repeated-measures ANOVA (ROI × cat-
egory) was conducted for words and their false-font controls
—a separate analysis targeted faces and their control cat-
egories (see Supplementary Material). The analysis found

significant main effects for both factors (ROI: F2,14 = 22.74,
P < 0.001; category: F1,7 = 9.09, P < 0.05) as well as a signifi-
cant interaction (F2,14 = 8.01, P < 0.01). Pairwise contrasts
(Bonferroni-corrected for multiple comparisons) showed that
the left IFG responded less robustly than IOG regions (left
IOG: t7 = 4.73, P < 0.01; right IOG: t7 = 5.42, P < 0.01), but
there was no difference between the latter 2 (P > 0.10). We
also found that words elicited lower instead of higher acti-
vation than their visual controls in the left IOG (t7 = 4.16, P <
0.05) (for similar findings, see Wang et al. 2011; Vogel et al.
in press).

To conclude, univariate analyses were instrumental in locat-
ing a network of regions involved in the processing of ortho-
graphic stimuli. Overall, the agreement between our 2
mappings (i.e. using words or pseudowords) as well as the
ROI analyses associated with them attest to the generality of
the present results across different types of orthographic
stimuli, different behavioral tasks, and different designs
(block and event-related). However, they did not reveal a
word-specific advantage at the location of the vWFA. Thus, it
appears that the functional specificity of orthographic stimuli,
if genuine, is more difficult to capture by univariate analysis
than analogous effects in different domains (see Baker et al.
2007, for a similar argument).

Category-level Mapping of Orthographic Processing:

Multivariate Analysis

Multivariate mapping was performed by estimating the discri-
minability of words versus false-font strings. Specifically, a
spherical searchlight (Kriegeskorte et al. 2006) was walked
voxel-by-voxel across the volume of each participant and an
unbiased estimate of discrimination was computed at each
location.

The outcome of this mapping revealed extensive sensitivity
to orthographic stimuli bilaterally in the ventral cortex
(Fig. 4A). A large ventral swath including parts of the inferior
occipital and fusiform gyri (as well as the ventral ROIs uncov-
ered by our univariate tests) was found in both hemispheres.

Figure 3. Response amplitudes of 3 ROIs involved in orthographic processing.
Average BOLD responses are shown for each of 5 different visual categories (±1SE).

Figure 4. Category-level information-based maps (group results). Extensive and largely overlapping areas of the bilateral ventral cortex support category-level discrimination of
(A) words (relative to false-font strings) and (B) faces (relative to houses). Crosshairs mark the discriminability peak of each map (words: −39, −46, −7; faces: −24, −61,
−11).
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Interestingly, sensitivity peaked in the ventral cortex in the
left fusiform gyrus (x, y, z =− 39, −46, −7) within the conven-
tional boundaries of the vWFA (Cohen et al. 2002).

To assess the spatial specificity of this mapping, we com-
puted a different type of discrimination using faces and
houses. The resulting map revealed a swath of ventral cortex
comparable in size and location with that found above
(Fig. 4B). However, face information was somewhat more
medial than orthographic stimulus information as evidenced
by the overall placement of the maps and the position of the
peaks. Also, houses, while serving as a conventional control
for faces (Kriegeskorte et al. 2006, 2007), are considerably
dissimilar from them at the perceptual level, unlike words
relative to false-font strings. Thus, the perceptual difference
between these 2 types of discrimination makes our ability to
localize orthographic information all the more notable.

In summary, unlike univariate mapping, its multivariate
counterpart was able to uncover extensive category-level
information regarding orthographic stimuli in the ventral
cortex. Specifically, this type of mapping revealed that a sig-
nificant expanse of the ventral cortex, including areas tra-
ditionally associated with visual word processing, encodes
information able to support the discrimination of ortho-
graphic stimuli.

Identity-level Discrimination of Pseudowords

A finer-grained, though more challenging, type of discrimi-
nation was carried out by comparing orthographic stimuli
with each other (rather than with other stimulus categories).
Furthermore, to eliminate a potential semantic or lexical basis
for discrimination, we used pseudowords (Fig. 1B) instead of
actual words. Specifically, we computed identity-level pseudo-
word discrimination across changes in font.

Multivariate “searchlight” mapping was unable to locate
identity-level discriminability even at a liberal threshold (q <
0.10). This result is not surprising in that within-category dis-
crimination attempts to capture subtle fine-grained differences
(especially when compared with between-category discrimi-
nation) and such differences may escape whole-volume
mapping following standard corrections for multiple compari-
sons. However, it is possible that smaller and/or more local
effects can be captured by ROI analyses as confirmed by our
results below.

Each of 3 individually defined ROIs identified by means of
univariate analysis (Table 1) was tested with respect to
discrimination performance (see Fig. 5). Specifically, the level
of performance of each ROI was compared against chance
(d0 = 0) using 1-group t-tests. These analyses revealed that
both of the left-hemisphere ROIs produced significant levels
of discrimination (left IOG: t7 = 1.98, P < 0.05; left IFG: t7 =
2.03, P < 0.05). Unlike its left homologue, the right IOG’s per-
formance did not differ from chance (P > 0.10); however,
repeated-measures analyses found no significant differences
among the 3 ROIs.

Additional analyses examined whether low-level image
similarity among stimuli can account for the results above
(see Supplementary Material). The absence of significant cor-
relations between estimates of image similarity and discrimi-
nation performance for any ROI disconfirmed this hypothesis.
The chance-level discrimination found for a control EVC
region also suggests that low-level visual representations are

not sufficient to explain the performance of our
left-hemisphere ROIs.

In summary, the results above provide direct evidence for
the presence of identity-level sublexical representations
within the left ventral cortex at the location of the vWFA.

Specificity of Orthographic Processing

To assess the functional and domain specificity of ortho-
graphic processing, we conducted a number of multivariate
analyses across the same ROIs.

First, we discriminated different types of fonts across differ-
ent pseudowords, a type of discrimination orthogonal to that
investigated above. This analysis revealed above-chance per-
formance in the right IOG (t7 = 3.19, P < 0.01) but not in the
remaining ROIs (Fig. 5).

Secondly, to examine domain specificity, we computed
identity-level face discrimination across variation in
expression. The results of this analysis (Fig. 5) revealed sig-
nificant levels of discrimination in left-hemisphere ROIs (left
IOG: t7 = 2.60, P < 0.05; left IFG: t7 = 1.92, P < 0.05) but not
the right IOG (P > 0.10).

Thirdly, the 3 sets of discrimination results (i.e. with
respect to pseudowords, fonts and facial identities) were
examined by means of a 2-way repeated-measures ANOVA
(ROI × discrimination type). No significant main effects or
interaction were found by this analysis. Thus, although com-
parisons with chance suggest that pseudoword and font dis-
crimination exploit oppositely lateralized resources, this
conclusion would need to be tempered by the absence of an
interaction between ROI and type of discrimination (see
Discussion).

Fourthly, in order to clarify the relationship between ortho-
graphic stimulus and face processing, we correlated voxel-
specific diagnosticity scores for the 2 types of discrimination
(i.e. between pseudowords and between facial identities).
Voxel-specific scores derived by RFE analysis (De Martino
et al. 2008) were separately computed for each of the
left-hemisphere ROIs shown to support both types of identity-
level discrimination. We expect the value of these correlations
to be positive if the 2 types of discrimination rely on similar
groups of voxels, negative if they rely on distinct sets of
voxels and equivalent to chance if they rely on partly overlap-
ping groups of voxels.

Figure 5. Individual-level discrimination for different pseudowords (across font), for
different fonts (across pseudoword), and for different facial identities (across
expression). Different ROIs show sensitivity to font and pseudoword discrimination
but the same left ROIs exhibit sensitivity for both pseudowords and faces (*P<
0.05, **P<0.01).
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Correlation coefficients for the left IOG scored positive
values for all subjects (mean r = 0.34 ± 0.13 SD). A map of di-
agnostic voxels in a representative participant are shown in
Figure 6A and a scatter plot of the 2 types of voxel diagnosti-
city is shown in Figure 6C. Following conversion to z-scores,
correlations were tested against chance (r = 0) at the group
level and were found to be significantly higher than chance
(t7 = 6.97, P < 0.001). In contrast, left IFG values (mean r =
0.19 ± 0.30 SD) were not different from chance (P > 0.10; see
Figures 6B and D). However, the 2 regions did not perform
significantly differently from each other (paired t-test across
participants: t7 = 0.64, P > 0.10).

While the results above suggest a close relationship
between orthographic and face processing in the vWFA, it is
possible that the source of the correlations is more general in
nature. In particular, the signal-to-noise ratio (SNR) or the
overall responsiveness of the voxels to visual stimuli may
factor into the ranking of the voxels independent of domain.
For instance, it is possible that more responsive voxels are
ranked higher by RFE. If so, the current results would be less
informative of a specific relationship between orthographic
and face processing.

To test this hypothesis, we estimated both temporal SNR
(Murphy et al. 2007) and voxel responsiveness with the goal
of factoring out their contribution from RFE rank correlations.
Voxelwise temporal SNR was computed as the ratio between
signal mean and standard deviation—off-stimulus signal was
estimated by regressing out both variables of interest (corre-
sponding to different stimulus types) and nuisance variables
(motion and linear trend) (Murphy et al. 2007). Next, voxel
responsiveness was computed as the average activation of
each voxel in response to 5 different visual categories (pre-
sented in our block-design scans) relative to fixation. The cor-
relation of voxel-based orthographic and face diagnosticity
was then recomputed while regressing out these 2 estimates.
The outcome of this analysis replicated our initial findings:
only voxels in the left IOG (t7 = 6.15, P < 0.001) were related
to each other in terms of diagnosticity for the 2 domains but

correlation values across the 2 ROIs were not significantly
different from each other (P > 0.10). Thus, the relationship
found between orthographic and face processing is unlikely
to be accounted for by a simple general signal/response
property.

Taken together, these results show that orthographic pro-
cessing in the ventral cortex may not extend equivalently and
uniformly to all aspects of visual orthographic processing.
Concretely, (pseudo)word and font discrimination may
exploit differentially neural resources in the occipitotemporal
cortex of the 2 hemispheres. More importantly, they suggest
that visual processing at the level of the vWFA is not specific
to orthographic stimuli, but that faces and orthographic
stimuli may share a common processing, and representational
basis.

Discussion

The present work investigated the nature and specificity of
visual word form processing in the human ventral cortex.
This investigation is timely, as an adequate characterization of
orthographic processing continues to generate debate. Some
have argued that a left ventral cortical region plays a dedi-
cated role in the representation of visual word forms
(although the exact form of these representations is also con-
troversial). Others have suggested that this region is respon-
sive to a broader array of inputs and is, therefore, not
domain-specific at all.

To elucidate the functional role of the left ventral cortex,
we employed a variety of multivariate techniques applied to
fMRI data. Critically, we addressed this issue with regard to
category and identity word form processing, allowing us to
map and characterize the distribution of relevant information
at 2 different levels. In addition, we conducted a similar inves-
tigation in a parallel domain, namely face recognition, motiv-
ated by its similarity in terms of visual expertise (James et al.
2005) and by its potential relationship with word form pro-
cessing (Dehaene et al. 2010; Plaut and Behrmann 2011).

Figure 6. (A, B) Distribution of individual-level orthographic/face information in a representative subject. The maps show voxels diagnostic for psudoword discrimination, face
discrimination and their overlap (in native space). For either discrimination the top 100 voxels (ranked by recursive feature elimination) are selected and color-labeled separately in
2 ROIs: the left IOG and the left IFG. The maps show extensive overlap in the IOG but not in the IFG. (C, D) Correlation of voxel diagnosticity (across all ROI voxels) for
orthographic and face discrimination in the same subject.
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Category-level Mapping of Orthographic Processing

Standard univariate analyses did not yield evidence of an
advantage for words relative to false-font strings in the left fu-
siform cortex. The absence of this advantage is significant in
that it replicates a general result (Price and Devlin 2003;
Wright et al. 2008; Vogel et al. in press) and may account for
some of the controversy lying at the core of the debate men-
tioned above. Importantly here, this serves as a first step in
our inquiry: can multivariate analysis map visual word form
information where univariate analysis fails to find an advan-
tage? And if so, why?

In response to the first question, our results show that
multivariate mapping can indeed locate category-level discri-
minability in the ventral cortex when comparing words with
false-font controls. Moreover, the sensitivity peak of this
mapping was located at the traditional location of the vWFA
(Cohen et al. 2002). Overall, these findings are consistent
with a critical role of this area in visual word form processing.

Beyond the presence of category-level discriminability, the
current results are notable in 2 other respects. First, unlike
typical visual categories compared with each other (e.g. faces
and houses) (Haxby et al. 2001; Kriegeskorte et al. 2006),
words and false-font controls were designed to be as similar
as possible in terms of featural makeup and visual complexity.
Thus, large differences in visual appearance could not serve
as a basis for discrimination. Secondly, the above-chance dis-
criminability was far more extensively distributed than antici-
pated: it encompassed a large swath of the bilateral ventral
cortex. While semantic, lexical, and/or phonological proces-
sing may help our ability to discriminate the 2 categories in
the IFG (Fiez and Petersen 1998; Jobard et al. 2003) and the
anterior FG (Glezer et al. 2009; Kronbichler et al. 2004), such
sources are considerably less plausible to account for IOG or
posterior FG activation. Therefore, we conclude that the basis
of the discrimination in these posterior areas is likely higher
level visual information of a sublexical nature.

As far as the discrepancy between our univariate and multi-
variate results is concerned, 2 different hypotheses need to be
considered. First, as noted above, the absence of an activation
advantage for words relative to unfamiliar or false-fonts is not
uncommon (Xue and Poldrack 2007; Wang et al. 2011; but
see Ben-Shachar et al. 2007; Szwed et al. 2011). Thus, one
possibility is that the vWFA, while critical for orthographic
stimulus processing, is equally involved in the processing of
other visual categories. If so, univariate category effects,
when observed, may not reflect representational differences
but, instead, may stem from other sources such as the speci-
fics of the experimental design (Starrfelt and Gerlach 2007).
At the same time, pattern analyses may accurately capture the
involvement of the vWFA in visual word form processing, and
may exhibit more robustness across different experimental
manipulations. For instance, orthographic stimuli have been
shown to elicit robust response patterns at the category level
across different experimental tasks (Ma et al. 2011).

Another possibility is that a genuine activation advantage
of orthographic stimuli relative to other categories does exist
but the standard resolution of fMRI may be too coarse to
capture it (Baker et al. 2007). If so, this problem is likely to
be aggravated by the spatial smoothing preceding standard
univariate analysis (Cohen and Dehaene 2004). In line with
this explanation, multivariate analyses that are able to exploit

higher resolution subvoxel information (Swisher et al. 2010)
were shown here to uncover extensive sensitivity to ortho-
graphic stimuli.

One obstacle in arbitrating between such competing expla-
nations is the scale of these investigations. First, category-level
comparisons, while informative, may be too coarse to clarify
the precise involvement of ventral areas in visual word form
processing. For instance, if the primary function of the vWFA
is distinguishing and selecting among different visual word
forms, then identity-level comparisons are critical in establish-
ing and characterizing this function. Secondly, whole-ROI
analyses suffer from a lack of spatial specificity in that differ-
ent subregions or, more generally, different populations of
neurons may serve different functions. This issue is particu-
larly relevant in the case of visual word form processing given
the evidence for an entire spectrum of sensitivity to ortho-
graphic stimuli across the left ventral cortex (Cohen and
Dehaene 2004; Vinckier et al. 2007; Levy et al. 2008). Our
work deals with these issues as discussed below.

Identity-level Discrimination of Pseudowords

Three different constraints guided our investigation. First, dis-
crimination was performed among pseudowords rather than
actual words in the attempt to eliminate a lexical or semantic
basis for discrimination. Secondly, the analysis was carried
out across variations in font, considering that genuine ortho-
graphic encoding should exhibit font invariance (McCandliss
et al. 2003; Hillis et al. 2005). Thirdly, to align this analysis
with traditional fMRI findings, we performed the discrimi-
nation within our conventionally defined ROIs.

Our results revealed identity-level discrimination within the
left ventral cortex as well as the left IFG. While the basis of
the latter is likely phonological processing (Fiez and Petersen
1998; Jobard et al. 2003), the former serves as evidence for
visual word form encoding. Importantly, we rule out a low-
level image-based account of these findings given the variabil-
ity of our stimuli (across font) and the absence of an image
similarity effect on neural discriminability scores. Thus, the
basis of these results appears to be higher level sublexical
visual information.

One recent set of findings corroborates our results and
their interpretation. Braet et al. (2012) report discriminable
patterns of activation in the vWFA for different orthographic
stimuli across variation in position and visual appearance. Im-
portantly, in this study, orthographic similarity, but not se-
mantic relationship or lexicality, modulated the size of the
correlation between patterns of activation associated with
different stimuli. Specifically, the authors found that words
and pseudowords with similar orthographic structure (i.e.
shared letters in most positions) led to similar patterns of acti-
vation while semantically related words (i.e. synonyms) did
not elicit similar patterns. Furthermore, these results were
specific to the vWFA and were not replicated in other retino-
topic or object-selective areas. Of note, this study was con-
siderably different from ours with respect to both
experimental manipulations (e.g. design and task) and type
of multivariate analyses (e.g. classifier and cross-validation
procedure). Thus, identity-level discrimination between differ-
ent orthographic stimuli appears to capture a genuine differ-
ence in neural representation robust across the specifics of
experimental manipulation and analysis.
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In summary, the findings above confirm an important
implication of current theories of visual word form processing
(Cohen and Dehaene 2004; Dehaene and Cohen 2011).
Specifically, they provide a direct demonstration that the left
ventral cortex responds with different neural patterns to
different orthographic stimuli and, thus, support the critical
role of the left ventral cortex in sublexical word form
processing.

Functional Specificity of Orthographic Processing

While the main goal of orthographic stimulus processing is
presumably visual word form encoding and discrimination,
this does not imply lack of sensitivity to other aspects of
orthographic stimuli. In particular, it is of interest to con-
sider whether this sensitivity extends to properties orthog-
onal to visual word form identity, such as font. An
analysis of our 3 functionally localized ROIs found above-
chance discrimination in the right IOG but not in our left
ROIs for font discrimination (across pseudowords). While
the absence of an interaction between ROIs and type of
discrimination precludes a strong claim regarding hemi-
spheric asymmetry, the results above are suggestive of
different functional priorities for the vWFA and its right
homologue.

Interestingly, neuropsychological evidence (Barton et al.
2010) suggests opposite lateralization for the 2 types of
processing considered here: visual word form identity in
the left vWFA and style (i.e. type of font/handwriting) in its
right homologue. Recent neuroimaging results (Qiao et al.
2010) also show that reading handwriting versus printed
font boosts activation in the ventral cortex, particularly in
the right hemisphere. To account for these results, the
authors of the study suggest that the right-hemisphere hom-
ologue of the vWFA is involved in writer identification
rather than letter or word identification. Overall, our results
are consistent with these suggestions: the processing of
orthographic stimuli in the 2 hemispheres appears to prior-
itize different functions.

What is the source of this functional difference? A general
explanation could be couched in terms of different modes of
processing characterizing the 2 hemispheres. For instance,
holistic versus featural processing are advocated as character-
istic of the right- versus the left-hemisphere, particularly in
the context of face processing (Rossion et al. 2000). Rele-
vantly here, holistic visual processing may rely on global
properties such as overall curvature and spacing characteristic
of script “style” or font while featural processing would serve
a critical role in discriminating fine visual differences essential
for visual letter and word identification. To be clear, featural
processing here does not imply that words are processed
sequentially letter-by-letter, which is certainly not true of
normal reading—the fact that words are processed as whole
units is evidenced by a number of classical results such as the
word superiority effect (Wheeler 1970; McClelland and John-
ston 1977). Instead, it suggests that, unlike its right homol-
ogue, the vWFA prioritizes the identification of diagnostic
letter features to discriminate efficiently letters and words
from each other. Future research will be needed to test the
validity of this hypothesis as well as the full extent of the
asymmetry noted above.

Domain Specificity of Visual Word Form Processing

To address the issue of domain specificity in the ventral
cortex, we related visual word form processing to face proces-
sing both at the category and identity levels.

As expected, category-level face information was mapped
across an extensive portion of the ventral cortex (Haxby et al.
2001; Kriegeskorte et al. 2006) similar to that hosting visual
word form information. Overall, this attests to the sensitivity
of our multivariate mapping. However, as previously noted,
the spatial extent of this sensitivity and the contribution of
additional factors such as semantics make its results less in-
strumental in constraining an interpretation.

Identity-level analyses addressed this concern by compar-
ing pseudoword and face processing relative to finer within-
category discriminations both at the ROI and at the voxel
level. First, at the ROI level, 2 of the regions examined, in the
left IOG and IFG, supported pseudoword as well as face
identification. Secondly, at the voxel level, diagnosticity for
face and pseudoword discrimination correlated positively
within the left IOG but not within the left IFG.

We note that the ability of the left IFG to support face dis-
crimination may appear surprising at first sight given the in-
volvement of this region in phonological and lexical
processing (Fiez and Petersen 1998; Jobard et al. 2003; Hauk
et al. 2008). However, this result is likely to reflect the silent
naming of different facial identities—while the stimuli in the
study were not explicitly associated with any names or verbal
identifiers, the subjects confirmed using specific labels in
order to keep track of the stimuli (e.g. “face one” and “face
two”). The absence of a correlation between face and pseudo-
word diagnosticity can be explained on this basis as a lexical-
ity effect since faces but not orthographic stimuli were labeled
with actual words.

More interestingly here, we found that pseudoword and
face discrimination were related to each other both at the ROI
and at the voxel level in the left IOG. A number of recent em-
pirical and computational results also document this relation-
ship. For instance, Dehaene et al. (2010) found that
acquisition of literacy in normal adult populations leads to de-
creased face responses at the location of the vWFA and in-
creased responses in the right fusiform gyrus. Further
examination of these results revealed that orthographic rep-
resentations compete with face representations by limiting
their expansion in the left ventral cortex. Importantly, the
competition between orthographic representations and faces
was more pronounced than that between orthographic rep-
resentations and other categories such as houses and tools
(see also Cantlon et al. 2011). Another neuroimaging study
(Mei et al. 2010) found that a higher vWFA activation was
associated with better recognition memory for words and
faces alike. Finally, a recent model of orthographic and face
processing (Plaut and Behrmann 2011) illustrated the dy-
namics of this relationship in terms of resource competition
and sharing within the left ventral cortex.

Overall, our results are consistent with these previous find-
ings, and suggest that common shape processing underlies
both visual word form and face identification within the
vWFA. However, what is less clear is the extent of this
relationship across cortical neural networks including but not
limited to the left ventral cortex. In a previous study, we have
found that the right fusiform face area (FFA) supported the 2
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types of discrimination (Nestor et al. 2011). In contrast
though, other regions critical for face identification (e.g. in
the anterior fusiform gyrus) did not support pseudoword
identification. Neuropsychological data (Barton et al. 2010)
also show that damage to the right ventral cortex leading to
face recognition deficits (i.e. prosopagnosia) may be
accompanied by deficits of orthographic processing, but not
necessarily. Thus, it appears that the networks for ortho-
graphic and face processing have a significant overlap but are
clearly not identical. Furthermore, regions of overlap are
likely to play differential roles within the 2 networks. Specifi-
cally, while the vWFA is critical for orthographic processing,
it presumably serves only a supporting role in face recog-
nition and the converse holds for the FFA. Future connectivity
analyses will be needed to tease apart the relative contri-
bution of these regions concurrently within the networks sub-
serving orthographic and face perception.

Finally, a critical issue concerns the nature of the relation-
ship between orthographic and face perception. This relation-
ship is particularly intriguing, given that words and faces are
vastly different in terms of visual appearance and that face
processing is associated with heavier reliance upon low-
frequency information than orthographic stimuli (Woodhead
et al. 2011). Arguably, this relationship goes beyond an
expertise-based account involving primarily the right fusiform
gyrus (Gauthier et al. 2000). Perhaps, the most promising
account in this sense is suggested by the common reliance
upon high-acuity central vision of both face and orthographic
processing (Levy et al. 2001; Hasson et al. 2002). Specifically,
faces along with words and letter strings, unlike other cat-
egories such as building and tools, recruit areas of the high-
level visual cortex associated predominantly with central
rather than peripheral vision. To be clear, this is not at odds
with the importance of low-frequency information in face pro-
cessing (Woodhead et al. 2011) since face recognition can
involve a broad range of low and high frequencies (Halit et al.
2006). This common reliance upon central vision along with
pressure for left hemispheric language lateralization (Cai et al.
2008, 2010) can, in principle, account for the concurrent in-
volvement of the vWFA and FFA in face and orthographic pro-
cessing as well as for their differential role within the
corresponding networks (Plaut and Behrmann 2011). Quanti-
tative comparisons between model predictions and neural
data could clarify in the future the validity and the scope of
this explanation.

To conclude, the absence of an activation as well as dis-
crimination advantage for orthographic stimuli relative to
other visual categories argues against domain specificity in
the left ventral cortex. At the same time, the similar multi-
variate profile of face and orthographic discrimination within
the left ventral cortex provides novel evidence concerning the
relationship between these 2 domains.

Summary

Our investigation demonstrates that orthographic information
can be discriminated in the ventral cortex at both the category
and identity levels. These findings are instrumental in advan-
cing the debate regarding the nature and specificity of neural
orthographic processing. Specifically, our work supports the
existence of sublexical orthographic representations within
the left ventral cortex. At the same time, it argues against

claims of dedicated circuitry by showing that orthographic
processing and face processing rely on common neural re-
sources. More generally, it suggests that multivariate analyses
serve as a critical research component in elucidating the
neural basis of visual word form encoding.

Supplementary Material

Supplementary material can be found at: http://www.cercor.oxford-
journals.org/.
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Supplementary Methods

Behavioral procedures and results

Stimulus familiarization and task practice were carried out prior to the experiment

on a non-scanning day (along with subject screening) and on scanning days at the 

beginning of each experimental session. Each time subjects were presented with 32 

pseudoword and face stimuli and were instructed how to map the stimuli to 8 different 

keys as a function of stimulus identity (e.g. facial identity). Task practice followed 

largely the same procedure described for the main experiment except that trials ended as 

soon as the subject made a response.  Also, each stimulus was presented 6 times during a 

practice block (instead of a single time during scans). Practice blocks were repeated until 

identification accuracy surpassed 95% (usually one or two blocks sufficed).

Behavioral markers of performance (accuracy and RT) were also collected during 

scanning – these data were not recorded for one subject due to technical difficulties. 

Overall identification accuracy across participants reached ceiling: 99%(±1% SD). With 

respect to pseudoword stimuli, no difference was found for different identities either in 

accuracy (F4, 18 = 0.99, p > 0.10) or in RT (F4, 18 = 0.27, p > 0.10). Similar null results were

found for face stimuli. These results are instrumental in confirming that pattern 

discrimination of stimulus identity is not based on differential levels of difficulty 

associated with the recognition of different stimuli.
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Design

Two types of design were deployed during each experimental session. A block 

design was used mainly for the purpose of category-level functional localization while a 

widely spaced event-related design was used in order to test individual-level processing 

of orthographic stimuli and faces. One of the benefits of a widely spaced design is that it 

provides us with temporal information regarding the shape and the characteristics of the 

hemodynamic response. Such information would be largely missed by a block design 

(which mainly aims to capture the response amplitude associated with an entire group of 

stimuli) as well as by a fast event-related design (e.g. due to deconvolution with a 

suboptimal estimate of the hemodynamic response function). Thus, by providing access 

to the raw (i.e. non-deconvolved) time course of each stimulus, a widely spaced design 

appears better suited for the use of spatiotemporal pattern classification (Nestor et al., 

2011). This method involves concatenation of patterns at different time points (instead of 

their averaging) with the purpose of allowing classification to exploit both spatial and 

temporal information (Mourão-Miranda et al., 2007). In sum, the widely spaced design 

aims to boost the sensitivity of our analyses in the attempt to capture subtle effects 

associated with individual orthographic and face representations.

The considerations above also account for our use of conventional (i.e. average-

based) pattern construction for the purpose of multivariate analyses with our block-design

data. The application of spatiotemporal analyses to such data would provide little benefit 

(Mourão-Miranda et al., 2007) and would also be impractical due to the number of time 
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points to be considered (i.e. 8 or more). Specifically, the use of concatenation (instead of 

averaging) would lead to significantly higher pattern dimensionality and, thus, to longer 

training times and more overfitting. Thus, the two designs have largely different goals 

and our analyses are adjusted to reflect their different characteristics.

ROI masks

Spherical masks with a radius of 5 voxels were used both for the purpose of 

‘searchlight’ whole-volume analysis (Kriegeskorte et al., 2006) and for that of ROI 

analyses. The overall size of a mask was 515 voxels (for a total volume of 8, 047 mm3). 

The size of the mask was selected so as to balance a number of different and opposing 

goals: the size trades off amount of information versus spatial specificity and 

classification reliability. Specifically, the larger the size of the mask, the more 

(potentially relevant) information is included in the analysis. At the same time, the source

of relevant information is less precisely spatially localized for larger masks and 

classification is more prone to overfitting due to the increase in dimensionality (i.e. due to

the inclusion of more voxels) (Pereira et al., 2009). In order to estimate the optimal size 

of the mask, our analyses (conducted across 3 experimental session with a single pilot 

subject) varied the radius of the mask from 2 to 6 voxels (in steps of one voxel) and 

applied multivariate searchlight analysis to category-level discrimination (e.g. faces vs 

houses). Overall, we found that the levels of discrimination asymptote for masks with a 

5-voxel radius. Future investigations will be instrumental in confirming these findings 

and in determining if / how the optimal size of the mask varies as a function of the effect 

3



investigated and the type of classification procedure – for instance, the optimal size of the

mask is likely to depend on how well the classifier scales with pattern dimensionality. 

For the purpose of the analyses reported in the present study, we used our initial 

explorations to select the size of the masks in a non-arbitrary fashion.

Multi-class pattern classification

BOLD activation patterns were classified using a ‘one-against-one’ procedure. 

The term ‘one-against-one’ refers to a common extension of binary pattern classification 

(e.g. as accomplished by traditional SVM) to multi-class classification (Knerr et al., 

1990). This procedure involves constructing a separate classifier for each pair of classes 

rather than a single classifier per class – the latter strategy involves discriminating a given

class from all other classes at the same time (‘one-against-all’). ‘One-against-one’ and 

‘one-against-all’ produce in most cases comparable results but the former is associated 

with shorter training times (Hsu and Lin, 2002). In our case, ‘one-against-one’ involves 

discriminating each of four different stimulus identities (e.g. every pseudoword) 

separately from every other one.

Low-level image similarity and its role in discrimination

Distances were computed across pairs of pseudoword images using an L2 

(Euclidean) metric, a common measure of low-level image similarity (Moon and Phillips,

2001). More precisely, each image of a pseudoword (i.e. displayed with different types of

font) was compared with every image of another pseudoword and an average estimate 
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was computed across all pairings. Thus, a single estimate was produced for each pair of 

different pseudowords.

If low-level similarity is the primary source of information exploited by 

classification, we expect higher discrimination estimates for pairs of pseudowords more 

dissimilar from each other. In order to test this possibility, the estimates above were 

correlated with the corresponding discrimination levels for each pair of pseudowords 

separately for each ROI and each participant. The correlations scores obtained were 

converted to z-scores using Fisher’s z transform and were compared against chance 

across participants.

Supplementary Results

Univariate mapping of object and face-selective areas

To assess the overall effectiveness of our block-design data for mapping purposes,

we examined the results of additional pairwise contrasts. First, a contrast of objects 

versus faces showed an activation advantage for objects in the ventral cortex in the lateral

occipital cortex (Grill-Spector et al., 2001). And second, a contrast between faces and 

houses revealed the standard face-selective regions of the ventral cortex (e.g. the bilateral

fusiform face area) – univariate and multivariate analyses of these areas have been 

detailed elsewhere (Nestor et al., 2011). 

Univariate ROI analysis
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A two-way repeated-measures ANOVA (ROI x category) was conducted across 

individually-defined ROIs for faces, houses and objects (see Fig. 3 for average response 

amplitudes). These categories were analyzed independently of words and false-font 

strings due to their vastly different visual structure and due to the absence of low-level 

property matching – the analysis of the latter two categories is detailed in the main text.

The analysis found significant main effects for both factors (ROI: F2, 14 =25.23, 

p<0.001; category: F2, 14 =4.30, p<0.05) and a significant interaction (F4, 28 =6.34, p<0.01).

Pairwise contrasts (Bonferroni-corrected) showed that the left IFG responded less 

robustly than IOG regions (left IOG: t7 =4.77, p<0.01; right IOG: t7 =5.59, p<0.01) but 

there was no difference between the latter two (p>0.10). Also, the comparison among 

different categories revealed that houses elicited higher activation than faces in the right 

IOG (t7 =4.42, p<0.05). No other contrasts were significant among the three categories 

tested (p>0.10).

Contribution of low-level image similarity to identity-level discrimination

Our identity-level analyses were aimed at discriminating among invariant 

representations of visual word forms. This constraint was enforced by using one common

and considerable source of image variability: font type. However, it is possible that 

discrimination was still able to exploit certain low-level image properties diagnostic of 

stimulus identity.

To examine this possibility, we computed both pseudoword and font 

discrimination in a control region of the early visual cortex (EVC). This region should be 
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able to take advantage of diagnostic low-level properties for the purpose of linear 

discrimination; critically though, it has no direct access to invariant visual properties 

derived through nonlinear processing and characteristic of higher-level cortical regions  

(Kamitani and Tong, 2005). For either type of discrimination (i.e. pseudoword and font) 

our analysis found that performance was at chance level (p>0.10).

Another test of the contribution of low-level similarity explored whether 

discrimination in our target ROIs exploited gross image similarity. To examine this, we 

computed overall image distances for each pair of pseudowords and we correlated them 

with their corresponding discriminability values separately for each ROI. If low-level 

image differences drive our classification results, we expect image distances and 

performance estimates to be negatively correlated with each other. However, none of 

these correlations produced significant results for any of the ROIs (p>0.10). A similar 

result was obtained for font discrimination.

In conclusion, the considerations above suggest that the basis of our 

discrimination results relies on higher-level representations that are (at least partly) 

invariant to low-level image properties.
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Supplementary figure caption

Supplementary Figure 1. Experimental face stimuli (four individuals X four expressions).

Original face images courtesy of the Face-Place Face Database Project (http://www.face-

place.org/) copyright 2008, Michael J. Tarr (funding provided by NSF Award 0339122).

http://www.face-place.org/
http://www.face-place.org/



