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Face individuation is one of the most impressive achievements of
our visual system, and yet uncovering the neural mechanisms
subserving this feat appears to elude traditional approaches to
functional brain data analysis. The present study investigates the
neural code of facial identity perception with the aim of ascertain-
ing its distributed nature and informational basis. To this end,
we use a sequence of multivariate pattern analyses applied to
functional magnetic resonance imaging (fMRI) data. First, we
combine information-based brain mapping and dynamic discrimi-
nation analysis to locate spatiotemporal patterns that support face
classification at the individual level. This analysis reveals a network
of fusiform and anterior temporal areas that carry information
about facial identity and provides evidence that the fusiform face
area responds with distinct patterns of activation to different face
identities. Second, we assess the information structure of the
network using recursive feature elimination. We find that diagnos-
tic information is distributed evenly among anterior regions of the
mapped network and that a right anterior region of the fusiform
gyrus plays a central role within the information network mediat-
ing face individuation. These findings serve to map out and
characterize a cortical system responsible for individuation. More
generally, in the context of functionally defined networks, they
provide an account of distributed processing grounded in
information-based architectures.

The neural basis of face perception is the focus of extensive re-
search as it provides key insights both into the computational

architecture of visual recognition (1, 2) and into the functional
organization of the brain (3). A central theme of this research
emphasizes the distribution of face processing across a network of
spatially segregated areas (4–10). However, there remains consid-
erable disagreement about how information is represented and
processedwithin this network to support tasks such as individuation,
expression analysis, or high-level semantic processing.
One influential view proposes an architecture that maps dif-

ferent tasks to distinct, unique cortical regions (6) and, as such,
draws attention to the specificity of this mapping (11–20). As
a case in point, face individuation (e.g., differentiating Steve Jobs
from Bill Gates across changes in expression) is commonly map-
ped onto the fusiform face area (FFA) (6, 21). Although recent
studies have questioned this role of the FFA (14, 15), overall they
agree with this task-based architecture as they single out other
areas supporting individuation.
However, various distributed accounts have also been consid-

ered. One such account ascribes facial identity processing to
multiple, independent regions. Along these lines, the FFA’s sen-
sitivity to individuation has been variedly extended to areas of
the inferior occipital gyrus (5), the superior temporal sulcus (12),
and the temporal pole (22). An alternative scenario is that identity
is encoded by a network of regions rather than by any of its separate
components—such a systemwas recently described for subordinate-
level face discrimination (23). Still another distributed account
attributes individuation to an extensive ventral cortical area rather
than to a network of smaller separate regions (24). Clearly, the
degree of distribution of the information supporting face individ-
uation remains to be determined.

Furthermore, insofar as face individuation is mediated by a
network, it is important to determine how information is distrib-
uted across the system. Some interesting clues come from the fact
that right fusiform areas are sensitive to both low-level properties
of faces (16, 25) and high-level factors (26, 27), suggesting that
these areas may mediate between image-based and conceptual
representations. If true, such an organization should be reflected in
the pattern of information sharing among different regions.
The current work investigates the nature and the extent of

identity-specific neural patterns in the human ventral cortex. We
examined functional MRI (fMRI) data acquired during face
individuation and assessed the discriminability of activation
patterns evoked by different facial identities across variation in
expression. To uncover the neural correlate of identity recogni-
tion, we performed dynamic multivariate mapping by combining
information-based mapping (28) and dynamic discrimination
analysis (29). The results revealed a network of fusiform and
anterior temporal regions that respond with distinct spatiotem-
poral patterns to different identities. To elucidate the distribu-
tion of information, we examined the distribution of diagnostic
information across these regions using recursive feature elimi-
nation (RFE) (30) and related the information content of dif-
ferent regions to each other. We found that information is evenly
distributed among anterior regions and that a right fusiform
region plays a central role within this network.

Results
Participants performed an individuation task with faces (Fig. 1)
and orthographic forms (OFs) (Fig. S1). Specifically, they recog-
nized stimuli at the individual level across image changes in-
troduced by expression (for faces) or font (for OFs). Response
accuracy was at ceiling (>95%) as expected given the familiar-
ization with the stimuli before scanning and the slow rate of
stimulus presentation. Thus, behavior exhibits the expected invari-
ance to image changes, and the current investigation focuses on
the neural codes subserving this invariance.

Dynamic Multivariate Mapping.The analysis used a searchlight (SL)
with a 5-voxel radius and a 3-TR (Time to Repeat) temporal
envelope to constrain spatiotemporal patterns locally. These
patterns were submitted to multivariate classification on the basis
of facial identity (Methods and SI Text). The outcome of the
analysis is a group information-based map (28) revealing the
strength of discrimination (Fig. 2). Each voxel in this map rep-
resents an entire region of neighboring voxels defined by the
SL mask.
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Ourmapping revealed four areas sensitive to individuation: two
located bilaterally in the anterior fusiform gyrus (aFG), one in the
right anterior medial temporal gyrus (aMTG), and one in the left
posterior fusiform gyrus (pFG). The largest of these areas cor-
responded to the right (r)aFG whereas the smallest corresponded
to its left homolog (Table 1).
To test the robustness of our mapping, the same cortical volume

(Fig. S2A) was examined with SL masks of different sizes. These
alternative explorations produced qualitatively similar results
(Fig. S3 A–C). In contrast, a univariate version of the mapping (SI
Text) failed to uncover any significant regions, even at a liberal
threshold (q < 0.10), attesting to the strength of multivariate;
mapping.
To further evaluate these results, we projected the four areas

from the groupmap back into the native space of each subject and
expanded each voxel to the entire SL region centered on it. The
resulting SL clusters (Fig. S3D) mark entire regions able to sup-
port above-chance classification. Examination of subject-specific
maps revealed that the bilateral aFG clusters were consistently
located anterior to the FFA [rFFA peak coordinates, 39, −46,
and −16; left (l)FFA, −36, −47, and −18]. However, we also
found they consistently overlapped with the FFA (mean ± SD:
24 ± 14% of raFG volume and 35 ± 20% of laFG).
Finally, multivariate mapping was applied to other types of

discrimination: expression classification (across identities) and
category-level classification (faces versus OFs). Whereas the
former analysis did not produce any significant results, the latter
found reliable effects extensively throughout the cortical volume
analyzed (Fig. S2B). In contrast, a univariate version of the latter
analysis revealed considerably less sensitivity than its multivariate
counterpart (Fig. S2C).

The results above suggest that identity coding relies on a dis-
tributed cortical system. Clarifying the specificity of this system
to face individuation is addressed by our region-of-interest
(ROI) analyses.

ROI Analyses. First, we examined whether the FFA supports reli-
able face individuation as tested with pattern classification. Bi-
lateral FFAs were identified in each subject using a standard face
localizer, and discrimination was computed across all features in
a region—given the use of spatiotemporal patterns, our features
are voxel X time-point pairings rather than voxels alone. The
analysis revealed above-chance performance for rFFA (Fig. 3).
To reduce overfitting, we repeated the analysis above using

subsets of diagnostic features identified by multivariate feature
selection, specifically RFE. The method works by systematically
removing features, one at a time, on the basis of their impact on
classification (SI Text). Following this procedure, we found above-
chance performance bilaterally in the FFA (Fig. 3). In contrast,
early visual cortex (EVC) did not exhibit significant sensitivity
either before or after feature selection.
Second, we reversed our approach by using multivariate map-

ping to localize clusters and univariate analysis to assess face se-

Fig. 1. Experimental face stimuli (4 identities × 4 expressions). Stimuli were
matched with respect to low-level properties (e.g., mean luminance), ex-
ternal features (hair), and high-level characteristics (e.g., sex). Face images
courtesy of the Face-Place Face Database Project (http://www.face-place.org/)
Copyright 2008, Michael J. Tarr. Funding provided by NSF Award 0339122.

Fig. 2. Group information-based map of face individuation. The map is
computed using a searchlight (SL) approach and estimates the discrimina-
bility of facial identities across expression (q < 0.05). Each voxel in the map
represents the center of an SL-defined region supporting identity discrimi-
nation. The four slices show the sensitivity peaks of the four clusters revealed
by this analysis.

Table 1. Areas sensitive to face individuation

Coordinates (peak)

Region x y z SL centers (voxels) Peak t value

raFG 33 −39 −9 16 11.31
raMTG 19 6 −26 8 9.90
lpFG −26 −69 −14 2 7.11
laFG −29 −39 −14 1 7.24
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lectivity. Concretely, we examined the face selectivity of the SL
clusters using the data from our functional localizers. No reliable
face selectivity was detected for any cluster.
Third, SL clusters alongwith theFFAwere tested for their ability

to discriminate expressions across changes in identity. Above-
chance discrimination was found in rFFA and raMTG (P < 0.05).
Finally, we tested our clusters for OF individuation across

variation in font. The analysis found sensitivity in two regions:
rFFA and lpFG.
These findings are important in several respects. They suggest

conventionally defined face selectivity, although informative, may
not be enough to localize areas involved in fine-level face rep-
resentation. Also, they show that the identified network is not

exclusively dedicated to individuation or even to face processing
per se. One hypothesis, examined below, may explain this in-
volvement in multiple types of perceptual discrimination simply
by appeal to low-level image properties.

Impact of Low-Level Image Similarity on Individuation. To deter-
mine the engagement of the network in low-level perceptual
processing, image similarity was computed across images of
different individuals using an L2 metric (Table S1). For each pair
of face identities, the average distance was correlated with the
corresponding discrimination score produced by every ROI (in-
cluding the FFA). The only ROI susceptible to low-level image
sensitivity was laFG (P < 0.05 uncorrected) (Fig. S4).
These results, along with the inability of the EVC to support

individuation, suggest that low-level similarity is unlikely to be
the main source of the individuation effects observed here.

Feature Ranking and Mapping.Having located a network of regions
sensitive to face identity, we set out to determine the spatial and
temporal distribution of the features diagnostic of face individ-
uation. Specifically, we performed RFE analysis jointly across all
SL clusters and recorded the ranking of the features within
each subject. To eliminate any spatial bias within the initial fea-
ture set, we started with an equally large number of features for
each cluster: the 1,000 top-ranked ones based on single-cluster
RFE computation.
Fig. 4A shows the average ranking of the 400 most informative

features across subjects and Fig. 4B summarizes their distribution
across clusters and time points. We found a significant effect of
cluster (two-way analysis of variance, P < 0.05) but no effect of
time point and no interaction. Further comparisons revealed that
lpFG contains fewer features than other clusters (P < 0.05), which
did not differ among each other. The time course of feature
elimination revealed that lpFG features were consistently elimi-
nated at a higher rate than features from other clusters (Fig. 4C). A

Fig. 3. Sensitivity estimates in three ROIs. Facial identity discrimination was
computed using both the entire set of features in an ROI and a subset of di-
agnostic features identified by multivariate feature selection (i.e., RFE), the
two types of classification are labeled as pre- and post-RFE. The average
number of features involved in classification is superimposed on each bar. The
results indicate that the bilateral FFA, in contrast to an early visual area, con-
tains sufficient information to discriminate identities above chance (P < 0.05).

Fig. 4. Spatiotemporal distribution of information diagnostic for face individuation. (A) Group map of average feature ranking for the top 400 features—
rows show different slices and columns different time points. Color codes the ranking of the features across space (the four regions identified by our SL
analysis) and time (4–8 s poststimulus onset). The map shows a lower concentration of features in the lpFG relative to other regions but a comparable number
of features across time. (B) Average feature distribution across subjects by cluster and time point (the bar graph quantifies the results illustrated in A). (C)
Time course of feature elimination by ROI for 4,000 features (top 1,000 features for each ROI). This analysis confirms that lpFG features are eliminated at
a higher rate, indicative of their reduced diagnosticity (shaded areas show ±1 SE across subjects).
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similar analysis across time points showed no substantial differ-
ences across time (Fig. S5).
Feature mapping provides a bird’s eye view of information

distribution across regions. In our case, it reveals a relatively even
division of diagnostic information among anterior regions. Fur-
ther pairwise comparisons of SL clusters were deployed to ex-
amine how areas share information with each other.

Information-Based Pairwise Cluster Analysis. Whereas activation
patterns in different areas are not directly comparable with each
other (e.g., because they have different dimensionalities, there is
no obvious mapping between them, etc.), the classification results
they produce serve as convenient proxies (Methods). Here, we
compared classification patterns for pairs of regions while con-
trolling for the pattern of correct labels. Thus, the analysis focuses
on common biases in misclassification.
First, we computed the partial correlation between classification

patterns corresponding to different clusters. Group results are
displayed as a graph in Fig. 5. Similarity scores for all pairs of
regions tested above chance (one-sample t test, P < 0.01). Simi-
larity scores within the network were not homogeneous (one-way
analysis of variance, P< 0.05) mainly because raFG evinced higher
similarity estimates than the rest (P < 0.01). In addition, we
computed similarity scores between the four clusters and the EVC.
Average similarity scores within the network were significantly
higher than scores with the EVC (paired-sample t test, P < 0.01).
Second, to verify our findings using an information-theoretic
measure, we computed the conditional mutual information be-
tween classification patterns produced by different clusters (Fig.
5). Examination of information estimates revealed a relational
structure qualitatively similar to that obtained using correlation.
We interpret the results above as evidence for the central role of

the right FG in face individuation. More generally, they support
the idea of redundant information encoding within the network.

Discussion
The present study investigates the encoding of facial identity in
the human ventral cortex. Our investigation follows a multivariate
approach that exploits multivoxel information at multiple stages
frommapping to feature selection and network analysis. We favor
this approach because multivariate methods are more successful
at category discrimination than univariate tests (31) and possibly
more sensitive to “subvoxel” information than adaptation tech-
niques (32). In addition, we extend our investigation to take ad-
vantage of spatiotemporal information (29) and, thus, optimize

the discovery of small fine-grained pattern differences underlying
the perception of same-category exemplars.

Multiple Cortical Areas Support Face Individuation. Multivariate
mapping located four clusters in the bilateral FG and the right
aMTG encoding facial identity information. These results in-
dicate that individuation relies on a network of ventral regions
that exhibit sensitivity to individuation independently of each
other. This account should be distinguished both from local ones
(6, 21) and from other versions of distributed processing (23, 24).
With regard to the specific clusters identified, previous work

uncovered face-selective areas in the vicinity of the FFA, both
posterior (9) and anterior (33) to it. Our clusters did not exhibit
face selectivity when assessed with a univariate test. However, this
lack of selectivity may reflect the variability of these areas (9, 33)
and/or the limitations of univariate analysis (34). Alternatively, it
is possible that face processing does not necessarily entail face
selectivity (35). More relevantly here, face individuation, rather
than face selectivity, was previously mapped to an area in the
anterior vicinity of the FFA (14). Overall, our present results
confirm the involvement of these areas in face processing and
establish their role in individuation.
On a related note, the proximity of these fusiform clusters to

the FFA may raise questions as to whether they are independent
clusters or rather extensions of the FFA (7, 9). On the basis of
differences in peak location and the lack of face selectivity, we
treat them here as distinct from the FFA although further in-
vestigation is needed to fully understand their relationship with
this area.
Unlike the FG areas discussed above, an anterior region of the

right middle temporal cortex (36, 37) or temporal pole (22) was
consistently associated with identity coding. Due to its sensitivity
to higher-level factors, such as familiarity (22), and its involve-
ment in conceptual processing (38, 39), the anterior temporal
cortex is thought to encode biographical information (6). Whereas
our ability to localize this region validates our mapping method-
ology, the fact that our stimuli were not explicitly associated with
any biographical information suggests that the computations hos-
ted by this area also involve a perceptual component. Consistent
with this, another mapping attempt, based on perceptual dis-
crimination (15), traced face individuation to a right anterior
temporal area. Also, primate research revealed encoding of face–
space dimensions in the macaque anterior temporal cortex (40) as
well as different sensitivity to perceptual and semantic processing
of facial identity (41). In light of these findings, we argue that this
area is part of the network for perceptual face individuation al-
though the representations it hosts are likely to also comprise a
conceptual component.
In sum, our mapping results argue for a distributed account of

face individuation that accommodates a multitude of experi-
mental findings. Previous imaging research may have failed to
identify this network due to limits in the sensitivity of the methods
used in relation with the size of the effect. Inability to find sen-
sitivity in more than one region can easily lead to a local in-
terpretation. At the same time, combining information from
multiple regions may counter the limitations of one method but
overestimate the extent of distributed processing. Our use of dy-
namic multivariate mapping builds upon these previous findings
and is a direct attempt to increase the sensitivity of these mapping
methods at the cost of computational complexity.
Importantly, the regions uncovered by our analysis may rep-

resent only a subset of the full network of regions involved in
identity processing. We allow for this possibility given our limited
coverage (intended to boost imaging resolution in the ventral
cortex) as well as the lower sensitivity associated with the imaging
of the inferior temporal cortex. In particular, regions of the su-
perior temporal sulcus and prefrontal cortex (4, 10) are plausible
additions to the network uncovered here.

Fig. 5. Pairwise ROI relations. The pattern of identity (mis)classifications is
separately compared for each pair of regions using correlation-based scores
(red) and mutual information (brown). Specifically, we relate classification
results across regions while controlling for the pattern of true labels. These
measures are used as a proxy for assessing similarity in the encoding of facial
identity across regions. Of the four ROIs, the raFG produced the highest
scores in its relationship with the other regions (connector width is pro-
portional to z values).
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Individuation Effects Are Not Reducible to Low-Level Image Processing.
To distinguish identity representations from low-level image dif-
ferences, we appealed to a common source of intraindividual im-
age variations: emotional expressions. Also, identity was not
predictable in our case by prominent external features, such as
hair, or by image properties associated with higher-level charac-
teristics (e.g., sex or age). Furthermore, we assessed the contri-
bution of interindividual low-level similarity to discrimination
performance. Of all regions examined, only laFG showed potential
reliance on low-level properties. Finally, an examination of an
early visual area did not produce any evidence for identity
encoding. Taken together, these results render unlikely an expla-
nation of individuation effects based primarily on low-level
image properties.

The Face Individuation System Does Not Support General-Purpose
Individuation. To address the domain specificity of the system
identified, we examined whether “abstract”OFs (i.e., independent
of font) can be individuated within the regions mapped for faces.
Although highly dissimilar from faces, OFs share an important
attribute with them, by requiring fine-grained perceptual dis-
crimination at the individual level. In addition, they appear to
compete with face representations (42) and to rely on similar visual
processing mechanisms (43). Thus, they may represent a more
suitable contrast category for faces than other familiar categories,
such as houses. Our attempt to classify OF identities revealed that
two regions, the lpFG and the rFFA, exhibited sensitivity to this
kind of OF information.
Furthermore, to examine the task specificity of the network,

we evaluated the ability of its regions to support expression
discrimination and found that the rFFA, along with the aMTG,
was able to perform this type of discrimination.
Thus, it appears that the mapped network does not support

general object individuation, although it may share resources with
the processing of other tasks as well as of other visual categories.

FFA Responds to Different Face Identities with Different Patterns.
The FFA (44, 45) is one of the most intensely studied functional
areas of the ventral stream. However, surprisingly, its role in face
processing is far from clear. At one extreme, its involvement in
face individuation (6, 18, 21) has been called into question (14–
16); at the other, it has been extended beyond the face domain to
visual expertise (17) and even to general object individuation (13).
Previous studies of the FFAusingmultivariate analysis have not

been successful in discovering identity information (15, 24) or
even subordinate-level information (23) about faces. The study of
patient populations is also not definitive. FG lesions associated
with acquired prosopagnosia (46) adversely impact face individ-
uation, confirming the critical role of the FFA. However, indi-
viduals with congenital prosopagnosia appear to exhibit normal
FFA activation profiles (47) in the presence of compromised
fiber tracts connecting the FG to anterior areas (48). Thus, the
question is more pertinent than ever: Does the FFA encode
identity information?
Our results provide evidence that the FFA responds consistently

across different images of the same individual, but distinctly to
different individuals. In addition, we show that the right FFA can
individuate OFs and decode emotional expressions, consistent
with its role in expression recognition (12).
Thus, we confirm the FFA’s sensitivity to face identity using

pattern analysis. Moreover, we show that it extends beyond both
a specific task, i.e., individuation, and a specific domain, i.e., faces.
Further research is needed to determine how far its individuation
capabilities extend and how they relate with each other.

Informative Features Are Evenly Distributed Across Anterior Regions.
How uniformly is information distributed across multiple regions?
At one extreme, the system may favor robustness as a strategy and

assign information evenly across regions. At the other, its structure
may be shaped by the feed-forward flow of information and display
a clear hierarchy of regions from the least to the most diagnostic.
The latter alternative is consistent, for instance, with a posterior-
to-anterior accumulation of information culminating in the re-
cruitment of the aMTG as the endpoint of identity processing.
Our results fall in between these two alternatives. Anterior

regions appear to be at an advantage compared with the left pFG.
At the same time, there was no clear differentiation among an-
terior regions in terms of the amount of information represented,
suggesting that information is evenly distributed across them.

The Right aFG May Be a Hub in the Facial Identity Network. As dif-
ferent regions are not directly comparable as activation patterns,
we used their classification results as a proxy for their comparison.
Using this approach, we found that different regions do share in-
formation with each other, consistent with redundancy in identity
encoding. Furthermore, we found that pairwise similarities are
more prominent in relation with the right aFG than among other
network regions, suggesting that the raFG plays a central role
within the face individuation network. Thus, the raFG mirrors the
role played by the right FFA among face-selective regions as
revealed by functional connectivity (4). One explanation of this
role is that a right middle/anterior FG area serves as an interface
between low- and high-level information.
Two lines of evidence support this hypothesis. Recent results

show, surprisingly, that the FFA exhibits sensitivity to low-level
face properties (16, 25). Additionally, the right FG is subject to
notable top–down effects (26, 27). Maintaining a robust interface
between low-level image properties and high-level factors is
likely a key requirement for fast, reliable face processing. Critical
for our argument, this requirement would lead to the formation
of an FG activation/information hub. Future combinations of
information and activation-based connectivity analyses might be
able to assess such hypotheses and provide full-fledged accounts
of the flow of information in cortical networks.

Summary.A broad body of research suggests that face perception
relies on an extensive network of cortical areas. Our results show
that a single face-processing task, individuation, is supported by
a network of cortical regions that share resources with the pro-
cessing of other visual categories (OFs) as well as other face-
related (expression discrimination) tasks. Detailed investigation
of this network revealed an information structure dominated by
anterior cortical regions, and the right FG in particular, con-
firming its central role in face processing. Finally, we suggest that
a full understanding of the operation of this system requires a com-
bination of conventional connectivity analyses and information-
based explorations of network structure.

Methods
An extended version of this section is available in SI Text.

Design. Eight subjects were scanned across multiple sessions using a slow
event-related design (10-s trials). Subjects were presented with a single face
or OF stimulus for 400 ms and were asked to identify the stimulus at the
individual level using a pair of response gloves. We imaged 27 oblique slices
covering the ventral cortex at 3T (2.5-mm isotropic voxels, 2-s TR).

Dynamic Information-Based Brain Mapping. The SL was walked voxel-by-voxel
across a subject-specific cortical mask. The mask covered the ventral cortex
(Fig. S2) and was temporally centered on 6-s poststimulus onset. At each
location within the mask, spatiotemporal patterns (29) were extracted for
each stimulus presentation. To boost their signal, these patterns were av-
eraged within runs on the basis of stimulus identity. Pattern classification
was performed using linear support vector machines (SVM) with a trainable
c term followed by leave-one-run-out cross-validation. Classification was
separately applied to each pair of identities (six pairs based on four identi-
ties). Discrimination performance for each pair was encoded using d′ and an
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average information map (28) was computed across all pairs. For the pur-
pose of group analysis, these maps were normalized into Talairach space and
examined for above-chance sensitivity (d′ > 0), using voxelwise t tests across
subjects [false discovery rate (FDR) corrected]. Expression discrimination
followed a similar procedure.

Analyses were carried out in Matlab with the Parallel Processing Toolbox
running on a ROCKS+ multiserver environment.

ROI Localization. Three types of ROIs were localized as follows: (i) We iden-
tified locations of the group information map displaying above-chance dis-
criminability and projected their coordinates in the native space of each
subject. ROIs were constructed by placing spherical masks at each of these
locations—a set of overlapping masks gave rise to a single ROI. (ii) Bilateral
FFAs were identified for each subject by standard face–object contrasts. ROIs
were constructed by applying a spherical mask centered on the FG face-
selective peak. (iii) Anatomical masks were manually drawn around the
calcarine sulcus of each subject and a mask was placed at the center of these
areas. The results serve as a rough approximation of EVC. All masks used for
ROI localization had a 5-voxel radius.

RFE-Based Analysis. SVM-based RFE (30) was used for feature selection and
ranking—the order of feature elimination provides an estimate of feature
diagnosticity for a given type of discrimination. To obtain unbiased estimates

of performance, we executed two types of cross-validation. We performed
cross-validation, first, at each RFE iteration step tomeasure performance and,
second, across iteration steps tofind the best number of features. RFE analysis
was applied to all types of ROIs described above.

Pairwise ROI Analysis. We computed the similarity of classification patterns
produced by each pair of ROIs, namely the patterns of classification labels
obtained with test instances during cross-validation. However, patterns are
likely correlated across regions by virtue of the ability of SVM models to
approximate true labels. Therefore, we measured pattern similarity with
partial correlation while controlling for the pattern of true labels. Correla-
tions were computed for each pair of facial identities, transformed using
Fisher’s z, and averaged within subjects. Critically, to eliminate common
biases based on spatial proximity between regions (because of spatially
correlated noise) all activation patterns were z-scored before classification.
To obtain estimates of the information shared between ROIs we also com-
puted the conditional mutual information between ROI-specific classifica-
tion patterns given the pattern of true labels.
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Stimulus Preparation. Faces. Stimulus choice and construction were
guided by two opposing goals. On the one hand, stimuli had to be
as similar as possible with respect to a number of characteristics:
high-level attributes (e.g., sex or age), low-level image descriptors
(e.g., average luminance or contrast), and external feature
properties (e.g., hair color or volume) to eliminate confounds with
facial identity. On the other hand, individual faces needed to be as
different from each other as possible to maximize the discrimi-
nability of the visually based activation patterns they elicit. To
accommodate these different demands, we proceeded as follows.
First, we started with all front-view faces from the Face-Place

3.0 face database (www.face-place.org) and we narrowed down
this dataset to young Caucasian adult male faces displaying
a minimum of three basic emotional expressions (1) in addition
to neutral expressions. This procedure ensures substantial
within-identity image variability while preserving natural poses
that are easy to interpret. In addition, we eliminated all faces
that displayed facial hair, glasses, or other adornments, leaving
us with a set of 128 faces (32 identities × 4 expressions).
Second, faces were normalized to the same size, subsampled to

a lower resolution, and masked. More precisely, an oval mask was
applied to all images to remove background and hair and also to
reduce the dimensionality of the space (Fig. S6).
Third, we converted images to CIEL*a*b*, the color space that

comes closest to that of human vision (2). Each image was nor-
malized next with the same mean and contrast value separately
for each of the three color channels: L* (corresponding to lu-
minance), a* (corresponding to red:green), and b* (correspond-
ing to yellow:blue).
Fourth, we computed pairwise similarity measures across all

faces with a neutral expression. More specifically, we applied
principal component analysis (PCA) to all faces and their mirror
symmetric versions (3). We selected the projections on the first
40 principal components for each image and computed Maha-
lanobis distances between these lower-dimension patterns for
each pair of neutral faces. A Mahalanobis metric was deployed
given that it outperforms other types of metric with regard to
both automatic face recognition (4) and modeling human face
recognition (5). On the basis of these measurements, from all
possible sets of four neutral faces we selected the set that mini-
mized the average similarity score. We also ensured that each
pair of faces within this set scored a similarity value below the
average within the larger initial set.
Finally, we restored the original homogeneous background and

applied the same hair feature to all four faces and their nonneutral
versions (happy, sad, and disgusted). The resulting 16 images (Fig.
1) served as experimental stimuli for our individuation task.
A different set of faces was used for the functional localizers.

Orthographic forms (OFs). Four five-letter pseudowords (Fig. S1)
were presented in four different types of font (Arial Black,
Comic Sans MS, Courier, and Lucida Handwriting). The pseu-
dowords had the same syllable structure but were orthographi-
cally dissimilar in that they had no common letter in the same
position. Moreover, they were composed of different sets of
letters (with the exception of plang and greld that shared the
letter “l” in different positions).

Subjects. Eight Caucasian young adults (five females, age range
18–22) from the Carnegie Mellon University community partic-
ipated in the experiment. All subjects were right-handed and had
normal or corrected-to-normal vision. None of the subjects had

any history of neurological disorders. Two other subjects par-
ticipated in the experiment; however, their data were excluded
from analysis due to large head movements (more than a voxel)
during at least one of three scanning sessions.
Informed consent was obtained from all subjects. The In-

stitutional ReviewBoard of CarnegieMellonUniversity approved
all imaging and behavioral procedures.

Behavioral Procedures. Before scanning, subjects were presented
with the 16-face stimuli described above and were trained to
associate each facial identity with one of four buttons. None of the
subjects were previously familiar with any of the faces presented
nor were they given any biographical information with regard to
them. Similarly, subjects were presented with the 16 OF stimuli
and were trained to associate each individual OF with a button
(face and OF responses were made using different hands ran-
domly assigned to each category). Subjects practiced the task until
accuracy reached ceiling (>98%). Training took place at least 1 d
before each subject’s first scanning session and was also briefly
repeated before each scanning session.
During localizer scans, subjects performed a one-back task

(same/different image). During the remaining functional scans,
they performed the individuation task described above.
Stimuli were presented in the center of the screen against a

black background and subtended a visual angle of 3.2° × 4.1°.
Stimulus presentation and response recording relied on Matlab
(Mathworks) and Psychtoolbox 3.0.8 (6, 7).

Experimental Design. Eight participants were each scanned for
a total of 21 functional runs spread across three 1-h sessions. Of
these, 17 runs used a slow event-related design whereas the rest
used a block protocol suitable for functional localizers.
Localizer scans contained blocks of images grouped by cate-

gory: faces, common objects, houses, words, and pseudofont
strings. Each block consisted of back-to-back presentations of 15
stimuli for a total of 14 s (930 ms per stimulus). Stimulus blocks
were separated by 10 s of fixation and were preceded by a 10-s
fixation interval at the beginning of each run. No single stimulus
was repeated within the course of a run. Each localizer scan
contained 10 stimulus blocks, 2 for each stimulus category, and
had a total duration of 250 s.
Runs with an individuation task used a slow event-related design

with the following structure: a bright fixation cross was presented
in the middle of the screen for 100 ms and then a stimulus
appeared for 400 ms and was replaced by a lower-contrast fixation
cross until the end of the event for 9.5 s. Each run contained a set
of 32 such events following 10 s of fixation (for a total of 330 s). All
face and OF stimuli described above were presented exactly once
during each run. Stimuli were displayed in pseudorandom order to
maximize uncertainty about stimulus identity (8) under the con-
straint that no more than three stimuli from the same category
(face or OF) could be presented in a row.
Our decision to include OF stimuli along with faces was mo-

tivated by several different factors. First, inclusion of a different
category was expected to reduce possible habituation/adaptation
effects caused by prolonged exposure to the same small set of
faces. Second, faces and OFs are perceptually highly dissimilar.
Thus, although pattern discrimination for faces at the individual
level is bound to be challenging for any type of method, dis-
crimination of faces and OFs at the category level should be
relatively easy and could serve as a robust benchmark for our
classification method. Third and most important, the information
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map obtained for face individuation could arguably be a generic
individuation map, that is, not face specific but process specific.
If so, we would expect other categories of objects with which we
have extensive individuation experience, such as OFs, to produce
similar information maps. Analysis of OF discriminability within
the context of the same experiment provides us with a first test of
this hypothesis. Finally, we opted for using pseudowords instead of
actual words because they are unfamiliar (like faces) and minimize
semantic processing while engaging similar mechanisms for OF
processing (9, 10).
Functional scans were equally divided across three different

sessions (seven scans per session) conducted on separate days. A
structural scan was also performed at the beginning (or the end)
of each session.

Imaging Parameters. Subjects were scanned in a Siemens Allegra
3T scanner with a single-channel head coil. Functional images
were acquired with an echo-planar imaging sequence (TR 2 s,
time to echo 31 ms, flip angle 79°, 2.5-mm isotropic voxels, field
of view 240 × 240 mm2, 27 oblique slices covering the ventral
stream). An MP-RAGE sequence (1-mm3 voxels; 192 slices of
size 256 × 256 mm2) was used for anatomical imaging.

Preprocessing. Functional scans were slice scan time corrected,
motion corrected, coregistered to the same anatomical image,
and normalized to percentage of signal change using AFNI (11).
Functional localizer data were smoothed with a Gaussian kernel
of 7.5 mm FWHM. No spatial smoothing was performed on the
rest of the data to allow multivariate analysis to exploit high-
frequency information (12).

Standard Univariate Analysis. After completion of preprocessing
steps we discarded the first 5 vol of each run to allow the he-
modynamics to achieve a steady state and to minimize transient
effects of magnetic saturation. Next, we fitted each type of block
with a boxcar predictor and convolved it with a gamma hemo-
dynamic response function (13). A general linear model (14) was
applied to estimate the coefficient of each predictor inde-
pendently for each voxel. Statistical maps were computed by
t tests of pairwise comparisons between different block types.
Face-selective areas were detected using a face–object contrast.
Correction for multiple comparisons was implemented by con-
trolling the false discovery rate under the assumption of positive/
no correlation (15).

Spatiotemporal Information-Based Brain Mapping. A manually
drawn cortical mask was constructed for each subject’s brain. Fig.
S2A shows the corresponding group mask. Searchlight analysis
was carried out by walking a sphere voxel-by-voxel across the
entire volume of the mask, extracting the spatial–temporal pat-
terns recorded at each location, and testing them for the pres-
ence of relevant information via multivariate analysis. More
specifically, a sphere with a 5-voxel radius was centered on each
voxel within the cortical mask and intersected with the mask to
restrict analysis to cortical voxels. Activation values across this
restricted set of voxels at three different time points (4, 6, and 8 s
after stimulus onset) were extracted for each stimulus pre-
sentation and concatenated into a single pattern.
Our choice of a 5-voxel spatial radius was based on pilot data not

included in the current analysis. In addition, to test the sensitivity of
our results as a function of this parameter, we conducted identical
analyses for searchlight radii of 4 and 6 voxels. We note that in-
creasing the size of the searchlight may both benefit and hurt the
mapping results and their interpretation. A larger searchlight
augments the amount of potentially useful information but also
increases the dimensionality of the patterns leading to more
overfitting. Also, the larger the searchlight is, the less local the
mapping results will be: Highly local information will be exploited

byall searchlightmasks that contain itover a larger area, thus leading
to a more diffuse map—see Fig. S3 for an example. Our choice
represents a compromise between searching for local information
and exploiting a sufficient amount of spatial information.
The temporal size of the window was selected to capture the

peak of the hemodynamic response function (HRF) (16). We note
that a full-blown version of a spatial–temporal searchlight would
have to walk a window in both space and time. Whereas this
approach may provide a more detailed assessment of the tem-
poral–spatial profile of information maps, such analysis comes at
significant additional computational cost. As an alternative to this
approach, we restrict our analysis to spatial mapping and keep the
position of our temporal window fixed.
Next, to boost the signal-to-noise ratio (SNR) of our patterns,

we averaged stimulus-specific patterns by stimulus identity. Thus,
all patterns elicited during a functional run by images of the same
individual, irrespective of the expression displayed, were com-
bined into a single one. This procedure produced 17 different
patterns, 1 per run, for each of four different facial identities. A
similar procedure was used for OF stimuli.
To measure identity discriminability, we applied multiclass

SVM classification using a one-against-one approach to speed up
computations (17)—that is, each facial identity is compared with
every other one at a time. Our particular choice of classifier is
linear SVM with a trainable c term because it appears to perform
better or, at least, equivalently to other classifiers tested on
neuroimaging data (18, 19). Leave-one-run-out cross-validation
was carried out for each pair of facial identities. At the same
time, nested cross-validation within each training set was con-
ducted to optimize the c term (allowed to range between 2−4 and
210) and minimize overfitting. Discriminability was next encoded
using the sensitivity measure d′ (20). Voxelwise averaging of
these estimates across each of the six pairs of identities com-
pared produced subject-specific information maps.
Because it appears thatmultivariate analysis is able exploit high-

frequency spatial information (12, 21), we attempted to minimize
the amount of distortion of the functional data and preserve this
information. Thus, multivariate analysis was carried out on un-
smoothed data in each subject’s native space. However, for the
purpose of group analysis all information maps were brought into
Talairach space. Group information maps were obtained by av-
eraging across subjects and statistical effects were computed using
a one-sample t test against chance (d′ = 0). Finally, multiple-
comparison correction was implemented using FDR.
Whereas the analysis described above was designed to take

advantage of information distributed across patterns of activation,
it is possible that patterns per se contribute little, if anything, to the
effects detected. In other words, it is possible that multivariate
effects present in the data can be accounted for by univariate
effects. To test this hypothesis, we carried out an analysis following
the same procedure with the sole difference that patterns are
averaged into single values previous to classification. This sim-
plification renders the analysis comparable to a univariate t test.
Finally, we conducted a similar set of multivariate analyses to

examine expression discrimination and OF individuation as well
as category-level classification (faces versus OFs). More precisely,
we computed discrimination performance among (i) four differ-
ent expressions across changes in facial identity, (ii) four different
OF identities across changes in font type, and (iii) two categories
across variations in both identity and category-specific changes.
In all other respects, the computation of the respective infor-
mation maps follows the procedure described above.
With respect to category-level discrimination, we note two

factors that need to be taken into account. First, the categories
being discriminated, faces and OFs, are very dissimilar, both
perceptually and conceptually. Second, the SL size was larger
than that typically used, e.g., a 2-voxel radius (22), and repre-
sented a compromise between maintaining a local encoding con-
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straint and maximizing the amount of spatial information as
discussed above. Thus, it is possible that category information is
somewhat more focal than we ended up finding (Fig. S2). Nev-
ertheless, category differentiation was sufficiently dispersed to
produce a rather diffuse information-based map.
Analyses were carried out in Matlab using the SVMLIB 2.88

library for pattern classification (23).

Note on the Use of Spatiotemporal Information in Pattern
Classification. The use of spatiotemporal information for multi-
variate analyses (24) presents us with an interesting opportunity.
The temporal properties of the BOLD signal (e.g., time to peak
or time to rise) provide a rich source of information regarding
the neural dynamics (25). However, both their interpretation in
relationship with the actual neural dynamics and their estimation
can be problematic (26)—although not more so than that of the
ubiquitously used signal amplitude. Multivariate spatiotemporal
analysis (24, 27) allows us to bypass the latter problem in that no
estimation of temporal properties (or amplitudes for that mat-
ter) is required. Rather, the use of such information is implicit
and, thus, eliminates the issue of model (mis)specification (26).
Furthermore, if selecting a single time point for the analysis, it

is unclear which one encodes the most diagnostic spatial in-
formation. The HRF peak may lead, in certain cases, to the best
decoding accuracy (28). However, the shape of the HRF, in-
cluding the timing of the peak, can vary significantly among
cortical areas and across subjects (29). Fortunately, the use of
multiple time points allows for the possibility that diagnostic
spatial information, whether corresponding to the response peak
or not, can be present at different times in different areas or
across different subjects. Our analysis above uses a combination
of these two approaches by exploiting multiple time points while
restricting their number to those likely to capture the HRF peak.
Overall, the advantages above make spatiotemporal analysis

very appealing as long as the increase in pattern dimensionality
introduced by this approach can be handled adequately (e.g., by
the use of classifiers that scale well with dimensionality).

RFE Analysis. RFE serves three different but related goals: di-
mensionality reduction within the original feature space, optimi-
zation of classification performance, and feature ranking (30). The
analysis proceeds as follows: (i) we train a linear SVM classifier on
a given feature set, (ii) we compute a ranking criterion for all
features, (iii) we eliminate the feature with the smallest rank, and
(iv) we repeat until no features are left in the set.
One of the simplest feature ranking criteria for linear SVM,

and the one we follow here, is based on maximizing the separating
margin width of the classifier (30). More specifically, the algo-
rithm eliminates within each iteration the feature with the
smallest ci = wi

2, where wi is the weight corresponding to feature
i. This procedure has the effect of maintaining the largest pos-
sible margin width W = kwk at each iteration step. The number
of iteration steps corresponds, in this version of the algorithm, to
the total number of features in the initial set. Whereas batch
elimination provides an easy alternative to speeding up compu-
tations, it may lead to suboptimal estimates of performance and
also compromise feature ranking. For this reason, we favored
single-feature elimination in our analysis.
RFE analysis has been successfully used in the past to reduce

the dimensionality of fMRI data (31) and to map voxel diag-
nosticity in category-level discrimination (32). Here, we use it
both to map feature (voxel X time point) diagnosticity and to
improve on the classification models derived for individuation.
The analysis was separately applied to each pair of facial

identities. Diagnosticity rankings as well as performance estimates
were computed by averaging across all six different pairs.

Contribution of Low-Level Image (Dis)Similarity to Individuation
Performance. Low-level similarity was computed between any
two images of different facial identities. More precisely, we ap-
plied an L2 (Euclidian) metric (4) to estimate low-level image
dissimilarity. To ensure the robustness of the results, the metric
was applied in three different ways corresponding to different
ways of extracting information: (i) to entire images using only the
luminance channel, (ii) to cropped images using only luminance,
and (iii) to cropped images using all color channels (Fig. S6).
The manipulations above are motivated, first, by the privileged

role of internal features relative to external ones in face per-
ception (33) and, second, by the contribution of color to face
processing (34, 35). Thus, to deal with the first issue we used
cropping to eliminate external features (e.g., hair and face out-
line) and to retain internal ones (e.g., eyes and mouth). To deal
with the second, we combined similarity measures computed
independently for each color channel. However, whereas color is
known to be involved both in low-level (36) and in high-level face
processing (35), the relative contribution of different color
channels is still unclear (37). For this reason, all channels were
given equal weight in computing the estimates corresponding to
case iii above. Specifically, channel-specific estimates were z-
scored across image pairs and then averaged to produce single
values for each pair. Finally, the values obtained for all 16 image
pairs corresponding to two different identities were averaged to
produce a single score (Table S1).
The three types of measurement are in overall agreement with

each other: identities 1 and 2 along with 2 and 4 are relatively
similar to each other whereas 3 and 4 are the most dissimilar
(identity numbers refer to the columns in Fig. 1).
Next, dissimilarity estimates were correlated with individuation

performance across identity pairs separately for each ROI, ex-
perimental subject, and type of measurement. The resulting
correlation coefficients were converted into normally distributed
variables using Fisher’s z transform, allowing us to conduct
parametric tests on the results:

z ¼ 1
2
ln
1þ r
1− r

:

Finally, average subject scores were compared against chance via
one-group t statistics (Fig. S4).

Pairwise ROI Analysis. ROI-based classification patterns provide
only a coarse and summary measure of the relevant information
present in the ROIs, namely in the activation patterns they host.
However, they can be useful in that they offer an estimate of
common biases in misclassification.
To compare classification patterns produced by different

ROIs we used both partial correlation and conditional mu-
tual information while controlling for the pattern of correct
(true) labels.
Correlation coefficients were converted to z scores using

Fisher’s z transform.
Conditional mutual information (38) was computed as follows:

IðC1;C2jTÞ ¼ ∑
C1;C2∈f0;1g
T∈f0;1g

pðC1;C2;TÞlog
�

pðC1;C2jTÞ
pðC1jTÞpðC2jTÞ

�
:

Here C1 and C2 are binary variables encoding the classification
labels for two different regions and T is a binary variable en-
coding the true labels.
The two measures were separately computed for each pair of

ROIs and averaged across face pairs and subjects.
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Fig. S1. Experimental orthographic form (OF) stimuli (four pseudowords × four types of font). All stimuli were five-letter pronounceable nonwords with the
same syllabic structure but different orthographic properties (they contain different letters in a given position).

Fig. S2. (A) Group cortical mask and group information-based maps of category-level discrimination (faces vs. OFs; q < 0.05) derived through (B) multivariate
searchlight and (C) its univariate analog. Effect size is scaled logarithmically. Crosshairs mark the discrimination peaks in each map (Talairach coordinates −11,
−76, −11 and 31, −24, −16 for B and C, respectively). The differences between the two types of map indicate that univariate analysis underestimates the
amount and expanse of category information in ventral cortex compared with its multivariate counterpart.

Nestor et al. www.pnas.org/cgi/content/short/1102433108 4 of 6

www.pnas.org/cgi/content/short/1102433108


Fig. S3. (A–C) Group information-based maps of face individuation obtained with SL masks of different spatial radii (4, 5, and 6 voxels). Maps were
thresholded at a liberal level (q < 0.10) for better comparison with each other. Larger masks yielded a larger number of significant voxels as expected on the
basis of the loss of spatial specificity. Despite such variation, the three maps agree on the presence of individuation effects in the bilateral FG and the right
aMTG. (D) Examples of SL ROIs (orange), bilateral FFA (green), and their overlap (red) within a single subject.

Fig. S4. Correlation of discrimination performance with low-level image distances across different SL ROIs (Fisher’s z scores). Low-level distances were
computed in three different ways: across the entire image using only luminance (full L*), across internal features using only luminance (cropped L*), and across
internal features using all color channels (cropped L*a*b*). The laFG produced correlations of discrimination performance and image distance for luminance-
based measurements (P < 0.05 uncorrected for multiple comparisons)—the effect was less reliable across all color channels (P < 0.06 uncorrected).

Fig. S5. The time course of feature elimination by time point for 4,000 features—top 1,000 features for each of four ROIs. Features tend to be eliminated at
similar rates across different time points although we note a small advantage for features extracted at 8 s poststimulus onset (shaded areas correspond to ±1 SE
across subjects).
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Fig. S6. Examples of image cropping used for stimulus selection and for measurements of low-level image similarity. Images were cropped to show only
internal features. Face images courtesy of the Face-Place Face Database Project (http://www.face-place.org/) Copyright 2008, Michael J. Tarr. Funding provided
by NSF Award 0339122.

Table S1. Estimates of low-level image distances across facial identity pairs (z scores)

Identity pair Full image (L*) Cropped image (L*) Cropped image (L*a*b*)

1–2 −0.31 −0.54 −1.07
1–3 −0.19 0.22 0.31
1–4 0.58 0.08 0.04
2–3 −0.15 0.13 −0.08
2–4 −0.91 −0.91 −0.38
3–4 0.98 1.02 1.19
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