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The reconstruction of images from neural data can provide a
unique window into the content of human perceptual represen-
tations. Although recent efforts have established the viability of
this enterprise using functional magnetic resonance imaging (MRI)
patterns, these efforts have relied on a variety of prespecified
image features. Here, we take on the twofold task of deriving
features directly from empirical data and of using these features for
facial image reconstruction. First, we use a method akin to reverse
correlation to derive visual features from functional MRI patterns
elicited by a large set of homogeneous face exemplars. Then, we
combine these features to reconstruct novel face images from the
corresponding neural patterns. This approach allows us to estimate
collections of features associated with different cortical areas as
well as to successfully match image reconstructions to correspond-
ing face exemplars. Furthermore, we establish the robustness and
the utility of this approach by reconstructing images from patterns
of behavioral data. From a theoretical perspective, the current
results provide key insights into the nature of high-level visual
representations, and from a practical perspective, these findings
make possible a broad range of image-reconstruction applications
via a straightforward methodological approach.
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Face recognition relies on visual representations sufficiently
complex to distinguish even among highly similar individuals

despite considerable variation due to expression, lighting, view-
point, and so forth. A longstanding conceptual framework,
termed “face space” (1–6), suggests that individual faces are
represented in terms of their multidimensional deviation from an
“average” face, but the precise nature of the dimensions or
features that capture these deviations, and the degree to which
they preserve visual detail, remain unclear. Thus, the featural
basis of face space along with the neural system that instantiate it
remain to be fully elucidated. The present investigation aims not
only to uncover fundamental aspects of neural representations
but also to establish their plausibility and utility through image
reconstruction. Concretely, the current study addresses the issues
above in the context of two distinct challenges, first, by de-
termining the visual features used in face identification and,
second, by validating these features through their use in facial
image reconstruction.
With respect to the first challenge, recent studies have dem-

onstrated distinct sensitivity to local features (e.g., the size of the
mouth) compared with configural features (e.g., the distance
between the eyes and the mouth) in human face-selective cortex
(7–10). Also, neurophysiological investigations (1, 11) of monkey
cortex have found sensitivity to several facial features, particu-
larly in the eye region of the face. However, most investigations
consider only a few handpicked features. Thus, a comprehensive,
unbiased assessment of face space still remains to be conducted.
Furthermore, most studies target shape at the expense of surface
features (e.g., skin tone) despite the relevance of the latter for
recognition (12, 13).
With respect to the second challenge, a number of studies

have taken steps toward image reconstruction from functional
magnetic resonance imaging (fMRI) signals in visual cortex,

primarily exploiting low-level visual features (14–16; but see ref.
17). The recent extension of this work to the reconstruction of
face images (18) has demonstrated the promise of exploiting
category-specific features (e.g., facial features) associated with
activation in higher visual cortex. However, the substantial var-
iability across individual faces in this latter study (due to race,
age, image background, etc.) limits its conclusions with regard to
facial identification and the representations underlying it.
Moreover, this attempt deployed prespecified image features
due to their reconstruction potential rather than as an argument
for their biological plausibility.
The current work addresses the challenges above by adopting

a broad, unbiased methodological approach. First, we map cor-
tical areas that exhibit separable patterns of activation to dif-
ferent facial identities. We then construct confusability matrices
from behavioral and neural data in these areas to determine the
general organization of face space. Next, we extract the visual
features accounting for this structure by means of a procedure
akin to reverse correlation. And last, we deploy the very same
features for the purpose of face reconstruction. Importantly, our
approach relies on an extensive but carefully controlled stimulus
set ensuring our focus on fine-grained face identification.
The results of our investigation show that (i) a range of facial

properties such as eyebrow salience and skin tone govern face
encoding, (ii) the broad organization of behavioral face space
reflects that of its neural homolog, and (iii) high-level face
representations retain sufficient detail to support reconstructing
the visual appearance of different facial identities from either
neural or behavioral data.

Significance

The present work establishes a novel approach to the study of
visual representations. This approach allows us to estimate the
structure of human face space as encoded by high-level visual
cortex, to extract image-based facial features from this struc-
ture, and to use such features for the purpose of facial image
reconstruction. The derivation of visual features from empirical
data provides an important step in elucidating the nature and
the specific content of face representations. Further, the in-
tegrative character of this work sheds new light on the existing
concept of face space by rendering it instrumental in image
reconstruction. Last, the robustness and generality of our re-
construction approach is established by its ability to handle
both neuroimaging and psychophysical data.
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Pattern-Based Mapping of Facial Identity
Participants viewed a set of 120 face images (60 identities × 2
expressions), carefully controlled with respect to both high-level
and low-level image properties (SI Text). Each image was pre-
sented at least 10 times per participant across five fMRI sessions
using a slow event-related design (100-ms stimulus cue, followed
by 900-ms stimulus presentation and 7-s fixation). Participants
performed a one-back identity task across variation in expression
(accuracy was high for each participant scoring above 92%).
Multivoxel pattern-based mapping (19) was carried out to lo-

calize cortical regions responding with linearly discriminable
patterns to different facial identities. To this end, we separately
computed at each location within a cortical mask the discrimi-
nability of every pair of identities using linear support vector
machine (SVM) classification and leave-one-run-out cross-vali-
dation (Methods and SI Text). The resulting information-based
map of each participant was normalized to a common space and
analyzed at the group level to assess the presence of identity-
related information and its approximate spatial location.
This analysis revealed multiple regions (Fig. S1) in the bilateral

fusiform gyrus (FG), the inferior frontal gyrus (IFG), and the right
posterior superior temporal sulcus (pSTS). Discrimination levels
were compared against chance via one-sample two-tailed t tests
across participants [false discovery rate (FDR)-corrected; q <
0.05]. Overall discriminability peaked in a region of interest (ROI)
covering parts of the right anterior FG and the parahippocampal
gyrus (t7 = 12.07, P < 10−5).
To ensure that other key regions were not missed, we included

another region of potential interest for face processing localized
in the anterior medial temporal gyrus (aMTG) (20) at a less
conservative threshold (q < 0.10). Further, above-chance dis-
crimination accuracy was confirmed in the bilateral fusiform face
area (FFA) (21) in agreement with previous work (7, 22, 23) but
not in the early visual cortex (EVC) (SI Text).
In summary, a total of eight ROIs localized through pattern-

based mapping along with the bilateral FFA were found to be
likely candidates for hosting representations of facial identity.
Accordingly, these regions formed the basis for the investigation
of neural representations reported below.

The Similarity Structure of Human Face Space
To evaluate the structure of the neural data relevant for identity
representation, we extracted the discriminability values of all
pairs of facial identities for each of 10 ROIs. Specifically, after
mapping these ROIs in each participant, we separately stored,
for each participant and ROI, all pairwise discrimination values
corresponding to 1,770 identity pairs (i.e., all possible pairs de-
rived from 60 identities).
Analogous behavioral measurements were collected in a sep-

arate experiment in which the confusability of the stimuli was

assessed. Briefly, pairs of faces with different expressions were
presented sequentially for 400 ms, and participants were asked to
perform a same/different identity task. Participants were tested
with all facial identity pairs across four behavioral sessions before
fMRI scanning. The average accuracy in discriminating each
identity pair provided the behavioral counterpart of our neural
pattern-discrimination data.
Next, metric multidimensional scaling (MDS) was applied to

behavioral and neural discriminability vectors averaged across
participants. This analysis forms a natural bridge between recent
examinations of neural-based similarity matrices in visual per-
ception (24) and traditional investigations of behavioral-based
similarity in the study of face space (2, 25). The outcome of this
analysis provides us with the locations of each facial identity in a
multidimensional face space. Fig. 1 A and C illustrates the dis-
tribution of facial identities across the first two dimensions for
behavioral data and for right anterior FG data; we focus on this
ROI both because of the robustness of its mapping and because
of its central role in the processing of facial identity (23). The
first two MDS dimensions are particularly relevant, because, as
detailed below, they contribute important information for
reconstruction purposes.
An examination of the results suggests an intuitive clustering

of faces based on notable traits such as eyebrow salience. To
facilitate the interpretation of these dimensions, faces were
separately averaged on each side of the origin proportionally to
their coefficients on each axis. This procedure yielded two op-
posing templates per dimension whose direct comparison in-
forms the perceptual properties encoded by that particular
dimension (Fig. 1 B and D). The comparison of these templates
reveals a host of differences, such as eyebrow thickness, facial
hair (i.e., stubble), skin tone, nose shape, and mouth height.
Further, the analysis of the behavioral data produced results

similar to that of the fMRI data. To evaluate this correspon-
dence, we correlated the coefficients of each facial identity
across dimensions extracted for the two data types. This analysis
confirmed the similarity between the organization of the first
dimensions across behavioral and right aFG data (Fig. 1C, Inset);
a broader evaluation of this correspondence is targeted by the
assessment of image reconstructions below.
In sum, the present findings verify the presence of consistent

structure in our data, assess its impact on the correspondence
between behavior and neural processing, and account for this
structure in terms of major visual characteristics spanning a
range of shape and surface properties.

Derivation of Facial Features Underlying Face Space
The organization of face space is arguably determined by visual
features relevant for identity encoding and recognition. An

Fig. 1. Behavioral and neural face space topography estimated through MDS. Plots show the distribution of facial identities across the first two dimensions
for (A) behavioral and (C) right anterior fusiform gyrus (raFG) data. Each dot represents a single identity (for simplicity only a subset of neutral images is
shown in each plot). First-dimension coefficients corresponding to different facial identities correlate significantly across data types (C Inset, Pearson cor-
relation, *P < 0.05). Pairs of opposing face templates are constructed for each dimension and data type (B, behavioral templates; D, raFG templates) for
visualization and interpretation purposes. Images reproduced from refs. 46–50.
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inspection of the results above (Fig. 1) suggests that a simple
linear method can capture at least some of these features.
For this purpose, we deployed the following procedure. First,

for each dimension, we subtracted each corresponding template
from its counterpart, thereby obtaining another template akin to
a classification image (CI) (26–28)—that is, a linear estimate of
the image-based template that best accounts for identity-related
scores along a given dimension (Methods). Then, this template
was assessed pixel-by-pixel with respect to a randomly generated
distribution of templates (i.e., by permuting the scores associated
with facial identities) to reveal pixel values lower or higher than
chance (two-tailed permutation test; FDR correction across pixels,
q < 0.05). These analyses were performed separately for each
color channel after converting images to CIEL*a*b* (where L*,
a*, and b* approximate the lightness, red:green, and yellow:blue
color-opponent channels of human vision). Examples of raw CIs
and their analyses are shown in Fig. 2.
Consistent with our observations regarding face clustering in

face space, the CIs revealed extensive differences in surface
properties such as eyebrow thickness and skin tone as well as in
shape properties such as nose shape and relative mouth height.
For instance, wide bright patches over the forehead and cheeks
reflect sensitivity to color differences, whereas thinner patches
along the length of the nose and the mouth provide information
on shape differences. Also, these differences extend beyond light-
ness to chromatic channels, whether accompanied or not by similar

L* differences. Further, behavioral CIs exhibited larger differ-
ences than their neural counterparts. However, most of
the ROIs appeared to exhibit some sensitivity to image-
based properties.
Thus, our methods were successful in using the similarity

structure of neural and behavioral data to derive visual features
that capture the topography of human face space.

Facial Image Reconstruction
An especially compelling way to establish the degree of visual
detail captured by a putative set of face space features is to
determine the extent to which they support identifiable recon-
structions of face images. Accordingly, we carried out the fol-
lowing procedure (Fig. 3).
First, we systematically left out each facial identity and esti-

mated the similarity space for the remaining 59 identities. This
space is characterized by a set of visual features corresponding to
each dimension as well as an average face located at the origin of
the space. Second, the left-out identity was projected into this
space based on its neural or behavioral similarity with the other
faces, and its coordinates were retrieved for each dimension.
Third, significant features were weighted by the corresponding
coordinates and linearly combined along with the average face to
generate an image reconstruction. This procedure was carried
out separately for behavioral data and for each ROI to generate
exemplars with both emotional expressions. Last, reconstructions
were combined across all ROIs to generate a single set of neural-
based reconstructions (SI Text).
Reconstruction accuracy was quantified both objectively, with

the use of a low-level L2 similarity metric, and behaviorally, by
asking naïve participants to identify the correct identity of a stim-
ulus from two different reconstructions using a two-alternative
forced choice task.
Overall, we found that reconstructions for each emotional

expression were accurate above chance by either type of evalu-
ation and emotional expression (one-sample t tests against
chance) (see Fig. 4 for reconstruction exemplars and Fig. 5 A and
B for accuracy estimates). Behavioral estimates surpassed their
neural counterparts in accuracy for both evaluation metrics (P <
0.01, two-way analysis of variance across data types and emo-
tional expression); no difference across expression and no in-
teraction with data type were found. Additional analyses found
significant variation in objective accuracy across the 10 ROIs
(P < 0.01, one-way analysis of variance). Interestingly, further
tests against chance-level performance showed that only three
ROIs in the bilateral FG provided significant accuracy estimates
(Fig. 5C).
Next, we constructed pixelwise accuracy maps separately for

each color channel and data type to quantify reconstruction

Fig. 2. CIs derived from MDS analyses of behavioral (A and B) and raFG (C
and D) data. Each pair shows a raw CI (Left) and its analysis (Right) with a
permutation test (q < 0.05, FDR correction across pixels; ∼, not significant).
Bright/dark, red/green, and yellow/blue regions in analyzed CIs mark areas
of the face brighter (L*), redder (a*), or more yellow (b*) than chance for
positive versus negative templates in Fig. 1. Results are shown separately for
the first (A and C) and second (B and D) dimensions of the data.

Fig. 3. Steps involved in the reconstruction procedure: (A) We estimate a multidimensional face space associated with a cortical region, and we derive CI features for
each dimension in CIEL*a*b* color space along with an average face (for simplicity, only two dimensions are displayed above); (B) we project a new face in this space
based on its neural similarity with other faces, and we recover its coordinates; and (C) we combine CI features proportionately with the coordinates of the new face to
achieve reconstruction. Thus, as long as we can estimate the position of a stimulus in face space we are able to produce an approximation of its visual appearance.
Images reproduced from refs. 46–50.
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quality across the structure of a face (Fig. S2). In agreement with
our evaluation of visual features, the results suggest that a variety
of shape and surface properties across all color channels con-
tribute to reconstruction success.
To compare behavioral and neural reconstructions, we related

accuracy estimates for the two types of data across face exem-
plars. Overall, we found significant correlations for both exper-
imentally derived estimates of accuracy (Pearson correlation; r =
0.39, P < 0.001) and for image-based estimates (r = 0.45, P <
0.001), confirming a general correspondence between the two
types of data. Similar results were also confirmed by comparing
image-based estimates of accuracy for the ROIs capable of sup-
porting reconstruction and their behavioral counterpart (right
aFG, r = 0.45; right pFG, r = 0.56; left pFG, r = 0.44; P < 0.001).
Further, a more thorough examination of the ROIs involved in

reconstruction considered the similarity of their MDS spaces to
their behavioral counterpart. Specifically, we computed the
goodness of fit for Procrustes alignments between neural and
behavioral spaces. This analysis found a systematic correspon-
dence between the two types of space (Fig. S3A), especially for
the bilateral posterior FG (P < 0.001, two-tailed permutation

test). Also, fit estimates for FG regions, but not for a control
ROI in the right aMTG, were adversely impacted by increases in
space dimensionality as revealed by positive correlations be-
tween alignment error and the number of dimensions (right aFG,
r = 0.67; right pFG, r = 0.71; left pFG, r = 0.81; P < 0.01). Last, a
closer examination of 2D space alignments within each partici-
pant (Fig. S3B) showed significant variation in fit estimates
across ROIs (P < 0.05, one-way analysis of variance); pairwise
comparisons also found that the left pFG provided a better fit
with the behavioral data than the right aMTG (t7 = 3.09, P < 0.05).
To conclude, visual features derived from neural or behavioral

data were capable of supporting facial image reconstruction, with
a good degree of agreement between the two, although neural
reconstructions were driven primarily by bilateral FG activation.

Discussion
How is facial identity represented by the human visual system?
To address this question, we undertook a comprehensive in-
vestigation that combines multiple, converging methods in the
study of visual recognition, as detailed below.

Cortical Mapping of Facial Identity. Growing sophistication in the
analysis of neuroimaging data has facilitated the mapping of the
neural correlates of face identification. The examination of face-
selective cortex has implicated areas of the FG, STS, and the
anterior temporal lobe (ATL) in identification (29–31). Recent
investigations relying on multivoxel pattern analysis have ex-
tended this work by identifying regions responding with separable
patterns of activation to different facial identities, regardless of
whether they are accompanied by face selectivity (7, 19, 22, 23, 32).
In contrast to previous studies, which have explored the neural

code associated with a relatively small number of facial identities,
the present study examines the neural and psychological repre-
sentations underlying an extensive, homogeneous set of unfamiliar
faces. This constitutes an exacting test of identity mapping based
on fine-grained sensitivity to perceptual differences.
Consistent with previous studies, our investigation found

above-chance discrimination in multiple FG, IFG, and STS re-
gions as well as in the FFA. However, the ability of a region to
support identity discrimination does not necessarily imply that it
encodes visual face representations. Higher level semantic
information (33) or even a variety of unrelated task/stimulus

Fig. 4. Examples of face stimuli and their reconstructions from behavioral
and fMRI data across (A) neutral and (B) happy expressions. Numbers in the
top corners of each reconstruction show its average experimentally based
accuracy (green) along with its image-based accuracy (red). Images repro-
duced from refs. 48–50.

Fig. 5. Reconstruction accuracy using (A) experimentally based and (B) image-
based estimates of behavioral and neurally derived reconstructions. Image-
based estimates are also separately shown for each ROI collapsed across
expressions (C). Error bars show ±1 SE across (A) participants and (B and C)
reconstructions (*P < 0.05; **P < 0.01; ***P < 0.001). FG, fusiform gyrus; IFG, in-
ferior frontal gyrus; MTG, middle temporal gyrus; STS, superior temporal sulcus.
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properties may account for pattern discrimination (34). The latter
possibility is a source of concern, especially given certain limita-
tions of the fMRI signal in decoding facial identity (35).
The present findings address this concern by demonstrating

that at least certain regions localized via pattern-based mapping
contain visual information critical for facial identification. Spe-
cifically, three regions of the posterior and anterior FG were able
to support identifiable reconstructions of face images. Interest-
ingly, the FFA did not support similar results. However, recent
work has shown that the FFA is particularly sensitive to tem-
plates driving face detection (36) and can even support the visual
reconstruction of such templates (27). Thus, the current results
agree with the involvement of the FFA primarily in face detection
and, only to a lesser extent, in identification (37, 38). Also, the
inability of more anterior regions of the IFG and aMTG to sup-
port image reconstruction is broadly consistent with their in-
volvement in processing higher level semantic information (39).
Thus, our results confirm that facial identification relies on an

entire network of cortical regions, and importantly, they point to
multiple FG regions as responsible for encoding image-based
visual information critical for the representation of facial identity.

Human Face Space and Its Visual Features. What properties domi-
nate the organization of human face space? To be clear, our
investigation does not target the entirety of face space but rather
a specific subdomain: young adult Caucasian males. Further-
more, we avoid large differences in appearance due to hair, outer
contour, or aspect ratio, which are obvious, well-known cues to
recognition (2, 40). Instead, we reason that understanding the
structure of face representation in a carefully restricted domain
challenges the system maximally and is instrumental in under-
standing recognition at its best. Our expectation, though, is that the
principles revealed here generalize to face recognition as a whole.
A combination of MDS and CI analyses allowed us to assess

and visualize the basic organization of face space in terms of
both shape and surface properties. Our results reveal a host of
visual properties across multiple areas of the face and across
different color channels. Notably, we find evidence for the role
of eyebrow salience, nose shape, mouth size, and positioning, as
well as for the role of skin tone. Interestingly, these results agree
with previous behavioral work; for instance, the critical role of
the eyebrows in individuation has been specifically tested and
confirmed (41). Also, several of the properties above appear to
be reflected in the structure of both behavioral and neural data.
At the same time, we note that our analyses reveal only a

handful of significant features relying on low-dimensional spaces,
whereas human face space is believed to be high-dimensional (42).
Critically, the number of significant dimensions recovered from
the data depends on the signal-to-noise ratio (SNR) of the data as
well as on the size of the stimulus set. Here, the restricted number
of trials (e.g., 10 presentations per stimulus during scanning) im-
poses direct limitations on the SNR and allows only the estimation
of the most robust features and of the dimensions associated with
them. Hence, the current results do not speak directly to the di-
mensionality of face space, but they do open up the possibility of
its future investigation with the aid of more advanced imaging
techniques and designs.
Last, regarding the presence of visual information across mul-

tiple color channels, we note that, traditionally, the role of color in
face identification has been downplayed (43, 44). However, recent
work has pointed to the value of color in face detection (12) and
even in identification (13). As previously suggested (45), color may
aid identification when the availability of other cues is diminished.
More generally, the difficulty of the task, as induced here by the
homogeneity of the stimulus set, could lead to the recruitment of
relevant color cues. From a representational standpoint, the cur-
rent findings suggest that color information is included in the
structure of face space and, thus, available when needed. How-
ever, additional investigations targeting this hypothesis are needed
to ascertain its precise scope and its validity.

In sum, the present results establish the relevance of specific
properties, their relative contribution to molding the organization
of face space, and conversely, our ability to derive them from
neural and behavioral data. More generally, we conclude that
specific perceptual representations are encoded in high-level
visual cortex and that these representations are fundamentally
structured by the visual properties described here.

Facial Identity and Image Reconstruction. The fundamental idea
grounding our reconstruction method is that, as long as the
relative position of an identity in face space is known, its visual
appearance can be reconstructed from that of other faces in that
space. In a way, our method validates the classic concept of face
space (6) by making it instrumental in the concrete enterprise of
image reconstruction. Also, from a practical perspective, the
presumed benefit of this approach is a more efficient recon-
struction method relying on empirically derived representations
rather than on hypothetical, prespecified features. For instance,
our reconstruction procedure involves only a handful of features
(SI Text) whose relevance for representing facial identity is en-
sured by the process of their derivation and selection. The suc-
cessful reconstruction of face images drawn from a homogeneous
stimulus set provides strong support for this method.
Overall, the application of reconstruction to both behavioral

and fMRI data has extensive theoretical and methodological
implications. Theoretically, it points to the general correspon-
dence of face space structure across behavioral and neural data;
at the same time, it highlights the variation of face space across
different cortical regions, only some of which contain relevant
visual information. Methodologically, the generality and the ro-
bustness of the current approach allow its extension to other
neuroimaging modalities as well as to data gleaned from patient
populations (e.g., to examine distortions of visual representa-
tions in prosopagnosia or autism). Thus, our reconstruction re-
sults not only provide specific information about the nature of
face space but also allow a wide range of future investigations into
visual representations and their application to image reconstruction.
In conclusion, our work sheds light on the representational

basis of face recognition regarding its cortical locus, its un-
derlying features, and their visual content. Our findings reveal a
range of shape and surface properties dominating the organi-
zation of face space, they show how to synthesize these proper-
ties into image-based features of facial identity, they establish a
general method for using these features in image reconstruction,
and last, they validate their behavioral and neural plausibility.
More generally, this work demonstrates the strengths of a mul-
tipronged multivariate paradigm that brings together functional
mapping, investigations of behavioral and neural similarity space,
as well as feature derivation and image reconstruction.

Methods
Stimuli and Design. A total of 120 images of adult Caucasian males (60
identities × 2 expressions) were selected from multiple face databases and
further processed to ensure their homogeneity.

Eight right-handed Caucasian adults participated in nine 1-h experimental
sessions (four behavioral and five fMRI). During behavioral sessions, partic-
ipants viewed pairs of faces, presented in succession, and judged whether
they represented the same/different individuals. During fMRI scans, partici-
pants performed a continuous one-back version of the same task using a slow
event-related design (8-s trials). We imaged 27 oblique slices covering the
ventral cortex at 3T [2.53 mm voxels, 2 s time-to-repeat (TR)]. Informed
consent was obtained from all participants, and all procedures were ap-
proved by the Institutional Review Board of Carnegie Mellon University.

Pattern-Based Brain Mapping. Multivoxel pattern-based mapping was per-
formed by walking a spherical searchlight voxel-by-voxel across a cortical
mask (see Fig. S1A for a group mask). At each location, a single average
voxel pattern was extracted per run for every facial identity. To estimate
neural discriminability, linear SVM classification was applied across these
patterns for each identity pair using leave-one-run-out cross-validation.
Then, participant-specific maps were constructed by voxel-wise averaging of
discrimination estimates across identity pairs. For the purpose of group
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analysis, all maps were brought into Talairach space, and statistical effects
were computed across participants (two-tailed t test against chance).

Similarity Structure Analyses. Behavioral estimates of pairwise face (dis)sim-
ilarity were computed based on the average discrimination accuracy of each
participant during behavioral sessions. Homologous neural-based estimates
were computed with the aid of pattern classification in different ROIs based
on average discrimination sensitivity. For both data types, this procedure
yielded a vector of 1,770 pairwise discrimination values.

Further, discrimination vectors were encoded as facial dissimilarity ma-
trices. Thesematrices were then averaged across participants and analyzed by
metric MDS. To interpret the perceptual variation encoded by MDS dimen-
sions (Fig. 1 A and C), individual faces were averaged on each side of the
origin proportionally to their dimension-specific coefficients. The resulting
templates were assessed using a reverse correlation approach (26). Concretely,
each pair of templates thus obtained were subtracted from each other to
derive a CI summarizing the perceptual differences specific to that dimension.
Each CI was next analyzed, pixel-by-pixel, by comparison with a group of
randomly generated CIs (t test; q < 0.05 correction across pixels). This analysis
was separately conducted for the L*, a*, and b* components of face images.

Image Reconstruction Method. For every facial identity, an independent esti-
mate of face space was constructed through MDS using all other identities.
Then, the left-out identity was projected in this space via Procrustes alignment.
Concretely, the MDS solution derived for all 60 identities was mapped onto the

first solution, providing uswith the coordinates of the target face in theoriginal
face space. The resulting coordinates are next used to weight the contribution
of significant CIs in the reconstruction process; relevant CIs are selected based
on the presence of significant pixels in any of three color channels via a per-
mutation test (FDR correction across pixels; q < 0.10). The linear combination of
significant CIs along with that of an average face is used to approximate the
visual appearance of the target face. This method was conducted separately
for 10 ROIs and for behavioral data. Last, a single set of neural reconstructions
was derived through the linear combination of ROI-specific reconstructions via
an L2 regularized regression model and a leave-one-identity-out procedure.

Neural and Behavioral Face Space Correspondence. The global correspondence
between the two types of face space was assessed by bringing ROI-specific
spaces into alignment with behavioral space. Goodness of fit was then es-
timated via sum of squared errors (SSE) between Procrustes-aligned versions
of neural space and behavioral space. Fit estimates were compared with
chance across systematic differences in MDS-derived space dimensionality
(from 2 to 20 dimensions) via permutation tests. Last, fit estimates across ROIs
were compared with each other through parametric tests across participants.
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