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Since the pioneering work of Alan Newell and Herb Simon in the late 1950s, researchers interested
in human cognitive processes have used computer simulations to try to identify general principles of
cognition. The strategy is to build computational models that embody putative principles and then examine
how well the models capture human performance in cognitive tasks. Until the 1980s, this effort was
undertaken largely within the context of the “computer metaphor” of mind: Researchers thought of the
human mind as though it were a conventional digital computer and built computational models based on
this conceptualization. Indeed, this approach has lead to considerable progress in modeling explicit
reasoning, problem solving, and other high-level cognitive processes.

By the late 70s and early 80s, however, many researchers began to think that an alternative
framework was needed to capture the full range of cognitive behavior—one based more closely on the style
of computation employed by the brain. The new approach, called connectionist or neural network
modeling, or the parallel distributed processing approach (Elman et al., 1996; McLeod et al., 1998;
Rumelhart et al., 1986), implements cognitive processes in terms of massively parallel cooperative and
competitive interactions among large numbers of simple neuron-like computational units. Unit interactions
are governed by modifiable excitatory and inhibitory weights on connections among the units. Although
each unit exhibits nonlinear spatial and temporal summation, units and connections are not generally be
taken as corresponding directly to individual neurons and synapses. Rather, the connectionist approach
attempts capture the essential computational properties of the vast ensembles of real neuronal elements
found in the brain using simulations of smaller networks of more abstract units. By linking neural
computation to behavior, the framework enables developmental, cognitive and neurobiological issues to be
addressed within a single, integrated formalism.

REPRESENTATION. An issue of central relevance in understanding cognition is the nature of the
representations used in cognitive processes. There are two basic approaches to representation within
connectionist networks.

1. In a localist representation, familiar entities such as letters, words, concepts, and propositions are
encoded by the activity of individual units.

2. In a distributed representation, such entities are encoded by alternative patterns of activity over the
same units, such that each entity is represented by the activity of many units and each unit
participates in representing many entities.

Models employing localist representations are sometimes termed structured networks, although this should
not be taken to imply that models using distributed representations are unstructured.

Many early influential connectionist models in psychology employed localist representations. For
example, the Interactive Activation model (McClelland & Rumelhart, 1981) consisted of three layers of
units: letter-feature units, letter units, and word units. Units in each layer received excitatory connections
from consistent units at other layers and inhibitory connections from inconsistent alternatives within the
same layer. The resulting interactive processing played a critical role in explaining a number of context
effects in perception, including the word superiority effect, in which the perception of a letter is enhanced
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when it occurs in the context of a word compared with when it occurs in isolation or in a random letter
string. An analogous model in the domain of spoken word recognition, called TRACE (McClelland &
Elman, Chapter 15 of Rumelhart et al., 1986), accounts for similar phenomena.

Most recent connectionist models rely on properties of distributed representations. Although
distributed representations can be less intuitive, they are attractive in part because they provide a more
natural account of the richness and subtlety of the relationships among entities. The key to distributed
representations is the use of patterns whose similarity relations capture similarities in the roles the patterns
play in cognition, since, in connectionist models, similar patterns have similar consequences (Hinton,
McClelland & Rumelhart, Chapter 3 of Rumelhart et al., 1986). Distributed representations can also be
used to implement more complex, relational knowledge structures like frames and scripts if units encode
conjunctions of roles and properties of role-fillers—in fact, such representations emerge naturally when
networks are trained on tasks in which entities enter into multiple types of relations (see Hinton, 1991).

LEARNING. Most distributed connectionist models place strong emphasis on learning, in part
because it is difficult to hand-specify effective sets of weights in such systems. Learning in connectionist
networks involves modifying the weights on connections in a way that influences the pattern of unit
activations produced in response to a given input. There are three broad frameworks for learning.

1. Supervised learning involves changing weights so as to reduce the discrepancy between the actual
output generated by the system for a given input and the correct output, which is assumed to be
provided by an external “teacher.”

2. Unsupervised learning involves changing weights based only on the input provided to the system and
intrinsic biases built into the learning procedure, without any explicit feedback based on the behavior
of the system.

3. Reinforcement learning is something of a middle ground; it involves changing weights based on
minimal performance feedback—typically only a scalar value indicating the “goodness” of outcomes
that depend on the behavior of the system.

Whereas unsupervised and reinforcement learning are more directly related to known learning mechanisms
in the brain, the majority of applications of connectionist modeling in cognitive psychology have employed
supervised learning. This is because supervised learning is more effective at developing internal
representations that can support the complex transformations involved in many forms of cognitive
processing.

The most commonly employed form of supervised learning is back-propagation (Rumelhart,
Hinton & Williams, Chapter 8 of Rumelhart et al., 1986). This procedure involves iteratively 1) computing
activations in a forward pass from input units to output units, possibly via one or more layers of hidden
units (so called because they are not visible to the environment); 2) computing a measure of performance
error over the output units, 3) propagating this error backward through the network (using the chain rule
from calculus) to determine the partial derivative of the error with respect to each weight in the network;
and finally 4) changing the weights based on these derivatives so as to reduce the error. Although it is
highly unlikely that the brain employs back-propagation in its literal form, there are more biologically
plausible procedures (see, e.g., O’Reilly, 1996) which are computationally equivalent (albeit somewhat less
efficient).

In an early application of error-correcting learning, Rumelhart and McClelland (1986) showed that
a single network could learn to generate the past tense forms of both regular and irregular English verbs
from their stems, thereby obviating the need for dual rule-based and exception mechanisms. Although
aspects of the approach were strongly criticized (Pinker & Prince, 1988), many of the specific limitations
of the model have been addressed in subsequent simulation work. A similar line of progress has taken
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place in the domain of English word reading (see Plaut, McClelland, Seidenberg, & Patterson, 1996;
Seidenberg & McClelland, 1989).

PROCESSING. The architecture of a network refers to the numbers of units it contains, how they
are organized into groups or layers, and how these layers are interconnected. There are three general
classes of architecture used widely in connectionist modeling.

1. A feedforward network consists of a series of layers of units with a restricted pattern of connectivity,
such that units project only to later layers, never within a layer or back to earlier layers.

2. A fully recurrent network has no restriction on connectivity, so that any unit may potentially be
connected to any other unit (including itself).

3. A simple recurrent network is something of a hybrid: Processing is feedforward over a series of
layers but the states of certain “context” input layers are set by copying the previous states of some
hidden or output units. These context states allow the network to learn to be sensitive to temporal
dependencies among successive inputs (Elman, 1990).

In practice, many distributed models employing learning have a feedforward or simple recurrent
architecture, whereas non-learning models like the Interactive Activation model are typically fully
recurrent. This is, however, more a computational convenience than a theoretical discrepancy, as the
versions of back-propagation that are applicable to fully recurrent networks require far greater
computational resources.

Even so, fully recurrent networks are increasingly being applied directly in modeling psychological
phenomena. Most of these models are attractor networks, in which units interact to cause the network as a
whole to settle gradually into a stable pattern of activity corresponding to the network’s interpretation of
the input. Attractor networks are particularly appropriate for modeling processes that involve selecting
among alternatives, such as word recognition and comprehension (Hinton & Shallice, 1991).

Although fully recurrent networks are capable of learning to exhibit more complex temporal
behavior, for reasons of efficiency it is more common to apply simple recurrent networks in temporal
domains. For example, Elman (1991) demonstrated that a simple recurrent network could learn the
structure of an English-like grammar, involving number agreement and variable verb argument structure
across multiple levels of embedding, by repeatedly attempting to predict the next word in processing
sentences. St. John and McClelland (in Hinton, 1991) also showed, for a somewhat simpler corpus, how
such networks can learn to develop a representation of sentence meaning by attempting to answer queries
thematic role assignments throughout the course of processing a sentence.

CONCLUSION. The connectionist framework for modeling human cognition has led to the
development of explicit computational models of a wide range of cognitive functions. In many cases, these
models introduce new ways of thinking about the nature of the computations that are performed and and
how learning can give rise to the ability to carry out these computations. The models also give us new ways
of relating cognitive processes to brain function. Connectionist models will play an increasingly important
role in the development of cognitive theories that are both mechanistically explicit and neurobiologically
realistic.
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