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1 Introduction

Mary researcherassumehat the mostappropriatevay

to expressthe systematicaaspectof languageis in terms
of a setof rules. For instance thereis a systematicre-

lationshipbetweerthe written andspolen forms of most
Englishwords (e.g., GAVE = /gerv/), andthis relation-
ship can be expressedin termsof a fairly conciseset
of grapheme-phoneneorrespondencésPC)rules(e.g.,
G=/g/, A_LE=/e1/, v=-/v/). In additionto being
ableto generateaccuratgronunciation®f so-calledreg-

ular words, suchrulesalsoprovide a straightfornardac-
count of how skilled readersapply their knowledge to

novel items—forexample,in pronouncingvord-like non-
words (e.g.,MAVE = /merv/). Most linguistic domains,
however, are only partially systematic. Thus, thereare
mary English words whose pronunciationsviolate the
standardGPC rules (e.g., HAVE = /hav/). Given that
skilled readerscan pronouncesuchexceptionwordscor

rectly, GPCrulesaloneareinsufficient. More generally
skilled languagegperformancet every level of analysis—

The third responseo the challenge,adoptedby dis-
tributed connectionisttheories(Plaut, McClelland, Sei-
denbeg, & Patterson,1996; Seidenbeg & McClelland,
1989;Van Orden,Pennington& Stone,1990)andelab-
oratedin the currentpaper is moreradical. It escheavs
thenotionthatthe knowledgesupportingonlinelanguage
performanceakestheform of explicit rules,andthusde-
nies a strict dichotomy between“regular” items which
obey therulesand“exception”itemswhich violate them.
Rather it is claimedthat languageknowledgeis inher
ently graded,and the languagemechanismis a learning
device that gradually picks up on the statistical struc-
ture amongwritten and spolen words and the contexts
in which they occur In this way, the emphasigs on the
degreeto which themappingsamongthe spelling,sound,
andmeaningof a givenword areconsistentvith thoseof
otherwords(Glushlo, 1979).

To make this third perspectire concrete, consider
the connectionist/paralletistributed processing(PDP)
framework for lexical processingdepictedin Figure 1
(basedon Seidenbay & McClelland,1989). As the fig-

phonologicalmorphologicallexical, syntactic—requires ure makesclear, the approachdoesnot entaila complete

both effective handlingof exceptionalitemsandthe abil-
ity to generalizdo novel forms.

In the domain of reading, there are three broad re-
sponsedo this challenge. The first, adoptedby “dual-
route” theories(e.g., Coltheart,Curtis, Atkins, & Haller,
1993;Zorzi, Houghton & Butterworth, 1998),is to addto
theGPCsystemaseparatelexical systemhathandleshe
exceptions. The secondresponseadoptedby “multiple
levels” theorieg(e.g.,Norris, 1994;Shallice& McCarthy
1985), is to augmentthe GPC rules with more specific,
contet-sensitie rules, (e.g., OOK = /uk/ asin BOOK),
including rules that apply only to individual exceptions
(e.g.,HAVE = /hav/). Both of theseapproachesetain
thegenerahotionthatlanguag&nowledgetakestheform
of rules(althoughsuchrulesmaybeexpressedn termsof
connectionssee.e.g.,Norris, 1994;Reygia, Marsland &
Berndt,1988;Zorzi etal., 1998).

lack of structurewithin thereadingsystem.Thereis, how-
ever, uniformity in the processingnechanismsy which
representationaregenerate@ndinteract,andin this re-
spectthe approachs quite differentfrom dual-routeac-
counts. Orthographic,phonological,and semanticin-
formationis representedn termsof distributed patterns
of activity over groupsof simple neuron-like process-
ing units. Within eachdomain,similar wordsarerepre-
sentedby similar patternsof activity. Lexical tasksin-
volve transformationdetweertheserepresentations—for
example,readingaloudrequiresthe orthographigpattern
for a word to generatehe appropriatgphonologicalpat-
tern. Suchtransformationsre accomplishediia the co-
operatve and competitive interactionsamongunits, in-
cluding additionalhiddenunits that mediatebetweerthe
orthographic,phonological,and semanticunits. In pro-
cessingan input, units interactuntil the network as a
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Figurel: A connectionistramework for lexical process-
ing, basedon that of Seidenbey andMcClelland(1989).
Reprintedfrom (Plaut,1997).

whole settlesinto a stablepatternof activity—termedan
attractor—correspondingo its interpretationof the in-
put. Unit interactionsaregovernedby weightedconnec-
tions betweenthem, which collectively encodethe sys-
tem’s knowledgeabouthow the differenttypesof infor-
mation are related. Weightsthat give rise to the appro-
priatetransformationsrelearnedon the basisof the sys-
tem’s exposureto written words,spolenwords,andtheir
meanings.

At a generallevel, the distributed connectionistap-
proachto word readingis basedon three generalcom-
putationalprinciples:

Distributed representation: Orthography phonology
andsemanticarerepresentedy distributedpatterns

on the framework depictedin Figure 1. It thenpresents
a new simulation that addresssomelimitations of this
work, relatingto sequentiaprocessingandeffectsof or-
thographidengthon the naminglatenciesof bothnormal
anddyslexic readersThesimulationgeneratesequential
phonologicaloutputin responseo written input andhas
the ability to refixatethe input when encounteringliffi-
culty. Thenormalmodelreadsbothwordsandnonwords
accurately and exhibits an effect of orthographicength
anda frequeng-by-consisteng interactionin its naming
latencies.Whensubijectto peripheraldamagethe model
exhibits an increasedength effect which interactswith
word frequeng, characteristiof letterby-letterreading
in pure alexia. Although the modelis far from a fully
adequateaccountof all the relevant phenomenait sug-
gestshow connectionistnodelsmay be extendedto pro-
vide deepelinsightinto sequentiaprocesse reading.

2 Background
2.1 Skilled Oral Reading

Thedistributedconnectionistframework for word reading
depictedn Figurel reflectsaradicaldeparturdrom tradi-
tional theorizingaboutlexical processingparticularlyin

two ways.First, thereis nothingin thestructureof thesys-
temthat correspondso individual wordsper se suchas
a lexical entry, localistword unit (McClelland& Rumel-
hart,1981) or “logogen” (Morton, 1969). Rather words
aredistinguishedrom nonwordsonly by functionalprop-
ertiesof the system—thawvay in which particularortho-
graphic, phonological,and semanticpatternsof activity

interact (also seePlaut, 1997; Van Ordenet al., 1990).
Secondthereareno separatenechanisméor lexical and

of activity suchthat similar words are represented subleical processingcf. Coltheartet al., 1993). Rather

by similar patterns.

Gradual learning of statistical structure: Knowledge
of the relationshipsamongorthographyphonology
andsemanticss encodecdacrossconnectionweights
that are learnedgradually through repeatedexpe-
riencewith wordsin a way thatis sensitie to the
statisticalstructureof eachmapping.

Interactivity in processing: Mapping among orthogra-

all partsof the systemparticipatein processingll types
of input, although of coursethe contritutionsof different
partsmaybe moreor lessimportantfor differentinputs.
In supportof the generalframework, Seidenbeg and
McClelland (1989) trained a connectionistnetwork to
map from the orthographyof about3000 monosyllabic
English words—both regular and exception—to their
phonology The network correspondetb the bottompor-
tion of the framework in Figure 1 (referredto as the

phy, phonology and semanticsis accomplished phonolaical pathway). After training, the network pro-

throughthe simultaneousnteractionof mary units,
suchthatfamiliar patterndorm stableattractors.

Although theseprinciples are general,the challengeis
to demonstratethat, when instantiatedin a particular
domain—singleword reading—theserinciples provide
importantinsightsinto the patternsof normal and im-
pairedcognitive behaior. The currentchaptereviews a
seriesof computationasimulationsof word readingoased

nouncechearlyall of thewordscorrectly includingmost
exceptionwords. It also exhibited the standardempir
ical patternof an interactionof frequeng and consis-
teng/ in naminglateng (seeg.g.,Tarabar& McClelland,
1987) whenits real-valuedaccurag in generatinga re-
sponsavastakenasa proxy for responsgime. However,
the model was much worsethan skilled readersat pro-
nouncingorthographicallyiegal nonwords(Besney Twil-
ley, McCann, & Seegobin, 1990) and at lexical deci-
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sion undersomeconditions(Besneret al., 1990; Fera&
Besner 1992). Thus, the model failed to refute tradi-
tional claims that localist, word-specificrepresentations
and separatemechanismsre necessaryto accountfor
skilled reading.

More recently Plaut,McClelland,Seidenbey, andPat-
terson(1996, also seeSeidenbey, Plaut, PetersenMc-
Clelland,& McRae,1994)have shovn thatthelimitations
of the Seidenbeg andMcClellandmodelin pronouncing
nonwordsstemnotfrom ary generalimitation in theabil-
ities of connectionistnetworks in quasi-rgular domains
(assuggestedy, e.g., Coltheartet al., 1993), but from
its useof poorly structuredorthographicand phonolog-
ical representations.The original simulation usedrep-
resentationdasedon contet-sensitive triples of letters
or phonemicfeatures. When more appropriatelystruc-
turedrepresentationare used—basedn graphemesnd
phonemesand embodyingphonotacticand graphotactic
constraints—netark implementationf the phonolog-
ical pathway canlearnto pronounceregular words, ex-
ceptionwords, and nonwords as well asskilled readers.
Moreover, the networks exhibit the empiricalfrequeng-
by-consisteng interactionpatternwhentrainedon actual
word frequencies.This remainstrue if naminglatencies
are modeleddirectly by the settlingtime of a recurrent,
attractometwork (seeFigure?2).

Plautetal. (1996)alsooffereda mathematicainalysis
of the critical factorsthat govern why the networks (and,
by hypothesissubjects)behae asthey do. The analy-
sis was basedon a network that, while simplerthanthe
actualsimulations—ithadno hiddenunitsandemployed
Hebbianlearning—retainednary of theessentiatharac-
teristicsof the moregeneralframework (e.g.,distributed
representationandstructure-sensitie learning). For this
simplified network, it was possibleto derive an analytic
expressionfor how the responseof the network to ary
input (test) patterndependn its experiencewith every
patternon which the network is trained,asa function of
its frequeng of training, its similarity with the testpat-
tern,andthe consisteng of its outputwith thatof thetest

pattern.Specifically the responses[jt] of ary outputunit j
to agiventestpatternt is givenby

g FU4 SRS EEo) (1)
SIS

in whichthestandarégmooth non-linearsigmoidalinput-
outputfunction for eachunit, o(+), is appliedto the sum
of threeterms: (1) the cumulative frequeng of training
onthepatternt itself, F[U; (2) the sumof the frequencies
Fl] of the friendsof patternt (similar patterngrainedto
producethe sameresponsédor unit j), eachweightedby
its similarity (overlap)with t, O[f!: and(3) minusthesum
of thefrequencies'€ of the enemief patternt (similar
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Figure 2: (a) The frequeng-by-consisteng interaction
exhibitedin the settlingtime of an attractornetwork im-

plementationof the phonologicalpathway in pronounc-
ing words of varying frequeng and spelling-soundcon-
sisteng (Plautet al., 1996, Simulation3); and(b) its ex-

planationin termsof additive contributionsof frequeng

andconsisteng subjectto anasymptoticactivationfunc-
tion (only thetop of whichis shavn).
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patternstrainedto producethe oppositeresponse)gach
weightedby its similarity tot, O[],

Many of the basic phenomenan word reading can
be seenas natural consequencesf adherenceo this
frequency-consisten@guation.Factorsthatincreasehe
summedinput to units (e.g., word frequeng, spelling-
soundconsisteng) improve performanceasmeasuredby
namingaccurag and/orlateng, but their contributions
aresubjectto “diminishing returns”dueto the asymptotic
natureof the activation function (seeFigure 2b). As a
result,performanceon stimuli thatarestrongin onefac-
tor is relatively insensitive to variationin other factors.
Thus, regular words shaw little effect of frequeng, and
high-frequeng words show little effect of consisteny,
giving rise to the standardpatternof interactionbetween
frequeng and consisteny, in which the namingof low-
frequengy exceptionwordsis disproportionatelyslow or
inaccurate.

2.2 SurfaceDydexia

Although implementationf the phonologicalpathway
on its own canlearnto pronouncewords and nonwords
aswell asskilled readersa centralaspecof Plautetal.’s
(1996) generaltheory is that skilled readingmore typi-
cally requiresthe combinedsupportof both the seman-
tic andphonologicalpathways,andthatindividualsmay
differ in the relative competenceof eachpathway. A
considerationof semanticsis particularly importantin
the context of accountingfor a patternof readingim-
pairmentknown assurfacedysleia (seePattersonColt-
heart, & Marshall, 1985), which typically arisesfrom
damageto the left temporallobe. Surface dyslexic pa-
tientsreadnonwords and regular words with normalac-
curagy andlatengy, but exhibit aninteractionof frequeng
andconsisteng in word readingaccurag, suchthatlow-
frequeny exceptionwordsarepronouncedlisproportion-
ately poorly, often eliciting a pronunciationconsistent
with morestandardpelling-soundorrespondencedg.g.,
SEW readas“sue; termedaregularizationerror).

The framework for lexical processinglepictedin Fig-
ure 1 (andthe associatedcomputationabrinciples)pro-
videsanaccounbf surfacedyslexia basedn therelative
contributionsof the semanticandphonologicalpathways
in oral reading.At anabstractevel, giventhatphonolog-
ical units simply sumtheir inputsfrom thetwo pathways,
theinfluenceof the semantigathway canbeincludedin a
straightforvardmanneiby addinganadditionalterm, S,
to the summedinput in Equationl. Furthermorejf this
termis assumedo increasewith imageability the equa-
tion produceghethree-vay interactionof frequeng, con-
sistengy, andimageabilityfound by Strain,Pattersonand
Seidenbag (1995). When formulatedexplicitly in con-
nectionistterms, however, this integrationhasimportant

implicationsfor the natureof learning in the two path-
ways. To the extent that the semanticpathway reduces
performanceerror during training by contributing to the
correct pronunciationof words, the phonologicalpath-
way will experiencelesspressureo learnto pronounce
all of thewordsby itself. Rather this pathway will tend
to learn bestthosewords high in frequeng and/orcon-
sisteng; on its own it may never masterlow-frequeny
exceptionwordscompletely On this accountthe combi-
nationof the semantiandphonologicabathwaysis fully
competenin normalreadersput brain damagethat im-
pairsthe semanticpathway revealsthe latentlimitations
of anintactbut isolatedphonologicabathway, giving rise
to surfacedyslexia.

Plaut et al. (1996) explored the viability of this ac-
countby extendingtheir simulationsof the phonological
pathway to include influencesfrom a putatve semantic
pathway. They approximatedhe contribution that a se-
manticpathway would make to oral readingby providing
the output (phonemeunits of the phonologicalpathway
with external input that pushedthe activationsof these
unitstowardsthe correctpronunciatiorof eachword dur-
ing training. Plautand colleaguedound that, indeed,a
phonologicalpathway trainedin the contet of support
from semanticsxhibited the centralphenomenaf sur
facedyslexia whenthe contribution of semanticsvasre-
moved (seeFigure 3). Moreover, individual differences
in the severity of surfacedyslexia could arise, not only
from differencedn the amountof semanticdamage put
alsofrom premorbiddifferencesn the division of labor
betweenthe semanticand phonologicalpathways (Plaut,
1997).Thus,thefew patientsexhibiting mild to moderate
semantiédmpairmentsvithout concomitantegularization
errors(DRN, Cipolotti & Warrington,1995;DC, Lambon
Ralph,Ellis, & Franklin,1995)mayhave, for variousrea-
sons readingsystemawith relatively weakrelianceonthe
semantigathway.

2.3 Deep and Phonological Dyslexia

Patientswith deepdyslexia (seeColtheart,Patterson &
Marshall, 1980) have reading impairmentsthat are in
mary ways oppositeto thosewith surface dyslexia, in
that they appearto read almostentirely via semantics.
Deepdyslexic patientsare thoughtto have severe dam-
ageto the phonologicalpathway, as evidencedby their
virtual inability to readeven the simplestof pronounce-
able nonwords. They also have impairmentsin reading
words that suggestadditional partial damageto the se-
mantic pathway. In particular the hallmark symptom
of deepdysleia is the occurrenceof semanticerrors
in oral reading(e.g., readingCAT as“dog”). Interest-
ingly, thesesemanticerrorsco-occurwith purevisual er-
rors (e.g., CAT = “cot”), mixed visual-and-semantier-
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Figure 3: Performanceof two surface dysleic pa-
tients(MP, Behrmann& Bub, 1992;Bub, Cancelliere &

Kertesz,1985; andKT, McCarthy & Warrington,1986)
andthe Plautet al. (1996) network for two levels of se-
mantic impairment. Correct performanceis given for
Tarabanand McClelland’s (1987) high-frequeng (HF)
and low-frequeng (LF) regular consistentwords (Reg)
andexceptionwords(Exc),andfor Glushko’s (1979)non-
words. “Reg’s” is the approximatepercentagef errors
on the exceptionwordsthat areregularizations.Adapted
from Plautetal. (1996).

rors (e.g., CAT = “rat”), and even mediatedvisual-then-
semanticerrors(e.g.,SYMPATHY = “orchestra”,presum-
ably via symphory). Furthermorecorrectperformance
dependson part-of-speeci{inouns> adjectves > verbs
> functionwords)andconcretenessr imageability(con-
cretejmageablevords> abstractlessimageablavords).
Finally, differencesacrosspatientsin written andspolen
comprehensiorandin thedistributionof errortypes,sug-
geststhatthe secondarydamageo the semantigathway
may occurbefore,within, or after semantic{Shallice&
Warrington,1980).

Deepdyslexia is closelyrelatedto anothertype of ac-
quireddyslexia—so-calledphonolaical dyslexia (Beau-
vois & Derouesgk, 1979), involving a selectve impair-
mentin readingnonwords comparedwith words (with-
out concomitantsemanticerrors). Indeed,someauthors
(Friedman,1996;Glosse& Friedman,1990)have amgued
thatdeepdyslexia is only the mostsevereform of phono-
logical dyslexia.

Hinton and Shallice (1991) reproduced the co-
occurrenceof visual, semantic,and mixed visual-and-
semanticerrorsin deepdyslexia by damaginga connec-

tionist network that mappedorthographyto semantics.

During training, the network learnedto form attractors
for 40 word meaningsacrossfive cateyories, suchthat
patternof semantideatureghatweresimilarto aknown
word meaningwerepulledto thatexactmeaningover the

Figure4: A depictionof the attractorlandscapdor a net-
work that mapsorthographyto semanticsandhow dam-
ageto the network candistortthe attractorgdashedval)
in away thatgivesriseto bothsemanticerrors(e.g.,CAT
= “dog") andvisualerrors(e.g.,B0G = “dog”). Adapted
from Plautand Shallice(1993).

courseof settling. Whenthe network wasdamagedthe

initial semanticactivity causedby an input would occa-
sionally fall within a neighboringattractorbasin, giving

riseto anerrorresponseTheseerrorswereoften seman-
tically relatedto the stimulusbecausevords with simi-

lar meaningscorrespondo nearbyattractorsn semantic
space.The damagedetwork alsoproducedvisual errors
dueto its inherentbiastowardssimilarity: visually simi-

lar wordstendto producesimilarinitial semantigatterns,
which canleadto a visualerrorif thebasinsaredistorted
by damagedseeFigure4).

Plaut and Shallice (1993) extendedtheseinitial find-
ings in a numberof ways. They establishedhe gener
ality of the co-occurrenceof error typesacrossa wide
rangeof simulations shaving thatit doesnot dependon
specific characteristicof the network architecture,the
learning procedure,or the way responsesire generated
from semanticactivity. A particularly relevant simula-
tion in this regardinvolved animplementatiorof the full
semanticpathway—mappingorthographyto phonology
via semantics—using deterministilBBoltzmannMachine
(Hinton, 1989b; Peterson& Anderson,1987). Lesions
throughoutthe network gave rise to both visual and se-
manticerrors,with lesionsprior to semanticproducinga
biastowardsvisualerrorsandlesionsaftersemanticgro-
ducinga biastowardssemanticerrors. Thus,the network
replicatedboth the qualitative similarity and quantitatve
differencesamongdeepdysleic patients. The network
also exhibited a numberof other characteristicof deep
dyslexia not consideredoy Hinton and Shallice (1991),
including the occurrenceof visual-then-semantierrors,
greaterconfidencein visual as comparedwith semantic
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errors,andrelatively presered lexical decisionwith im-
pairednaming.

PlautandShallicecarriedout additionalsimulationsto
addresghe influenceof concretenessn the readingper
formanceof deepdyslexic patients. Anotherfull imple-
mentationof the semanticpathway was trainedto pro-
nouncea new set of words consistingof both concrete
and abstractwords. Concretewords were assignedfar
more semanticfeaturesthan were abstractwords, under
the assumptiorthatthe semanticrepresentationsf con-
cretewords arelessdependenbn the contets in which
they occur (Jones,1985; Safran, Bogyo, Schwartz, &
Marin, 1980; Schwanenflugel,1991). As a result, the
network developedstrongerattractorsfor concretethan
abstractwords during training, giving rise to betterper
formancein readingconcretewordsundermosttypesof
damage,as obsered in deepdyslexia (seeFigure 5a).
Surprisingly severe damageto connectionamplement-
ing the attractorsat the semantidevel producedthe op-
positepattern,in which the network readabstract words
betterthanconcretevords(seeFigure5b). This patternof
performancas reminiscenbf CAV, thesingle,enigmatic
patientwith concete word dysleia (Warrington,1981).
The doubledissociationbetweerreadingconcreteversus
abstractwordsin patientsis often interpretedasimply-
ing that there are separatanoduleswithin the cognitive
systemfor concreteand abstractwords. The Plautand
Shallicesimulationdemonstratethatsucharadicalinter-
pretationis unnecessarythedoubledissociatiorcanarise
from damageo differentpartsof adistributednetwork, in
which partsprocessothtypesof itemsbut developsome-
whatdifferentfunctionalspecializationshroughlearning
(seePlaut,1995,for furtherresultsanddiscussion).

Taken togethey the modeling work describedabove
provides strong supportfor a connectionistapproachto
normalandimpairedword reading,embodyingthe com-
putational principles outlined in the Introduction: dis-
tributed representation,gradual learning of statistical
structure,and interactvity in processing. There have,
however, beenrecentempiricalchallengego the specific
modelsin particular andtheframeworkin generalwhich
ultimately needto be addressedf the approachis to re-
mainviableasanaccounbf humanperformanceA num-
berof theserelateto theinfluenceof orthographidength
onthenaminglatenciesof bothnormalanddyslexic read-
ers.

3 Current Challenges. Length Ef-
fects
An aspecif the Seidenbay and McClelland(1989)and

Plautet al. (1996) modelsthat hascontributed substan-
tially to theirtheoreticaimpactis that,because¢hey were
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Figure5: Percentcorrectperformanceon concretever-
susabstractwords of the Plautand Shallice(1993) sim-
ulation after (a) 1000 lesionsof 20% of orthographic-to-
intermediateconnectionsand(b) 1000lesionsof 70% of
semantic-to-cleanuponnectionsThe radiusof eachcir-
cle is proportionalto the numberof lesionsyielding the
performancdevelsindicatedby the positionof thecircle.
The diagonallines correspondo equallevels of perfor
manceon concreteandabstractvords. Theadwantageor
concretewordsin (a) correspondso thefindingsfor deep
dyslexia (Coltheartet al., 1980), whereasthe advantage
for abstractwordsin (b) correspondgo the findingsfor
concrete-wrd dyslexia (Warrington,1981).



Plaut

Word ReadingandAcquiredDyslexia

trainedon a sufiiciently extensie corpusof words, their
performance&anbecomparedlirectly with thatof human

long RT in the latter case(extendedby roughly the dura-
tion of the /st/). Kello repeatedhe Spielerand Balota

subjectson the very samestimuli. Thesecomparisons (1997) stepwiseregressionanalysisbut useda more so-

have largely beensuccessfullyat the level of accounting
for the effectsof factorial manipulationge.g.,word fre-

gueng, spelling-sounaonsisteng). More recently how-

ever, themodelshave beerfoundto belackingwhencom-
paredwith humanperformanceon an item-by-itemba-
sis. Forinstance SpielerandBalota(1997)correlatedhe
meannaminglatenciesf 31 subjectsiaming2820words
with themodels’latenciedor the samewords,andfound

that the modelsaccountedor only about3-10%of the
varianceassociateavith individualitems. By contrastthe
combinationof thetraditionalmeasuresf log frequeng,

orthographidength,andorthographicneighborhoodize
(Colthearts N) collectively accountedfor 21.7% of the
variance;jncludinganencodingof phoneticpropertiesof

theonsetphonemeancreasedhis figureto 43.1%.

In response Seidenbay and Plaut (1998) carried out
additional analyseswith the Spieler and Balota (1997)
datasetaswell asanotherlarge namingdatasef{Seiden-
bery & Waters,1989). They found that the modelsdid
not accountwell for effects of orthographiclength, but
whenthemodelmeasureandlengthwereenteredirst in
a stepwiseregressiontherewaslittle remainingvariance
accountedor by log frequeny and orthographicneigh-
borhood.Specifically eachtraditionalvariableaccounted
for lessthan1.7%of theremainingvariancein all condi-
tions, exceptthatlog frequeng still accountedor 4.8%
of thevariancein the SpielerandBalotadatase({but only
0.25%in theotherdatasetpfterlengthandthe Plautetal.
(1996)RTswerepartialedout. Thusthemodelsprovide a
reasonablygood (aswell asmechanisticaccountof the
influenceof thesetraditional factorson naming perfor
mance. With regardto orthographiclength, Seidenbeg
and Plautarguedthat the effects of this factorweredue
largely to visual and articulatoryfactorsoutsidethe do-
mainof the existing models!

More recently Chris Kello (personalcommunication,
Januaryl998) hasprovided somesupportfor this claim.
He hypothesizedhat someof the obsened lengtheffect
might be dueto the fact thatlonger monosyllabicwords
aremorelikely to have complex onsetconsonantlusters
(e.g.,/pr/, /str/), andthe reducedacousticamplitudeat
thebeaginningof suchclustersintroducegdelayin tripping
astandard/oicekey. For example,avoicekey mightreg-
isterthe /r/ in bothRING andsTRING, yieldinganoverly

1in their reply to Seidenbar and Plaut (1998), Balota and Spieler
(1998)questiorwhetherengtheffectsfall outsidethescopeof themod-
els given that Plautet al. (1996, p. 85) actually demonstrated small
but reliableeffect of lengthon the settlingtimesof their attractormodel.
However, the fact thatthe modelshavs somesensitiity to lengthdoes
notentailthatit shouldbeexpectedo accountfor all or evenmostof the
effectsof lengthon performancetheunderlyingtheorymaystill ascribe
lengtheffectsto other(unimplementedpartsof thereadingsystem.

phisticatedencodingof the phoneticpropertiesof word
onsetsjncluding the presencef certainconsonantlus-
ters. He foundthat,comparedvith the useof Spielerand
Balota's encodingthe new encodingreducedhe amount
of residualvarianceaccountedor by orthographidength
by well over half, from 7.5%to 3.3%. Theseresultsin-
dicatethata sizableamountof the effectsof orthographic
lengthcanbe accountedor by articulatoryonsetcharac-
teristics.

Although articulatoryfactorsmay contribute substan-
tially to length effects, they cannotbe the whole story.
RecentlyWeeles(1997)hasdemonstratedifferentialef-
fects of length for words versusnonwords matchedfor
onsetcharacteristicsSpecifically using3—6 letterwords
and nonwords, Weeles found reliable length effects for
nonwords and for low- but not high-frequeng words.
When he partialedout orthographicneighborhoodsize,
thelengtheffectwaseliminatedfor wordsbut notfor non-
words. Weelesarguedthat thesefindingsposeproblems
for ary accountin which words and nonwords are pro-
cessedy a singlemechanism.

Finally, lengtheffectsalsoplay a prominentrolein the
analysisof acquiredreadingimpairments particularlyin
the context of the letter-by-letter (LBL) readingof pure
alexic patients(Dejerine,1892) and somenonfluentsur
facedyslexic patients(e.g.,Patterson& Kay, 1982). Al-
thoughthe accurag of thesepatientscan be quite high,
their naming latenciesshav an abnormallylarge word
lengtheffect, sometimeson the orderof 1-3secondper
letter (cf. 5-50 msec/letterfor normal readers;Hender
son, 1982). One accountof suchpatients(Patterson&
Kay, 1982)is thatthey have a peripheraldeficit that pre-
ventsadequatectivation of letter representations par
allel; they thusmustresortto a compensatorgtrateyy of
recognizingetterssequentially

Thereis, in fact,considerabléndependengévidencefor
peripheralimpairmentsin LBL readers(seeBehrmann,
Nelson,& Sekuler1998afor review). Ontheotherhand,
thereis alsoevidencefor theinfluenceof lexical/semantic
factorson LBL readingperformanceTherearetwo forms
of this latterinfluence.First, whenpresentedvith words
too briefly to allow overt naming,someLBL readersan
nonethelesperform lexical decisionand semanticcate-
gorizationstasksabore chance(Coslett& Safran, 1989;
Shallice & Safran, 1986). Quite apartfrom this type
of “covert” reading,LBL readersalso shav lexical ef-
fects on their letter-by-letter readinglatencies. For ex-
ample,BehrmannPlaut,andNelson(1998b)presentata
on seven LBL readersof varying severity, shaving that
themagnitude®f theirlengtheffectsinteractedothwith
frequeny andwith imageability Moreover, theseinter-
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actionswere modulatedby severity of the impairment,
suchthat the most severe patientsshoved the strongest
lexical/semantieffects. Behrmanrandcolleaguesargue
thatthesehigherlevel effectsin LBL readingareconsis-
tentwith aperipheraimpairmentgiventheinteractvena-
tureof processingvith thereadingsystem:wealened(se-
guential)letteractivationsupportgartiallexical/semantic
activation that accumulate®ver time and feedsback to
facilitatesubsequerietter processingThey alsopropose
that the sequentialprocessingn LBL readingis not an
abnormalstrateyy employed only following brain dam-
age,but is the manifestatiorof the normalreadingstrat-
egy of makingadditionalfixationswhenencounteringlif-
ficulty in readingtext (Just& Carpenter1987; Reichle,
Pollatsek& Rayner1998). For example,in orderto en-
hancestimulusquality, normal subjectsmake morefixa-
tionswithin long comparedvith shortwords. LBL read-
ersalsofixatemorefrequently;in fact,giventhevery poor
quality of thevisualinput, they fixate almostevery letter
(BehrmannBarton,Shomstein& Black, 1999).

In summarythe effectsof orthographidengthon nam-
ing lateng, both in normaland brain-damagedubijects,
placeimportantconstraintson theoriesof word reading,
and existing distributed modelsdo not provide an ade-
guateaccountof theseeffects. A fully adequatenodelof
lengtheffectsin readingwould needto incorporatecon-
siderablydetailedperceptuahndarticulatoryprocessem
additionto the more centralprocesseselating orthogra-
phy, phonology andsemantics Theintent of the simula-
tion describedn the following sectionis not so muchto
attemptsucha comprehensie accountput ratherto begin
anexplorationof thekindsof networksandprocessethat
might provide deepelinsightinto lengtheffects.

4 Simulation

41 Method

A simplerecurreninetwork (Elman,1990)wastrainedto
producea sequenceof phonemesas output when given
a string of position-specifidettersasinput. The training
corpusconsistedof the 2998 monosyllabicwordsin the
Plautet al. (1996) corpus. The architectureof the net-
work is shavn in Figure6. Thereare 26 letter unitsand
a“blank” unit at eachof 10 positions. Thethird position
from theleft, indicatedby thedarkrectanglen thefigure,
correspond$o thepointof fixation. These270letterunits
arefully connectedo 100hiddenunitswhich,in turn,are
fully connectedo 36 phonemeunits? The hiddenunits
also receve input from the previous statesof phoneme

2The encodingof words and nonwordsas sequencesf phonemes
was basedon the phonologicalrepresentatioremployedby Plautand
McClelland(1993),which differs slightly from thatusedby Plautet al.
(1996).

units. In addition,thereis afourth groupof positionunits,
with connectiondoth to andfrom the hiddenunits, that
the network usesto keeptrack of whereit is in the let-

ter string asit is producingthe appropriatesequencef

phonemesanalogougo a focusof attention. Two copies
of the positionunits andthe phonemeunits areshowvn in

thefiguresimplyto illustratetheir behaior overtime. Fi-

nally, thereis a“done” outputunit thatthenetwork useso

indicatethata pronunciationis complete.Including bias
connectiongequialentto connectiongrom anadditional
unit with a fixed stateof 1), the network had a total of

45,945connectionghat were randomizeduniformly be-
tween+1.0 beforetraining 2

In understandindnow the network wastrained,it will
helpto considerfirst its operationafter it hasachiered a
reasonablédevel of proficieny at its task. First, a word
is selectedrom the training corpusaccordingto a loga-
rithmic functionof its frequeng of occurrenc€K ucera&
Francis,1967). Its string of lettersis presentedvith the
first letter at fixation* by activating the appropriatelet-
terunit ateachcorrespondingposition,andthe blank unit
at all other positions. Positioninformation for internal
lettersis assumedo be somavhat inaccurate(see,e.g.,
Mozer, 1983),sothatthe sameletterunitsat neighboring
internal positionsare also activatedslightly (to 0.3). In
Figure6, the grey regionsfor letter unitsindicatethe ac-
tivationsfor theword BAY whenfixating the B. Initially,
the position unit correspondingo fixation (humberedd
by corvention)is active andall othersareinactive,andall
phonemeunits are inactive. (In the figure, the statesof
positionandphonemaeunits shav the network attempting
AY = /A/ after having generated =-/b/.) Hidden unit
statesareinitialized to 0.2 at the beginning of processing
theword.

The network thencomputesnew statesfor the hidden
units,phonemaunits,andpositionunits. The network has
two tasks: 1) to activate the phonemecorrespondingo
the currentgraphemeand 2) to activate the position of
thenext graphemen thestring (or, if theendof thestring
is reachedthe positionof theadjacenblank). For exam-
ple, whenattendingto theletter B atfixation in BAY, the
network mustactivatethe /b/ unit andpositionunit 1 (the
positionof Ay in theinput). Specifically thetargetactiva-
tionsfor thephonemaunitsconsistof aonefor thecorrect
currentphonemeandzeroselsavhere,andthe targetsfor

3Given the compositionof the training corpusand all possiblere-
fixations, 62 of the letter units would never be activated during train-
ing. Therefore to reducethe computationatlemandf the simulation
slightly; all 62000outgoingconnectiongrom theseunits wereremoved,
leaving anactualtotal of 39,745connectionsn the network.

4A more empirically accuratepositioning would have placedthe
string sothatfixation falls ator just to theleft of the centerof theword,
correspondingo the “optimal” or “convenient” viewing position (see
O’Regan, 1981). This distinction hasno functional consequencefor
thecurrentmodel,however, asit doesnotincorporatevariationin visual
acuitywith eccentricity
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Figure6: Thenetwork architecturdor therefixationnetwork. Thearrows indicatedfull connectvity betweergroups
of units. Therecurrenttonnection@amongthe hiddenunitsonly corvey informationaboutthelasttime step. Thegrey
areasn theinputandoutputunitsareintendedo depicttheir activities atanintermediateointin processingheword
BAY, aftertheB = /b/ hasbeenpronouncedwith norefixation)andthe Ay = /A/ is beingattempted.

the positionunits consistof a onefor the positionof the
next grapheme/blania thestringandzeroselsavhere.To
the extentthattheactivationsover the phonemeandposi-
tion unitsareinaccuratei.e., notwithin 0.2 of their target
values) erroris injectedandback-propagatethroughthe
network. Performancerror was measuredy the cross-
entopy(seeHinton,1989a)etweerthecorrectandtarget
activations.

Assumingthat the network succeedst generatinghe
correct phonemeand position, this information is then
usedto guidethe productionof the next phonemeandpo-
sition. For this purposethe correctphonemeunit hadto
beactivatedabore 0.7 andall othershadto bebelow 0.3,
andthe correctposition unit hadto be more active than
ary otherpositionunit. (During testing,this criterionap-
plies to the mostactive phonemeunit ratherthanto the
“correct” unit.) As shown in Figure 6 for BAY, position
unit1 andthephoneme'b/ arenow active,theletterinput
remainghe sameandthe network mustactivate/A/, the
phonemecorrespondingo the indicatedgraphemeay);
positionunit 3, correspondindo the blank following the
string;andthe“done” unit, indicatinga completepronun-
ciation. In generalwhenpronouncinga letter string, the
network is trainedto activatethe sequencef phonemes
correspondindo its pronunciationwhile simultaneously
keepingtrack of the position of the graphemat is cur

rently working on.

If, in pronouncinga letter string, every phonemeand
positionis generatedorrectly theactivationsoverthelet-
ter units remainfixed. If, however, the network fails at
generatinghe correctphonemeor next positionat some
point, it refixateshe input string andtries again. It does
this by making the equivalentof a rightward saccadeo
fixate the problematicgraphemeusingthe positionunits
asa specificatiorof its positionrelative to fixation. This
positioninformationwasgeneratedver the positionunits
ontheprevioustime step,andthusis availableto guidethe
appropriatesaccadé. The actualsaccadeés implemented
by shifting the input activation of the letter units to the
left by the specifiedamount,and resettingposition unit
0 to be active. Following this, the network tries againto
pronouncethe (now fixated) graphemeandthenthe re-
mainderof theinput string.

In general,the network pronouncesas much of the
staticinput asit canuntil it runsinto trouble, thensac-
cadesto that part of the input and continues. Note that,

5|f thenetworkfails on thefirst graphemef a string,orimmediately
afterrefixating, the tamget for the positionunits is usedduring training
asthelocationof the next fixation; during testing,the mostactive po-
sition unit is used. Also notethat the networks rightwardsaccadesre
differentthantheregressie (leftward)saccadethatsubjectssometimes
makewhenencounteringlifficult text (seeJust& Carpenterl987).The
currentnetworkcannotmakeregressie saccades.
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earlyonin training,the network repeatediyails atgener

ating correctoutput,andsois constantlyrefixating. This
meansthat essentiallyall of its training experiencecon-
sistsof pronouncinggraphemegin contet) at fixation.

As the network learnsto pronouncehesecorrectly it be-
gins to attemptto pronouncethe graphemesn the near
(right) peripherywithoutrefixating. If it fails, it will male

a saccadeand useits more extensive experienceat fixa-

tion. Gradually however, it will learnto pronouncehese
adjacentgraphemegorrectly andwill go on to attempt
even more peripheralones. In this way, the network’s
competencextendsgraduallyfrom fixation rightwardto

larger andlarger portionsof input strings,making fewer
and fewer fixations per word as a result. However, the
network can always fall back on its more extensive ex-

perienceat fixation wheneer it encounterdifficulty. It

is perhapswvorth noting in this contet that, althoughthe
network wastrainedonly on monosyllabiovordsfor con-
veniencejt would be entirely straightforvardto apply it

to pronouncingpolysyllabicwordsof arbitrarylength.

To summarizeasthe network is trainedto producethe
appropriatesequenceof phonemedor a letter string, it
is alsotrainedto maintaina representatiomf its current
positionwithin the string. The network usesthis position
signalto refixatea peripheralportionof theinputwhenit
findsthatportiondifficult to pronounce.This repositions
the input string so that the peripheralportion now falls
at the point of fixation, wherethe network hashadmore
experiencein generatingpronunciationsIn this way, the
network canapply the knowledgetied to the units at the
pointof fixationto ary portionof thestringthatis difficult
for thenetwork to read.

4.2 Resultsand Discussion

Normal Performance. The network was trained on
400,000word presentationsvith a learningrate of 0.01,
momentumof 0.9, and weight decayof 0.000001. The
learningratewasthenreducedto 0.001andthe network
wastrainedon an additional50,000word presentations,
in orderto minimize the noisein the final weight values
dueto samplingerroramongtraining examples. The to-
tal numberof presentationper word rangedfrom about
40 to 600, with a medianof 130. Figure 7 shaws, over
the courseof training, both the overall level of accuray
in pronouncingvordsaswell asthe meannumberof fix-
ationsrequired. At the endof training, the network read
2978/299899.3%)of thewordscorrectly(wherehomo-
graphswere considerectorrectif they elicited eitherap-
propriatepronunciation). The network madean average
of 1.32fixationsperword in generatingorrectpronunci-
ations,with 2290(76.9%)involving a singlefixation. Just
underhalf (8/20)of theerrorswereregularizationsof low-
frequeny exceptionwords (e.g., BROOCH = “brewch”,
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Figure 7: Percentagef words pronouncectorrectly by
thenetwork (top curve; left axis) andthe meannumberof
fixationsrequired(bottomcurve, right axis)asa function
of the numberof words presentediuring training. The
improvementin performancdrom 400,000to 450,000is
dueto areductionin learningrate (seetext).

SIEVE = “seeve”).

Giventhatthenetwork essentiallyhasafeedforwardar
chitectureandoutputsonly a singlephonemeatatime, it
is not entirely clearwhatan appropriateneasuref nam-
ing lateny shouldbe. The mostnaturalanalogueto the
onsetof acousticenegy thatwould trip a voice key in a
standardempirical study would be the real-valuederror
onthefirst phonemeThis measurehowever, failsto take
into accountthe coarticulatoryconstraintson executinga
fluentpronunciatiorthatapplyfor subjectsout notfor the
model. A moreappropriatealbeit coarsemeasuren the
currentcontext is simply the numberof fixationsrequired
to generate correctpronunciation.This measuralirectly
reflectshedegreeof difficulty thatthesystemexperiences
in constructinga completepronunciatiorf

Figure8 shawvs the meannumberof fixationsmadeby
the modelin generatingcorrectpronunciationgor words
in the training corpusasa function of their lengthin let-
ters.Usingthismeasura@sananalogugo naminglateng,
the modelshows no latenciedifferencedetween3- and
4-letterwords (F < 1), but a steadyincreasein lateng
for 4—6letterwordsandanoverall lengtheffect (F3 2932 =
76.7,p < .001)with aslopeof 0.18fixationsperletter.

Thenetwork wastestedor its ability to accounfor two
setsof recentfindingsconcernindengtheffectsin normal
readersFirst,asmentionecdearlier, Weeles(1997)found
reliableeffectsof orthographidengthin thenaminglaten-

5Thereis emeging evidencethatsubjectscaninitiate their articula-
tion prior to computingthe entirepronunciatio of a word (Kawamoto,
Kello, Jones,& Bame,1998). Note, however, that the most difficult
aspectof mappingorthographyto phonologyin Englishrelatesto in-
consisteng in vowel pronunciationsandthe fixation measureusedin
the currentsimulationis sufficiently sensitve to reflectthis property

10
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Figure8: Meannumberof fixationsmadeby the network
in pronouncing3—6 letter words. The y-axis scaleis the
sameasthatin Figure11for easeof comparison.

ciesfor bothwordsandnonwords, but only the nonword
effectremainecdeliablewhenorthographimeighborhood
sizewas partialedout. In applyingthe currentmodelto
Weeles’ stimuli, 24 of thewordshadto beeliminatedbe-
causethey arenotin themodelstraining corpus;mostof
theseareinflectedforms(e.g.,BOARDS, CALLED). Of the
remainingitems, the model correctly pronounced36/86
of the high-frequeng words,89/900of the low-frequeng
words, and 90/100of the nonwords (where 4 of the 10
errors were on pseudo-inflectedorms; e.g., BRANKS,
LOAKED). A nonword pronunciatiorwas scoredas cor-
rectif it matchedthe pronunciationof someword in the
training corpus(e.g., GROOK pronouncedo rhymewith
BOOK; seePlautetal., 1996,for details).

Comparing4- versus6-letter stimuli, therewasa reli-
ablelengtheffectin themeanmumberof fixationsmadeby
themodelin correctlypronouncinghigh-frequeng words
(1.00 vs. 1.25; F134 = 7.56, p < .01), low-frequeny
words (1.38vs. 1.79; F1 41 = 1.82, p < .05), and non-
words (1.61vs. 2.38; Fy 42 = 6.55,p < .01). Whenor-
thographicneighborhoodsize (calculatedover the train-
ing corpus)wasfirst partialedout of the data,the length
effectsfor bothhigh-andlow-frequeng wordswereelim-
inated(Fy,34 < 1 andFy 41 = 1.43,p > .2, respectiely)
whereaghe lengtheffect for nonwordsremainedreliable
(Fr42 = 6.43,p < .05). The only discrepang between
thesefinding andthoseof Weeles(1997)is thatthe small
lengtheffectfor high-frequeng wordswasreliablefor the
modelbut not for thehumansubjects.

The secondlength effect to which the model was
applied was the recentfinding of Rastleand Coltheart
(1998) that, among 5-letter nonwords, those with 3-
phonemepronunciations(e.g., FOOPH) producelonger
naminglatenciesthanthosewith 5-phonemepronuncia-

tions (e.g., FROLP); notethatthis is an effect of phono-
logical ratherthan orthographiclength. Certainaspects
of Rastleand Colthearts stimuli are problematicin the
current contest—namely 5 of the 24 5-phonemenon-
words are pseudo-inflectede.g., FRULS). If theseand
the matched3-phonemenonwordsareremoved from the
analysisthemeannumberof fixationsmadeby themodel
in pronouncingthe 3-phonemenonwordsis numerically
largerthanthatfor the 5-phonemeronwords, but the dif-
ferenceis notreliable (2.95vs. 2.79,respectiely; paired
t17 < 1). Thenull resultmay stemin partfrom the small
numberof comparisondut alsofrom the factthat,under
the model's phonologicalencoding the stimuli that Ras-
tle andColtheartconsideredo have 3 phonemesctually
hada meanphonologicallengthof 3.58,asa numberof
thenonwordshave 4 or even5 phonemege.g.,BARCH =
/bartS/).

The network was also testedfor the standardeffects
of word frequeng and spelling-soundtonsisteng in its
numberof fixations, usinga list of 126 matchedpairsof
regular and exceptionwordsfalling into threefrequeng
bands(Patterson& Hodges1992). The network mispro-
nouncedfive of the words, producingregularizationer-
rors to four low-frequengy exception words—BROOCH,
SIEVE, SOOT, and SUEDE—and an irr egularization er-
ror to a low-frequeng regular word—Sour to rhyme
with POUR (seePattersonPlaut,McClelland,Seidenbeg,
Behrmann& Hodges,1996,for empiricalevidencesup-
porting the occasionaloccurrenceof sucherrors). Fig-
ure9 shavsthe meannumberof fixationsrequiredto cor-
rectly pronouncethe remainingwords, as a function of
theirfrequeng andconsisteng. Overall,therewasamain
effectof frequeny (means:high 1.04,medium1.35,low
1.62;F;241 = 22.4,p < .001) and a main effect of con-
sisteny (means: regular 1.14, exception 1.52; Fy 241 =
27.5,p < .001), aswell as a frequeng-by-consisteng
interaction,with low-frequeng exceptionwords requir
ing disproportionatelymorefixations (Fz 241 = 7.67,p <
.001). Theseresultsarein accordwith therelevantempir
ical findingson the naminglatenciesof skilled readers.

At the item level, the numbersof fixations madeby
the modelwasregressedagainstthe meannaminglaten-
ciesof SpielerandBalota’s (1997)31 subjects.Over the
2812/2820vordsthatthemodelpronouncedtorrectly its
numberof fixations accountedor 8.8% of the variance
in the lateny data(tzg10= 16.5,p < .001). This value
is muchbetterthanthat of the Plautet al. (1996) model
(3.3%) but not quite asgood asthe Seidenbey and Mc-
Clelland(1989)model(10.1%).

Finally, the network wastestedfor its accurag in pro-
nouncingthreesetsof nonwordsfrom two empiricalstud-
ies: 1) 43nonwordsderivedfrom regularwords(Glushlo,
1979); 2) 43 nonwords derived from exception words
(Glushlo, 1979);and3) 80 nonwordsusedascontrolsfor

11
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Figure 9: Meannumberof fixation requiredto produce
correct pronunciationsfor words (Patterson& Hodges,
1992)asafunction of their frequeng andspelling-sound
consisteng.

a setof pseudohomophong#icCann& Besney 1987).
As before,a nonword pronunciationwas consideredtor
rect if it was consistentwith someword in the train-
ing corpus. Figure 10 shaws the performanceof the
network on this criterion, as well asthe corresponding
datafor humansubjects. The network was correcton
40/43(93.0%)of theregularnonwords,41/43(95.3%)of
the exceptionnonwords, and 73/80 (91.3%) of the con-
trol nonwords. By comparisonthe correspondindevels
of performanceeportedfor humansubjectswere 93.8%
on regular nonwords and 95.9%on exceptionnonwords
(Glushlo, 1979), and 88.6% on the control nonwords
(McCann& Besney 1987). Moreover, in pronouncing
thesenonwords, the meannumberof fixations produced
by thenetwork for correctpronunciationsvas1.63for the
regular nonwords, 2.27 for the exceptionnonwords, and
1.92for the controlnonwords. The overall meanfor non-
words,1.94,is comparabléo thevaluefor low-frequengy
exceptionwords(2.00;seeFigure9). Thus,thenetwork’s
nonword readingaccurag andlateng is comparableo
thatof skilled readers.

Performance Under a Peripheral Impairment. In or-
derto modela peripherabeficitin letter perceptiorof the
sort postulatedoy BehrmannpPlaut,and Nelson(1998b)
to producelLBL reading,nputletteractivationswerecor-
ruptedby Gaussiamoise (SD = 0.055). Whenthis was
done,correctperformancaroppedrom 99.3%to 90.0%
correct(averagedacrosslO runsthroughthetraining cor-
pus). Using a mediansplit on frequeng, accurag was
greateron high- versuslow-frequeng words (91.7%vs.
88.7%, respectiely; Fq 2983 = 18.0, p < .001) and on
shortversuslong words (e.g., 91.6%for 4-letter words

H
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Figure 10: Percentcorrectperformanceof the network
andof humansubjectsin pronouncinghreesetsof non-
words: regular and exceptionnonwords (N = 43 each)
from Glushlo (1979), and control nonwords (N = 80)
from McCannandBesner(1987).

vs. 86.8%for 6-letterwords;Fy 1503= 14.1,p < .001).

It was arguedabore that numberof fixations can be
usedas a coarseapproximationto naming lateng for
skilled readersbecausehis measurereflectsthe degree
of difficulty in constructinga coherentarticulatory out-
put. Thesituationis ratherdifferentin thecontet of LBL
readingbecausein this case,it is moreliterally true that
apronunciatioris constructedncrementally For thisrea-
son,numberof fixationsin the modelcanbe taken asa
moredirectanalogueof the naminglateng of LBL read-
ers.Anotherplausiblemeasure—théotal numberof pro-
cessingstepsrequiredby the modelin generatinga pro-
nunciation,including initial attemptsand attemptsafter
refixations—gvesqualitatively equivalentresults.

Amongwordspronouncedorrectly the averagenum-
ber of fixationsperword increasedrom 1.32to 2.20as
a resultof the introductionof input noise. Not surpris-
ingly, this measurevasstronglyinfluencedby the length
of the word. For example,the impairedmodel madean
averageof 2.00fixationson 4-letterwordsbut 2.97 fixa-
tionson 6-letterwords (F1, 1522 = 380.1,p < .001),corre-
spondingo aslopeof 0.49fixationsperletter. Themodel
alsomadefewer fixationson high- versuslow-frequeng
words(means2.10vs. 2.30,respectiely; F1 2973 = 50.5,
p < .001).Finally, andmostimportantfor the Behrmann,
Plaut,andNelson(1998b)accountof LBL reading,there
was a clear interactionof frequeng and length. This
wasestablishedy comparingperformanceon setsof 4-
and 6-letter words matchedfor frequeng (N = 100 for
eachcell). The averagenumberof fixations per word
for thesestimuli is shawvn in Figure 11. In additionto
main effects of frequeny (F1306 = 7.13,p < .01) and
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Figure11: Meannumberof fixationsmadeby the model
in pronouncingd- and6-letterwordsasa functionof their
frequeng.

length (F1,396 = 186.6,p < .001), frequeny interacted
with length suchthat the effect of frequeng waslarger
for 6- thanfor 4-letter words (Fy,306 = 4.96, p < .05).
Thus,underperipheradamagethe network exhibitedthe
hallmarkword length effect characteristicof LBL read-
ing, combinedwith the appropriatéhigherlevel effects:a
word frequeng effect which was greaterfor long com-
paredwith shortwords?

In summarya simplerecurrentnetwork waspresented
with words as letter strings over position-specificunits
andwastrainedto generatehe pronunciatiorof theword
in theform of asequencef phonemesThemodelhadthe
ability to refixatethe input stringwhenencounteringlif-
ficulty. Thenetwork learnedto pronouncecorrectlyvirtu-
ally all of the 2998-word training corpus,including both
regularandexceptionwords,andalsowascapableof pro-
nouncingnonwordsaswell asskilled readers Moreover,
if meannumberof fixationswastaken asan analogueof
skilled naminglateng, themodelexhibitedalengtheffect
as well as the standardfrequeng-by-consisteng inter-
actionobsered in empirical studies. Finally, peripheral
damageo themodel,in theform of corruptedetter acti-
vations,gaveriseto the hallmarkcharacteristicef letter
by-letterreading,includinganincreasedengtheffectthat
interactswith lexical variableg(e.g.,word frequeng).

“Giventhatthenetworkcontainsno semantiagepresentations can-
not be usedto accountfor the effects of imageabilityon LBL reading,
northerelatively presered lexical decisionandsemanticateyorization
performancef thesepatients.

5 General Discussion

Connectionisinodelinghasmademportantcontritutions
to a wide range of domainswithin cognitive science.
Word reading,in particular hasreceived considerablet-
tention becauset is a highly learnedskill that involves
therapid, onlineinteractionof a numberof sourceof in-
formationin anintegratedfashion.Thereis alsoawealth
of detailedempiricaldataon normalreadingacquisition
and skilled performanceas well as patternsof reading
impairmentsn developmentabndacquireddyslexia, that
play an essentiakole in evaluatingand constrainingex-
plicit computationalmodels. The currentchaptercon-
tributesto the developmentof a connectionistheory of
normal and impairedword readingbasedon three gen-
eral computationaprinciples: distributedrepresentation,
graduallearningof statisticalstructure,and interactiity
in processing.This ende&or hasled to a numberof im-
portantinsightsconcerninghe natureof the readingsys-
tem,bothin normaloperatiorandwhenimpairedby brain
damageTheséansightsdonottypically follow from alter
native theoreticalframaworks, althoughversionsof them
canbe incorporatednto theseframewnorksin a posthoc
manner Moreover, mary of theinsightshaveimplications
whichextendbeyondthespecificdomainof wordreading.
Four of theseareenumerate@nddiscussedbelow.

1. Theapparentichotomybetweerregular’ ver-
sus “exception” items is a false one; rather
items vary along a continuum of consistency
(Glushlo, 1979), and a single mechanismcan
learnto processall typesof itemsandyet also
generalizeeffectively to novel items.

This point was madefirst by Rumelhartand McClelland
(1986)in thedomainof inflectionalmorphologyandlater
by Seidenbey and McClelland (1989)in the domainof
word reading. The impact of theseearly modelswas,
however, underminedo a certainextentby limitationsin
themodels’performanceparticularlywith respecto gen-
eralization. In the domainof word reading,theselimita-
tionswereaddresseth subsequennodelingwork (Plaut
et al., 1996) by incorporatingmore appropriatelystruc-
turedorthographicandphonologicakepresentations.
Apart from issuesof parsimoly, the importanceof a
single-mechanismaccountis thatit providesinsightinto
why thereis so muchsharedstructurebetweenso-called
regular and exceptionitems. For instance the exception
word PINT hasregular correspondencedsr the P, N, and
T, andeventheexceptional recevesa pronunciatiorthat
it adoptsn mary otherwords(e.g.,PINE, DIE). Moreover,
nonword pronunciationis influencedoy exceptionaswell
asregular neighbors(Glushlo, 1979). Accountswhich
invoke separatenechanismsor theregularversusexcep-
tional aspectof languagdail to explain or capitalizeon
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this sharedstructure.

2. Skilled performanceis supportedby the inte-
gration of multiple sourcesof information;im-
pairedperformancédollowing braindamagecan
reflect the underlying division-of-laboramong
thesesourcesn the premorbidsystem.

Patientswith fluent surfacedyslexia exhibit relatively
normal readingof regular words and nonwords but pro-
duce “regularization” errorsto mary exception words,
particularlythoseof low frequenyg. Dual-routetheories
explain surface dyslexia as partial damageto the lex-
ical (non-semanticyoute that impairs low- more than
high-frequeng words, with the sparedregular and non-
word reading supportedby the undamagedhonlexical
route. Thereis, however, no explanationfor why the lex-
ical damageis always partial—the architectureprovides
equallywell for completeeliminationof the lexical route
with completesparingof thenonlexical route. This would
yield aninability to pronounceary exceptionwordswith
completesparingof regularwordsandnonwords—apat-
ternthathasnever beenobsened empirically. As excep-
tion word readingbecomewery severelyimpaired,regu-
lar word (andnonword) readingnvariablybeginsto suffer
(seePattersoretal., 1996).

By contrast,Plautet al. (1996) provide an accountof
surfacedyslexia in whichit is impossibleto eliminateex-
ceptionword readingwithout alsoimpairing performance
on regular wordsandnonwords. The reasonis that nor-
mal performances supportedy the combinationof both
the phonologicaland semanticpathways. The contribu-
tion from semanticselievesthe phonologicalpathway of
having to learnto pronounceall typesof wordsby itself.
Rather it becomedully adequateonly at thoseaspects
of the taskfor which it is well suited: processingtems
which are either high in frequeng and/orin spelling-
soundconsisteng (seeEquationl). Low-frequeny ex-
ceptionwordsareprocessedo somedegreebut typically
requireadditionalsupportfrom the semanticpathway to
be pronouncectorrectly Semanticdamagethen,reveals
the limitations of the undamageghonologicalpathway,
which manifestassurfacedyslexia. Evencompleteelimi-
nationof semanticsparesnary exceptionwords,partic-
ularly thosewith high frequeng. The only way to com-
pletelyeliminateexceptionwordreadingis to damagehe
phonologicalpathway aswell, but this alsoimpairsregu-
lar word andnonword reading(asobsened empirically).

3. The co-occurrenceof differenttypes of errors
canarisefrom singlelesionswithin adistributed
systemthat learnsto map amongthe different
typesof information.

The error patternsof brain-damagegatientscanplace
strong constraintson theoreticalaccountsof cognitive

processes.The traditional accountof the co-occurrence
of visualandsemanticerrorsin deepdysleia (Morton &
Patterson,1980)assumesn impairmentto visual access
of (abstract)semanticgo explain the visual errors, and
a secondmpairmentto semanticacces®f phonologyto
explain the semanticerrors. The problemis thatthis ac-
countexplainsthe occurrenceof visual errorsand of se-
manticerrors,but not their co-occurence it is perfectly
feasiblewithin theframework to introduceonly oneof the
lesions—saythe second—angredict patientswho pro-
duceonly semanticerrors. While suchcaseshave been
reported(e.g.,KE; Hillis, Rapp,Romani,& Caramazza,
1990), the vast majority of deepdyslexic patientsmake
both visual and semanticerrors (see Coltheart, Patter
son,& Marshall,1987),andthetraditionalaccounfailsto
explain this. An appealto chanceanatomicproximity of
therelatedbrainstructuredailsbecaus¢heco-occurrence
is not symmetric;mary dyslexic patientsmale visual er-
rorsbut nosemanticerrors.
Ontheconnectionisaccoun{Hinton & Shallice,1991;
Plaut& Shallice,1993),the co-occurrencef visual er-
rorswith semanticerrorsis a naturalconsequencef the
natureof learningwithin a distributed attractornetwork
thatmapsorthographyto semantics Essentially the lay-
outof attractorbasinsmustbe sensitveto bothvisualand
semanticsimilarity, and so thesemetricsare reflectedin
thetypesof errorsthatoccurasaresultof damage.

4. A doubledissociationin performingtwo tasks
doesnot implicate separatenodulesdedicated
to performingeachof the tasks,but can arise
from gradediunctionalspecializatiorwith a dis-
tributedsystemthatperformsbothtasks.

Cognitive neuropsychologistbiave traditionally used
doubledissociationssa meansof inferring the structure
of the cognitive system(Teuber 1955). If eachof two
taskscanbe selectvely impairedby brain damagewhile
leaving the otherrelatively intact, it seemseasonableo
assumehatthetwo tasksaresubseredby separatenech-
anisms. Unfortunately this logic is often appliedunder
the assumptiorthat the cognitive systemis composedf
a setof distinctmodules,but varioustypesof nonmodu-
lar systemscanalsogive rise to doubledissociationgfor
discussionseeFarah,1994;Shallice,1988).

As a casein point, deepdysleic patientsare much
worseatreadingaloudabstractvordscomparedvith con-
cretewords,whereasconcrete-word dyslexic CAV (War-
rington, 1981) shoved the reversepattern. This double
dissociationpromptedwWarringtonand others(e.g.,Mor-
ton & Patterson,1980)to assumehat the semanticgor
abstracwordswasrepresentedeparatelfrom thosefor
concretewords. By contrast,Plautand Shallice (1993,
alsoseePlaut,1995)developedan extensionof the Hin-
tonandShallice(1991)deepdyslexia simulationin which

14



Plaut

Word ReadingandAcquiredDyslexia

thereis no separatiorof therepresentationandprocesses
subservingabstractand concreteword reading. The net-
work does,however, develop strongerattractorsfor con-
cretewordsbecauséhey have muchrichersemantiaep-
resentationgi.e., mary moresemantideatures)This dif-
ferenceleadsto a degree of functional specializationin
the system. Damagebetweenorthographyand phonol-
ogy produces greaterimpairmenton abstractwvordsbe-
causetheseitems benefitmuch less from the clean-up
provided by the semanticattractors. Severe damageto
setsof connectiongthat implementtheseattractors,by
contrast,impairs concretewords the most becausehey
have cometo rely on the clean-up,whereasmary ab-
stractwords canbe readwithout this support. Thus, the
abstract-concretdouble dissociationdoesreveal some-
thing importantaboutthe underlyingorganizationof the
systemut this organizationdoesnot correspondlirectly
to the empirically manipulatedstimulusdimension(con-
creteness).

The aborve four pointsillustrate waysin which a dis-
tributedconnectionisapproacthasprovidednew insights
both normal and impaired word reading. It must be
acknavledged, however, that the existing implemented
modelshave a numberof basiclimitationsthatultimately
preventthemfrom collectively constitutinga comprehen-
siveaccounbf thedomain.Thesdimitationsstemlargely
from thefactthatall of themhave veryrestrictedemporal
behaior: Singlestaticmonosyllabiowordsarepresented
asinput, anda single,staticsemanti@and/orphonological
patternis generatedsoutput. Naturalisticreadingis, of
course,afar morefluid andtemporallycomplec activity,
involving sequencesf attentionalshifts and eye move-
mentsover linesof text asinput, sequencesf articulatory
gesturesas spolen output, and interactionsamongmul-
tiple levels of linguistic structurein both comprehension
andproduction(seeJust& Carpenterl1987).

The currentchaptempresentsa simulationwhich canbe
seenasa first steptowardsincorporatingsomeof these
compleities into connectionistmodelsof reading. The
modelis still appliedonly to singlemonosyllabicwords,
but this limitation reflectsmorethe choiceof trainingcor
pusthanary intrinsic limitation of the architecture.The
network generatesequencesf phonemessoutputin re-
sponseto letter stringsas input. Critically, it maintains
a focus of attentionwithin the word asit is being pro-
nounced;this focus is usedto refixate the input string
when the network encounterdifficulty in generatinga
pronunciation. The model learnedto pronouncevirtu-
ally all of the 2998-word trainingcorpus,andpronounced
nonwords as well as skilled readers. It also exhibited
a length effect and the standardnteractionof word fre-
gueny andspelling-souncconsisteng if the numberof
fixationsit makesin pronouncingaword wastakento re-
flectits naminglateng.
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Consideratiorof sequentiaprocessingor both visual
input andarticulatoryoutputis critical for a full account
of a numberof empirical phenomenapatrticularlythose
relatedto the effectsof thelengthof theinputstring. The
currentmodelis appliedonly to asmallsubsebf theseef-
fects,relatingto differentialeffectsfor wordsversusnon-
words(Weeles,1997),andthe exaggeratedength effect
of letterby-letterreadersandits interactionwith lexical
variableg(Behrmanretal., 1998Db).In the latter case the
empiricaladequag of the modelis someavhat limited in
that the magnitudeof the length effects, relative to nor-
mal performanceare muchsmallerthanfor mostletter
by-letterreaders.Nonethelessthe modelillustrateshown
letterby-letterreadingcanbeinterpretedasreflectingthe
operationof the normalreadingsystemfollowing periph-
eraldamaggseeBehrmannpPlaut,& Nelson,1998b,for
discussion).

Giventhatthe currentmodelis, in mary respectsyery
differentfrom previous models(Plaut et al., 1996; Sei-
denbeg & McClelland,1989),it is importantto consider
how they arerelated.With regardto the orthographidn-
put,themodelsarerelatively similarin thatall of themare
presentedvith anentireword asinput. Thecurrentmodel
differsin theuseof position-specifidetterunitsandare-
fixation mechanismHowever, mostwordsareprocessed
in a single fixation in skilled performancewhich corre-
spondsto the static presentatiorof input in the previous
models. In this way, eventhoughthe currentmodelpro-
ducesa single phonemeat a time, the fact that it does
so basedon the entire orthographicinput at every step
makesit fully consistentvith evidencesuggesting con-
siderabladegreeof parallelvisualprocessingluringword
reading(seege.g.,Reichleetal.,1998).This propertyalso
distinguishest from other sequentialmodelsin which
the orthographidnput is shiftedleftward oneletter each
time a phonemeis generatede.g., Bullinaria, 1997; Se-

jnowski & Rosenbay, 1987). In fact, thesemodelsare

very similar to the currentmodelwhenit is refixatingev-
erygrapheme.

The more substantialdifference betweenthe model
and the previous parallel onesconcernsthe generation
of phonologicaloutput. The previous modelsgenerated
a static representatiorof the pronunciationof an entire
(monosyllabic)word, whereasthe currentmodel gener
atesa pronunciatiorphoneme-by-phonemein interme-
diate casewould be a modelwhich derived a represen-
tation of an entireword (or at leasta syllable) andthen
usedthisrepresentatioasinputto generatesequentiabr-
ticulatory output. PlautandKello (1998)describesucha
systemin the context of modelingphonologicaldevelop-
ment, althoughthe phonologicalrepresentatioins gener
atedfrom acoustiaatherthanorthographidnput. A read-
ing modelwhichadoptedhecurrentmodel'streatmenbf
orthographidnput but PlautandKello’s treatmentof ar
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ticulatory outputwould combinethe strengthof the cur-
rent sequentiamodeland previous parallelmodels,and
shouldbe ableto model effectson naminglatencies,n-
cluding thoserelatingto orthographidength, directly in
its temporalbehaior. While suchan approachappears
promisingfor addressinghe full rangeof empiricalphe-
nomenan normalandimpairedword reading,it remains
for futurework to bringit to fruition.

6 Further Readings

Sejnavski and Rosenbay’s (1987) NETtalk model was
oneof the first attemptsto apply connectionisnetworks
to realistictasks. The subsequertighly influentialmod-
eling work by Seidenbey and McClelland (1989) was
more psychologicallyoriented, making detailedcontact
with specific patternsof empirical data. Plaut, McClel-

land, Seidenbeg, andPatterson1996)elaboratedhe ap-
proachtaken by Seidenbeg andMcClelland by develop-
ing modelsthat provided a bettermatchto someempir

ical findings and by providing a more systematictreat-
mentof the computationaprinciplesunderlyingthe ap-
proach.Otherrecentconnectionistnodelsof word read-
ing includeBullinaria (1997),Zorzi, Houghton,and But-

terworth (1998), andHarm (1998). The mostinfluential

non-connectionisimplementatiorof word readingis the
Dual-RouteCascadedDRC) modelof Coltheart,Curtis,

Atkins, andHaller (1993).

The abore modelsfocuslargely on the mappingfrom
print to sound;Hinton and Shallice(1991)carriedout an
importantinvestigationof how networks can be applied
to the task of mappingprint to meaning. This work was
followedup extensively by PlautandShallice(1993).

For backgroundn someof therelevantempiricalphe-
nomenain normal and impairedword reading, seethe
following: normalskilled reading(Balota,1994),surface
dyslexia (Patterson,Coltheart,& Marshall, 1985), deep
dyslexia (Coltheart Patterson& Marshall,1980),phono-
logicaldyslexia (Coltheart,1996),lengtheffects(Hender
son,1982),andpurealexia/letterby-letter reading(Colt-
heart,1998).
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