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Reading is a highly complex task, involving the rapid coordination of visual, phonological, semantic and
linguistic processes. Computational models have played a key role in the scientific study of reading. These
models allow us to explore the implications of specific hypotheses concerning the representations and pro-
cesses underlying reading acquisition and performance. A particular form of computational modeling,
known as connectionist or neural network modeling, offers the further advantage of being explicit about
how such mechanisms might be implemented in the brain.

In connectionist models, cognitive processes take the form of cooperative and competitive interac-
tions among large numbers of simple neuron-like processing units. Typically, each unit has a real-valued
activity level, roughly analogous to the firing rate of a neuron. Unit interactions are governed by weighted
connections that encode the long-term knowledge of the system and are learned gradually through experi-
ence. Units are often organized into layers or groups; the activity of some groups of units encode the input
to the system; the resulting activity of other groups of units encodes the system’s response to that input.
For example, one group might encode the written form (orthography) of a word, another might encode its
spoken form (phonology), and a third might encode its meaning (semantics; see Figure 1). The patterns of
activity of the remaining groups of units—sometimes termed “hidden” units—constitute learned, internal
representations that mediate between inputs and outputs. In this way, the connectionist approach attempts
capture the essential computational properties of the vast ensembles of real neuronal elements found in the
brain using simulations of smaller networks of more abstract units. By linking neural computation to be-
havior, the framework enables developmental, cognitive and neurobiological issues to be addressed within
a single, integrated formalism.

One very important advantage of connectionist models is that they deal explicitly with learning.
Though many of these models have focussed predominantly on simulating aspects of adult, rather than
childrens reading, many of the models do explicitly consider the process of learning (e.g., Plaut, McClel-
land, Seidenberg & Patterson, 1996; Seidenberg & McClelland, 1989). In essence, such models instantiate
learning as a process as a slow incremental increase in knowledge, represented by increasingly strong and
accurate connections between different units (e.g., the letters in printed words and the phonemes in spoken
words to which they correspond). Another critical feature of many connectionist systems is that after learn-
ing they show the ability to generalize (e.g., to pronounce novel words which they have not been trained
on). Finally, and related to this, such systems often show graceful degradation when damaged. Removing
units or connections in such systems typically does not result in an all-or-none loss of knowledge; rather,
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Figure 1. A connectionist network that relates orthographic, phonological, and semantic information in word read-
ing and other lexical tasks, based on the “triangle” framework (Harm & Seidenberg, in press; Plaut, McClelland,
Seidenberg & Patterson, 1996; Seidenberg & McClelland, 1989).

damage results in a gradual degradation of performance. These three aspects of connectionist models have
clear parallels in human reading behaviour—children gradually learn to read more and more words in an
incremental fashion over a long period, such learning brings with it the ability to generalize to novel items
children have not been taught, and in cases of brain damage there are often graded declines in performance
with inconsistent performance at different times. The fact that connectionist models display such parallels
to human reading behaviour has generated considerable excitement at the prospect that such models may
offer new, explicit and detailed accounts of how reading is implemented in the human brain.

Principles of Connectionist Modeling

Before turning to how specific connectionist models have been applied to various reading-related
phenomena, it will be helpful to consider the implications of the underlying computational principles more
generally. These can be grouped into issues related to processing, representation, learning, and network
architecture.

Processing

A standard connectionist unit integrates information from other units by first computing its net input,
equal to a linear sum of positive- and negative-weighted activations from sending units, and then setting its
own activation according to a nonlinear, monotonically increasing (sigmoid) function of this net input (see
Figure 2). In some networks, unit activations change gradually in response to input from other units instead
of being recomputed from scratch each time.

Both the linear integration of net input and the nonlinear activation function play critical roles in
shaping how connectionist networks behave. The fact that the net input to each unit is a simple weighted
sum is at the heart of why networks exhibit similarity-based generalization to novel inputs (e.g., being able
to pronounce a pseudoword like MAVE based on knowledge of words like GAVE, SAVE, MATE, etc.). If
a unit is presented with a similar pattern of activity along its input lines, it will tend to produce a similar
net input and, hence, a similar response. This fails to hold only if the weights for those inputs that differ
between the patterns are very large, but such large weights develop during learning only when necessary
(e.g., when handling exceptional cases; see the section on Learning below).
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Figure 2. The operation of a standard connectionist unit (indexed by j), which computes a net input n j as a weighted
sum of activations ai from other units (indexed by i), and then computes its own activation a j as a smooth, nonlinear
(sigmoid) function of its net input (where exp( � ) is the exponential function).

If all processing in the network were strictly linear, however, the types of mappings it could learn
would be severely limited (Minsky & Papert, 1969). The nonlinear activation function allows individual
units—and hence the network as a whole—to preserve some types of similarity in its response while ignoring
others. The sigmoid activation function asymptotes for large positive or negative net inputs, but produces
roughly proportional responses for small and moderate net inputs (see Figure 2). If networks start out with
relatively small weights, most units activations will fall in the linear range of the sigmoid function, and the
network as a whole will give similar responses to similar inputs. However, when aspects of a task require
responses that are not predicted by input similarity (e.g., pronouncing SEW like SO instead of SUE, or
mapping CAP and CAT to completely different meanings), learning must develop sufficiently large weights
to drive the relevant units into their nonlinear (asymptotic) range, where changes in net input have little if
any effect on activation. In this way, a network can remain largely linear for systematic or “regular” aspects
of a task, while simultaneously exhibiting nonlinear behavior for the unsystematic or “irregular” aspects.

Understanding how a connectionist network operates above the level of individual units requires
consideration of how patterns of activity across the various groups of units interact and evolve over the
course of processing a given input. A very useful concept in this regard is the notion of an attractor. At any
given instant, the current pattern of activity over a group of units in the network (or over the network as a
whole) can be represented in terms of the coordinates of a point in a multi-dimensional state space that has
a dimension for each unit. As the pattern of activity changes during processing, the corresponding point in
state space moves. In many networks, unit interactions eventually reach a state in which the activation of
each unit is maximally consistent with those of other units and the pattern as a whole stops changing. The
point in state space corresponding to this final pattern is called an attractor because interactions among units
in the network cause nearby points (i.e., similar patterns) to be “pulled” towards the same final attractor
point. (The region around an attractor that settles to it is called its basin of attraction.) The stability of
attractor patterns gives networks a considerable degree of robustness to partially missing or noisy input or
to the effects of damage.

Representation

As described thus far, a typical connectionist network processes an input through unit interactions
that cause the network to settle to an attractor, in which the resulting pattern of activity over output units
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corresponds to the network’s response to the input. An issue of central relevance is the nature of the rep-
resentations that participate in this process—the way that inputs, outputs, and groups of intermediate units
encode information in terms of patterns of activity. Some connectionist models use localist representations,
in which individual units stand for familiar entities such as letters, words, concepts, and propositions. Others
use distributed representations, in which each such entity is represented by a particular pattern of activity
over many units rather than by the activity of an single unit. Localist representations can be easier to think
about and to manipulate directly (Page, 2000), but often permit too much flexibility to constrain theoriz-
ing sufficiently (Plaut & McClelland, 2000). By contrast, distributed representations are typically much
more difficult to use and understand but can give rise to unanticipated emergent properties that contribute in
important ways to the explanation of cognitive phenomena (see, e.g., Hinton & Shallice, 1991).

Given that, as explained above, similar patterns tend to have similar consequences in connectionist
networks, the key to the use of distributed representations is to assign patterns to entities in such a way
that the similarity relations among patterns captures the underlying functional relationships among the en-
tities they represent. For groups of units that must be interpreted directly (i.e., inputs and outputs), this is
done based on independent empirical evidence concerning the relevant representational similarities. How-
ever, except for the simplest of tasks, it is impossible to perform the relevant mappings without additional
intermediate units, and it is infeasible to specify appropriate connection weights for such units by hand.
Accordingly, distributed connectionist networks almost invariably use learning to discover effective internal
representations based on task demands.

Learning

The knowledge in a network consists of the entire set of weights on connections among units, because
these weights govern how units interact and hence how the network responds to any given input. Accord-
ingly, learning involves adjusting the weights in a way that generally benefits performance on one or more
tasks (i.e., mapping from inputs to outputs).

Connectionist learning procedures fall into three broad classes based on how much performance feed-
back is available. At one extreme are unsupervised procedures, such as Hebbian learning (as it is typically
applied; Hebb, 1949), that make no use of performance feedback and, instead, adjust connection weights
to capture the statistical structure among activity patterns. At the other extreme are supervised procedures,
such as back-propagation (Rumelhart, Hinton, & Williams, 1986), that assume the learning environment
provides, for every trained input pattern, a fully specified “target” pattern that should be generated over the
output units. Between these two extremes are reinforcement procedures, such as temporal difference meth-
ods (Sutton, 1988), that assume the environment provides potentially intermittent evaluative feedback that
does not specify correct behavior but rather conveys the degree to which behavioral outcomes were good or
bad.

When performance or evaluative feedback is available, it is relatively straightforward to use it to adapt
connection weights to improve performance. If the activation of an output unit is too high, it can be reduced
by decreasing positive incoming weights and the corresponding sending activations and by increasing (in
magnitude) negative weights and sending activations (see the equations in Figure 2); the reverse is true if
output activation is too low. Changing the sending activations involves reapplying the same procedure to
their incoming weights and incoming activations, and so on. Specific algorithms differ in how they compute
feedback and how they distribute information on how to change weights.

Many applications of distributed connectionist modeling to cognitive phenomena use back-
propagation despite its biological implausibility (Crick, 1989). This is partly because, unlike most alter-
natives, the procedure is effective at learning difficult mappings, including those with complex temporal
characteristics (Williams & Peng, 1990). It is also the case that the time-course and ultimate outcome of
learning with back-propagation is highly similar to the properties of more biologically plausible supervised
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procedures, such as Contrastive Hebbian learning (Ackley, Hinton, & Sejnowski, 1985; O’Reilly, 1996; Pe-
terson & Anderson, 1987). Thus, one can interpret back-propagation as a computationally efficient means
of learning internal representations in distributed connectionist networks in a way that approximates the
properties of performance-driven learning in the brain.

Network Architecture

The architecture of a network—the pattern of connectivity among and within groups of units rep-
resenting different types of information—can have an important impact on the behavior of a connectionist
model in its acquisition, skilled performance, and impairment following damage. The strong emphasis on
learning in the development of connectionist models has led some researchers to conclude that the approach
disavows any built-in structure within the cognitive system. A more accurate characterization would be that
the effectiveness of learning in connectionist network makes it possible to explore the degree to which built-
in structure is necessary to account for some empirical phenomena. The modeling framework itself allows
for the expression of a wide variety of network architectures, ranging from those with extensive built-in
structure to those with minimal structure.

Connectionist models often contrast with alternative formulations in terms of the kinds of distinc-
tions that are instantiated in the architecture of the system. A classic example is the traditional separa-
tion of rule-based and item-based mechanisms in “dual-route” theories of word reading (Coltheart, Rastle,
Perry, Langdon, & Ziegler, 2001) and inflectional morphology (Pinker, 1999). Because the processing
mechanisms within a connectionist system are homogeneous—involving massively parallel unit interac-
tions throughout—the underlying theories rarely isolate different types of processing into separate systems
or pathways. Rather, architectural divisions typically reflect different types of information (e.g., ortho-
graphic, phonological, semantic). Given that such distinctions often correspond to modalities of input or
output, they can be supported directly by data on neuroanatomic localization of the corresponding neural
representations.

Realist Versus Fundamentalist Approaches

Before turning to an overview of connectionist models of reading, it is worth distinguishing two broad
approaches to cognitive modeling, because they often have rather different goals. The realist approach tries
to incorporate into a model as much detail as possible of what is known about the real system in the belief
that complex interactions of these factors are necessary to capture the relevant phenomena. The fundamen-
talist approach, by contrast, holds that a model should, as much as possible, embody only those principles
that are claimed to account for the relevant phenomenon and should abstract out extraneous details. In eval-
uating any given modeling effort, it is important to identify the specific goals of the work; some models are
intended to provide comprehensive accounts of detailed behavioral data, whereas others are intended more
as demonstrations of specific computational arguments. Often the most effective modeling approach over
the long term is to begin with fundamentalist models to elucidate the key underlying principles, and then
gradually move towards more realist models as the theoretical implications of additional details become
understood.

Connectionist Modeling of Reading

Most connectionist models of reading have focused on single word processing as it is generally
thought that, above the lexical level, written language engages largely the same mechanisms as spoken
language. In the review that follows, these models are characterized in terms of whether their representions
for words are localist (one unit per word) or distributed (alternative patterns of activity for each word) and
whether they focus on the task of word recognition (deriving a lexical or semantic representation) or oral
reading (deriving a pronunciation).
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Localist Models of Word Recognition

One of the earliest and arguably most influential connectionist models of reading is a localist, non-
learning model—the Interactive Activation (IA) model of letter and word perception (McClelland & Rumel-
hart, 1981; Rumelhart & McClelland, 1982). The model consists of three layers of units—letter feature units,
letter units, and word units. The model was designed to recognize four-letter words, so there is a separate set
of feature units and letter units for each of four letter positions. The activation of each unit can be thought of
as reflecting the network’s confidence in the hypothesis that the entity represented by the unit (e.g., a T in the
first position, or the word TAKE) is part of the correct interpretation. The weights on connections between
units reflect the degree to which one hypothesis is consistent or inconsistent with another. Within each level,
units representing inconsistent hypotheses (e.g., a T versus a P in the first letter position, or the words TAKE
and TRIP) have negative connections between them. Between levels, units representing consistent hypothe-
ses (e.g., a top horizontal letter feature and the letter T, or a T in the first position and the word TAKE) have
positive connections between them, whereas units representing inconsistent hypotheses (e.g., a P in the first
position and the word TAKE) have negative connections between them. Connections throughout the system
are bidirectional, allowing both top-down and bottom-up information to influence unit activations.

A primary goal of the model was to explain the word superiority effect (Reicher, 1969; Wheeler,
1970), in which the perception of a briefly presented letter is more accurate when it occurs in a word
compared with when it occurs in a random consonant string or even in isolation (see Lupker, this volume).
In the IA model, this effect arises due to partial activation of word units that provide top-down support for
the letters they contain. The model was also able to explain the pseudoword superiority effect (e.g., Carr,
Davidson, & Hawkins, 1978; McClelland & Johnston, 1977), in which letters occurring in pronounceable
nonwords (e.g., MAVE) are perceived better than in consonant strings or in isolation (although not quite as
well as in words). Although pseudowords are not fully consistent with any of the units at the word level
in the model, they are partially consistent with many words. The presentation of a pseudoword typically
generates weak activation of word units sharing three of its four letters; these units, in turn, conspire to
provide top-down support for the letters in the pseudowords. In this way, the IA model provided an early
demonstration of how even a localist model can generalize on the basis of similarity, through the use of what
are essentially distributed representations for pseudowords.

In subsequent work, McClelland (1991; see also Movellan & McClelland, 2001) elaborated the model
to use units with an intrinsically noisy or stochastic activation function to bring the model in line with empir-
ical evidence for statistical independence in how people integrate multiple sources of information (Massaro,
1988). More recently, Grainger and Jacobs (1996) generalized the interactive activation framework to ad-
dress a broader range of tasks and issues related to word recognition.

Distributed Models of Word Recognition

Mozer (1991) developed a connectionist model of object recognition and spatial attention, called
MORSEL, that was applied to the specific task of recognizing words. In the model, an attentional system
forms a spatially contiguous bubble of activation that serves to select a subset of the bottom-up letter feature
information for further processing by a hierarchically organized object recognition system. Each layer in the
recognition system (called BLIRNET) consists of units with spatially restricted receptive fields that form
conjunctions of the simpler features in the previous layer. At the top of the system are position-independent
units that respond to specific triples of letters (following Wickelgren’s, 1969, proposal for representing
spoken words). In this way, words were represented by a pattern of activity over multiple letter triples
(e.g., #HO, OUS, USE, SE#, for the word HOUSE) rather than by the activation of a single word unit (as
in the IA model). Although there was no learning in the system, it was still successful at activating the
correct set of letter triples for a fairly large vocabulary of words. When presented with multiple words,
it usually selected and recognized one of them accurately but, like human subjects, would occasionally
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misrecognize the attended word due to letter migrations from the unattended word (Mozer, 1983). Moreover,
when one side of the attentional mechanism was impaired, the damaged model exhibited all of the major
characteristics of neglect dyslexia, the manifestation of hemispatial neglect with written words as stimuli
(Mozer & Behrmann, 1990).

Although MORSEL used distributed word representations, it did not employ learning. Other dis-
tributed models have cast the problem of word recognition as mapping from the written forms of words to
their meanings (rather than to higher-order orthographic representations, as in MORSEL), and have used
learning to develop weights that accomplish this mapping. Note, however, that, apart from morphological
relationships, the relationship between the surface forms of words and their meanings is largely arbitrary.
In other words, similarity in form (e.g., CAT, CAP) is unrelated to similarity in meaning (e.g., CAT, DOG).
This is the most difficult type of mapping for connectionist networks to learn, given their inherent bias to-
wards preserving similarity. In fact, some researchers questioned whether it was even possible for distributed
networks to accomplish this mapping without word-specific intermediate units. Kawamoto (1988) used a
variant of Hebbian learning to train a distributed network to map among orthographic, phonological and
semantic representations (see also Van Orden, Pennington, & Stone, 1990). However, because the network
lacked any hidden units, it could learn a vocabulary of only a few words. Nonetheless, Kawamoto was able
to show that the model provided a natural account of a number of phenomena related to lexical semantic
ambiguity resolution (see also Kawamoto, 1993; Kawamoto, Kello, & Jones, 1994).

To address the more general challenge, Hinton and Sejnowski (1986) trained a Boltzmann Machine—
a network of stochastic binary units—to map between orthography and semantics for a larger (although still
small) set of words. Although training was difficult, the network was able to develop distributed repre-
sentations over intermediate hidden units that accomplished the mapping. They also found that, with mild
damage, the network occasionally responded to a word by giving another, semantically related word as a re-
sponse (e.g., CAT read as DOG)—a semantic error reminiscent of those made by patients with deep dyslexia
(Coltheart, Patterson, & Marshall, 1980).

Following Hinton and Sejnowski (1986), Hinton and Shallice (1991) used back-propagation to train
a recurrent network with hidden units to map from orthography to semantics for 40 words falling into five
concrete semantic categories. Orthographic representations were based on position-specific letter units; se-
mantic representations consisted of subsets of 68 hand-specified semantic features that captured a variety of
conceptual distinctions among word meanings. When the network was damaged by removing some units
or connections, it no longer settled normally; the initial semantic activity caused by an input would occa-
sionally fall within a neighboring attractor basin, giving rise to an error response. These errors were often
semantically related to the stimulus because words with similar meanings correspond to nearby attractors in
semantic space. Like deep dyslexic patients, the damaged network also produced errors with visual similar-
ity to the stimulus (e.g., BOG read as DOG) and with both visual and semantic similarity (e.g., CAT read
as RAT), due to its inherent bias towards similarity: visually similar words tend to produce similar initial
semantic patterns, which can lead to a visual error if the basins are distorted by damage (see Figure 3).

Plaut and Shallice (1993) extended these initial findings in a number of ways. They established the
generality of the co-occurrence of error types across a wide range of simulations, showing that it does not
depend on specific characteristics of the network architecture, the learning procedure, or the way responses
are generated from semantic activity. They also showed that distributed attractor networks exhibited a
number of other characteristics of deep dyslexia not considered by Hinton and Shallice (1991), including
the occurrence of visual-then-semantic errors, greater confidence in visual as compared with semantic errors,
and relatively preserved lexical decision with impaired naming. They also extended the approach to address
effects of concreteness on word reading in deep dyslexia. They trained a network to pronounce a new set
of words consisting of both concrete and abstract words. Concrete words were assigned far more semantic
features than were abstract words, under the assumption that the semantic representations of concrete words
are less dependent on the contexts in which they occur (Saffran, Bogyo, Schwartz, & Marin, 1980). As
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Figure 3. How damage to an attractor network can give rise to both semantic and visual errors. Points within each
rectangular area correspond to specific patterns of activation over orthographic or semantic representations; neighbor-
ing points corresponding to similar (overlapping) patterns. The arrows reflect the way in which these patterns change
over the course of processing. The solid ovals represent the basins of attraction in the normal network; the dashed
ovals represent alterations of these basins due to damage. (Based on Hinton & Shallice, 1991)

a result, the network developed stronger attractors for concrete than abstract words during training, giving
rise to better performance in reading concrete words under most types of damage, as observed in deep
dyslexia. Surprisingly, severe damage to connections implementing the attractors at the semantic level
produced the opposite pattern, in which the network read abstract words better than concrete words. This
pattern of performance is reminiscent of CAV, the single, enigmatic patient with concrete word dyslexia
(Warrington, 1981). The double dissociation between reading concrete versus abstract words in patients
is often interpreted as implying that there are separate modules within the cognitive system for concrete
and abstract words. The Plaut and Shallice simulation demonstrates that such a radical interpretation is
unnecessary: the double dissociation can arise from damage to different parts of a distributed network which
processes both types of items but develops somewhat different functional specializations through learning
(see also Plaut, 1995).

“Dual-Route” Models of Reading Aloud

Much of the controversy surrounding theories of word reading centers not around how words are
recognized and understood but how they are read aloud. In part, this is because, in contrast to the arbitrary
nature of form-meaning mappings, the mapping between the written and spoken forms of words is highly
systematic; words that are spelled similarly are typically also pronounced similarly. This property derives
from the fact that written English follows an alphabetic principle in which parts of written forms (letters and
multiletter graphemes like TH, PH) correspond to parts of spoken forms (phonemes). The sharp contrast be-
tween the systematic nature of pronunciation and the arbitrary nature of comprehension has led a number of
researchers (e.g., Coltheart, 1978; Marshall & Newcombe, 1973) to propose separate pathways or “routes”
for these two tasks, each employing very different computational mechanisms: a sublexical pathway em-
ploying grapheme-phoneme correspondence (GPC) rules for pronunciation, and a lexical pathway involving
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a word-specific lexical look-up procedure for comprehension (characterized much like the IA model in later
formulations; see, e.g., Coltheart et al., 2001; Coltheart, this volume). Complications arise, however, be-
cause the pronunciation task itself is not fully systematic; roughly 20% of English words are irregular in
that they violate the GPC rules (e.g., SEW, PINT, YACHT). So-called “dual-route” theories propose that
pronouncing such words also depends on the lexical pathway.

Although traditional dual-route models implement the sublexical pathway with symbolic rules (Colt-
heart, Curtis, Atkins, & Haller, 1993; Coltheart et al., 2001), it is perfectly feasible to build a dual-route
mechanism out of connectionist hardware. For example, Zorzi, Houghton, and Butterworth (1998) describe
simulations in which direct connections from letter units to phoneme units support the pronunciation of
regular words and nonwords, whereas a separate pathway, composed either of hidden units or localist word
units, supports the pronunciation of irregular words (see also Ans, Carbonnel, & Valdois, 1998). Although
the mechanisms employed for the two pathways are more homogeneous than in more traditional, rule-based
implementations, the models nonetheless retain a categorical distinction between words that obey spelling-
sound rules and words that violate them.

Distributed Models of Reading Aloud

The first researchers to take on the challenge of training a single connectionist network to pronounce
all English words were Sejnowski and Rosenberg (1987), who developed a system called NETtalk. Ortho-
graphic input was presented to NETtalk by sweeping a 7-letter window over a large text corpus (the Brown
corpus; Kucera & Francis, 1967), successively centering the window on each letter in the text. For each
letter position, the system was trained to generate the single phoneme corresponding to the central letter in
the window. This allows each successive letter to be processed by the same set of units, so the knowledge
extracted in processing letters in any position are available for processing letters in every other position. At
the same time, the presence of other letters in the surrounding slots allows the network to be sensitive to
the context in which letters occur. This is necessary not only for pronouncing exception words but also for
handling multiletter graphemes (e.g., TH, PH, SH). For these, the system was trained to generate the appro-
priate phoneme for the first letter and then silence for the remaining letters. The alignment of phonemes to
letters was specified by hand.

Although impressive as a first attempt, the performance of NETtalk when judged in terms of entire
words pronounced correctly was much poorer than skilled readers. In follow-up work, Bullinaria (1997)
showed that performance in a NETtalk-like system could be improved dramatically by allowing the network
to discover the best letter-phoneme alignment by itself. This was done by evaluating the network’s output
against all possible alignments, and training towards the one that yields the lowest overall error. This pres-
sures the system to converge on alignments that are maximally consistent across the entire training corpus,
yielding perfect performance on words and good generalization to pronounceable nonwords.

The need for strictly sequential processing on even the shortest words raises questions about the
psychological plausibility of the NETtalk approach. One way to address this concern is to propose that
skilled readers attempt to process as much of the input as they can in parallel, then redirect fixation and
continue. In this view, unskilled reading may be strictly sequential, as in NETtalk, but as skill develops, it
becomes much more parallel. To explore this possibility, Plaut (1999) trained a simple recurrent (sequential)
network to produce sequences of single phonemes as output when given position-specific letters as input.
The network was also trained to maintain a representation of its current position within the input string.
When the network found a peripheral portion of the input difficult to pronounce, it used the position signal
to refixate the input, shifting the peripheral portion to the point of fixation where the network had had more
experience in generating pronunciations. In this way, the network could apply the knowledge tied to the
units at the point of fixation to any difficult portion of the input. Early on in training, the network required
multiple fixations to read words, but as the network became more competent it eventually read most words
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in a single fixation. The network could also read nonwords about as well as skilled readers, occasionally
falling back on a refixation strategy for difficult nonwords. Finally, a peripheral impairment to the model
reproduced the major characteristics of letter-by-letter reading in pure alexic patients (Behrmann, Plaut, &
Nelson, 1998). Specifically, when input letter activations were corrupted with noise, the model exhibited
a clear effect of orthographic length in its number of fixations (a loose analog to naming latency), and this
effect interacted with lexical frequency such that the increase was much greater for low- compared with
high-frequency words.

An alternative approach to word reading, first articulated by Seidenberg and McClelland (1989), casts
the problem as learning to map among orthographic, phonological and semantic representations for entire
words in parallel (see Figure 1). The approach does not deny the existence of sequential processes related
to both visual input and articulatory output, but emphasizes the parallel interactions among more central
types of lexical information. In support of this general “triangle” framework, Seidenberg and McClelland
(1989) trained a connectionist network to map from the orthography of about 3000 monosyllabic English
words—both regular and exception—to their phonology via a set of hidden units (i.e., the bottom portion of
the framework in Figure 1, referred to as the phonological pathway). The network was also trained to use
the same internal representation to regenerate the orthographic input, providing a means for the network of
distinguishing words from nonwords based on the accuracy of this reconstruction. Orthographic input was
coded in terms of context-sensitive letter triples, much like the highest-level representations in MORSEL.
Phonological output was coded in terms of triples of phonemic features. To determine the network’s pro-
nunciation of a given letter string, an external procedure constructed the most likely phoneme string given
the feature triples generated by the network. This string was then compared with the actual pronunciation of
the stimulus to determine whether the network made a correct or error response. After training, the network
pronounced correctly 97.7% of the words, including most exception words. The network also exhibited
the standard empirical pattern of an interaction of frequency and consistency in naming latency (Andrews,
1982; Seidenberg, Waters, Barnes, & Tanenhaus, 1984; Taraban & McClelland, 1987; Waters & Seidenberg,
1985) if its real-valued accuracy in generating a response is taken as a proxy for response time (under the
assumption that an imprecise phonological representation would be less effective at driving an articulatory
system). However, the model was much worse than skilled readers at pronouncing orthographically legal
nonwords and at lexical decision under some conditions (Besner, Twilley, McCann, & Seergobin, 1990).
Thus, although highly successful in many respects, the model failed to refute traditional claims that localist,
word-specific representations and separate mechanisms are necessary to account for skilled reading.

Plaut, McClelland, Seidenberg, and Patterson (1996) showed, however, that the limitations of the
Seidenberg and McClelland model stem not from any general limitation in the abilities of connectionist
networks, but from its use of poorly structured orthographic and phonological representations. The triples-
based orthographic and phonological representations used by the original model fail to capture the relevant
similarities among written and spoken forms of words adequately, essentially because the contribution that
each grapheme and phoneme makes is overly sensitive to the surrounding context. When more appropriately
structured representations are used—based on graphemes and phonemes and embodying phonotactic and
graphotactic constraints—network implementations of the phonological pathway can learn to pronounce
regular words, exception words, and nonwords as well as skilled readers. Furthermore, the networks also
exhibit the empirical frequency-by-consistency interaction pattern, even when naming latencies are modeled
directly by the settling time of a recurrent, attractor network.

Although Plaut et al. (1996) demonstrated that implementations of the phonological pathway on its
own can learn to pronounce words and nonwords as well as skilled readers, a central aspect of their gen-
eral theory is that skilled reading more typically requires the combined support of both the semantic and
phonological pathways (see also Hillis & Caramazza, 1991; Van Orden & Goldinger, 1994), and that in-
dividuals may differ in the relative competence of each pathway (Plaut, 1997; Seidenberg, 1992). The
division-of-labor between these pathways has important implications for understanding acquired surface
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dyslexia, a neuropsychological disorder in which patients pronounce regular words and nonwords normally
but “regularize” exception words, particularly those of low frequency (e.g., SEW read as SUE; see Patterson,
Coltheart, & Marshall, 1985). Plaut et al. (1996) explored the possibility that surface dyslexia might reflect
the natural limitations of an intact phonological pathway that had learned to rely on semantic support that
was reduced or eliminated by brain damage. They approximated the contribution that the semantic pathway
would make to oral reading by providing phonological representations with external input that pushed them
toward the correct pronunciation of each word during training. A semantic impairment was modeled by
weakening this external input. Plaut and colleagues found that, indeed, a phonological pathway trained in
the context of support from semantics exhibited the central phenomena of surface dyslexia following se-
mantic damage: intact nonword reading and regularization of low-frequency exception words (see Lambon
Ralph & Patterson, this volume). Moreover, as explored in additional simulations (Plaut, 1997), individual
differences in the severity of surface dyslexia can arise, not only from differences in the amount of semantic
damage, but also from premorbid differences in the division of labor between the semantic and phonologi-
cal pathways. The relative strengths of these pathways, and the overall competence of the reading system,
would be expected to be influenced by a wide variety of factors, including the nature of reading instruction,
the sophistication of preliterate phonological representations, relative experience in reading aloud versus
silently, the computational resources (e.g., numbers of units and connections) devoted to each pathway, and
the reader’s more general skill levels in visual pattern recognition and in spoken word comprehension and
production. On this view, the more severe surface dyslexic patients had greater premorbid reliance on the
semantic pathway as a result of one or more of these factors.

A remaining limitation of the Seidenberg and McClelland model that was not addressed by Plaut et al.
(1996) concerns the ability of a distributed network lacking word-specific representations to perform lexical
decision accurately. The focus of work with the Seidenberg and McClelland model was on demonstrating
that, under some conditions, lexical decisions can be performed on the basis of a measure of orthographic
familiarity. Plaut (1997) demonstrated that lexical decisions can be made more accurately when based on a
familiarity measure applied to semantics. A feedforward network was trained to map from the orthographic
representations of the 2998 monosyllabic words in the Plaut et al. (1996) corpus to their phonological repre-
sentations and to artificially created semantic representations generated to cluster around prototype patterns
over 200 semantic features. After training, the network was tested for its ability to perform lexical decision
based on semantic stress—an information-theoretic measure of the degree to which the states of semantic
units differed from rest. When tested on the pronounceable nonwords from Seidenberg, Plaut, Petersen, Mc-
Clelland, and McRae (1994), there was very little overlap between the semantic stress values for nonwords
and those for words: an optimal decision criterion yielded only 1% errors. Moreover, the distributions of
stress values for words varied systematically as a function of their frequency. In a second test, the network
produced reliably higher semantic stress values—and thus poorer discrimination from words—for the Sei-
denberg, Petersen, MacDonald, and Plaut (1996) pseudohomophones compared with their controls. Thus,
the network exhibited accurate lexical decision performance overall, along with an advantage for higher-
frequency words and a disadvantage for pseudohomophones, as found in empirical studies.

More recently, Harm and Seidenberg (in press) have developed a full implementation of the “triangle”
framework (see Figure 1) and used it to examine a number of issues related to the division-of-labor in the
reading system. Although the focus of the work is on the comprehension of written words via the direct
versus phonologically mediated pathways, the underlying principles apply equally well to the computation
of phonology both directly or via semantics. First, to approximate preliterate language experience, the net-
work was trained to map bidirectionally between phonology and semantics for 6103 monosyllabic words
(see also Harm & Seidenberg, 1999, for a computational examination of the relevance of preliterate experi-
ence to reading acquistion). The phonology of each word was encoded in terms of eight slots of 25 phonetic
features, organized into a CCCVVCCC template. In constructing semantic representations, words were
first categorized by their most frequenct word class (Francis & Kučera, 1982). For uninflected nouns and
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verbs, semantic features were generated using the WordNet online semantic database (Miller, 1990). Ad-
jectives, adverbs and closed-class words were hand-coded according pre-existing feature taxonomies (e.g.,
Frawley, 1992). Inflected words were assigned the features of their base forms plus specific inflectional
features. In total, 1989 semantic features were generated to encode word meanings, with words averaging
7.6 features each (range 1–37). Once the preliterate network was reasonably accurate at understanding and
producing spoken words (86% and 90% correct, respectively), the network was then trained on the reading
task. Orthography was encoded using letter units organized into vowel-centered slot-based representation
(analogous to phonology). After extended training, the model succeeded in activating the correct semantic
features for 97.3% of the words and the correct phonological features for 99.2% of the words.

The trained model exhibited the appropriate effects of word frequency, spelling-sound consistency,
and imageability in pronouncing words, and was as accurate as skilled readers in pronouncing pseudowords.
Harm and Seidenberg’s (in press) primary goal, however, was to address the longstanding debate on whether
reading is necessarily phonologically mediated. An examination of the division-of-labor in activating mean-
ing from print over the course of training indicated that the network relied heavily on phonological mediation
(orthography-phonology-semantics) in the early stages of reading acquisition but gradually shifted towards
increased reliance on the direct mapping (orthography-semantics) as reading skill improved. Even at the
end of training, however, both pathways continue to make important contributions to performance. This is
especially true for homophones (e.g., ATE, EIGHT), which cannot be comprehended soley by the mediated
pathway. Harm and Seidenberg demonstrate that the model’s performance with homophones matches the
findings from a number of empirical studies (Jared & Seidenberg, 1991; Lesch & Pollatsek, 1993; Van Or-
den, 1987; see also Van Orden & Kloos, this volume).

Conclusion

Connectionist models instantiate a set of computational principles that are intended to approximate
the core properties of neural computation. Early efforts to apply these models to reading employed local-
ist representations for words and hand-specified connection weights. More recent efforts have focused on
learning internal distributed representations that effectively mediate the interaction of orthographic, phono-
logical and semantic information. Because such systems lack word-specific representations and separate
pathways for regular versus irregular items, they stand in sharp contrast to traditional dual-route theories
of word reading. Moreover, exisiting models are still limited in the size and diversity of vocabulary they
handle and the range of empiricial issues they address. Nonetheless, these system illustrate how a common
computational framework can provide insight into reading acquisition, normal skilled reading, patterns of
reading impairment following brain damage, and even possible approaches to remediation of developmental
(Harm, McCandliss, & Seidenberg, 2003) and acquired (Plaut, 1996) deficits.
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