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Understanding how children learn to read, why some chil-
dren fail at the task, and what might be done to help them
succeed, is a challenge that is both extremely important and
extremely difficult. The importance stems from the fact that
text is a fundamental form of cultural and interpersonal com-
munication and the primary vehicle by which most other
forms of education take place. The difficulty of the challenge
stems from the fact that reading acquisition depends on the
interplay between two things that are themselves complex:
the nature of the problems to be solved, and the nature of
information processing and learning in the brain.

The Problem of Reading Acquisition

As a task, reading is particularly challenging as it involves
the real-time derivation and coordination of many different
types of information: orthographic, phonological, seman-
tic and linguistic. Moreover, because writing is a relatively
recent cultural invention—perhaps only about 5,400 years
old—the brain cannot have evolved reading-specific mech-
anisms. Rather, reading must be learned on top of more
general mechanisms for visual recognition and for spoken
language (Dehaene & Cohen, 2007). Indeed, writing sys-
tems take advantage of, and are constrained by, the general
biases of the visual system: the distribution of line junctions
used in the world’s orthographies corresponds quite closely
to the distribution that occurs in natural scenes (and to which
the visual system is tuned; Changizi, Zhang, Ye, & Shimojo,
2006), and many of the properties of eye-movements in read-
ing derive from principles that govern them in visual object
processing more generally (Reichle, Pollatsek, & Rayner,
2012).

Writing systems also vary widely in the granularity of
the “units” they employ and how systematically these units
map onto aspects of the phonology, semantics, and gram-
matical structure of the spoken language (Frost, 2012). Al-
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phabetic scripts like English stick closely to phonology, us-
ing small units like single letters and multi-letter graphemes
(e.g., CH, TH) to correspond to individual phonemes (albeit
typically with some degree of inconsistency; cf. YACHT).
Other scripts use larger and more complex orthographic el-
ements (e.g., radicals in Chinese) to convey larger units in
phonology (e.g., syllables) as well as broad semantic infor-
mation. These differences in writing systems are fundamen-
tal to understanding reading acquisition: although a given
child may be faced with learning only a single script, the
cognitive and neural mechanisms that he or she brings to bear
must be sufficiently flexible to learn any script (Seidenberg,
2011).

Reading acquisition is further complicated by being a
slow, incremental process. Over a number of years, each step
of learning to read is built on—and thus, for better or worse,
influenced by—the solutions to previous, simpler problems.
For example, the quality of preliterate phonological repre-
sentations strongly impacts the efficacy of early learning
of grapheme-phoneme correspondences in alphabetic scripts
(Bradley & Bryant, 1983). As a result, weakness in basic
visual or phonological processes can snowball into pervasive
reading difficulties (Torgesen, Wagner, & Rashotte, 1994).
Moreover, unlike most visual and linguistic skills, reading is
typically acquired through explicit instruction, with the spe-
cific nature and efficacy of this instruction varying widely
across cultures and by school district, and only very rarely
is such instruction tailored to individual strengths and weak-
nesses (Rayner, Foorman, Perfetti, Pesetsky, & Seidenberg,
2001).

Reading is fundamentally about extracting meaning from
text. However, given that children come to the task of learn-
ing to read with considerable knowledge of spoken language,
they accomplishing this goal through a mixture of two broad
strategies. On the one hand, they can learn to map visual
representations of text onto their meanings directly, just as
they have learned to recognize and understand other visual
objects in their environment. On the other hand, insofar as
the script they are learning contains units that reliable con-
vey phonological information, readers can first learn to “de-
code” this information to derive the pronunciations of writ-
ten words and then use their pre-existing spoken language
knowledge to map these pronunciations onto meaning. In-
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deed, in most models of word reading, these strategies in-
volve structurally separate routes or pathways: a direct path-
way from orthography to semantics (typically via some type
of lexical representation), and an indirect pathway from or-
thography first to phonology and then to semantics.1 Note
that the relative ease of acquisition of these pathways varies
not only with individual differences in visual, phonological
and semantic representations but also with the nature of the
script being learned. Alphabetic scripts that convey detailed
phonology but very little semantics will strongly favor the
indirect pathway, whereas non-alphabetic scripts with larger
units that convey both general phonological and semantic in-
formation will encourage greater involvement of the direct
pathway.

In summary, successful reading acquisition depends on
a highly complex interaction between the quality of the
reader’s preliterate representations, the nature of the script
or scripts being learned, and the nature and extent of reading
instruction and practice.

Computational Modeling

Given these complexities, any account of how and why most
but not all children come to be skilled readers is itself going
to be necessarily complex. In light of this, many researchers
have turned to computational modeling as a way of support-
ing theory development. In this context, computational mod-
eling is primarily a means of specifying the nature of reading-
related information processing, representation, and learning
with greater precision than is possible with verbal description
alone. This increased precision assists both in verifying that
the theory actually gives rise to the patterns of behavior it is
intended to account for, as well as in generating more spe-
cific, testable empirical predictions to be examined in future
work.

Computational modeling is, however, not without its pit-
falls. In particular, any given implementation necessarily in-
cludes details that are not intended as theoretical claims but
are introduced merely as simplifications, approximations, or
computational conveniences. As a result, in comparing the
behavior of a model with empirical findings, there is always
an issue of the degree to which its successes (or failures) are
due to properties of the underlying theory itself or due to in-
cidental aspects of the implementation (including parameters
that allow a model to overfit data; Seidenberg & Plaut, 2006).

One approach to addressing this issue is to evaluate mul-
tiple variants of a given model, varying theoretically irrel-
evant aspects or parameters, to assess the robustness of the
model’s theoretically relevant behavior (Pitt, Kim, Navarro,
& Myung, 2006). Another, complementary approach is to
further constrain the model by introducing additional con-
siderations that go beyond the current domain of interest.
This can involve developing the model using the same com-
putational principles that have been applied successfully to

many other problems and domains (thereby contributing to
a much broader theoretical account of cognitive behavior).
It can also involve incorporating constraints from other lev-
els of analysis of the system, including its underlying neural
basis. These two types of constraint are combined in an ap-
proach to computational modeling known variously as con-
nectionist modeling, parallel distributed processing, or artifi-
cial neural network modeling (Elman et al., 1996; McLeod,
Plunkett, & Rolls, 1998; McClelland, Rumelhart, & the PDP
Research Group, 1986; O’Reilly & Munakata, 2000; Rogers
& McClelland, 2014; Rumelhart, McClelland, & the PDP
Research Group, 1986), which has seen a recent resurgence
under the rubric of deep learning (Hinton, 2007; Hinton &
Salakhutdinov, 2006; Schmidhuber, 2015).

Principles of Neural Computation

Connectionist/neural network modeling is an attempt to cap-
ture key principles of neural computation in a way that is
simplified but still effective and informative for understand-
ing computation in the brain. The core idea behind this ap-
proach is that cognitive processing takes the form of cooper-
ative and competitive interactions among a large number of
simple, neuron-like processing units. Understanding the rel-
evance of such a system for modeling cognitive processing in
general, and reading acquisition in particular, involves con-
sidering issues related to processing, network architecture,
representation, and learning.

Processing

The units in neural network are intended to approximate
individual neurons, but not in their full complexity. Rather,
units aim to capture, in a simple a manner as possible, the ba-
sic information-processing characteristics of neurons while
abstracting away the specific details of their biology. The
typical assumption is that the state of a given neuron can be
approximated by something like its instantaneous firing rate
or activation level, and that the influence of one neuron on
another is limited to a positive (excitatory) or negative (in-
hibitory) factor or weight applied to this activation. (A sin-
gle connection weight summarizes the combined influence of
all of the synapses that one neuron would make on another.)
At any instant, the total net input to a given unit is the sum
of positive- and negative-weighted activations of units from
which it receives connections. In this way, input across posi-
tive weights increases a unit’s net input (excitation), whereas
input across negative weights decreases it (inhibition), with

1In some models (e.g., Coltheart, Rastle, Perry, Langdon, &
Ziegler, 2001; Perry, Ziegler, & Zorzi, 2007, 2010), the indi-
rect pathway itself has separate lexical and sublexical components,
whereas in others (e.g., Harm & Seidenberg, 2004; Plaut, McClel-
land, Seidenberg, & Patterson, 1996; Seidenberg & McClelland,
1989) it consists of a single, uniform mechanism.
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the degree of excitation or inhibition determined both by the
magnitude of the weight and the activation level of the cor-
responding sending unit. The receiving unit’s own activation
is then set as a smooth, monotonic function of this total input
(typically with a saturating nonlinearity).

Although drastically simplified relative to the operation
of real neurons, this formulation of individual units in a neu-
ral network has fundamental implications for how the net-
work responds to familiar inputs and generalizes to novel
ones. To understand this, consider a single unit receiving
weighted connections from a set of other units. The pattern
of positive and negative weights on the connections deter-
mines how the receiving unit responds to any given pattern
of activity over the sending units. (Learning involves adjust-
ing these weights based on performance feedback, as dis-
cussed below.) The receiving unit will respond maximally if
there are strong activations along positive-weighted connec-
tions and little if any activations across negatively-weighted
connections. Conversely, the unit will be strongly inhibited
if the reverse is true. Thus, the weights constitute something
like a template that defines the optimal input pattern for the
unit, as well as the degree to which it should respond to any
given suboptimal input. In particular, if the input is similar
but not identical to the optimal one, the unit’s response will
be reduced somewhat but might still be quite strong. This is
because the weighted sum that determines its net input (and
hence its activation level) will have most of the same terms as
in the optimal case (due to the similarity of the two inputs).
Note that it doesn’t matter whether a given input is novel or
familiar; each unit in the network responds as a function of
the degree of match between its current input and its optimal
one (as determined by learning). In this way, if the network
has learned to respond appropriately to a given input, it will
tend to respond similarly (generalize) to similar inputs.

The cooperation and competition among units (via pos-
itive and negative weights, respectively) cause the network
to settle to a stable pattern of activity in response to a given
input (typically provided by fixing the states of some units
or providing them with an external contribution to their net
inputs). This pattern can be understood as the network’s in-
terpretation of the input, including its response (over a des-
ignated set of output units). Such stable patterns are some-
times referred to as attractors because interactions among
units cause similar patterns to move towards (be attracted
by) the nearest attractor pattern, thereby cleaning up noise
or other irrelevant variation among the unit activations.

Network Architecture

Only the simplest neural networks consist of a single, un-
differentiated group of interconnected units. More typically,
units are organized into layers, with earlier layers provid-
ing bottom-up input to later layers and (in some models)
later layers providing top-down feedback to earlier layers.

This fits with the broad hierarchical organization of neocor-
tex (Felleman & Van Essen, 1991). The input to the entire
system is provided as a pattern of activity over the first layer,
and the output or response is generated over the last layer.
Between the input and output layers are one more more in-
termediate or hidden layers that play a critical role in learn-
ing complex input-output mappings (as described in the next
subsection).

In some models, the layers are not ordered in a hierar-
chy, but rather each represents a different type of informa-
tion (along with hidden units that mediate their pairwise in-
teractions). An example is the so-called “triangle model” of
word reading (Harm & Seidenberg, 2004; Plaut et al., 1996;
Seidenberg & McClelland, 1989) in which separate groups
representing orthography, phonology, and semantics interact
with each other via three groups of hidden units (thus form-
ing a triangle). When, say, orthographic input for a word
is provided to the network (by fixing the states of the or-
thographic units), unit interactions throughout the network
cause it to settle into a global stable pattern that includes pat-
terns over the semantic and phonological layers. In this way,
the network as a whole generates or computes the meaning
and pronunciation of the given word from its orthography.

Representation

It’s generally not possible to model the entirety of percep-
tual, cognitive, and motor processing from retinotopic input
to motor output. Rather, a model captures only a particu-
lar, theoretically interesting subset of the system, with ear-
lier processes approximated by the nature of the input to the
model, and later processes approximated by how output acti-
vations of the model are interpreted and related to behavior.
This raises the question of exactly how entities such as words
and objects—and their corresponding behaviors—should be
represented in terms of unit activations.

The simplest possibility would be to assign a single, dedi-
cated unit to each familiar entity (Bowers, 2009; Page, 2000),
but such a localist representation has some significant draw-
backs (Plaut & McClelland, 2000, 2010). Perhaps chief
among these—particularly for input representations—is that
localist units fail to capture the similarities among entities
that, as just discussed, are the basis for generalization. The
natural alternative, known as distributed representation, is
to encode different entities as alternative patterns of activ-
ity over the same set of units, such that the degree and na-
ture of the overlap among representations captures the de-
gree and nature of the similarities of the corresponding enti-
ties. Distributed representations can, of course, vary in many
ways, including their overall sparseness (i.e., the proportion
of units typically activated by any given entity) and perplex-
ity (i.e., the degree of dissimilarity among the entities to
which a given unit contributes), with some extreme variants
(very sparse, low-perplexity) behaving somewhat similarity
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to localist representations (O’Reilly & McClelland, 1994).
To be clear, the goal in designing distributed input or

output representations for a model is to capture the rele-
vant similarities among entities that result from unimple-
mented portions of the system, and as such benefit from
the incorporation of constraints from empirical findings that
bear on the characteristics of those parts of the system. Oc-
casionally, in attempting to achieve this goal, researchers
use units which are, themselves, localist representations of
finer-grained entities—such as encoding whole word in-
put in terms of units corresponding to individual letters
(McClelland & Rumelhart, 1981; Plaut et al., 1996). This is
often a computational convenience for achieving the appro-
priate similarities among higher-level entities and need not
entail a theoretical commitment to localist representations of
the lower-level entities (in a context in which they were the
focus of interest). In general, it is important to keep in mind
that a representation is localist or distributed only relative to
a particular set of entities.

Learning

If input units were connected directly to output units,
knowledge of how inputs map to outputs—or, more pre-
cisely, how input features map to output features—could be
encoded in terms of the positive- or negative-valued weights
on connections between them. In such a two-layer network,
adjusting the weight values to achieve a given mapping is
relatively straightforward: if, for a given input, a particular
output unit is not sufficiently active, increase positive weights
and decrease negative weights from active input units (or
the reverse, if the unit it too active). Unfortunately, such
networks can learn only fairly simple, similarity-preserving
mappings (Minsky & Papert, 1969). In order to learn more
complex mappings, like those required to comprehend and
pronounce written words, one or more intermediate or hidden
layers are required to mediate between inputs and outputs.
Although such units do not themselves have specified target
output activations, their incoming weights (and, hence, their
activations) can be adjusted based on the impact such adjust-
ments have on performance (i.e., by gradient descent in an er-
ror measure; Rumelhart, Hinton, & Williams, 1986). In this
way, the network can gradually learn distributed internal rep-
resentations over hidden units that are effective in mapping
inputs to outputs—or in coordinating the interactions among
multiple types of information—based on performance feed-
back. The similarities among learned hidden representations
tend to “split the difference” between the similarities defined
by the input representations and the similarities defined by
the output representations.

Generalization is aided by preserving the general tendency
to map similar inputs to similar outputs, as in a linear map-
ping. A completely linear multilayer network would be un-
helpful, however, as it is no more powerful than a two-layer

network (Minsky & Papert, 1969). Using a unit function with
a mostly linear response for small and moderate net input
(positive or negative), but a saturating nonlinearity for larger
input, provides a good compromise between the generaliza-
tion abilities of a linear system and the computational power
of a nonlinear system. In particular, when weights in the
network are small (e.g., early on in learning), the network
will behave mostly linearly. If such a linear system is suf-
ficient to solve the task, the network will perform well and
also generalize optimally. Insofar as some aspects of the task
require nonlinearities—that is, exceptional aspects in which
input similarity does not correspond to output similarity (e.g.,
YACHT pronounced “yot” instead of “yatched”)—the net-
work will have to grow weights large enough to drive some
units into the nonlinear range of their input-output func-
tion, but this will take time and only happen if necessary
to achieve good performance. In this way, the network will
eventually learn to cope with idiosyncratic aspects of a task
while remaining as close to linear as possible (to aid gener-
alization).

There are, of course, many contexts in which it is nec-
essary to learn idiosyncratic information rapidly, such as
when learning the name of a new acquaintance or remem-
bering where you parked your car in a parking lot. The
slow integration of idiosyncratic and systematic knowledge,
as just described, is ill-suited to such demands. In fact,
there is compelling evidence that the brain employs a sep-
arate, hippocampal-based system for rapid learning of ar-
bitrary combinations of information (i.e., so-called episodic
knowledge; Tulving, 1983) in a way the complements the
slower, similarity-based learning in neocortex (McClelland,
McNaughton, & O’Reilly, 1995). On this account, rapid
hippocampal learning not only supports immediate perfor-
mance directly but also provides additional off-line training
of neocortex to help consolidate new information with long-
term knowledge, thereby giving rise to cortical representa-
tions that most effectively capture the underlying structure of
the domain.

Summary

Connectionist/neural-network modeling provides a com-
putational framework that attempts to capture the core prin-
ciples of processing, representation and learning in the brain.
It necessarily abstracts from many specific details of the
structure and function of individual neurons, and how large
ensembles of them interact to support complex behavior.
Nonetheless, the general success of the framework in ac-
counting for central aspects of acquisition and skilled per-
formance in a variety of perceptual, cognitive, and motor
domains (McClelland et al., 1986; McLeod et al., 1998;
O’Reilly & Munakata, 2000; Rumelhart, McClelland, &
the PDP Research Group, 1986) as well as patterns of im-
paired performance in acquisition and following brain dam-
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age (Elman et al., 1996; Plaut & Shallice, 1993) suggests
that the principles it embodies provide important insights into
learning and processing in the brain.

In the context of typical and atypical reading acquisition,
the most central issues relate to 1) the use of distributed rep-
resentations in which pattern overlap over different groups
of units captures different types of similarities (orthographic,
phonological, semantic); 2) the relative ease of learning a
systematic mapping (in which similar inputs map to simi-
lar outputs; e.g., orthography-to-phonology in English) com-
pared to an unsystematic mapping (in which input similar-
ity is unrelated to output similarity; e.g., orthography-to-
semantics); and 3) differences among languages and scripts
in the relative systematicity of mapping orthography directly
to semantics versus mapping orthography via phonology to
semantics.

Neurocomputational Models of Reading

The remainder of this chapter provides a survey of models
of various aspects of normal and impaired reading that are
based on the principles of neural computation just described.
The survey is necessarily selective but aims to illustrate the
breadth and usefulness of the overall approach. By necessity,
any given model instantiates only a part of the entire pro-
cessing system and only a subset of the relevant behavioral
data. Nonetheless, collectively, the set of models supports
a coherent theory of the neural basis of reading—including
its acquisition, skilled performance, and breakdown follow-
ing brain damage—in part because they each are based on
largely the same neurocomputational principles.

Orthographic processing

One of the earliest and most influential models of ortho-
graphic processing is the Interactive Activation (IA) model of
letter and word perception (McClelland & Rumelhart, 1981;
Rumelhart & McClelland, 1982). The model consists of
three layers of units: 1) letter-feature units at each of four
possible positions, corresponding to the various strokes that
make up letters and constituting the bottom-up input to the
model; 2) letter units at each of the four position, with one
unit for each possible letter; and 3) word units at the top,
with one unit for each known word (i.e., a localist repre-
sentations of words). Each letter unit at a position (e.g., T
in position 1) is supported by the features it contains (via
bottom-up excitatory connections), competes with the other
letters at that position (e.g., F in position 1, via bidirectional
inhibitory weights), and cooperates with words containing
the letter at that position (e.g., TIME, via bidirectional exci-
tatory weights). At the word level, alternative words com-
pete with each other (via inhibitory weights) and support the
letters they contain (via excitatory weights).

Although the organization of the layers is hierarchical
(broadly in keeping with visual cortical areas; Felleman &

Van Essen, 1991), processing does not proceed in stages from
features to letters to words. Rather, processing throughout
the network is graded and interactive, so that partial activa-
tion at each level contributes to and constrains the partial ac-
tivation at the other levels to which it is connected, in both
a feedforward and feedback manner. As a result, activations
at both the letter level and the word level mutually constrain
each other to settle to patterns of activity that are maximally
consistent with each other and with the featural input. When
featural information is weak, noisy or missing, the result-
ing partial letter activation can be cleaned-up by top-down
support from partially consistent word units. In this way,
the model provides a detailed explanation for a variety of
effects related to the word superiority effect (Reicher, 1969;
Wheeler, 1970), in which the perception of letters is better
when embedded in words than when embeded in consonant
strings or non-letter symbols.

The fact that the IA model remains highly successful
in explaining phenomena within its restricted domain (as
does its spoken-word analog, the TRACE model; Allopenna,
Magnuson, & Tanenhaus, 1998; Magnuson, Mirman, & Har-
ris, 2012; Mayor & Plunkett, 2014; McClelland & Elman,
1986) suggests that it captures something fundamental about
perceptual processing. Nonetheless, certain specific aspects
of the IA model’s design are clearly limited or wrong in de-
tail, including the restriction to four-letter words, the use of
strict position-specific coding of letters, the use of localist
word representations, and the lack of learning in the model.
Many of these limitations have been addressed in subsequent
modeling efforts.

With regard to orthographic encoding per se, a number
of empirical results, including strong priming of words from
transposed-letter primes (JUGDE-JUDGE; Kinoshita & Nor-
ris, 2009; Perea & Lupker, 2004; Schoonbaert & Grainger,
2004), indicate that word length and letter-position informa-
tion must be represented more flexibly than position-specific
slots. A number of specific proposals have been made in
this regard, including the SOLAR model (C. J. Davis, 1999;
C. J. Davis & Bowers, 2006), the SERIOL model (Whitney,
2001, 2008, 2011) and the Overlap model (Gomez, Ratcliff,
& Perea, 2008). By and large, all of these models succeed
at accounting for positional flexibility but—with the possible
exception of the Overlap model—they do so at the expense
of building in constraints that hold within Indo-European
scripts but not universally. Indeed, Lerner, Armstrong, and
Frost (2014) have shown recently that positional flexibility,
as reflected by transposed-letter effects, is not an intrinsic
property of orthographic representations but varies cross-
linguistically as a function of the statistical structure of dif-
ferent scripts. Consequently, they argue—and support with
a series of connectionist simulations—that a comprehensive
account of orthographic representations cannot simply stip-
ulate how such representations are organized but must be
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based on a theory of how they are learned in response to
reading experience.

The remaining major limitations of the IA model—
namely, the use of localist word representations and the lack
of learning—have been addressed largely in the context of
models that learn to map orthography to phonology and/or
semantics in understanding and pronouncing written words.

Mapping orthography to phonology

In spite of the fact that the primary purpose of reading is
comprehension, an inordinate amount of theoretical attention
has been paid to processes involved in reading aloud. This is
partly because overt pronunciations are easier to measure, but
also because the relationship between spelling and sound in
English (and, to varying degrees, in other languages/scripts)
is quasiregular in that it is largely systematic but admits
many exceptions which exhibit subregularities among them
(Seidenberg & McClelland, 1989). Quasiregular structure
is common across a number of linguistic and non-linguistic
domains, including the English past-tense (Rumelhart & Mc-
Clelland, 1986; Seidenberg & Plaut, 2014) and the organiza-
tion conceptual knowledge (McClelland et al., 1995; Rogers
& McClelland, 2004), and it evokes a recurring theoretical
debate on the relationship between systematic and idiosyn-
cratic knowledge and how best to capture each.

On the one hand, strong intuitions suggest that system-
atic knowledge is best expressed in terms of abstract, ex-
plicit rules that are insensitive to any variation outside the
scope of the rule and hence support effective generalization
over such variation (Pinker, 1999). For instance, systematic
English spelling-sound correspondences can be expressed by
grapheme-phoneme correspondence (GPC) rules (e.g., E ⇒
“eh”; Venezky, 1970). A set of such rules can be used to
piece together or “sound out” most English words (e.g., SET)
and also generalize to pronounceable nonwords (e.g., SEK).
However, for about 20% of English monosyllabic words
(e.g., SEW), such rules give the wrong result (“sue” instead
of “so”) and so separate, word-specific knowledge is needed
to override the rules to pronounce such irregular or exception
words correctly. These considerations lead to so-called dual-
route models of word reading (Coltheart, Curtis, Atkins, &
Haller, 1993; Coltheart et al., 2001; Perry et al., 2007, 2010)
in which systematic and idiosyncratic knowledge are repre-
sented and processed separately (and integrated only at the
level of phonological responses). Although these models dif-
fer in the specific nature and implementation of GPCs within
the sublexical pathway, they all use a variant of the IA model
as the lexical pathway that enforces word-specific knowl-
edge, and hence inherit the limitations of that model.

Distributed connectionist modeling provides an alterna-
tive to explicit rules and the strict separation of system-
atic and idiosyncratic knowledge (McClelland & Rumelhart,
1985; Rumelhart & McClelland, 1986). In learning to map

patterns of inputs to patterns of outputs, connectionist net-
works develop internal representations that capture not only
how parts of the output depend on parts of the input, but also
the extent to which parts of the output are independent of
other parts of the input. Thus, in mapping spelling to sound,
the network will learn that an initial B reliably predicts ini-
tial phoneme /b/ in the output, but also that initial B ⇒ /b/

doesn’t depend on anything else in the input. As a result,
other inputs that contain B (e.g., BEK) will correctly activate
/b/ regardless of whether or not they are familiar, thereby
supporting effective generalization. At the same time, the
network can be sensitive to the entire input if required by
some aspect of the output (e.g., the vowel in SEW). In this
way, the same system can learn idiosyncratic knowledge for
exception items while still supporting effective generaliza-
tion to novel inputs.

Following Rumelhart and McClelland’s (1986) work on
the English past tense, Seidenberg and McClelland (1989)
trained a network to map from orthography to phonology
for about 2800 English monosyllabic words.2 The net-
work succeeded in accounting for a wide range of empiri-
cal results concerning the interaction of word frequency and
spelling-sound consistency using real-valued error (for cor-
rect pronunciations) as a proxy for response latency. How-
ever, the model was not as accurate as skilled readers at
naming pronounceable nonwords, particularly those with
somewhat unusual spellings. In follow-up work, Plaut et
al. (1996) showed that the limitations generalization of the
Seidenberg and McClelland (1989) model stemed from the
use of poorly structured input and output representations
(derived from Rumelhart & McClelland, 1986); when rep-
resentations based on graphemes and phonemes were used,
networks can learn to pronounce both regular and exception
words correctly while still generalizing to nonwords as well
as skilled readers. Moreover, they can account for effects
of frequency and consistency on naming latencies in terms
of actual processing time in generating stable phonological
output.

Mapping orthography to semantics

In contrast to the highly (if only partially) systematic map-
ping between orthography and phonology in English, the
mapping from the surface forms of words to their mean-
ings is largely unsystematic (apart from morphological reg-
ularities like TEACH-TEACHER). That is, words that are
orthographically or phonologically similar (e.g., PEACH-
BEACH) are no more likely to be semantically related than
words whose forms are dissimilar (e.g., PEACH-APPLE).

2The network was also trained to regenerate the orthographic
input over a separate set of output units, for use in modeling lexical
decision performance. However, its ability to accomplish this task
(as well as follow-up work by Plaut, 1997) is less directly relevant
to the current issues at hand.



NEUROCOMPUTATIONAL PRINCIPLES OF READING 7

Given that networks are intrinsically sensitive to similarity,
this makes word comprehension much more difficult to learn
than word pronunciation. This difficulty has two impor-
tant implications. The first is that the system will rely on
rapid, hippocampal-based learning to support effective per-
formance during the extended time it takes for knowledge
of a new word meaning to be integrated effectively with the
rest of a person’s vocabulary (M. H. Davis & Gaskell, 2014).
The second is that, insofar as reliable phonology-semantics
mappings have been established prior to reading acquisi-
tion, the system will rely on the easier-to-learn orthography-
to-phonology mapping to derive a pronunciation that can
then be mapped to semantics using this preexisting language
knowledge (Frost, 1998). Moreover, once this is accom-
plished, the derived meaning can form the basis for training
the direct orthography-to-semantics mapping (Share, 1995).

In general, successful reading will involve the coordinated
involvement of both the direct and indirect (phonologically
mediated) pathways. In fact, for items like homophones
(e.g., STAKE/STEAK), a contribution of the direct pathway
is needed to drive the appropriate meaning. Harm and Sei-
denberg (2004) carried out an extensive series of connection-
ist simulations exploring the learned division-of-labor be-
tween direct and indirect contributions to mapping orthog-
raphy to semantics, and showed how such a system can ac-
count for various findings concerning the processing of ho-
mophones and pseudohomophones (i.e., a nonword with a
lexical pronunciation, such as BRANE).

More recent work has examined the processing dynamics
of the direct orthography-semantics pathway in more detail.
Armstrong and Plaut (2008, 2014) attempted to account for
effects of semantic ambiguity—in particular, how words with
multiple related meanings are processed more quickly than
unambiguous controls in tasks like lexical decision, whereas
words with unrelated meanings are processed more slowly
than controls (see also Rodd, Gaskell, & Marslen-Wilson,
2002). Their account is based on the idea the early dynamics
within the network is dominated by cooperative interactions
among features shared by related meanings, whereas later
dynamics are dominated by competitive interactions among
the non-overlapping features of unrelated meanings. Their
model accounts for both early and late effects by incorpo-
rating additional neurophysiologically motivated constraints
(i.e., using separate populations of excitatory and inhibitory
units, and restricting between-layer communication to exci-
tation only).

Laszlo and Plaut (2012) used a network with essentially
the same additional constraints to account for properties of
the N400 evoked response potential (ERP) component, com-
monly interpreted as reflecting semantic integration (Kutas &
Federmeier, 2011). In the model, the N400 reflects transient
semantic over-activation (during Armstrong & Plaut’s early
cooperative phase). Laszlo and Plaut showed that this seman-

tic measure accounts for the seemingly paradoxical findings
of a strong effect of orthographic neighborhood size (words
and pseudowords vs. acronyms and consonant strings) but
little effect of meaningfulness (words and acronyms vs. pseu-
dowords and consonant strings) on single-item N400 magni-
tudes (Laszlo & Federmeier, 2011). Laszlo and Armstrong
(2014) extended to model to address repetition priming ef-
fects by introducing a decay function that approximates the
temporal dynamics of cortical post-synaptic potentials.

Acquired dyslexia

Important constraints on the organization and operation of
the reading system have come from detailed studies of read-
ing impairments caused by various types of brain damage.
Although some modeling efforts have been directed at ac-
counting for peripheral acquired dyslexias, including neglect
dyslexia (Mozer & Behrmann, 1990) and pure alexia (Plaut,
1999), most theoretical attention has been focused on un-
derstanding central acquired dyslexias—particularly surface
dyslexia and deep/phonological dyslexia.

Surface dyslexia is marked by largely intact reading of
regular words and nonwords but the production of “regular-
ization” errors to exception words, particularly those of low
frequency (e.g., SEW⇒ “sue”). The latter items are difficult
for networks to master, both because they are trained less
often and also because their mapping conflicts with those of
orthographically similar words (FEW, GREW, KNEW, etc.).
It thus makes sense, on a distributed network account, that
low-frequency exception words are among the last to be ac-
quired (Backman, Bruck, Hébert, & Seidenberg, 1984) and
the most vulnerable to damage (Patterson, Marshall, & Colt-
heart, 1985). However, Patterson, Seidenberg, and McClel-
land (1989) had only limited success in modeling surface
dyslexia by damaging the Seidenberg and McClelland (1989)
model. Plaut et al. (1996) obtained similar results when
damaging purely orthography-to-phonology models, but had
much greater success when incorporating semantics into a
full version of the triangle model. In particular, a “phono-
logical” (orthography-to-phonology) pathway trained in con-
junction with a gradually increasing approximation of a “se-
mantic” (orthography-to-semantics-to-phonology) pathway
accounted for skilled performance when intact. Underlying
this skilled performance was a graded division-of-labor be-
tween the pathways in which the phonological pathway alone
did not become fully competent at the items it finds most
difficult—namely, low-frequency exception words. As a re-
sult, when the semantic contribution was gradually compro-
mised (as an approximation to progressive semantic demen-
tia; Graham, Hodges, & Patterson, 1994) the intact but pro-
gressively isolated phonological pathway provided a good
match to varying levels of severity of surface dyslexia. More-
over, by also varying premorbid strength of the semantic
pathway, Woollams, Lambon Ralph, Plaut, and Patterson
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(2007) showed that the model could account for the distri-
bution of effects exhibited by 100 observations over a large
cohort of semantic dementia patients (see also Dilkina, Mc-
Clelland, & Plaut, 2008).

Deep/phonological dyslexia, by contrast, involves rela-
tively good word reading—including exception words—but
much poorer nonword reading (often with a tendency to give
visually related lexical errors; e.g., PINT ⇒ “print”). Deep
dyslexia is generally thought to be the most severe form of
phonological dyslexia (Crisp & Lambon Ralph, 2006; Fried-
man, 1996) and is marked by the additional occurrence of se-
mantic errors (e.g., RIVER⇒ “ocean”). Hinton and Shallice
(1991) showed that semantic errors can arise from damage to
an orthography-to-semantics network that develops “attrac-
tors” for word meanings: after damage, a visual input may
be captured by the corrupted attractor for a nearby (semanti-
cally similar) words. Interestingly, like patients, the network
also produces higher-than-chance rates of visual and mixed
visual-and-semantic errors (e.g., TROUBLE ⇒ “terrible”)
because visually similar inputs (e.g., DOG, LOG) generate
similar initial semantic activation, such that one of them can
be incorrectly captured by the attractor for the other. Plaut
and Shallice (1993) later extended the Hinton and Shallice
account to address the full range of characteristics of deep
dyslexia, including effects of imageability/concreteness.

Welbourne, Woollams, Crisp, and Lambon Ralph (2011)
argued that a full account of both surface and phonolog-
ical/deep dyslexia requires a consideration of spontaneous
recovery following damage. First, they accounted for nor-
mal reading performance by developing a variant of the full
triangle model with dense connectivity within each of or-
thography, phonology, and semantics but only sparse con-
nectivity between these domains. When acute damage to
phonology was followed by partial retraining, the model
produced the core characteristics of phonological dyslexia
(Crisp & Lambon Ralph, 2006), including the semantic er-
rors of deep dyslexia if the initial damage was sufficiently
severe. By contrast, when retraining was applied during pro-
gressive damage to semantics (analogous to semantic demen-
tia), the model’s behavior matched that of surface dyslexic
patients (Woollams et al., 2007). The impressive breadth of
coverage of this modeling effort argues strongly for the value
of distributed connectionist modeling of both normal and im-
paired word reading, as well as the importance of consider-
ing postmorbid adaptation in interpreting the performance of
brain-damaged patients.

Reading acquisition and developmental dyslexia

The emphasis that connectionist modeling places on
learning makes it a natural framework within which to de-
velop accounts of reading acquisition. Indeed, over the
course of training, the Seidenberg and McClelland (1989)
model showed sensitivity to graded degrees of spelling-

sound consistency that mirrored empirical results for read-
ers from second grade through high school (Backman et al.,
1984). Moreover, halving the number of hidden units in
the model (see also Plaut et al., 1996) produced exagger-
ated consistency effects and poor asymptotic performance
on low-frequency exception words, as observed for children
with the “surface” or “delayed” variant of developmental
dyslexia (Manis, Seidenberg, Doi, McBride-Chang, & Pe-
terson, 1996) However, the model was unable to account
for “phonological” developmental dyslexia, marked by rela-
tively good lexical reading but especially poor nonword read-
ing.

Harm and Seidenberg (1999) explored whether the phono-
logical subtype of developmental dyslexia might arise due
to poorly structured preliterate phonological representations
(Manis et al., 1997). When a network first learned to form
phonological attractors for word forms (in the course of pre-
literate language acquisition), its subsequent reading acqui-
sition, including both word and nonword reading, was fully
successful. If, however, preliterate experience did not estab-
lish such attractors, nonword reading performance in partic-
ular was far poorer, mimicking phonological developmen-
tal dyslexia. By contrast, starting with normal phonological
attractors but reducing the number of hidden units between
orthography and phonology (as in Plaut et al., 1996; Seiden-
berg & McClelland, 1989) yielded the surface/delayed vari-
ant. More severe damage of either type, or a mixture of the
two types of damage, yielded a mixed profile of impairment
in which both exception words and nonwords suffered, as
is observed in the majority of developmental dyslexic cases
(Manis et al., 1996, 1999).

Powell, Plaut, and Funnell (2006) compared the initial tra-
jectory of learning in the Plaut et al. (1996) orthography-to-
phonology model against the correct performance and pat-
terns of errors produced by children at two points during their
first year of reading instruction. The original model produced
poor performance on nonwords and fewer lexical errors com-
pared to the children. However, when the model was trained
in a way closer to actual reading instruction—including ex-
plicit grapheme-phoneme instruction, a gradually expanding
training corpus, and vocabulary drawn from children’s early
reading material, the model provided a much closer fit to the
empirical findings. The one remaining discrepancy—lower
rates of lexical errors—were shown to be due to the lack of a
full implementation of the triangle framework including se-
mantics.

Modeling in other languages and scripts

The vast majority of neurocomputational modeling of
reading has been applied to English. While this has pro-
duced important insights concerning how neural-like mech-
anisms learn and process quasiregular mappings, it has also
led to a rather narrow view of the problems faced by chil-
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dren learning to read and, thus, to a failure to appreciate the
generality of the system that solves these problems (Frost,
2012; Seidenberg, 2011). The degree of variability across
the world’s languages, in terms of their phonological, mor-
phological, and syntactic organization as well as the scripts
they employ to convey this information in print, is truly re-
markable. Although a given child need not master all of this
complexity, he or she must possess a cognitive and neural
system that is capable to mastering any of it (and typically
more than one). This degree of flexibility demands a general
learning-based approach of the sort provided by distributed
connectionist modeling (Lerner et al., 2014).

The visual complexity of orthographies varies widely
across writing systems and strongly influences perceptual
learning of graphemes, the initial stage of reading develop-
ment (Chang, 2014). Chang, Plaut, and Perfetti (in press)
carried out a series of computational simulations that ex-
amined the degree to which visual-orthographic complex-
ity contributes to reading performance. They trained a hi-
erarchical neural network, in which units had topographi-
cally constrained receptive fields of different sizes (as in vi-
sual cortex), to reconstruct the graphemes/characters from
each of 130 different orthographies. Across writing sys-
tems, they found a strong, positive association between over-
all grapheme complexity of a script and network learning dif-
ficulty. In addition, they gathered data from same-difference
judgments of pairs of graphemes drawn from six different or-
thographies (varying in complexity), made by native speak-
ers (and readers) of eight different languages/writing systems
(also varying in complexity), and posed exactly the same
task to networks trained on each of those eight orthographies.
Consistent with human performance, difficulty in processing
graphemes by the networks was a function of complexity of
the presented orthography itself as well as its relationship to
the network’s trained (native) orthography.

In considering how orthography maps to phonology and
semantics, there have been a number of efforts to apply to
triangle model to Indo-European languages other than En-
glish (e.g., Hutzler, Ziegler, Perry, Wimmer, & Zorzi, 2004).
From the point of view of establishing the generality of
the approach, however, perhaps the more interesting work
has involved languages with scripts that are very different
from English orthography, including Chinese (Yang, Shu,
McCandliss, & Zevin, 2013) and Japanese (Ijuin, Fushimi,
Patterson, & Tatsumi, 1999; Ueno, Ikeda, Ito, Kitagami, &
Kawaguchi, 2014).

Skilled Chinese readers know upwards of 4,000 distinct
characters, each of which is a complex visual pattern corre-
sponding to a syllable or morpheme rather than a phoneme
(as in alphabetic scripts). Most characters contain a com-
ponent or “radical” that provides broad information about
the character’s meaning. Thus, the relative ease in mapping
Chinese orthography to semantics versus phonology is very

different than in English and, in fact, developmental reading
deficits manifest very differently in these two writing system.
Yang et al. (2013) simulated aspects of reading acquisition in
Chinese and English using same the network for both writing
systems—a variant of the triangle model. Due to the statisti-
cal differences between the scripts, and resulting differences
in the division-of-labor between the phonological and se-
mantic pathways, semantic or phonological deficits give rise
to rather different patterns of impaired reading acquisition,
each of which corresponds well to what is observed empiri-
cally. Moreover, the same results hold for a bilingual/biliteral
network trained on both English and Chinese from the out-
set. Thus, different patterns of impaired reading acquisition
across writing systems can be understood in terms of how a
common reading architecture adapts to the different statisti-
cal structure among orthography, phonology, and semantics.

Japanese employs two types of script. Kanji consists of lo-
gographic characters borrowed from Chinese, whereas kana
consists of syllabic characters and comes in two forms: hira-
gana for naturalized Japanese words, and katakana for for-
eign words/names. Thus, within the same language (and
sometimes for the same words), kana provides a highly sys-
tematic mapping from orthography to phonology, whereas
kanji is largely arbitrary in this regard, so that this mapping
has no advantage over mapping orthography directly to se-
mantics. Ijuin et al. (1999) developed a version of the tri-
angle model that was trained both to comprehend and pro-
nounce both kanji and kana words, and successfully simu-
lated a number of effects seen in the reading performance of
Japanese skilled readers. Damage to semantics produced a
surface dyslexic pattern, in that performance on kana strings
and on those kanji characters with consistent character-sound
correspondences was much better than on kanji characters
with atypical correspondences. By contrast, damage to
phonology produced a phonological dyslexic pattern: read-
ing of both kanji and kana words was much better than that
of kana nonwords. Thus, the same principles that account
for normal and impaired reading in English also account for
analogous findings in Japanese. More recently, Ueno et al.
(2014) have developed a larger-scale version of the triangle
model as applied to Japanese in order to provide a better
quantitative fit to skilled nonword reading.

Conclusions

Learning to read poses a difficult challenge for children, just
as understanding how children learn to read poses a diffi-
cult challenge for researchers. Children are able to meet
the challenge because their cognitive and neural systems
embody particular computational principles for how ortho-
graphic, phonological and semantic information is learned,
represented and processed. Accordingly, by developing sim-
ulations which instantiate these principles in working com-
putational models of how these types of information interact,
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researchers can best understand how the process unfolds for
a given child learning a given script of a given language.

This chapter discussed the principles that underlie dis-
tributed connectionist modeling, and reviewed the applica-
tion of such models to reading acquisition and developmen-
tal dyslexia, normal skilled reading, and acquired dyslexia
following brain damage. At the core of the models’ suc-
cess in modeling the relevant empirical phenomena is their
intrinsic sensitivity to similarity among input patterns, their
preference for learning systematic mappings that preserve
similarity, and their ability to simultaneously learn idiosyn-
cratic information when necessary (and only with enough
practice). These properties explain why, within a given lan-
guage, some aspects of reading are more difficult to learn
than others (e.g., exception vs. regular words), why the mod-
els can successfully generalize their knowledge to novel in-
puts (i.e., pronounceable nonwords), and why certain pat-
terns of impairment follow certain types of damage (e.g.,
surface dyslexia following semantic damage; phonological
dyslexia following phonological damage). They also explain
why, across languages, different writing systems give rise to
different divisions-of-labor within the reading system—and,
hence, different patterns of difficult in acquisition and follow-
ing brain damage—due to the particular statistical structure
among orthography, phonology and semantics.

Moreover, the same computational principles provide in-
sight into many domains beyond reading per se, including
other aspects of language processing (McClelland, St. John,
& Taraban, 1989), visual object recognition (Krizhevsky,
Sutskever, & Hinton, 2012), conceptual development and
processing (Rogers & McClelland, 2004), learning and
memory (McClelland et al., 1995), and executive functions
(Botvinick & Cohen, 2014). In this way, the framework as a
whole provides the promise for connecting reading research
with findings from a broad range of other domains, thereby
contributing to the development of a comprehensive theory
of the neural basis of cognitive processing.
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