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Many researchers assume that the most appropriate way
to express the systematic aspects of language is in terms
of a set of rules. For instance, there is a systematic re-
lationship between the written and spoken forms of most
English words (e.g., GAVE

���������
	�� ), and this relation-
ship can be expressed in terms of a fairly concise set of
grapheme-phoneme correspondence (GPC) rules (e.g., G
������� , A E

�������� , V
����	�� ). In addition to being able

to generate accurate pronunciations of so-called regular
words, such rules also provide a straightforward account
of how skilled readers apply their knowledge to novel
items—for example, in pronouncing word-like nonwords
(e.g., MAVE

����������	�� ). Most linguistic domains, how-
ever, are only partially systematic. Thus, there are many
English words whose pronunciations violate the standard
GPC rules (e.g., HAVE

��������	�� ). Given that skilled read-
ers can pronounce such exception words correctly, GPC
rules alone are insufficient. More generally, skilled lan-
guage performance at virtually every level of analysis—
phonological, morphological, lexical, syntactic—requires
both effective handling of exceptional items and the abil-
ity to generalize to novel forms.

In the domain of reading, there are three broad re-
sponses to this challenge. The first, adopted by traditional
“dual-route” theories (Besner, this volume; Besner &
Smith, 1992; Coltheart, 1978; 1985; Coltheart, Curtis,
Atkins, & Haller, 1993; Marshall & Newcombe, 1973;
Meyer, Schvaneveldt, & Ruddy, 1974; Morton & Patter-
son, 1980; Paap & Noel, 1991), is to add to the GPC
system a separate, lexical system that handles the excep-
tions. The second response, adopted by “multiple lev-
els” theories (Norris, 1994; Shallice & McCarthy, 1985;
Shallice, Warrington, & McCarthy, 1983), is to augment
the GPC rules with more specific, context-sensitive rules,
(e.g., OOK

��������� as in BOOK), including rules that ap-
ply only to individual exceptions (e.g., PINT

���������
� �!� ).
Both of these approaches retain the general notion that
language knowledge takes the form of rules (although
such rules may be expressed in terms of connections be-
tween localist connectionist units; see, e.g., Norris, 1994;

Reggia, Marsland, & Berndt, 1988).

The third response to the challenge, adopted by dis-
tributed connectionist theories (Plaut, McClelland, Sei-
denberg, & Patterson, 1996; Seidenberg & McClelland,
1989; Van Orden, Pennington, & Stone, 1990; Van Or-
den & Goldinger, 1994) and elaborated in the current
chapter, is more radical. It eschews the notion that the
knowledge supporting online language performance takes
the form of explicit rules. Of course, such performance
can certainly be described approximately in terms of rules,
and language users can sometimes even state verbally cer-
tain of these “rules” (i.e., “I before E. . . ”). The connec-
tionist claim is that the language mechanism itself does
not contain a set of rules and a rule interpreter. Rather,
language knowledge is inherently graded, and the lan-
guage mechanism is inherently a learning device that
gradually picks up on the statistical structure among writ-
ten and spoken words and the contexts in which they oc-
cur. On this view, there is no sharp division between the
regular items which obey the rules and the exception items
which violate them. Instead, the emphasis is on the de-
gree to which the mappings among the spelling, sound,
and meaning of a given word are consistent with those of
other words (Glushko, 1979).1

1The relationship between regularity and consistency is often a
source of confusion. Regularity is a dichotomous variable that expresses
whether or not the pronunciation of a given word obeys a particular set
of spelling-sound correspondence rules. Such rules are most typically
described as grapheme-phoneme correspondence (GPC) rules, although
the only set of spelling-sound rules that have actually been implemented
(Coltheart et al., 1993) involve a considerably greater degree of con-
text sensitivity. By contrast, consistency is a continuous variable that
expresses the degree to which the pronunciation of a word agrees with
those of similarly spelled words. Here, similarity is typically cast in
terms of word endings or bodies (i.e., the vowel and any following con-
sonants), in part on the basis of empirical evidence that this unit ac-
counts for considerable variance in monosyllabic word pronunciations
(see Treiman, Mullennix, Bijeljac-Babic, & Richmond-Welty, 1995).
Of course, similarity in terms of smaller orthographic and phonological
units—including graphemes and phonemes—would also be expected to
influence performance. Consequently, although the terms regularity and
consistency entail rather different theoretical commitments concerning
the nature of spelling-sound knowledge, their empirical implications are
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Figure 1: A connectionist framework for lexical process-
ing, based on that of Seidenberg and McClelland (1989).

To make this third perspective concrete, consider
the connectionist/parallel distributed processing (PDP)
framework for lexical processing depicted in Figure 1,
based on that of Seidenberg and McClelland (1989). Or-
thographic, phonological, and semantic information is
represented in terms of distributed patterns of activity
over separate groups of simple neuron-like processing
units. Within each domain, similar words are represented
by similar patterns of activity. Lexical tasks involve
transformations between these representations—for ex-
ample, oral reading requires the orthographic pattern for
a word to generate the appropriate phonological pattern.
Such transformations are accomplished via the coopera-
tive and competitive interactions among units, including
additional hidden units that mediate between the ortho-
graphic, phonological, and semantic units. In processing
an input, units interact until the network as a whole settles
into a stable pattern of activity—termed an attractor—
corresponding to its interpretation of the input. Unit in-
teractions are governed by weighted connections between
them, which collectively encode the system’s knowledge
about how the different types of information are related.
Weights that give rise to the appropriate transformations
are learned on the basis of the system’s exposure to writ-
ten words, spoken words, and their meanings.

As the figure makes clear, the connectionist approach
does not entail a complete lack of structure within the
reading system. But the distinctions that are relevant re-
late to the different types of information that must be
coordinated—orthographic, phonological, and semantic.
Given that such information may be differentially based

notoriously difficult to distinguish.

on input from different modalities (at least for the sur-
face forms), it is natural to assume that the correspond-
ing representations—and hence the pathways between
them—are neuroanatomically distinct. In fact, such di-
visions will turn out to be critical in accounting for data
on the selective effects of brain damage on reading. How-
ever, irrespective of these distinctions among types of rep-
resentations, there is a uniformity in the processing mech-
anisms by which they are derived and interact. In this way,
the distributed connectionist approach is fundamentally at
odds with the core tenet of “dual-route” theories. To be
clear, the essence of a dual-route theory is not that it has
two pathways from print to sound (in fact, most such theo-
ries have three such pathways: sublexical, lexical seman-
tic, and lexical nonsemantic; see Besner, this volume);
rather, it is the claim that the mechanism that processes
nonwords (typically GPC rules and an interpreter) is func-
tionally distinct from, and operates according to differ-
ent principles than, the mechanism that processes excep-
tion words (typically a look-up table or an associative net-
work). It is this inhomogeneity of processing mechanisms
that the distributed connectionist approach rejects.

In this context, it is important to note that it is per-
fectly feasible to build a dual-route mechanism out of
connectionist hardware. For example, Zorzi, Houghton,
and Butterworth (1998) have recently described simu-
lations in which direct connections from letter units to
phoneme units support the pronunciation of regular words
and nonword, whereas a separate pathway, composed ei-
ther of hidden units or localist word units, supports the
pronunciation of exception words (also see Reggia et al.,
1988). Although the mechanisms employed for the two
pathways are more homogeneous than in more traditional,
rule-based implementations (e.g., Coltheart et al., 1993),
the models nonetheless retain a categorical distinction be-
tween items which obey spelling-sound rules and items
which violate them.

This chapter describes a series of computational simu-
lations based on the framework depicted in Figure 1. The
value of computational modeling is greatest when proper-
ties of the formalism guide and constrain simulation work,
and lead to insight into counterintuitive findings. Along
these lines, one can identify three general computational
principles on which the current connectionist approach to
word reading is based:

Distributed representation: Orthography, phonology,
and semantics are represented by distributed patterns
of activity such that similar words are represented
by similar patterns.2

2A representation is localist if there is a one-to-one relationship be-
tween processing units and entities in the domain; it is distributed if the
relationship is many-to-many (i.e., each entity activates many units and
each unit participates in representing many entities). Thus, a representa-
tion is localist or distributed only relative to a specific set of entities. For

1
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Structure-sensitive learning: Knowledge of the rela-
tionships among orthography, phonology, and se-
mantics is encoded across connection weights that
are learned gradually through repeated experience
with words in a way that is sensitive to the statisti-
cal structure of each mapping.

Interactivity: Mapping among orthography, phonology,
and semantics is accomplished through the simulta-
neous interaction of many units, such that familiar
patterns form stable attractors.3

These principles are claimed to be general in that ver-
sions of them apply across all cognitive domains. How-
ever, the challenge is to apply the principles to account
for detailed behavioral data. The goal of the current chap-
ter is to demonstrate that, when instantiated in a partic-
ular domain—single word reading—these principles pro-
vide important insights into the patterns of normal and im-
paired cognitive behavior. Word reading is a particularly
appropriate domain of study because there is a wealth
of detailed empirical data on reading acquisition and de-
velopmental dyslexia, normal skilled reading, acquired
dyslexia from brain damage, and rehabilitation after brain
damage. We will touch on each of these areas, but will
focus on issues in normal reading, acquired dyslexia, and
rehabilitation.

1 Skilled Oral Reading

Although the distributed connectionist framework for
word reading depicted in Figure 1 may seem reasonable
at a general level, it actually reflects a radical departure
from traditional theorizing about lexical processing, par-
ticularly in two ways. First, there is nothing in the struc-
ture of the system that corresponds to individual words
per se, such as a lexical entry, localist word unit (McClel-
land & Rumelhart, 1981) or “logogen” (Morton, 1969).
Rather, words are distinguished from nonwords only by
functional properties of the system—the way in which
particular orthographic, phonological, and semantic pat-
terns of activity interact (also see Plaut, 1997; Van Orden
et al., 1990). Second, there are no separate mechanisms
for lexical and sublexical processing (cf. Coltheart et al.,
1993), such that, for instance, regular words (e.g., MINT)

example, the letter layer of the Interactive Activation model (McClel-
land & Rumelhart, 1981) is localist with respect to letters but distributed
with respect to words. Despite the terminology used by Besner (this
volume), both localist and distributed models can be “connectionist” in
the sense that the system’s knowledge is encoded in terms of weights on
connections between simple, neuron-like processing units (Feldman &
Ballard, 1982).

3An attractor is a stable pattern of activity within a network such that
unit interactions cause similar patterns to move towards and settle into
the exact attractor pattern.

are pronounced by one route and exceptions (e.g., PINT)
by another. Rather, all parts of the system participate in
processing all types of input, although, of course, the con-
tributions of different parts may be more or less important
for different inputs.

In an attempt to demonstrate that the structural reifica-
tion of words and of lexical/sublexical processing routes
is unnecessary to account for skilled oral reading, Seiden-
berg and McClelland (1989) trained a connectionist net-
work to map from the orthography of about 3000 mono-
syllabic English words—both regular and exception—to
their phonology (i.e., the bottom portion of the framework
in Figure 1, referred to as the phonological pathway). Af-
ter training, the network pronounced correctly 97.7% of
the words, including most exception words. The network
also exhibited the standard empirical pattern of an inter-
action of frequency and consistency in naming latency
(Andrews, 1982; Seidenberg, Waters, Barnes, & Tanen-
haus, 1984a; Taraban & McClelland, 1987; Waters & Sei-
denberg, 1985) if its real-valued accuracy in generating
a response is taken as a proxy for response time (under
the assumption that an imprecise phonological representa-
tion would be less effective at driving an articulatory sys-
tem). However, the model was much worse than skilled
readers at pronouncing orthographically legal nonwords
(Besner, Twilley, McCann, & Seergobin, 1990) and at lex-
ical decision under some conditions (Besner et al., 1990;
Fera & Besner, 1992). Thus, the model failed to refute
traditional claims that localist, word-specific representa-
tions and separate mechanisms are necessary to account
for skilled reading.

More recently, Plaut, McClelland, Seidenberg, and Pat-
terson (1996, also see Plaut & McClelland, 1993; Sei-
denberg, Plaut, Petersen, McClelland, & McRae, 1994)
have shown that the limitations of the Seidenberg and
McClelland model in pronouncing nonwords stems not
from any general limitation in the abilities of connection-
ist networks in quasi-regular domains (as suggested by,
e.g., Coltheart et al., 1993), but from its use of poorly
structured orthographic and phonological representations.
The original simulation used representations based on
context-sensitive triples of letters or phonemic features.
When more appropriately structured representations are
used—based on graphemes and phonemes and embody-
ing phonotactic and graphotactic constraints—network
implementations of the phonological pathway can learn to
pronounce regular words, exception words, and nonwords
as well as skilled readers. Furthermore, the networks
also exhibit the empirical frequency-by-consistency inter-
action pattern when trained on actual word frequencies. 4

4Seidenberg and McClelland (1989) trained their model using log-
arithmically compressed word frequencies in order to ensure sufficient
sampling of the lowest frequency words. Plaut et al. (1996) avoided this
problem by using word frequency to scale weight changes directly.
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This remains true if naming latencies are modeled directly
by the settling time of a recurrent, attractor network (see
Figure 2a).

Importantly, Plaut et al. (1996) went beyond provid-
ing only empirical demonstrations that networks could re-
produce accuracy and latency data on word and nonword
reading, to offer a mathematical analysis of the critical
factors that govern why the networks (and, by hypothesis,
subjects) behave as they do. This analysis was based on a
network that, while simpler than the actual simulations—
it had no hidden units and employed Hebbian learning—
retained many of the essential characteristics of the more
general framework (e.g., distributed representations and
structure-sensitive learning). For this simplified network,
it was possible to derive an expression for how the re-
sponse of the network to any input (test) pattern depends
on its experience with every pattern on which the network
is trained, as a function of its frequency of training, its
similarity with the test pattern, and the consistency of its
output with that of the test pattern. Specifically, the re-

sponse s � t �j of any output unit j to a given test pattern t is
given by

s � t �j � σ

�
F � t ��� ∑

f

F � f � O � f t ��� ∑
e

F � e � O � et �	� (1)

in which the standard smooth, non-linear sigmoidal input-
output function for each unit, σ
��� , is applied to the sum of
three terms: (1) the cumulative frequency of training on
the pattern t itself, F � t � ; (2) the sum of the frequencies
F � f � of the friends of pattern t (similar patterns trained to
produce the same response for unit j), each weighted by
its similarity (overlap) with t, O � f t � ; and (3) minus the sum
of the frequencies F � e � of the enemies of pattern t (similar
patterns trained to produce the opposite response), each
weighted by its similarity to t, O � et � .

Many of the basic phenomena in word reading can
be seen as natural consequences of adherence to this
frequency-consistency equation. Factors that increase the
summed input to units (e.g., word frequency, spelling-
sound consistency) improve performance as measured by
naming accuracy and/or latency, but their contributions
are subject to “diminishing returns” due to the asymp-
totic nature of the activation function (see Figure 2b). As
a result, performance on stimuli that are strong in one
factor is relatively insensitive to variation in other fac-
tors. Thus, regular words show little effect of frequency,
and high-frequency words show little effect of consis-
tency, giving rise to the standard pattern of interaction
between frequency and consistency, in which the nam-
ing of low-frequency exception words is disproportion-
ately slow or inaccurate. Equation 1 is only approximate,
however, for more complex networks—those with hidden
units and trained with an error-correcting algorithm like
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Figure 2: (a) The frequency-by-consistency interaction
exhibited in the settling time of an attractor network im-
plementation of the phonological pathway in pronounc-
ing words of varying frequency and spelling-sound con-
sistency (Plaut et al., 1996, Simulation 3); and (b) its ex-
planation in terms of additive contributions of frequency
and consistency subject to an asymptotic activation func-
tion (only the top of which is shown).
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back-propagation. These two aspects of the Plaut et al.
(1996) simulations are critical in that they help to over-
come interference from enemies (i.e., the negative terms
in Equation 1), thereby enabling the networks to achieve
correct performance on exception words—that is, words
with many enemies and few if any friends—as well as on
regular words and nonwords.

2 Impaired Oral Reading in Surface
Dyslexia

Although Plaut et al. (1996) demonstrated that imple-
mentations of the phonological pathway on its own can
learn to pronounce words and nonwords as well as skilled
readers, a central aspect of their general theory is that
skilled reading more typically requires the combined sup-
port of both the semantic and phonological pathways (also
see Harm, 1998; Hillis & Caramazza, 1991; Van Or-
den & Goldinger, 1994), and that individuals may dif-
fer in the relative competence of each pathway (Plaut,
1997; Seidenberg, 1992). Certainly semantic involve-
ment is necessary to pronounce homographs like WIND

and READ correctly. Furthermore, a semantic variable—
imageability—influences the strength of the frequency-
by-consistency interaction in the naming latencies and
errors of skilled readers (Strain, Patterson, & Seiden-
berg, 1995). Moreover, brain damage that impairs lexical
semantics—typically to the left temporal lobe—can lead
to an abnormal pattern of reading performance, known
as surface dyslexia (see Patterson, Coltheart, & Marshall,
1985). In its purest, so-called fluent form (e.g., MP,
Behrmann & Bub, 1992; Bub, Cancelliere, & Kertesz,
1985; KT, McCarthy & Warrington, 1986; HTR, Shallice
et al., 1983) surface dyslexic patients read nonwords and
regular words with normal accuracy and latency, but ex-
hibit an interaction of frequency and consistency in word
reading accuracy that mirrors that shown by normal sub-
jects in their naming latencies. That is, surface dyslexic
patients are disproportionately poor at pronouncing low-
frequency exception words, often giving a pronunciation
consistent with more standard spelling-sound correspon-
dences (e.g., SEW read as “sue,” termed a regularization
error). In fact, there can be a close correlation for in-
dividual patients between the lack of comprehension of
exception words and their likelihood of being regular-
ized (Graham, Hodges, & Patterson, 1994; Hillis & Cara-
mazza, 1991). Moreover, the surface dyslexic pattern may
emerge gradually as lexical semantic knowledge deterio-
rates in patients with some types of progressive dementia,
such as semantic dementia (Graham et al., 1994; Patter-
son & Hodges, 1992; Schwartz, Marin, & Saffran, 1979)
or dementia of the Alzheimer’s type (Balota & Ferraro,
1993; Patterson, Graham, & Hodges, 1994).

The framework for lexical processing depicted in Fig-
ure 1 (and the implied computational principles) provides
a natural formulation of how contributions from both the
semantic and phonological pathways might be integrated
in oral reading. At an abstract level, given that phonolog-
ical units simply sum their inputs from the two pathways,
the influence of the semantic pathway can be included in a
straightforward manner by adding an additional term, S � t � ,
to the summed input in Equation 1. Furthermore, if we
assume that this term increases with imageability, this ac-
counts for the three-way interaction of frequency, consis-
tency, and imageability found by Strain et al., 1995. When
formulated explicitly in connectionist terms, however, this
integration has far-reaching implications for the nature of
learning in the two pathways. During training, to the ex-
tent that the contribution of one pathway reduces the over-
all error, the other will experience less pressure to learn.
Specifically, if the semantic pathway contributes signifi-
cantly to the pronunciation of words, then the phonologi-
cal pathway need not learn to pronounce all of the words
by itself. Rather, this pathway will tend to learn best
those words high in frequency and/or consistency (i.e.,
those items with large positive terms in Equation 1); on its
own it may never master low-frequency exception words
completely. Of course, in skilled readers, the combination
of the semantic and phonological pathways will be fully
competent. But brain damage that reduced or eliminated
the semantic pathway would lay bare the latent inadequa-
cies of the phonological pathway, giving rise to surface
dyslexia.

In further simulations, Plaut et al. (1996; Plaut, 1997)
explored the possibility that the surface dyslexic reading
pattern might reflect the natural limitations of an intact
but isolated phonological pathway that had learned to rely
on semantic support. Given that a full implementation
of the semantic pathway was beyond the scope of their
work, they approximated the contribution that such a path-
way would make to oral reading by providing the output
(phoneme) units of the the phonological pathway with ex-
ternal input that pushed them towards the correct pronun-
ciation of each word during training. Semantic damage,
then, was modeled by weakening or removing this ex-
ternal input. Plaut and colleagues found that, indeed, a
phonological pathway trained in the context of support
from semantics exhibited the central phenomena of sur-
face dyslexia when semantics was removed and, more-
over, that individual differences in the severity of surface
dyslexia can arise, not only from differences in the amount
of semantic damage, but also from premorbid differences
in the division of labor between the semantic and phono-
logical pathways. This division of labor—and the overall
competence of the reading system—would be expected to
be influenced by a wide variety of factors, including the
nature of reading instruction, the sophistication of pre-
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literate phonological representations, relative experience
in reading aloud versus silently, the computational re-
sources (e.g., numbers of units and connections) devoted
to each pathway, and the reader’s more general skill levels
in visual pattern recognition and in spoken word compre-
hension and production. Thus, the few patients exhibit-
ing mild to moderate semantic impairments without con-
comitant regularization errors (early WLP, Schwartz et al.,
1979; MB, Raymer & Berndt, 1994; DRN, Cipolotti &
Warrington, 1995; DC, Lambon Ralph, Ellis, & Franklin,
1995) may have, for various reasons, reading systems with
relatively weak reliance on the semantic pathway (see
Plaut, 1997, for relevant simulations and discussion).

In summary, Plaut et al. (1996) provided connection-
ist simulations and mathematical analyses supporting a
view of lexical processing in which the distinctions be-
tween words and nonwords, and between regular and ex-
ception words, are not reflected in the structure of the sys-
tem, but rather in functional aspects of its behavior as it
brings all its knowledge to bear in processing an input.
An important insight that emerges from the approach is
that semantic and phonological processing are intimately
related, over the course of reading acquisition, in normal
skilled performance, and in the effects of brain damage.
Unfortunately, while emphasizing the importance of se-
mantics, the Plaut et al. simulations offer little insight into
the specific nature of semantic representations and pro-
cesses; the simulations of surface dyslexia in particular
are limited by the lack of an actual implementation of the
semantic pathway (see, however, Harm, 1998). Moreover,
without such an implementation, Plaut et al. were also un-
able to remedy the limitations of the Seidenberg and Mc-
Clelland (1989) model in performing lexical decision.

In fact, given that the relationship between a
(monomorphemic) word and its meaning is essentially ar-
bitrary, it might seem that an implementation of the se-
mantic pathway would require the use of word-specific
representations. However, implementations of the seman-
tic pathway using distributed representations have been
pursued on a smaller scale in the context of modeling se-
mantic and associative priming in lexical decision (Plaut,
1995b), impaired reading via meaning in deep dyslexic
patients (Plaut & Shallice, 1993), and remediation of se-
mantics by retraining after damage (Plaut, 1996). The
next three sections take up the issues in each of these do-
mains in turn.

3 Semantic and Associative Priming
in Lexical Decision

In a variety of lexical tasks, including naming and lexical
decision, subjects are faster and more accurate to process
a word, such as BUTTER, when it is preceded by a seman-

tically related word like BREAD relative to an unrelated
word like HOUSE (e.g., Meyer & Schvaneveldt, 1971, see
Neely, 1991, for a review). This semantic priming effect is
influenced by a number of stimulus factors, including per-
ceptual factors like visual quality (greater for visually de-
graded stimuli; see, e.g., Becker & Killion, 1977; Meyer,
Schvaneveldt, & Ruddy, 1975), lexical factors like word
frequency (greater for low-frequency targets; see, e.g.,
Becker, 1979), and semantic factors like category domi-
nance (greater for high-dominance exemplars; see, e.g.,
Lorch, Balota, & Stamm, 1986). Priming also varies with
the stimulus onset asynchrony (SOA) between prime and
target and is subject to both facilitation and inhibition ef-
fects (e.g., Neely, 1977). Such findings are taken by many
theorists as reflecting fundamental properties of the orga-
nization of semantic knowledge.

To provide an account for these findings, Plaut (1995b)
trained a distributed attractor network on an artificial ver-
sion of the task of deriving the meanings of written words
(i.e., mapping orthography to semantics in Figure 1). As is
standard in distributed network models (e.g., Kawamoto,
1988; Masson, 1991; 1995; McRae, de Sa, & Seiden-
berg, 1993; Sharkey & Sharkey, 1992), semantic related-
ness among words was reflected in the degree of over-
lap of their semantic features. These models typically
employ only a single, symmetric manipulation—pattern
overlap—to encode word relatedness, so there is no op-
portunity for different types of relations among words to
behave differently. In particular, one can distinguish an
associative relation among words (e.g., as measured by
free association norms; Postman & Keppel, 1970) from
a purely semantic relation (i.e., having similar meanings,
such as category co-ordinates). These two types of re-
lations have been shown to give rise to different empir-
ical effects in a number of contexts (e.g., Becker, 1980;
Glosser & Friedman, 1991; Moss & Marslen-Wilson,
1993; Moss, Ostrin, Tyler, & Marslen-Wilson, 1995; Sei-
denberg, Waters, Sanders, & Langer, 1984b). In Plaut’s
(1995b) simulation, semantic relatedness was encoded in
terms of degree of pattern overlap (as in most distributed
models) but an association from one word to another was
encoded in a different manner: in the likelihood that the
one follows the other during training (see Moss, Hare,
Day, & Tyler, 1994, for a similar approach).

Semantic patterns were constructed to form categories
by generating 8 random prototype patterns (e.g., bird),
such that each feature had a probability of 0.1 of be-
ing active. Sixteen category exemplars were then gen-
erated from each prototype by randomly changing some
of its features; fewer for high-dominance exemplars (e.g.,
robin) than for low-dominance exemplars (e.g., goose).
The resulting 128 semantic representations were ran-
domly assigned orthographic representations consisting
of patterns of activity over 20 orthographic units. These
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patterns were generated randomly such that each unit had
a probability of 0.1 of being active, with the constraint that
every pattern had at least two active units, and all pairs
of patterns differed in the activities of at least two units.
No attempt was made to model orthographic relatedness
among words; the orthographic patterns simply guaran-
teed that the written forms of words were fairly sparse and
were discriminable from each other. The critical property
of the task was that, although there were systematic rela-
tionships among word meanings, there was no systematic
relationship between the written form of a word and its
meaning.

During training, the network started from the final ac-
tivity pattern produced by the previous word in process-
ing the next word. Often the next word chosen was the
associate of the previous word. On the remaining tri-
als, the probability that words were selected for train-
ing depended on their assigned frequency, such that high-
frequency words were twice as likely to be trained as low-
frequency words. To encourage robust performance, each
orthographic pattern was corrupted slightly with Gaus-
sian noise (SD=0.05) when presented for training. The
network was trained with a continuous version of back-
propagation through time (Pearlmutter, 1989) to activate
the word’s semantic features as quickly as possible when
presented with its orthography.

After training, the network was tested for priming ef-
fects by presenting a prime word for some specified dura-
tion, then replacing it with the target word and allowing
the network to settle to the appropriate semantic represen-
tation for the target. The prime could be semantically re-
lated, associatively related, or unrelated to the target. The
RT of the network to the target was defined as the time it
took the network to settle to the point where no semantic
unit changed it state by more than 0.001. The difference in
RT values for unrelated versus related primes constitutes
a measure of (semantic or associative) priming.

When trained and tested in this manner, the network
exhibited two empirical effects that have posed problems
for other distributed network theories of priming (e.g.,
Kawamoto, 1988; Masson, 1991; 1995; McRae et al.,
1993; Sharkey & Sharkey, 1992): much stronger associa-
tive priming than semantic priming (e.g., Becker, 1980;
Shelton & Martin, 1992), and significant associative prim-
ing across an intervening unrelated item (e.g., Joordens &
Besner, 1992; McNamara, 1994).5 It also reproduced the

5Consistent with Plaut’s (1995b) account, Masson (1995 and this vol-
ume) considered the possibility that the intervening word might be pro-
cessed only partially, leaving residual semantic activation from BREAD

to influence BUTTER. Using a Hopfield (1982) network, Masson simu-
lated the small priming effect across unrelated words in a naming task
by basing the network’s response on the activity of phonological units
which were updated more frequently than semantic units. However, the
simulations used a very small vocabulary (only three pairs of semanti-
cally related items), and no independent justification was provided for

empirical findings of greater priming for low-frequency
targets, degraded targets, and high-dominance category
exemplars.

Although not reported by Plaut (1995b), the network’s
performance on words provides a reliable basis for per-
forming lexical decision (LD). A natural way to perform
LD is on the basis of some measure of the familiarity of
the stimulus (Balota & Chumbley, 1984). A commonly
used measure of familiarity in distributed networks is
the negative of the energy, ∑i � j sis jwi j (Hopfield, 1982),
which reflects the degree to which unit states satisfy the
soft constraints imposed by the weights. A number of re-
searchers (e.g., Besner & Joordens, 1995; Borowsky &
Masson, 1996; Masson & Borowsky, 1995; Rueckl, 1995,
also see Masson, this volume) have proposed recently that
it may be possible to perform LD on the basis of differ-
ences in the energy of words versus nonwords. A serious
drawback of this measure, however, is that it requires de-
cision processes to have explicit access to the weights be-
tween units (analogous to synaptic strengths between neu-
rons), which is far less neurobiologically plausible than a
procedure that need only access unit states. An appropri-
ate alternative measure, termed stress, is based only on the
states of units. Specifically, the stress S j of unit j is a mea-
sure of the information content (entropy) of its state s j,
corresponding to the degree to which it is different from
rest:

S j � s j log2 
 s j  � 
 1 � s j  log2 
 1 � s j  � log2 
 0 � 5  (2)

The stress of a unit is 0 when its state is 0.5 and ap-
proaches 1 as its state approaches either 0.0 or 1.0. The
target semantic patterns for words are binary vectors (i.e.,
consist of 1s and 0s) and, thus, have maximal stress. Be-
cause, over the course of training, the semantic patterns
generated by words increasingly approximate their target
patterns, the average stress of semantic units approaches
1 for words. By contrast, nonwords are novel stimuli that
share orthographic features with words that have conflict-
ing semantic features. As a result, nonwords typically fail
to drive semantic units as strongly, producing semantic
patterns with much lower average stress. Thus, the aver-
age stress of semantic units, here termed simply semantic
stress, forms a reliable basis for performing LD.6

To demonstrate the adequacy of this approach, 128 non-
words were created by generating new orthographic pat-
terns in the same manner as the trained patterns, ensuring

why phonological and semantic units should behave differently.
6It is assumed that LD responses are actually generated by a stochas-

tic decision process (e.g., Ratcliff, 1978; Usher & McClelland, 1995)
that computes stress by integrating over semantic unit states and that
adopts a decision criterion such that stress values farther from the cri-
terion are responded to more quickly and accurately. In a given experi-
mental context, a specific criterion is chosen that allows fast responding
with acceptable error rates depending on the composition of the word
and nonword stimuli.
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Figure 3: The distributions of average stress of seman-
tic units for words and nonwords exhibited by the Plaut
(1995b) network.

that each nonword differs from every word by at least two
units (i.e., the same constraint that applies between any
two words). These patterns function as nonwords in that
they have the same statistical structure as the orthographic
patterns for words but were never presented to the network
during training. The performance of the network was
tested on each word and nonword as target when preceded
by each unrelated word as prime (over a range of prime
durations). Using a response criterion by which a “yes”
response was given if the semantic stress after settling ex-
ceeded 0.945, the network made only 0.70% misses and
0.38% false-alarms in LD, yielding a d

�

of 5.12 (see Fig-
ure 3). Thus, a distributed network that maps orthography
to semantics can account for the ability of skilled read-
ers to reliably distinguish word from word-like nonwords,
based on a measure of the degree to which semantic units
receive strong input that drives them to near-binary states.

More recently, Plaut (1997) has successfully applied
this approach to model LD on actual word and non-
word stimuli. A feedforward network was trained to map
from the orthographic representations of the 2998 mono-
syllabic words in the Plaut et al. (1996) corpus to their
phonological representations and to artificially created se-
mantic representations like those described above. Af-
ter 1300 epochs of training, the network accurately de-
rived the phonology and semantics of each word when
presented with its orthography. It was then tested for its
ability to distinguish these words from 591 pronounceable
nonwords (Seidenberg, Plaut, Petersen, McClelland, &
McRae, 1994) on the basis of the levels of semantic
stress produced by each type of stimuli. When a “yes”
criterion of 0.955 was adopted, the network produced
only 0.90% (27/2998) misses and 1.52% (9/582) false-
alarms, corresponding to a d

�

of 4.53. In a second test

involving 64 pseudohomophones (PH; e.g., JOAK) and
closely matched nonpseudohomophone (nonPH) control
nonwords (e.g., HOAK; Seidenberg, Petersen, MacDon-
ald, & Plaut, 1996), the network produced reliably higher
semantic stress values—and thus poorer discrimination
from words—for the pseudohomophones (means: PH =
0.9246, nonPH = 0.9184; paired t[63] = 2.408, p = .019).
Thus, the network exhibited accurate performance overall
as well as the empirical finding of a pseudohomophone
disadvantage in LD (see Besner, this volume; Coltheart,
Davelaar, Jonasson, & Besner, 1977; McCann & Besner,
1987).

The Plaut (1995b) and Plaut (1997) simulations focus
on normal skilled performance of lexical decision. Other
simulations of the operation of the semantic pathway have
attempted to address patterns of impaired performance
among certain types of brain-damaged patients, and how
such impairments might be remediated.

4 Impaired Reading via Meaning in
Deep and Phonological Dyslexia

As one might expect from the name, patients with deep
dyslexia (see Coltheart, Patterson, & Marshall, 1980) have
reading impairments that are in many ways opposite to
those with surface dyslexia, in that they appear to read
almost entirely via semantics. Deep dyslexic patients
are thought to have severe (perhaps complete) damage
of the phonological pathway, as evidenced by their in-
ability to read even the simplest of pronounceable non-
words (but see Buchanan, Hildebrandt, & MacKinnon,
1994a; 1994b; 1996; this volume). They also have im-
pairments in reading words that suggest additional partial
damage to the semantic pathway. In particular, the hall-
mark symptom of deep dyslexia is the occurrence of se-
mantic errors in oral reading (e.g., reading CAT as “dog”).
Strangely, these semantic errors co-occur with a peculiar
combination of other symptoms. Central among these are
other errors that involve visual similarity: pure visual er-
rors (e.g., CAT

� “cot”), mixed visual-and-semantic er-
rors (e.g., CAT

� “rat”), and even mediated visual-then-
semantic errors (e.g., SYMPATHY

� “orchestra”, presum-
ably via symphony). Furthermore, the likelihood that
a word is read correctly depends on its part-of-speech
(nouns � adjectives � verbs � function words) and its
concreteness or imageability (concrete, imageable words

� abstract, less imageable words). Finally, differences
across patients in written and spoken comprehension, and
in the distribution of error types, suggests that the sec-
ondary damage to the semantic pathway may occur be-
fore, within, or after semantics (Shallice & Warrington,
1980).

Deep dyslexia is closely related to another type of ac-
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quired dyslexia—so-called phonological dyslexia (Beau-
vois & Derouesné, 1979). The defining characteristic of
phonological dyslexic patients is that they have a selec-
tive impairment in reading nonwords compared with read-
ing words. Although such patients do not produce above-
chance rates of semantic errors, they can be quite similar
to deep dyslexic patients in other respects. In fact, Glosser
and Friedman (1990, also see Buchanan, Hildebrandt, &
MacKinnon, this volume) argued that deep and phono-
logical dyslexic patients fall on a continuum of sever-
ity of impairment, with deep dyslexia at the most se-
vere end. Moreover, Friedman (1996, also see Klein,
Behrmann, & Doctor, 1994) has argued that the symp-
toms in deep dyslexia resolve in a particular order over
the course of recovery, reflecting the continuum of impair-
ment. The occurrence of semantic errors is the first symp-
tom to resolve, constituting a somewhat arbitrary transi-
tion from deep to phonological dyslexia). The concrete-
ness effect is the next symptom to resolve, followed by
the part-of-speech effect, then the visual and morpholog-
ical errors, and only lastly, the impaired nonword read-
ing. A similar pattern of recovery has been documented
in deep dysphasic patients, who make semantic errors in
repetition (see Martin, Dell, & Schwartz, 1994; Martin &
Saffran, 1992; Martin, Saffran, & Dell, 1996).

Hinton and Shallice (1991) reproduced the co-
occurrence of visual, semantic, and mixed visual-and-
semantic errors in deep dyslexia by damaging a connec-
tionist network that mapped orthography to semantics.
During training, the network learned to form attractors
for 40 word meanings across five categories, such that
patterns of semantic features that were similar to a known
word meaning were pulled to that exact meaning over the
course of settling. When the network was damaged by
removing some units or connections, it no longer settled
normally; the initial semantic activity caused by an in-
put would occasionally fall within a neighboring attractor
basin, giving rise to an error response. These errors were
often semantically related to the stimulus because words
with similar meanings correspond to nearby attractors in
semantic space. The damaged network also produced vi-
sual errors due to its inherent bias towards similarity: vi-
sually similar words tend to produce similar initial seman-
tic patterns, which can lead to a visual error if the basins
are distorted by damage (see Figure 4).

Plaut and Shallice (1993) extended these initial find-
ings in a number of ways. They established the gener-
ality of the co-occurrence of error types across a wide
range of simulations, showing that it does not depend on
specific characteristics of the network architecture, the
learning procedure, or the way responses are generated
from semantic activity. A particularly relevant simula-
tion in this regard involved an implementation of the full
semantic pathway—mapping orthography to phonology

Semantic space

Orthographic space
CAT DOG BOG

cat

dog

bog

CAT "dog"
"dog"BOG

Figure 4: How damage to attractors (dashed oval) can give
rise to both semantic and visual errors.

via semantics—using a deterministic Boltzmann Machine
(Hinton, 1989; Peterson & Anderson, 1987). Lesions
throughout the network gave rise to both visual and se-
mantic errors, with lesions prior to semantics producing a
bias towards visual errors and lesions after semantics pro-
ducing a bias towards semantic errors. Thus, the network
replicated both the qualitative similarity and quantitative
differences among deep dyslexic patients. The network
also exhibited a number of other characteristics of deep
dyslexia not considered by Hinton and Shallice (1991),
including the occurrence of visual-then-semantic errors,
greater confidence in visual as compared with semantic
errors, and relatively preserved lexical decision with im-
paired naming.

Plaut and Shallice carried out further simulations to ad-
dress the influences of concreteness on the reading per-
formance of deep dyslexic patients. Another full imple-
mentation of the semantic pathway, shown in Figure 5,
was trained to pronounce a new set of words consisting of
both concrete and abstract words. Concrete words were
assigned far more semantic features than were abstract
words, under the assumption that the semantic represen-
tations of concrete words are less dependent on the con-
texts in which they occur (Saffran, Bogyo, Schwartz, &
Marin, 1980; Schwanenflugel, 1991). As a result, the
network developed stronger attractors for concrete than
abstract words during training, giving rise to better per-
formance in reading concrete words under most types of
damage, as observed in deep dyslexia (see Figure 6a).
Surprisingly, severe damage to connections implement-
ing the attractors at the semantic level produced the op-
posite pattern, in which the network read abstract words
better than concrete words (see Figure 6b). This pattern of
performance is reminiscent of CAV, the single, enigmatic
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Units
Orthographic

32

Units

61
Phonological

Units
Semantic

98
Units

10
Cleanup

Units

10
Intermediate

Units

10
Intermediate

Units

10
Cleanup

Semantic−to−Cleanup connections

Orthographic−to−Intermediate connections

Figure 5: The architecture used by Plaut and Shal-
lice (1993) to model the effects of concreteness in deep
dyslexia. The network constitutes a full implementation
of the semantic pathway of Figure 1 with the addition
of extra “cleanup” units that allow the network to learn
stronger semantic and phonological attractors.

patient with concrete word dyslexia (Warrington, 1981).
The double dissociation between reading concrete versus
abstract words in patients is often interpreted as imply-
ing that there are separate modules within the cognitive
system for concrete and abstract words. The current sim-
ulation demonstrates that such a radical interpretation is
unnecessary: the double dissociation can arise from dam-
age to different parts of a distributed network, in which
parts process both types of items but develop somewhat
different functional specializations through learning (see
Plaut, 1995a, for further results and discussion).

The Plaut and Shallice (1993) simulations of deep
dyslexia provide strong support for characterizing the op-
eration of the semantic pathway, and lexical semantic pro-
cessing more generally, in terms of a distributed network
that learns to form attractors for patterns of semantic fea-
tures that correspond to word meanings. It should be
pointed out, however, that it is possible to model similar
phenomena using word-specific representations. For ex-
ample, Dell (1986; 1988) used a connectionist network
with localist units to model semantic and phonological
influences in speech production errors, and Martin et al.
(1994) replicated aspects of deep dysphasia (Howard &
Franklin, 1988; Katz & Goodglass, 1990; Martin & Saf-
fran, 1990), including semantic and phonological errors in
word repetition, by introducing abnormally rapid decay of
lexical activation in the Dell model. The advantage of the
distributed approach in the current context is that the prop-
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Figure 6: Percent correct performance on concrete ver-
sus abstract words of the Plaut and Shallice (1993) sim-
ulation after (a) 1000 lesions of 20% of orthographic-to-
intermediate connections and (b) 1000 lesions of 70% of
semantic-to-cleanup connections, as depicted in Figure 5.
The radius of each circle is proportional to the number
of lesions yielding the performance levels indicated by
the position of the circle. The diagonal lines correspond
to equal levels of performance on concrete and abstract
words.

9



Plaut Computational Modeling

erties of normal and impaired semantic processing arise
out of the same computational principles that operate in
the rest of the lexical system.

5 Rehabilitating Reading via Mean-
ing

An important but often neglected motivation for theoreti-
cal analyses of normal cognitive processing and its break-
down following brain damage in individual patients is that
such analyses may lead to the design of more effective
therapy to remediate cognitive impairments (Howard &
Hatfield, 1987). Attempts at cognitive rehabilitation of
the mapping between orthography and semantics (e.g.,
Behrmann, 1987; Coltheart & Byng, 1989; Scott & Byng,
1989; Weekes & Coltheart, 1996) have resulted in consid-
erable improvement in performance on treated words and
significant generalization to untreated but related words,
although there is little understanding of the underlying
mechanisms by which this occurs. Furthermore, the de-
gree and breadth of recovery and generalization can vary
considerably across patients: Some patients show gen-
eralization in some semantic categories but not others
(e.g., CH; Behrmann & Lieberthal, 1989); some learn the
treated items well but show no generalization to untreated
items (e.g., PS; Hillis, 1993); still others have difficulty
learning the treated items themselves. As Hillis (1993)
points out, what is needed is a theory of rehabilitation that
provides a detailed specification of the impaired cognitive
system, how it changes in response to treatment, and what
factors are relevant to the efficacy of the treatment.

With the goal of contributing to such a theory, Plaut
(1996) investigated the degree of recovery and general-
ization produced when networks that read via meaning are
retrained after damage. In one experiment, a replication of
the Hinton and Shallice (1991) network was trained until
it was fully accurate on all 40 words. It was then subjected
to damage either near orthography or within semantics,
and retrained on half of the words. Performance was mea-
sured both for those treated words and for the untreated
words. For comparison, performance of the network when
retrained on all 40 words was also measured. Plaut found
that retraining produced rapid improvement on treated
words and substantial generalization to untreated words
only after lesions within semantics; when retraining after
lesions near orthography, treated improvement was erratic
and there was no generalization to untreated words (see
Figures 7a and b). This difference is due to the relative
degree of consistency in the mapping performed at differ-
ent levels of the network. Figure 8 presents a graphical
depiction of this effect using vectors (arrows) to represent
weight changes. Within semantics, similar words require
similar interactions, so that the weight changes caused by

retraining on some words will tend also to improve per-
formance on other, related words (i.e., the optimal weight
changes for words are mutually consistent). By contrast,
similar orthographic patterns typically must generate very
different semantic patterns. As a result, when retrain-
ing after lesions near orthography, the weight changes for
treated items are unrelated to those that would improve
the untreated items, and there is no generalization. These
finding provide a basis for understanding the mechanisms
of recovery and generalization in patients, and may help
explain the observed variability in their recovery.

A theory of rehabilitation should provide guidance in
selecting items for treatment so as to maximize general-
ized recovery. In a second experiment, Plaut (1996) used
an artificial version of the task of mapping orthography
to semantics to investigate whether generalization was
greater when retraining on high- versus low-dominance
category exemplars. Somewhat surprisingly, although re-
training on high-dominance exemplars produced greater
recovery on treated items, retraining on low-dominance
exemplars produced greater generalization to untreated
items. These findings can be understood in terms of the
relative adequacy with which the sets of high- versus low-
dominance exemplars approximate the range of semantic
similarity among all of the words. In the simulation, high-
dominance words accurately estimate the central tendency
of a category, but provide little information about the ways
in which category members can vary. By contrast, each
low-dominance word indicates many more ways in which
members can differ from the prototype and yet still be-
long to the category. Thus, collectively, the semantic rep-
resentations of low-dominance words cover more of the
features needed by the entire set of words than do the rep-
resentations of high-dominance words. At the same time,
the average affects of retraining on low-dominance words
provides a reasonable estimate of the central tendency of
the category, yielding generalization to high-dominance
words (as found in human category learning by, e.g., Pos-
ner & Keele, 1968).

In a final simulation, Plaut (1996) used the failure of
the network in replicating the error pattern of recover-
ing deep dyslexic patients to constrain the underlying the-
ory of normal and impaired word reading. Plaut mea-
sured the changes in the distribution of error types brought
about by retraining an orthography-to-semantics network
after damage. Rather than semantic errors being the first
to drop out, visual and unrelated errors were eliminated
earliest. Semantic and mixed visual-and-semantic errors
were eliminated only at the very end of retraining. Thus,
the changes in the pattern of errors produced by the net-
work in recovery to near normal levels of correct per-
formance failed to reproduce the transition from deep
to phonological dyslexia observed in patients (Friedman,
1996; Klein et al., 1994). This discrepancy between the
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Figure 7: Correct performance in pronouncing treated
and untreated items when retraining the Plaut (1996) net-
work that maps orthography to semantics after (a) lesions
within semantics (i.e., 50% of cleanup-to-semantics con-
nections), and (b) lesions near orthography (i.e., 30% of
orthographic-to-intermediate connections; see Figure 5).
Performance when retraining on all 40 words is also
shown for each condition.

Consistent Inconsistent

Actual (cumulative) weight changes

Current set of weights
Optimal direction for treated word
Optimal direction for untreated word

Figure 8: Depiction of the effect of consistent versus in-
consistent weight changes on the extent of recovery and
generalization in relearning. In each condition, the small
solid arrows represent directions of weight change in-
duced by treated words; the large solid arrow is the (vec-
tor) sum of these smaller arrows, representing the actual
weight changes administered to the network. The length
of this vector reflects the speed of relearning the treated
words. The dotted arrows represent directions of weight
change that would be optimal for untreated words if they
were trained—to the extent that these point in the same
direction as the actual weight change vector, retraining on
the treated words will also improve performance on the
untreated words.
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behavior of the network and that of patients can be un-
derstood if recovery in the patients involves more than re-
learning in the semantic route alone. In particular, the
findings suggest that, within the current approach, the
transition from deep to phonological dyslexia must also
involve some improvement in the operation of the phono-
logical pathway (or in phonology itself). Such improve-
ment would produce a greater reduction in semantic errors
relative to other types of error because even partial correct
phonological information about the stimulus would be
sufficient to rule out most semantic errors (Newcombe &
Marshall, 1980).

It must be kept in mind that the Plaut (1996) findings re-
late to patient therapy only in the most general way, given
that the version of the task of mapping orthography to se-
mantics it performs is much simpler than the actual task
performed by patients. Nonetheless, the principles that
emerge as central to understanding the nature of relearn-
ing and generalization in the networks may provide the
foundations for understanding the nature of recovery in
patients.

6 Conclusion

The traditional way of thinking about the mechanisms
subserving word reading (and other lexical tasks) involves
stipulating rather complicated and domain-specific struc-
tures and processes. Thus, there are representations that
apply only to specific words, or to words but not to non-
words, or to concrete words but not abstract words, etc.,
and there are separate sets of rules or pathways that pro-
cess words but not nonwords, or only regular words but
not exception words, etc.

The current chapter has attempted to articulate and sup-
port an alternative view of lexical knowledge and pro-
cessing: that it develops through the operation of gen-
eral learning principles as applied to written and spoken
words and their meanings. Distinctions between words
and nonwords, and among different types of words, are
not reified in the structure of the system, but rather re-
flect the functional implications of the statistical structure
among and between the relevant types of information—
orthographic, phonological, and semantic. The structural
divisions within the system—which are critical in ac-
counting for specific patterns of acquired dyslexia—arise
from the neuroanatomic localization of input and output
modalities, not from differences in the content of repre-
sentations (see Farah, 1994; Farah & McClelland, 1991,
for similar arguments).

The simulations described in this chapter illus-
trate how connectionist computational principles—
distributed representation, structure-sensitive learning,
and interactivity—can provide insight into central empir-

ical phenomena in normal skilled reading, its breakdown
due to brain damage, and its remediation following dam-
age. This is not to say that the models are fully ade-
quate and account for all of the relevant data in sufficient
detail—this is certainly not the case. In fact, given that
they are models, they are abstractions from the actual pro-
cessing system and are certainly wrong in their details.
Nonetheless, their relative success at reproducing key pat-
terns of data in the domain of word reading, and the fact
that the very same computational principles are being ap-
plied successfully across a wide range of linguistic and
cognitive domains, suggests that these models capture im-
portant aspects of representation and processing in the hu-
man language and cognitive system.
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