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Abstract

Connectionistnodelsmplementcognitive processem termsof
cooperatie and competitve interactionsamonglarge numbers
of simple,neuron-lile processinginits. Suchmodelsprovide a
usefulcomputationaframenork in which to explore the nature
of normalandimpairedcognitive processesThe currentwork
extendsthe relevanceof connectionistmodelingin neuropsy-
chologyto addressssuesdn cognitive rehabilitation:the degree
andspeedf recorerythroughretraining theextentto whichim-
provementon treateditemsgeneralizeso untreatedtems,and
how treateditemsare selectedo maximizethis generalization.
A network previously shawvn to modelimpairmentsn mapping
orthographyto semanticavasretrainedafter damage.The de-
greeof relearningandgeneralizatiordependeadn the location
of the lesion, and had interestingimplicationsfor understand-
ing the natureandvariability of recovery in patients.In a sec-
ondsimulation,retrainingon wordswhosesemanticsare atypi-
cal of their catggory yieldedmoregeneralizatiorthanretraining
onmoretypicalwords,suggesting counterintuitve strateyy for
selectingitemsin patienttheray to maximizerecoery. Taken
together the findings demonstrat¢hat the natureof relearning
in damagedonnectionishetworks canmake importantcontri-
butionsto atheoryof rehabilitationin patients.

It wasoncethoughtthatthe brain lost muchof its plas-
ticity beyond an early, critical period in development.
Thereis now, however, considerablevidencethatthere-
sponsepropertieof corticalneurondn adultanimalscan
beremappedxtensiely in responséo intensie training
regimes(seeKaas,1994;Merzenich& Jenkins, 1995 for
reviews). Although mostof thesedemonstrationfiave
beenin the peripheradomainsof sensoryandmotorpro-
cessing,more recentattemptsto apply analogousnter-
ventionstratgiesto language-learningnpairedchildren
(Tallal, Miller, & Fitch, 1993) have met with consider

ablesuccesgMerzenichet al., 1996; Tallal etal., 1996).
Among other things, thesefindings raise considerable
hopefor the developmentof moreeffective stratgiesfor
remediatinghecognitiveimpairmentof individualswith
braindamage.

Thereremainshowever, somethingof a puzzle.If the
brain remainsso plasticwell into adulthood,why is the
prognosisfor recovery of cognitive functionsfollowing
braindamagenften so poor? While patientswith certain
typesof brain damagemay shav nearly completepost-
morbid recovery (e.g., patientswith hemispatialneglect
following right parietaldamage;seeRobertson& Mar-
shall,1993),others,particularlythosewith languagam-
pairments,do not (seeKertesz,1985). Moreover, even
in the circumstance# which thereis substantiatecov-
ery of function,little is known aboutits physiologicaland
cognitive baseshor what factorsmight influenceits ef-
fectivenesgHillis, 1993).

The current work attemptsto provide a theoretical
framework, supportedoy explicit computationakimula-
tions,for understandingpow andwhenexperience-dien
therapy is mosteffective at remediatingcognitive impair-
ments.Thefocusis notonly onthedegreeandspeedvith
which behaior canbe reestablisheds a result of ther
apy, but alsoon the extentthatrecovery dueto treatment
of particularitemsgeneralizeso othermaterialsandthe
possiblebase®nwhichto selecitemsfor treatmensoas
to maximizethisgeneralizationThework is castin terms
of connectionisor paralleldistributedprocessingnodels,
in which informationis representedspatternsof activity
overlargegroupsof simple,neuron-like units. Processing
takestheform of cooperatieandcompetitveinteractions
amongthe unitson the basisof weightedconnectiondbe-
tweenthem. Theseweightsencodehe long-termknowl-
edgeof the systemandarelearnedgraduallythroughex-
periencen the domain. Modelsof this form to be devel-



opedwithin a wide rangeof cognitive domains,includ-
ing high-level vision andattention Jearningandmemory
speeclandlanguagerocessingandthecoordinatiorand
controlof action(seeMcClelland,Rumelhart& the PDP
ResearchGroup, 1986; Quinlan, 1991; Rumelhart,Mc-
Clelland,& the PDPResearclroup,1986b).

The effects of damagein connectionistmodelshave
beenusedto accountfor a numberof specificneuropsy-
chologicaldisorders Brain damagecanbe approximated
wihtin suchmodelsby the removal of someproportion
of the units and/orconnectionsn certainregions of the
model. Perhapsthe most widely investigatedclass of
disordersconcernselectve impairmentsin reading—the
acquireddyslexias (Hinton & Shallice,1991; Mozer &
Behrmann,1990;Plaut& Shallice,1993;Plaut,McClel-
land, Seidenbay, & Patterson,1996). The currentwork
extendsthe relevanceof connectionisimnodelingin cog-
nitive neuropsychologyy demonstratinghat the same
computationalprincipleswhich are effective for under
standingnormal cognitive processingandthe effects of
braindamagegcanalsoprovide insightinto the natureof
recovery from braindamage.

The next sectionprovides a brief overview of find-
ings from empirical studiesattemptingto remediatethe
readingimpairmentsof acquireddyslexic patients. Fol-
lowing this, two computationasimulationsarepresented,
bothinvolving networksthatthataretrainedto derive the
meaningof written words(seePlaut,1996,for morede-
tails). Thefirst demonstratethat,in retraininga network
afterdamagethe degreeof relearningandgeneralization
dependean the locationof the lesion. The resultshave
interestingimplicationsfor understandinghe natureand
variability of recovery in patients.In the secondsimula-
tion, retrainingon wordswhosesemanticsareatypicalof
their category yieldedmoregeneralizatiorthanretraining
onmoretypicalwords,suggestin@counterintuitve strat-
egy for selectingtemsin patienttherajy to maximizere-
covery. Takentogetherthefindingsdemonstrat¢éhatthe
natureof relearningin damagecdconnectionistnetworks
canmalke importantcontritutionsto a theoryof rehabili-
tationin patients.

Remediation of Acquired Dyslexia

ColtheartandByng (1989)undertooka seriesof remedi-
ationstudieswith a surfacedyslexic patient,EE, with left
temporal-parietalamagedueto a fall. On the basisof
anumberof preliminarytests,ColtheartandByng deter
minedthatEE hada specificdeficitin derving semantics
from orthography In one study they gave EE 485 high-
frequeng wordsfor oral reading. The 54 wordshe mis-
readweredivided in half randomlyinto treatedand un-
treatedsets.For wordsin thetreatedset,EE studiedcards
of thewrittenwordsaugmentedavith mnemonicdor their

meanings. As a result, his readingperformanceon the
treatedwordsimprovedfrom 44%to 100%correct. Sur
prisingly, theuntreatedvordsalsoimproved,from 44%to
859% correct. This improvementwasnot dueto “sponta-
neousrecovery” nor to othernon-specifieffectsbecause
performancenthewordswasstablebothbeforeandafter
therapy. Two otherstudieswith EE producedroadlysim-
ilar results. Overall, Coltheartand Byng found excellent
recovery of treatedtemsandsubstantiafjeneralizatiorio
untreatedtems(alsoseeWeeles& Coltheart,1996).

A usefulmeasureof generalizatioris the amountthat
untreatedtemsimprove relative to the the amountthat
they would have improved if they had beentreateddi-
rectly. This measurecan be approximatedby the ratio
of theimprovmenton untreatedtemsto theimprovement
on the treateditems. Thus, Coltheartand Byng'’s (1989)
theragy with EE producedi1/56 = 73% generalization.

Unfortunately such promisingresultsare not always
foundin rehabilitationstudieseventhosewith very sim-
ilar types of patients. Scott and Byng (1989) treated
a surfacedysleic patientfor homophoneconfusionsin
reading(e.g., TAIL/TALE) andproducedmprovementon
treateditemsand,to a lesserextent, untreatedtems, but
found no generalizatiorto his writing of the sameitems
(also seeBehrmann,1987). Behrmannand Lieberthal
(1989) trained a globally aphasicpatientwith semantic
impairmentson a semanticcategory sortingtask. They
foundimprovementon untreatedtemsonly within some
catgyories and minimal generalizationto items in un-
treatedcatagories. Finally, Hillis (1993) carriedout an
extensie rehabilitationprogramwith a patientwho had
bothorthographi@ndsemantidmpairments The patient
wasableto learntrainedtasks(e.g.,lexical decisionham-
ing) but shaved virtually no generalizatiorto untrained
tasks.

Why somepatientsimprove while othersdo notis not
entirely clear Furthermoregvenin thosepatientswho
do improve and shav generalizationthe causeof this
generalization—interms of changesto the underlying
cognitive mechanisninducedby treatment—isinknown.
An explanationof thesefindingsshouldaccountot only
for the occurrenceof generalizationn somepatientsand
conditions,but alsofor its absenceén others. As Hillis
(1993)pointsout, whatis neededs atheoryof rehabilita-
tion thatprovidesa detailedspecificatiorof theimpaired
cognitive systemhow it changesn respons¢o treatment,
andwhatfactorsarerelevantto the efficacy of the treat-
ment.

A Connectionist Approach to
Remediation

Early connectionistesearch{Hinton & Plaut,1987;Hin-
ton & Sejnavski, 1986) demonstratedhat simple net-
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Figure 1. A connectionistframework for lexical pro-
cessingAdaptedfrom Plaut(1997).

works trainedon unstructuredaskscan, whenretrained
afterdamagegxhibit rapidrecovery on treatedtemsand
generalizatiorto untreatedtems. Plaut(1996)extended
thesefindingsto applydirectly to understandinghe basis
and variability of recovery in patients,andto provide a
platformfor testinghypothesesn how to selectitemsfor
treatmentto maximize generalizedecovery. The mod-
eling work wascastwithin a more generalframenork of
lexical processingseeSeidenbay & McClelland,1989;
Plautet al., 1996)in which distributedrepresentationsf
written words (orthography) spoken words (phonology)
andtheir meaninggsemanticsjnteractto simultaneously
settleon the bestinterpretatiorof aninput (seeFigurel).

Simulation 1. Recovery and Generalization

The network usedin thefirst simulation,depictedn Fig-
ure 2, wasbasedcloselyon the oneusedby Hinton and
Shallice(1991)andconstitutesan implementatiorof the
orthography-to-semaices portion of the generalframe-
work in Figurel. Written input, in the form of 40 four-
letter words, was presentedo the network by clamping
particularpatternsof activity (1sandO0s) over 32 ortho-
graphic units (8 featuregerletter). Themeaningof each
of the words, falling into 5 cateyoriesof 8 items each,
was representedby a particular patternof actiity over
68 semantic units. The assignmenbf semanticfeatures
to words had the property that words within the same
catgyory tendedto have moresimilar semanticepresen-
tationsthanthosein different categories,and therewas
no systematiaelationshipbetweenorthographicsimilar-
ity and semanticsimilarity (seePlaut& Shallice,1993,
for details). During processingthe activation levels of
units were a smooth, nonlinear(sigmoidal) function of
their summedweightedinputsfrom otherunits, ranging
between0 and 1. The network wastrainedwith a ver-
sion of back-propagatiorappropriatefor recurrentnet-
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Figure2. Theconnectionishetwork usedn theSimula-
tion 1. Arrow represen5%connectvity betweergroups
of units. The simulationcontrastghe effectsof lesionsto
thetwo setsof connectionshavn in bold. Adaptedfrom
Plaut(1996).

works,known asback-propagation through time (Rumel-
hart, Hinton, & Williams, 1986a),to activate the appro-
priate semanticfeaturesof a word when presentedvith

its orthographiaepresentationin doing so, the network
learnedto usebidirectionalinteractionsbetweenthe se-
mantic units and so-calledclean-up units to make the
meaning®of wordsinto stable attractor patterns.

Oncethe network hadlearnedto derive the meanings
of the40 wordsfrom their written form accuratelyit was
damagedn oneof two places:nearorthographythecon-
nectionsfrom the orthographicunits to the intermediate
units) or nearsemanticgthe connectiongrom the clean-
up units to the semanticunits). Thesetwo locationsare
indictedin bold in Figure2. Lesionsinvolved removing
arandomproportionof theindicatedsetof connections—
the severity of the lesionwascontrolledby changingthe
proportionof connectionshatwereremoved.

After a giveninstanceof lesion,the network waspre-
sentedwith eachof the 40 wordsfor processingAs are-
sult of thedamagethe semanticactiity producedoy the
network would often differ significantlyfrom the correct
semanticof the presentedvord. The network wascon-
sideredto have respondedatorrectlyif the proximity (i.e.,
normalizeddot-productpf thesemanticgieneratedby the
network waswithin 0.8of thecorrectsemanticef thepre-
sentedwvord, andthe proximity of the next bestword was
atleast0.05further(seeHinton & Shallice,1991,for de-
tails). If the generatedsemanticssatisfiedthesecriteria
when comparedwith the semanticsof someword other
thanthe one presentedthat word was consideredo be
thenetwork’'sresponséanerror). Otherwisethe network
was consideredo have failed to respond(an omission).
Theresponseriteriacanbethoughtof assubstitutingfor
the semantics-to-phonologyortion of the generaframe-
work (seePlaut& Shallice,1993,for implementations).

For eachof the two locationsof damagea severities
of lesionwaschoserthatreducec:orrectperformancen
the 40 trainedwordsto 20%. This turnedout to involve
removing 30%of connectiongor theorthographidesions
and50%of connectiondor the semantidesions.



Oncetheperformancef thelesionechetwork onall 40
wordswasdeterminedhalf of the correctwordsandhalf
of theincorrectwordswererandomlyselectedandplaced
in thetreated set;theremainingwordswereplacedin the
untreated set. Thus, both the treatedand untreatedsets
contained20 words and were balancedfor correctper
formance. For the purposeof settingup the treatedand
untreatedsets, explicit errorsand omissionswere both
consideredncorrectandwerenot distinguished.The le-
sionednetwork wasthenretrainedfor 50 epochs(train-
ing presentationg)nthetreatedvordsonly. Performance
wasmeasuret eachepochduringrelearningseparately
for the treatedand untreatedword sets,in termsof the
numberof words read correctly andthe averageprox-
imity of the generatedand correctsemantics.To ensure
thatary relearningeffectswerenot simply dueto anim-
balancein initial performancebetweenthe treatedand
untreatedsets,the two setswere exchangedandthe re-
trainingwasrepeatedstartingfrom the sameinitial setof
weights. Thus, eachgroup of words sened both asthe
treatedsetandthe untreatedset. Finally, for purposeof
comparisonthe weightswereagainreinitializedandthe
lesionednetwork wasretrainedon all 40 words. Results
wereaveragedvertwentyinstance®f eachlocationand
severity of lesion,in which a differentrandomsubsetof
connnectionsvereremoved.

Figure 3 shavs the improvementin performancedur-
ing retrainingfollowing lesionsnearsemanticversude-
sionsnearorthography Consideringhe formerfirst (see
Figure3a), the network shavs rapidrelearningof the 20
treatedwordsafter a semantidesion, reachingnearper
fect performance(98.4% correct) after 50 training pre-
sentations. Moreover, performanceon the 20 untreated
wordsin this conditionalsoimprove considerablyreach-
ing 67.6%correctat this point. Theimprovementon un-
treatedvordswas61%aslargeastheimprovemenbonthe
treatedwordsthemseles,whichis comparabldao thethe
73% generalizatiorfound by Coltheartand Byng (1989)
for patientEE.

By contrastretrainingafter a lesionnearorthography
producegquite differentresults(seeFigure 3a). In par
ticular, recovery of the 20 treateditemsis far lesseffec-
tive,althoughit doesreach93.3%correctafter50epochs.
More critically, performancen the untreatedvordsfails
toimproveatall, remainingatnear20%correct.Thus,the
network exhibited poorerrecovery andno generalization
following retrainingafterorthographidesions.

A clueto thebasisfor thisdifferencecanbefoundfrom
examiningthe lesionednetwork’s performancevhenre-
trainedon all 40 words. Following semantidesions,re-
coveryis fastemwhenretrainingonall 40wordsthanwhen
retrainingononly 20words.By contrastfollowing ortho-
graphiclesionsyetrainingonall 40 wordsproducesnuch
poorerrecovery thanwhenretrainingon only 20 words.

e Current set of weights

—= Optimal direction for treated word
---zz= Optimal direction for untreated word
= Actual (cumulative) weight changg
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Figured. Depictionof theeffectof consistenvs.incon-
sistentweightchange®n the extentof recovery andgen-
eralizationin relearning.n eachcondition,thesmallsolid

arrons representirectionsof weight changeinducedby

treatedwords; the large solid arraw is the (vector) sum
of thesesmallerarrows, representinghe actualweight
changesadministeredo the network. Thelengthof this

vectorreflectsthe speedof relearningthe treatedwords.
The dottedarrows representlirectionsof weightchange
that would be optimal for untreatedwordsif they were
trained—tothe extent thatthesepoint in the samedirec-

tion asthe actualweightchangevector, retrainingon the
treatedwordswill alsoimprove performanceon the un-

treatedwvords. Adaptedfrom Plaut(1996).

Thesefindingsmake senséf theweightchangesnduced
by retrainedvordsaftersemantidesionsaremoreconsis-
tentacrossvordsthanafterorthographidesions.Theac-
tualweightchangesdministeredo thenetwork afterare-
trainingepocharethe sumof theweightchangesnduced
by eachindividual word (scaledby the learning rate).
Weightchangeghatareconsistenticrosgetrainedvords
accumulateresultingin fastlearning;weightchangeshat
areinconsistentanceleachotherout, resultingin much
slower learning. Figure4 presentsa graphicaldepiction
of this effect usingvectors(arrows) to representveight
changesWithin semanticssimilar wordsrequiresimilar
interactionssothattheweightchangesausedy retrain-
ing onsomewordswill tendalsoto improve performance
on other, relatedwords (i.e., the optimal weightchanges
for words are mutually consistent).By contrast,similar
orthographigatterngypically mustgeneratevery differ-
entsemanticpatterns. As a result,whenretrainingafter
lesionsnearorthographythe weight changedor treated
itemsare unrelatedto thosethat would improve the un-
treatedtems,andthereis no generalization.
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after(a) lesionsnearsemanticsor (b) lesionsnearorthography Adaptedfrom Plaut(1996).

As reviewed earlier studiesof cognitive rehabilitation
of acquireddyslexics have demonstratedonsiderablee-
learningof treatedtemsand(often)improvementon un-
treatedbut relateditems. At a generallevel, the cause
of rapidrelearningandgeneralizationn the network may
provide anexplanationfor the natureof recoveryin these
patients. At a more specificlevel, the finding that the
extent of relearningdependson the location of damage
may provide an explanationfor why only somepatients
shav substantiatecovery andgeneralization.The simu-
lation resultssuggesthata patientwith a functionalim-
pairmentloseto or within semanticshouldshav consid-
erablegeneralizationwhile onewith animpairmentclose
to orthographyshouldshow little or none.Corverselythe
degreeof generalizatiombseredin a patientcanbeused
to predictthefine-grainedocationof their functionalim-
pairmentwithin thesemanticoute.

Simulation 2: Designing Retraining to Maxi-
mize Generalization

Ideally, anunderstandingf theimpairmentn aparticular
patientshouldleadto the designof a rehabilitationstrat-
egy thatmaximizesrecovery. A potentialbenefitof con-
nectionistmodelingin neuropsychologicalehabilitation
is thatit canprovideaframework for investigatingherel-
ative effectivenesof alternatve rehabilitationstrateyies.
Oneaspecbf aretrainingsimulationthatis underexper
imentalcontrol,andthatmightinfluencethe natureof re-
covery, is the selectionof itemsfor treatment.

An importantaspecbf the structureof semantiaepre-

sentationsatleastof nounsjs thatthey areorganizednto
catgyories. Furthermoreyelative to this cateyory struc-
ture, a critical semanticvariableis typicality—haw close
aconcepistothecentraltendeny of its category (Rosch,
1975).For instancearobinis highly typicalamongbirds,
aneagleis lesstypical, anda penguinis highly atypical.
The questionis, is it betterto retrainon typical or atypi-
calwords? A naturalintuition is thatrelearningthe cen-
tral tendenyg of a category—thatis, retrainingon typical
words—shouldeadto thegreatesgeneralizatiorio other
wordsin the category. The resultsof the currentsimula-
tion, however, shav theoppositeretrainingon wordsthat
are somavhat atypical of their semanticcateyory leads
to greatergeneralizatiorthanretrainingon moretypical
words. Thereasonputbriefly, is thatatypicalwordscol-
lectively corvey moreinformationontheoverall structure
of the category—specificallyon how semantigroperties
canvary acroscategjory members—whilestill providing
a goodappoximatiorof the centraltendeng of the cate-
gory.

The simulationusedan artificial versionof the task of
mappingorthographyto semanticsn orderto morecare-
fully controlthe natureof the semanticcategories. The
training set consistsof 100 artificial “words” The or-
thographicrepresentatiorof eachword was createdby
randomlyassigningit an averageof 4 out of 20 possi-
bleorthographideaturesThesemantiagepresentationsf
wordsweregeneratedby distortinga “prototype” pattern
which wasgeneratedandomlyto have 10 of 50 possible
semantideatures.Thedegreeof typicality of wordsis re-
flectedin thenumberof featureghatits representatiodif-
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Figure 5. A depiction of the relationshipin semantic
spacebetweertheprototypeof acatgyoryandtypicalver
susatypical exemplarsin that cateyory. Adaptedfrom
Plaut(1996).

fersfrom the prototype—typicalvordssharemostof the
featuresof the prototype,while atypicalwords sharefar
fewer. To implementthis, two setsof 50 word meanings
were generatedrom the prototypeusingdifferentlevels
of randomdistortion. The typical set consistedof in-
stanceproducediy a smalldistortionof the prototype—
eachsemantideaturehada probabilityd = 0.1 of being
randomlyregeneratedwith probability p = 0.2). The
atypical setconsistedf instancegeneratedisingalarge
distortion(d = 0.5). Geometricallyif the prototypecor-
respondso a particularpointin thespaceof semantiaep-
resentationghetypical wordsarepointsthatarenearthe
prototype,while the atypicalwordsarefartheraway (see
Figure5). Orthographigatternsvereassignedo seman-
tic patternsrandomlyto ensurethat, asin English,there
was no systematiaelationshipbetweenorthographyand
semantics.

A network wastrainedwith back-propagatiothrough
time to activate the correctsemanticpatternfor eachof
the 100 artificial words when presentedwith its ortho-
graphicrepresentation.The architectureof the network
was broadlythe sameasthe network from the first sim-
ulation (seeFigure 2). The differencesverethat,in the
currentnetwork, therewere only 20 orthographicunits
(comparedwith 32), 50 semanticunits (comparedwith
68),and50% of the possibleconnectiondbetweergroups
of unitsareincluded(comparedvith 25%).

After training, the network waslesionedby removing

arandomly-selecte@5% of the connectiondetweerthe
intermediataunitsandthe semantiaunits. This lesionlo-
cationandseverity wasselectedecausé producesnin-
termediateamountgeneralizatior{27%;seePlaut,1996),
providing a clearopportunityfor the compositionof the
treatedsetto have eithera positive or negative impacton
generalization.

After eachlesion, performanceon all 100 wordswas
measuredA presentedvord wasconsidereaorrectif the
semanticgeneratedby the network hada higherproxim-
ity (normalizeddot product)to the correctsemanticgor
theword thanto thesemanticgor any otherword. Based
onthisinitial performancethetypical andatypicalword
setseachweredividedin half, balancingfor correctper
formance. The lesionednetwork was thenretrainedfor
50 epochsgitheron half of the typical wordsor on half
of the atypicalwords (25 words). During retraining,im-
provementin correctperformancevas measuredn this
treatedsetaswell ason two untreatedsets: the remain-
ing words of the sametype (typical or atypical),andall
of thewordsof the othertype. Eachhalf of eachgroupin
turn sened asthe treatedsetfor retraining(reinitializing
the weight eachtime). In this way, the retraining pro-
cedurewasableto measurghe generalizatiorto typical
andatypicalwordswhenretrainingon typical or atypical
words.

Somevhat surprisingly althoughretrainingon typical
exemplargproducedjreaterecovery ontreatedtems,re-
training on atypicalexemplarsproducedgreatergeneral-
izationto untreatedtems(seeFigure6). Thesefindings
malke sensegiven the adequag with which setsof typ-
ical versusatypical exemplarsapproximatethe rangeof
semanticsimilarity amongall of thewords. Semantically
typical wordsaccuratelyestimatethe centraltendenyg of
a catayory, but provide little informationaboutthe ways
in which categgory memberscanvary. By contrasteach
atypicalword indicatesmary morewaysin which mem-
berscandiffer from the prototypeandyet still belongto
the catgyory. Thus,collectively, the semantiaepresenta-
tionsof atypicalwordscover moreof the featuresneeded
by the entire setof wordsthando the representationef
moretypical words. At thesametime, the averageeffects
of retrainingon atypicalwordsprovidesa reasonables-
timate of the centraltendeng of the cateyory, yielding
generalizatiorio typical words (asfoundin humancate-
gorylearningby, e.g.,Posne& Keele,1968).In thisway,
the simulationgeneratec novel predictionabouthow to
selectitemsfor treatmentso asto maximizegeneralized
recovery.

Conclusion

Attemptsat cognitive rehabilitationof acquireddyslexic
patienthaveresultedn considerablémprovemenin per
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function of the semantictypicality of the treatedandun-
treatedsets.Adaptedfrom Plaut(1996).

formanceon treatedwords,aswell assignificantgeneral-
izationto untreatedut relatedwords,althoughthedegree
of recovery acrosspatientscanvary considerably There
is, however, little understandin@f the underlyingmech-
anismsby which cognitive functionsrecover, eitherspon-
taneouslyor asa directresultof therapeutigntervention.
Generalizationin the domainof readingvia meaningis

particularly puzzling as thereis no systematicrelation-
ship betweenthe written or spolen forms of words and
theirmeanings.

of the system,andthe extentto which the itemsselected
for treatment@pproximatehis structure.Specifically the
first simulationfound robustrecovery andgeneralization
from retrainingfollowing a lesionnearsemantic put not
following a lesionnearorthography In this way, the net-
work resultsmay help explain the variability in recosery
obsenedin patients. Thesecondimulationfound,some-
whatsurprisingly thatretrainingonlesstypicalexemplars
within acateyory producedjreateigeneralizatiothandid
retrainingon moretypical exemplars.Overall, theresults
demonstratéhatinvestigation®f relearningafterdamage
in connectionishetworks can provide an accountof the
generahatureof relearningandgeneralizatiotin patients
andcangeneraténterestinghypothesesboutthe design
of effective patienttherayy.
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