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Plaut and Booth (2000) developed a distributed connectionist model of written word comprehension and
evaluated it against empirical findings on individual and developmental differences in semantic priming
in visual lexical decision. Borowsky and Besner (2006) raised a number of challenges for this model.
First, the model was not shown to be capable of accurately distinguishing words from orthographically
matched nonwords. Second, its use of a semantic measure for performing lexical decision appears
inconsistent with evidence of normal lexical decision in brain-damaged patients with semantic impair-
ments. Third, the explanation offered for additive and interactive effects in the model appears incom-
patible with certain aspects of existing empirical findings on the joint effects word frequency, priming
context, and stimulus quality. In this reply, the authors demonstrate with additional modeling that none
of these issues is problematic for the model.
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The study of semantic priming in lexical tasks has yielded rich
and highly intricate patterns of results that have provided impor-
tant insights into the nature of lexical and semantic processing (see
McNamara, 2005; Neely, 1991, for reviews). As various theories
have grappled with the complexities of these findings, though, they
have been led to augment basic processing mechanisms (e.g.,
spreading activation) with additional, seemingly independent
mechanisms (e.g., expectancy-list generation, retrospective match-
ing, resource limitations), many of which seem directly tailored to
the experimental priming manipulation itself. In this way, re-
searchers have begun offering theories of priming rather than
theories of lexical processing that give rise to priming.

In Plaut and Booth (2000), we offered an account of lexical
processing, grounded in general (connectionist) principles, that we
claimed could account for certain aspects of the relevant empirical
phenomena, including some findings thought to implicate addi-
tional mechanisms. We supported this account by a specific com-
putational implementation that, although necessarily limited and
intentionally simplified, instantiated the core aspects of the theory.
To enable the quantitative adequacy of the implemented model to
be evaluated in detail, we developed it in the context of three
specific empirical studies: adults and children tested on primed
lexical decision at a long (800 ms) stimulus onset asynchrony
(SOA) and adults tested at a short (200 ms) SOA. Previous work
had found greater semantic priming (i.e., faster reaction times
[RTs] following related vs. unrelated primes) for low- versus
high-frequency target words and inhibition (i.e., slower RTs fol-

lowing unrelated vs. neutral primes) at a long, but not short,
SOA (see Neely, 1991). We examined the extent to which these
effects depended on individual differences among participants
in age or perceptual ability. In brief, we found that greater
priming for low-frequency targets was exhibited only by par-
ticipants with high perceptual ability and that adults but not
children exhibited inhibition at the long SOA. We went on to
show that our implemented model behaved similarly. Here, we
present a brief review of the Plaut and Booth model before
addressing recent challenges to it.

The Plaut and Booth (2000) Model

The Plaut and Booth (2000) model is a fully recurrent,
distributed connectionist model trained on an abstract task
analogous to written word comprehension. Input patterns for
128 words were encoded over three banks of six units, each of
which coded one of 15 letters by two active units. Five of the
two-unit patterns (“vowels”) occurred only in the middle bank;
the remaining 10 (“consonants”) occurred only in the other two
banks. In this way, the input patterns could be construed as
having a consonant–vowel– consonant (CVC) structure, al-
though it should be clear that the degree to which the represen-
tations captured real orthographic structure— even among CVC
words—was minimal.

Output patterns were created by first generating eight random
binary prototype vectors of 100 elements and then randomly
distorting them to create 16 exemplars from each prototype vector
(half of which were high-dominance in that they involved less
distortion than the remaining ones). In this way, the output patterns
could be construed as being organized into semantic categories
(i.e., clusters of patterns with relatively high feature overlap)
although, again, the degree to which the representations captured
real semantic structure was minimal. The output patterns were
assigned randomly to input patterns to instantiate the critical
property that, among monomorphemic words, orthographic simi-
larity is unrelated to semantic similarity.
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The model was trained with back-propagation (Rumelhart, Hin-
ton, & Williams, 1986) to activate the semantic output features of
each of the 128 words when presented with its orthographic input
features. Input was presented to the network, not by fixing the
states of input units, but by driving them with external input; the
strength of this external input was used to approximate individual
differences in perceptual ability. In processing a given word, the
network started from the final pattern produced by the preceding
word, and words were sampled such that those from the same
semantic category (i.e., those generated from the same prototype)
tended to follow each other during training. In addition, half of the
words in each category were presented twice as often as the others.

At various points in training (corresponding to age differences),
the model was tested on lexical decision using prime-target pairs
of words and nonwords (i.e., novel orthographic patterns). The
prime stimulus was presented and processed for a relatively short
or long amount of time (corresponding to SOA) and then replaced
by the target stimulus, which was processed until the output
activations stabilized. Lexical decisions were based on a measure,
termed stress, of the degree to which the stable semantic activa-
tions were close to binary and the processing time required to
reach stability for the target was taken as the model’s response
latency. Thus, the model’s accuracy and latency could be evalu-
ated as a function of six factors: word frequency (number of
training presentations), category dominance (amount of distortion
from category prototype), priming context (related vs. unrelated
vs. nonword primes), SOA (short vs. long prime processing), age
(total amount of training), and perceptual ability (strength of
external input).

The Plaut and Booth (2000) model is an example of what Kello
and Plaut (2003) termed a fundamentalist approach to cognitive
modeling. Instead of attempting to incorporate realistic scale and
complexity in the task it addresses, it abstracts away as much
extraneous detail as possible, embodying only those principles and
properties that are claimed to account for the relevant phenomena.
Although this approach has important limitations, it can provide a
clearer understanding of why the principles give rise to the phe-
nomena. Plaut and Booth attempted to contribute to this goal by
explaining the model’s performance by reference to properties of
the sigmoid activation function used by output units (and others) in
the network and how the various factors contribute to the strength
of input provided to these units by the rest of the network.

Although a fundamentalist model is, by its very nature, highly
abstract, it must nonetheless be evaluated in detail to determine the
extent to which its behavior provides support for the underlying
theory. Borowsky and Besner (2006) challenged the empirical
adequacy of the Plaut and Booth (2000) implementation and hence
the degree to which it supports our theoretical claims that a single
(connectionist) mechanism suffices for lexical processing. They
offered three main criticisms: (a) the model’s ability to accurately
distinguish words from orthographically matched nonwords was
not established; (b) the model’s reliance on semantics to perform
lexical decision is contradicted by normal lexical decision accu-
racy in patients with semantic impairments; and (c) the model fails
to account for the empirically observed relationships among the
effects of word frequency, priming context, and stimulus quality.
We take up each of these criticisms in turn.

Lexical Decision With Orthographically Matched
Nonwords

All three of Plaut and Booth’s (2000) empirical studies used
essentially the same stimulus materials. Analyses indicated that the
words and nonwords were not matched orthographically—for ex-
ample, the mean summed positional bigram frequency for non-
words was only 76% that of words (62.4 vs. 82.0, respectively).
Accordingly, to provide an appropriate comparison to the empir-
ical data, the Plaut and Booth model was tested using nonwords
with approximately the same degree of similarity to the artificial
words as held among the experimental stimuli. Given the limita-
tions of the available orthographic forms, the only way to accom-
plish this was to reverse the distribution of consonants and vow-
els—that is, to use nonwords with vowel–consonant–vowel
(VCV) structure. The resulting nonwords had an average of 1.87
features in common with words, which is 84% that of the mean
word–word overlap of 2.22 features. Thus, the similarity between
words and nonwords was, if anything, slightly greater in the
simulation than in the empirical studies.

Borowsky and Besner (2006) pointed out that it would be trivial
for human participants to distinguish real VCV nonwords from
CVC words in an empirical study. This is, of course, true but bears
little relevance for evaluating the simulation, which used neither
real words nor nonwords. More to the point, they also questioned
whether the model can, like human participants, accurately per-
form lexical decision on the basis of semantic stress when non-
words are matched orthographically to words. Although this has
already been demonstrated with real words and nonwords in a
more full-scale distributed connectionist model (Plaut, 1997), it is
worth evaluating in the current context.

Accordingly, a replication of the Plaut and Booth (2000) simu-
lation1 was tested after 200,000 word presentations—equivalent to
Plaut and Booth’s adult condition—for its ability to distinguish the
128 trained CVC words from the remaining 372 CVC orthographic
forms as nonwords. For comparison, performance was also mea-
sured on the original 128 VCV nonwords. Each word or nonword
was presented both in isolation and preceded by every word as
prime at both the long and short SOAs.

When stimuli were presented in isolation, the distributions of
stress values for words and nonwords did not overlap; stress values
for words ranged from 0.943 to 0.978, whereas they ranged from
0.793 to 0.930 for CVC nonwords and from 0.774 to 0.916 for
VCV nonwords. When stimuli were presented following word
primes, a stress threshold of 0.927 yielded 99.9% hits, 99.9%
correct rejections of CVC nonwords, and 100% correct rejections
of VCV nonwords. Thus, the model is essentially perfect at dis-
tinguishing words from orthographically matched nonwords.

Lexical Decision With Semantic Impairment

As just described, lexical decisions by the Plaut and Booth
(2000) model are based on semantic stress. This design decision

1 The original simulation reported by Plaut and Booth (2000) was lost
because of a computer malfunction and faulty backup storage. The repli-
cation reported here followed all of the simulation methods reported in the
original article. It is not exactly equivalent because of differences in the
initialization of the pseudorandom number generator and minor changes in
the simulator code made subsequent to the original work.
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was more for practical than theoretical reasons, as we were careful
to point out (p. 812):

Other network models and empirical findings have illustrated the
importance of examining the interaction among orthographic, phono-
logical, and semantic representations when trying to account for
behavioral data from naming and lexical decision tasks. . . . Thus, the
current simulation, which involved only a mapping from orthography
to semantics, cannot be expected to provide a full account of lexical
processing in general, nor even of lexical decision performance in
particular. . . . In a more comprehensive version of our account of
lexical decision, we would assume that subjects can base their deci-
sions on any available information in the lexical system, and that they
adopt a strategy that optimizes their performance given the composi-
tion of the stimuli. . . .

Nonetheless, Borowsky and Besner (2006) objected to the use of
a semantic measure for making lexical decisions on the basis of
evidence reviewed by Coltheart (2004) that some brain-damaged
patients with semantic impairments exhibit normal lexical decision
accuracy.

Without necessarily agreeing that all of Coltheart’s (2004) ev-
idence should be taken at face value, it is still worth examining
how lexical decision performance in the model is influenced by
semantic damage. Semantic lesions were administered to the net-
work by selecting a specified proportion of semantic units at
random and fixing their activations at zero. Performance on lexical
decision to isolated words and CVC nonwords was determined
following 32 instances of lesion at each of five levels of severity—
0.025, 0.05, 0.1, 0.2, and 0.3—in which the decision criterion was
set separately for each severity to yield a beta value near 1.0. For
comparison, semantic performance on each word was measured in
terms of whether the network succeeded in activating its semantic
representation fully accurately (thresholding unit activations at
0.5).2 Figure 1 shows the lexical decision and semantic perfor-
mance of the model as a function of the proportion of semantic
units lesioned. The results demonstrate that lexical decision per-
formance is relatively unaffected over a range of lesion severities
that produce substantial semantic impairment. The reason is, es-
sentially, that distinguishing the semantic activation of one word
from that of another requires far more detailed information—and,

thus, is less robust to damage—than distinguishing either from the
much weaker activation produced by a nonword.

Effects of Word Frequency, Priming Context, and
Stimulus Quality

The most extensive of Borowsky and Besner’s (2006) criticisms
concerned whether the Plaut and Booth (2000) model can account
for the joint effects of word frequency, priming context, and
stimulus quality. Although Plaut and Booth did not explicitly
address effects of stimulus quality, an earlier, similar model (Plaut,
1995) did, using the same computational manipulation of external
input strength that Plaut and Booth used to approximate individual
differences in perceptual ability. Indeed, the earlier model exhib-
ited the empirically observed qualitative pattern of performance—
priming context interacted with both word frequency and stimulus
quality, but the latter two did not interact.3 Given the similarities
of the two models, it seems reasonable to examine whether the
account offered by Plaut and Booth for perceptual ability would be
expected to generalize to stimulus quality. It should be kept in
mind, though, that there are presumably many other ways of
modeling variations in stimulus quality (e.g., reducing contrast,
adding noise) and nothing in Plaut and Booth (2000) depends on a
claim that manipulating external input strength per se is the best
approach.

Borowsky and Besner’s (2006) analysis of these issues was
based not on the actual behavior of the Plaut and Booth (2000)
model, but on their interpretation of a sigmoid diagram that we
used to explain additive and interactive effects in the model. In
brief, Plaut and Booth explained interactions in terms of the
diminishing returns of the nonlinear (sigmoid) unit activation
function—when one factor is sufficiently strong to drive activa-
tions into the asymptotic range of the sigmoid function, the effect
of a second factor will be diminished. In contrast, when both
factors fall within the linear range of the function (or equidistant
from the center), the factors will combine additively. Borowsky
and Besner argued that this account precludes additive and inter-
active patterns within the same RT range. In particular, they
discussed three sets of empirical findings that appear problematic
for the account.

Borowsky and Besner (1993)

Although the high-perceptual-ability condition in the Plaut and
Booth (2000) model produced the standard finding of greater
priming for low- versus high-frequency words, the low-perceptual-

2 This measure of semantic performance is, of course, only indirectly
related to observable performance on behavioral tasks thought to tap
conceptual knowledge. Tasks for which less than fully accurate semantic
representations suffice would be expected to show greater preservation
with mild and moderate damage, and lexical decision performance de-
grades with more severe semantic damage (as observed empirically by
Rogers, Lambon Ralph, Hodges, & Patterson, 2004).

3 Borowsky and Besner (2006) point out that Plaut (1995) reported the
lack of an interaction of frequency and stimulus quality only in terms of
difference scores (unrelated minus related priming contexts). However, the
factors also did not interact in the model’s base RTs, F(3, 378) � 0.31, p �
.992.

Figure 1. Correct performance of the model on lexical decision and on a
measure of semantic performance as a function of the proportion of
semantic units lesioned.
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ability condition exhibited a slight tendency toward the reverse
pattern numerically, although the effect was never statistically
reliable. By contrast, Borowsky and Besner (1993) found empiri-
cally that their low-stimulus-quality condition produced not the
reverse pattern, but a stronger version of the standard pattern.

Note, however, that Plaut and Booth’s (2000) low-perceptual-
ability participants behaved like the model in that they also pro-
duced a numerical (but not reliable) reverse interaction. Thus,
under the assumption that stimulus quality and perceptual ability
are equivalent, there is an empirical discrepancy between
Borowsky and Besner’s (1993) findings and those of Plaut and
Booth. This may be one indication that using the same manipula-
tion for both factors is inappropriate.

There is, however, a way to reconcile the two sets of findings
using the properties of the sigmoid function. Perhaps Borowsky
and Besner’s (1993) low-stimulus-quality condition was analogous
to Plaut and Booth’s (2000) high-perceptual-ability condition,
falling in the upper range of the sigmoid that produces the standard
interaction. The low-perceptual-ability condition would then fall in
the linear range or perhaps even slightly into the lower half of the
sigmoid, as Plaut and Booth suggest. By contrast, Borowsky and
Besner’s high-stimulus-quality condition would fall even further
toward asymptote, in which the frequency-by-context interaction is
reduced because of a ceiling effect. Although this proposal is
speculative, it suggests that Borowsky and Besner’s findings can
be accommodated within our account.

Stolz and Neely (1995)

Borowsky and Besner (2006) discussed Experiment 2 of Stolz
and Neely (1995), which measured how the influence of stimulus
quality on semantic priming depends on relatedness proportion and
association strength. Although all four combinations of these fac-
tors yielded comparable RT ranges, only the combination of high
association strength and high relatedness proportion yielded a
reliable interaction of stimulus quality and priming context.

An initial point to make is that the data exhibit the general trend
that the interaction becomes stronger as each individual factor
increases in strength. Although it is reliable only in the case in
which both relatedness proportion and association strength are
high, the case in which only association strength is high produced
12 ms more priming for low- versus high-quality targets, although
the difference wasn’t quite reliable, t(190) � 1.40, p � .0816,
one-tailed (misreported by Stolz & Neely, 1995, p. 605, as p �
.10). This general pattern across conditions is consistent with Plaut
and Booth’s (2000) account of additive and interactive effects.

Second, it should be noted that the manipulation of relatedness
proportion in the experiment involved different sets of participants,
and the manipulation of association strength used different target
words and was blocked within the experiment. Thus, rather dif-
ferent response criteria may have been operating across the four
combinations of relatedness proportion and association strength,
making any comparison of absolute RT ranges difficult to
interpret.

However, even if the comparisons of RT ranges were accepted,
it turns out that the resulting pattern is not problematic for the
model. Collapsing over both long and short SOAs and considering
only word primes, the model shows reliable main effects of word
frequency, F(1, 126) � 77.53, p � .001, stimulus quality (0.9 vs.

0.82 as in Plaut & Booth, 2000), F(1, 126) � 34.99, p � .001, and
priming context, F(1, 126) � 202.9, p � .001, reliable interactions
of context with frequency, F(1, 126) � 10.04, p � .005, and
context with quality, F(1, 126) � 9.28, p � .005, but no interaction
of frequency and quality, F(1, 126) � 1.67, p � .198.4 Table 1 lists
the mean settling times for the model for each combination of
factors. Averaging the relevant table entries reveals that the range
of mean settling times exhibiting the interaction of context and
frequency (4.450–4.694) contains the ranges that produce both the
interaction of context and quality (4.523–4.611) and the additive
combination of frequency and quality (4.460–4.665). Thus, the
model exhibits both interactions and additive effects within the
same RT range. Insofar as this pattern of results is precluded by
Plaut and Booth’s sigmoid-based explanation of additive and in-
teractive effects—as argued by Borowsky and Besner (2006)—the
results suggest that the account only approximates the actual
behavior of the model.

Magnitude of Stimulus Quality Effects

A final criticism raised by Borowsky and Besner (2006) is that
the magnitude of effects of stimulus quality (or, rather, perceptual
ability) exhibited by the model is smaller than observed empiri-
cally. Although the specific numbers they cited are not represen-
tative, the general point holds: Across all adult conditions in Plaut
and Booth (2000), the mean effect of perceptual ability was 35.3
ms for the model but 80.0 ms for human participants (i.e., 2.27
times larger). Borowsky and Besner expressed concern that a
stronger manipulation of external input strength would compro-
mise the additive relationship of stimulus quality and word
frequency.

When the model is tested using a broader range of external input
strength (0.90 vs. 0.75), the magnitude of the effect of stimulus
quality increases by a factor of 2.54 (see Table 1). Nonetheless, the

4 The interaction of stimulus quality and priming context in the model
depends on SOA, F(1, 126) � 6.41, p � .05, such that it is reliable at the
long SOA, F(1, 126) � 10.84, p � .001, but not at the short SOA, F(1,
126) � 1.31, p � .255. The same pattern holds when using a stronger
manipulation of input strength (0.75 vs. 0.90). Similarly, Stolz and Neely
(1995) found a reliable quality-by-context interaction at a 800-ms SOA
(Experiment 1) but not at a 200-ms SOA (Experiment 2) when collapsing
across relatedness proportion and association strength, although planned t
tests for the short SOA showed an overadditive effect for strong associates
under a high relatedness proportion. The model cannot be evaluated against
this latter finding because the relevant factors were not included in the
simulation.

Table 1
Settling Times for the Model as a Function of Word Frequency,
Priming Context (Related vs. Unrelated), and Stimulus Quality

Stimulus
quality

High frequency Low frequency

Related Unrelated Related Unrelated

0.9 4.437 4.483 4.609 4.684
0.82 4.463 4.516 4.625 4.705
0.75 4.497 4.555 4.658 4.749
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basic qualitative pattern of performance remains unchanged: main
effects of word frequency, F(1, 126) � 72.36, p � .001, priming
context, F(1, 126) � 189.7, p � .001, and stimulus quality, F(1,
126) � 92.86, p � .001, interactions of context with frequency,
F(1, 126) � 9.90, p � .005, and with quality, F(1, 126) � 9.41,
p � .005, but, critically, still no interaction of frequency and
quality, F(1, 126) � 0.401, p � .528.

Conclusion

Borowsky and Besner (2006) raised a number of challenges for
Plaut and Booth’s (2000) implemented model of semantic priming
effects in lexical decision, calling into question the degree to which
it provides support for a single-mechanism account of lexical
processing. First, can the model discriminate words from ortho-
graphically matched nonwords? Second, is the use of a semantic
measure for performing lexical decision compatible with preserved
lexical decision in patients with semantic impairments? Third, is
the model consistent with existing findings on interactive and
additive effects among word frequency, priming context, and
stimulus quality?

The answer to these questions seems to be yes. Despite the fact
that the model is, by design, highly abstract in its instantiation of
lexical processing, it nonetheless appears to capture important
properties of human lexical processing. In light of these positive
findings, we find no compelling reason to adopt Borowsky and
Besner’s (2006) suggestion that theories of lexical processing
stipulate multiple explicit stages of processing.
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