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According to Bowers (2009), the finding that there are neurons with highly selective responses to

familiar stimuli supports theories positing localist representations over approaches positing the type

of distributed representations typically found in parallel distributed processing (PDP) models.

However, his conclusions derive from an overly narrow view of the range of possible distributed

representations and of the role that PDP models can play in exploring their properties. Although it

is true that current distributed theories face challenges in accounting for both neural and behavioral

data, the proposed localist account—to the extent that it is articulated at all—runs into more

fundamental difficulties. Central to these difficulties is the problem of specifying the set of entities

a localist unit represents.

Keywords: localist representations, distributed representations, grandmother cells, parallel distributed

processing, connectionist modeling

For many years, neuroscientists and psychologists have consid-

ered how best to think about how entities such as words, faces,

objects, and concepts are represented in the brain. In their chapter

“Distributed Representations,” Hinton, McClelland, and Rumel-

hart (1986) distinguished two broad alternatives.

Given a network of simple computing elements and some entities to be

represented, the most straightforward scheme is to use one computing

element for each entity. This is called a local representation. . . . This

chapter describes one type of representation that is less familiar and

harder to think about than local representations. Each entity is repre-

sented by a pattern of activity distributed over many computing

elements, and each computing element is involved in representing

many different entities. (p. 77)

In other words, in a localist representation, the relationship of

entities to units (e.g., neurons) is one-to-one, whereas in a distrib-

uted representation, it is many-to-many. On the basis of a broad

range of arguments and evidence, many neuroscientists and psy-

chologists since Barlow (1972) have rejected the notion that indi-

vidual neurons would correspond to entities as complicated as

one’s grandmother and instead accept that the brain uses some

form of distributed representation (see Gross, 2002, for a historical

consideration of the grandmother cell hypothesis).

In a provocative recent article, Bowers (2009) attempted to turn

these views on their head, presenting a number of arguments and

findings that he believes establishes the biological plausibility of

localist representations and calls into question the presumed sup-

port for distributed representations. For proper evaluation these

claims, however, it is necessary to clarify what exactly counts as

evidence for different types of representation, and certain aspects

of Bowers’s definitions and terminology are problematic in this

regard. Moreover, although current distributed theories certainly

face challenges in accounting for both neural and behavioral data,

the proposed localist account—to the extent that it is articulated at

all—runs into fundamental difficulties. Perhaps the most difficult

challenge is the one we consider last: the delineation of what

counts as an entity to which a localist representation would be

assigned.

What Is a Localist Representation?

The interactive activation (IA) model of letter and word perception

(McClelland & Rumelhart, 1981) may provide a useful context for

clarifying the nature of localist and distributed representations and

Bowers’s claims about them. The model consists of three layers of

interacting units: letter feature units at the bottom (various strokes

at each of four positions), letter units in the middle (one per letter

at each position; e.g., t, i, m, and e), and word units at the top (one

per word; e.g., time). The IA model is usually thought of as a

localist model because it contains single units that stand in one-

to-one correspondence with words, but the current context de-

mands more careful terminology. As the earlier quote from Hinton

et al. (1986) makes clear, a representation is localist or distributed

only relative to a specific set of entities. Thus, the word level of the

IA model is localist relative to words, and the letter level is localist

relative to (position-specific) letters. However, at the letter level,

the presentation of a word results in the activation of multiple units

(corresponding to its letters), and each of these units is activated by

multiple words (i.e., words containing that letter in that position).

Thus, according to the standard definitions, the letter level in the

IA model is localist relative to letters but distributed relative to

words.
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As it turns out, however, it can be difficult to distinguish localist

representations from distributed representations on the basis of

activity because localist units often become active not only for the

entity to which they correspond but also for entities that are similar

to it. Bowers (2009) illustrated this property in the IA model, in

which the input for blur activates its word unit strongly but also

partially activates the word unit for blue (Figure 4, p. 226). Indeed,

Hinton et al. (1986) emphasized that this off-item activation can be

difficult to distinguish from the patterns that comprise distributed

representations.

Moreover, in most localist theories it is assumed that there are

multiple redundant copies of each dedicated unit. Thus, at a very

general level, in both localist and distributed representations, mul-

tiple units become active in processing a given entity, and each

unit will become at least partially active for multiple entities. This

raises the question of the basis on which one might interpret neural

activity as being consistent or inconsistent with one or the other of

these possibilities.

One problem with evaluating Bowers’s (2009) claims about

representation is that his use of this term conflates two distinct

aspects of a neural system. According to Bowers (2009), “the

critical question is not whether a given neuron responds to more

than one object, person, or word but rather whether the neuron

codes for more than one thing” (p. 225). Presumably “responds to”

refers to whether a neuron becomes active when certain stimuli are

presented, but Bowers never defined what he means by “codes for”

(nor “one thing”—more on that later). A plausible interpretation,

however, is that he is referring to the knowledge that the system

has about a particular entity. That is, one can distinguish whether

knowledge about an entity is encoded in the connections coming

into or out of a particular unit or whether it is distributed across the

connections of many units. This distinction is important for un-

derstanding the operation of the system, but it is different from the

question of the type of neural activity that is evoked by a given

stimulus, which is the issue that frames the standard definitions of

localist representations versus distributed representations (cited

earlier).

For example, Bowers (2009) stated that “a key claim of [the

PDP] approach is that . . . knowledge is coded as a pattern of

activation across many processing units, with each unit contribut-

ing to many different representations” (p. 220). Actually, on the

parallel distributed processing (PDP) approach, knowledge is en-

coded not in patterns of activity but in patterns of weighted

connections between units. A pattern of activation (often over

multiple participating brain areas) corresponds to the internal

representation or interpretation of a given input, but the knowledge

in the system that determines what activations will occur is to be

found in the strengths of the connection weights. Distributed

activity can be caused by either localist or distributed knowledge

representation.

By interpreting Bowers’s (2009) claims to be about locality of

knowledge rather than activity, we can make sense of otherwise

problematic assertions. For instance, he denied that words have

distributed representations at the letter level in the IA model,

stating that if this were the case, “the pattern of activation across

a set of letters at layer n �1 should support the same (or at least

similar) functions as the corresponding localist representations [of

words] at layer n” (p. 223). In terms of activation, this claim is

clearly false—there is no reason why the pattern of activity pro-

duced by a given stimulus at every level of the system should

support the same functions.

For example, the retina is certainly necessary for recognizing a

viewed object and contains all the relevant information, but it

cannot support object recognition alone; rather, the information

must be rerepresented by a hierarchy of visual areas before it can

effectively engage object knowledge. On the other hand, viewed in

terms of knowledge rather than activity, Bowers’s (2009) claim

makes perfect sense. Within the IA model, the lexical knowledge

that the letter string time is a word is coded only in the connections

between the corresponding word unit and its letters; remove that

single unit, and time is no longer a word to the model.

One implication of recognizing that Bowers’s (2009) claims

about localist and distributed representations are actually about the

degree of locality of knowledge rather than activity is that his

terminology is inconsistent with most other researchers, who in-

terpret claims about representation to refer to patterns of activity

(see Hinton et al., 1986; Page, 2000). But perhaps more important,

it forces a reconsideration of what type of data on neural activity

would provide evidence for the locality of knowledge of words,

objects, and faces.

All of the evidence that Bowers (2009) took to support localist

over distributed knowledge consists of observations in which

individual neurons show various types of highly selective, inter-

pretable responses. Given that Bowers (2009) stated quite clearly

that the grandmother cell hypothesis concerns the visual recogni-

tion of faces, words, and objects, many of the findings he cited

(e.g., responses in simple organisms, sensory thresholds, cells in

human hippocampus that respond strongly to a single individual

among those tested), although intriguing in their own right, do not

directly bear on the hypothesis. Regarding face selectivity, a

typical reported finding is that of Young and Yamane (1992), who

found one temporal-lobe neuron among 850 that responded

strongly to one face and weakly to another out of 27 faces. But

without a thorough exploration of the response of the cell to

systematic variations of the selective face, it is difficult to know

whether the cell is responding to the entire face or to some aspect

of it that is distinctive within this set but shared by other faces.

Moreover, the fact that only one cell out of 850 showed such a

selective response raises the question of what the other cells are

coding for. The natural reply on a localist account would be that

they code for faces other than those that were presented during

training. The problem is that the same is true of the apparently

selective cell—it might also have responded to other faces if they

had been presented. In fact, it is not possible to establish defini-

tively that a neuron responds to “one thing” without testing it on all

possible things; the best that can be done is to estimate a degree of

sparsity in the neural response within the sampled subset of stim-

uli. It is interesting to note that Quian Quiroga, Kreiman, Koch,

and Fried (2008) have done just this in their analysis of response

properties of single neurons in human hippocampus. On the basis

of the pattern of response that they saw, they estimated that each

familiar pattern may activate about two out of every 1,000 neurons

in the hippocampus and other areas in the medial temporal lobe

(MTL). Although this seems a small number, they note that with

about 1 billion neurons in the MTL, this means that around 2

million neurons participate in the pattern associated with every

object. From this and further considerations, they concluded that
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each MTL neuron may respond to 50–150 different objects.1 It

may be noted that the hippocampus is thought to use very sparse

representations compared with other regions of the brain. Thus, it

seems likely that most neurons participate in representing at least

hundreds of objects.

In summary, physiological evidence does not appear to help the

case in favor of the localist representation scheme that Bowers

(2009) defended. Let us now consider his contention that aspects

of the neurophysiological data are incompatible with the distrib-

uted alternative. Although his arguments here may seem compel-

ling at first glance, Bowers’s (2009) claims concerning the prop-

erties of distributed representations require closer scrutiny before

reaching a conclusion.

Distributed Representations and the PDP Approach

Bowers (2009) distinguished three types of distributed representa-

tions based on how many units participate in the representation and on

whether the multiple things to which a given unit responds are similar

or unrelated: dense coding (many units, each responding to unre-

lated things), coarse coding (many units, each responding to sim-

ilar things), and sparse coding (few units, each responding to

unrelated things). Bowers treated these as distinct alternatives,

arguing that on a distributed account, sparse coding applies only

within the hippocampus and coarse coding applies, if at all, within

the dorsal pathway and motor system. In contrast, he asserted that

distributed accounts assume that the ventral pathway uses what he

called dense representations.

There is room for improvement in Bowers’s (2009) terminol-

ogy, since it partially conflates the sparsity of the representation

with the relatedness of the things to which a neuron responds. It

may be helpful instead to distinguish two dimensions: sparsity,

defined as to the fraction of neurons in a population that are

activated by something,2 and perplexity, defined as the degree to

which the things a neuron responds to are unrelated. We say that

a neuron’s response is multiplex if it responds to a number of

apparently unrelated entities. It is noteworthy that a sparse repre-

sentation can be quite multiplex. For example, in the rodent

hippocampus, the very same neuron can have completely nonover-

lapping place fields even in two highly similar environments

(Leutgeb & Leutgeb, 2007).

Most of Bowers’s (2009) criticism was directed against dense,

multiplex coding, which he largely equates with the type of inter-

nal representations learned by PDP networks. However, he recog-

nized that the two issues are separable.

Many researchers consider dense distributed representations a core

theoretical claim of the PDP approach (e.g., Bowers, 2002; Elman,

1995; Hummel, 2000; Page, 2000; Smolensky, 1988; Thorpe, 1989).

If it turns out that many current PDP models of memory, language,

and perception do learn sparse, coarse, or local codes (contrary to the

widespread assumption), or if these models are modified so that they

learn these types of representations (in order to be consistent with

biology), it would amount to a falsification of this theoretical assump-

tion. At minimum, the neuroscience makes it necessary to think about

the PDP approach in a fundamentally different way. (Bowers, 2009, p.

238)

Bowers’s characterization of dense multiplex coding as a core

theoretical claim of the PDP approach is incorrect.3 In fact, the

approach takes no specific stance on the number of units that

should be active in representing a given entity or in the degree

of similarity of the entities to which a given unit responds.

Rather, one of the main tenets of the approach is to discover

rather than stipulate representations (Plaut & McClelland,

2000). Internal representations are learned under the pressure of

various demands, and the degree to which they exhibit dense or

sparse activation or have units that respond to similar or unre-

lated things is a consequence of the basic network mechanisms,

the learning procedure, and the structure of the tasks to be

learned. In general, systematic tasks—in which similar inputs

map to similar outputs—yield denser activation (to support

generalization), whereas unsystematic tasks (e.g., word and

face recognition) give rise to sparser activation (to avoid inter-

ference). Moreover, if a unit responds to one pattern, it will tend

to respond to other similar patterns because its input is a linear

sum of the contributions of incoming connections, although this

tendency is weaker in unsystematic tasks because weights must

grow larger to override the effects of similarity (for discussion,

see McClelland, McNaughton, & O’Reilly, 1995; Plaut,

McClelland, Seidenberg, & Patterson, 1996).

Thus, it is a mistake to treat different points in the two-

dimensional space of sparsity and perplexity as distinct alterna-

tives. Both the number of active units and the degree of similarity

among the things to which they each respond are dimensions that

can vary between the extremes that Bowers (2009) considered, and

all of the intermediate combinations can be understood as para-

metric variations within the space of distributed representations. In

fact, one of the theoretical strengths of the PDP approach is that it

provides a computational framework in which to explore the

implications of representations throughout this space to discover

which types are most effective in which contexts.

To be clear, we are not claiming that the response properties of

units in any particular PDP model adequately capture the relevant

neurophysiological observations in the corresponding domain. In-

deed, most such models (including those critiqued by Bowers,

2009) are directed at accounting for behavioral rather than neural

findings. The computational principles that underlie the PDP ap-

1 Bowers (2009, p. 245) claims that the analyses of Waydo, Kraskov,

Quian Quiroga, Fried, and Koch (2006, cited by Quian Quiroga et al.,

2008) are consistent with the possibility that the 50–150 stimuli to which

a given neuron is estimated to respond might all be the same person. This

is incorrect. Waydo et al.’s (2006) analysis derived a measure a defined to

be the proportion of distinct stimuli to which a given neuron responds,

which they estimate to be between .2%–1% for the MTL. For Bowers’s

claim to hold, a � 1/U (where U is the universe of possible stimuli) so

there could only be at most U � 1/.002 � 500 possible stimuli, which is

far too few.
2 Since neurons’ activation is not strictly all or none, a more sophisti-

cated definition is generally required, but this definition is a useful first

approximation.
3 It is, perhaps, telling that the majority of researchers cited by Bowers

(2009) as considering dense coding to be a core claim of the PDP approach

are advocates of localist representations (Bowers, Hummel, Page, Thorpe)

and that the remaining researchers (Elman, Smolensky) do not claim that

a lack of interpretability is a critical property of PDP systems but rather

claim that the interpretability of internal representations is irrelevant to the

theoretical approach.
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proach are intended to capture how brain areas learn to represent

and process information as patterns of activity over large groups of

neurons rather than the detailed operation of the individual neurons

themselves. The fact that such models have been reasonably suc-

cessful at accounting for behavioral phenomena across a broad

range of domains suggests that the computational principles are

capturing something important about neural computation.

Even so, there are clearly many aspects of the standard PDP

framework that do not emulate known aspects of neurophysiology:

the lack of separate excitatory and inhibitory cell populations, the

purely linear integration of inputs with no consideration of den-

dritic geometry, the use of a real-valued symmetric activation

function, no consideration of metabolic constraints, and the prop-

agation of error signals back through forward-going connections,

to mention only a few. However, as has repeatedly been empha-

sized, PDP models are generally not intended to emulate all

aspects of the underlying neural substrate: The models are in-

tended to abstract away from many details. This is not to say that

physiology cannot inform the PDP framework: Some of the be-

havioral consequences of the framework would no doubt be im-

proved if it were brought into closer correspondence with neuro-

physiological findings. Given these points, we agree with Bowers

(2009) that a careful consideration of findings from neuroscience

motivates modifications and elaborations of the PDP approach that

will ultimately enable it to provide better accounts of both neural

and behavioral phenomena. Yet, it is essential to avoid the belief

that the only valid model at the behavioral level is one that can

capture all of the detail at the physiological level. Simplification is

of the essence in successful modeling (see McClelland, 2009);

what is essential is identifying the appropriate simplifications, and

determining which details matter.

To us, it seems most important that the representations used in

our models capture the same similarity structure that is captured by

neural representations in the brain and not that the individual

neurons participating in these representations have individually

interpretable (i.e., low perplexity) responses. In this light, we are

heartened by recent results from an extensive neurophysiological

investigation of the patterns of activation produced in monkey

inferotemporal cortex in response to a wide range of different

pictures of natural and man-made objects (Kiani, Esteky, Mirpour,

& Tanaka, 2007). These patterns appear to capture the same sort of

cluster structure seen in learned distributed representations (e.g.,

Elman, 1990; Rogers et al., 2004). It may be instructive to analyze

this data set to understand better whether the individual neurons

involved in these representations have interpretable response pro-

files in response to the stimuli used, but this may not change the

essential functional characteristic of these representations.

Problems With the Notion That a Neuron Could

Represent “One Thing”

Bowers’s (2009) main goal was “to show that the current

findings in neuroscience are compatible with localist models in

psychology” (p. 221), but he never fully specified the underlying

assumptions of such models beyond the proposal that there is a

dedicated unit (or set of units) for each familiar thing, among

which he included words, faces, and objects. To us, a key prob-

lematic aspect of this becomes clear if we focus attention on the

question of just exactly what set of (experiences with) entities in

the world ought to be treated as “the same thing.”

For the sake of discussion, let us begin with the concept of a

grandmother cell. When one speaks of “person X’s grandmother,” it

seems clear that one is speaking of a single entity—a certain specific

person, such as Mrs. Ethyl Watts Shaffer (Jay McClelland’s maternal

grandmother). From an ontological point of view, this seems among

the least problematic of cases. Other cases of specific objects include,

for example, David Plaut’s 2001 Volkswagen Jetta, one of the tulips

in the vase on Jay McClelland’s dining room table, and (one may

imagine) the piece of toast Jeffrey Bowers had as part of his breakfast

on the morning of February 28, 2009. Does it make sense to assert

that people have single neurons (or groups of neurons) dedicated to

each of these objects? To continue the last example, since the

specific piece of toast was only ever encountered once, Bowers’s

recognition of it (as a piece of toast) cannot be attributed to

previous experience with that particular object but must depend on

previous experiences with other objects—other pieces of toast he

presumably has encountered at other times and places.

Given that so many of the objects one encounters are encoun-

tered exactly once (e.g., cars passed on the road, dogs seen in the

park), it seems necessary to build a theory of recognition that

encompasses not only familiar entities that one encounters repeat-

edly, such as grandmothers and automobiles but also those entities

that one generally encounters as not repeated but related instances,

including tulips and pieces of toast.

A localist theory can, in fact, be extended to the latter sort of

entity—indeed, the use of word units in the IA Model is an

example. The localist unit for the word time is not a unit for a

single entity like one’s grandmother, but rather a unit for a class of

objects generally taken to be tokens of the word time. A similar

approach might be taken to other classes of objects, including

tulips, pieces of toast, cars, dogs, and so on. In general, it would

appear that for a localist theory to be of interest, the things localist

units should represent should be thought of as including classes of

objects in addition to specific instances.

But the use of localist representations for many of the classes of

objects one encounters immediately becomes deeply problematic.

To see this, consider that there are a huge number of different

kinds of tulips and different kinds of pieces of toast. There are

different kinds of bread that may be toasted, differences in the

details of the manner of toasting, and differences in the way the

bread might have been baked, sliced, or complemented with butter,

jam, or (perhaps) Marmite. A localist theorist would likely claim

that only some of these distinctions should be reified by assigning

a localist unit to each of the alternative subvarieties, but wherever

the localist stops (whether manually or on the basis of a vigilance

parameter; Grossberg, 1987), a problem will remain: There will be

some further distinctions that are important in some contexts but

that are represented identically by the same localist unit.

A final move a localist theorist might make (and this is indeed

a common approach in many areas of psycholinguistics and cog-

nitive science) is to assert that each token is assigned its own

distinct localist unit and that recognition of the next distinct token

involves contributions from an ensemble of these units. For many

researchers this approach has been appealing (e.g., Johnson, 1997;

Pierrehumbert, 2001), and it may seem at first glance to be an

escape for the localist approach. However, if this approach is

adopted, it amounts to accepting that the knowledge that subserves
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the recognition of an object is not stored in the connections of a

single localist unit or even in a dedicated set of units corresponding

to that single object but is, instead, stored in connections involving

a large number of contributing units. The piece of toast Jeffrey

Bowers eats every morning will depend on the contributions of all

of the instances, not of the same piece of toast but of other pieces

of toast Jeff has previously encountered—and this, surely, is not a

localist representation.

By contrast, these problems are immediately solved by assum-

ing instead that distinctions among different instances of a larger

class depend on differences in (learned, experience-dependent)

distributed representations. In such representations, similarity is

captured by pattern overlap, whereas differences can be captured

by the extent to which patterns do not overlap. Experience, includ-

ing experience with the degree to which particular distinctions

matter and the context in which they matter, will affect the degree

of overlap in the distributed representations.

In short, we see little prospect for a coherent theory of localist

representation. The representations the brain uses may be different

from those that emerge from learning in some PDP models, but

they are unlikely to be localist in nature.

Conclusions

Bowers (2009) reviewed a range of neurophysiological data

indicating that although very rare, some neurons exhibit surpris-

ingly selective responses to familiar entities, such as faces or

objects. He interpreted the findings as supportive of theories in

which the knowledge of such entities is localized to specific,

dedicated units and as problematic for theories in which knowl-

edge of multiple entities is distributed and overlapping. The find-

ings themselves are certainly provocative and challenge certain

types of distributed models. However, Bowers took an overly

narrow view of the possible range of distributed representations

and their properties and underestimated the value of PDP models

in exploring these properties. Moreover, the localist theory he

espoused runs into difficulty when confronting how people learn

and generalize their knowledge. Distributed models need to make

greater contact with neurophysiological data but should not be

abandoned for localist ones.

References

Barlow, H. (1972). Single units and sensation: A neuron doctrine for

perceptual psychology. Perception, 1, 371–394.

Bowers, J. S. (2009). On the biological plausibility of grandmother cells:

Implications for neural network theories in psychology and neuro-

science. Psychological Review, 116, 220–251.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14,

179–211.

Gross, C. (2002). Genealogy of the grandmother cell. The Neuroscientist,

8, 512–518.

Grossberg, S. (1987). Competitive learning: From interactive activation to

adaptive resonance. Cognitive Science, 11, 23–63.

Hinton, G. E., McClelland, J. L., & Rumelhart, D. E. (1986). Distributed

representations. In D. E. Rumelhart, J. L. McClelland, & the PDP

Research Group (Eds.), Parallel distributed processing: Explorations in

the microstructure of cognition. Volume 1: Foundations (pp. 77–109).

Cambridge, MA: MIT Press.

Johnson, K. (1997). Speech perception without speaker normalization. In

K. Johnson & J. W. Mullennix (Eds.), Talker variability in speech

processing (pp. 145–165). San Diego, CA: Academic Press.

Kiani, R., Esteky, H., Mirpour, K., & Tanaka, K. (2007). Object category

structure in response patterns of neuronal population in monkey inferior

temporal cortex. Journal of Neurophysiology, 97, 4296–4309.

Leutgeb, S., & Leutgeb, J. K. (2007). Pattern separation, pattern comple-

tion, and new neuronal codes within a continuous CA3 map. Learning &

Memory, 14, 745–757.

McClelland, J. L. (2009). The place of modeling in cognitive science.

Topics in Cognitive Science, 1, 11–38.

McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why

there are complementary learning systems in the hippocampus and

neocortex: Insights from the successes and failures of connectionist

models of learning and memory. Psychological Review, 102, 419–457.

McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation

model of context effects in letter perception: 1. An account of basic

findings. Psychological Review, 88, 375–407.

Page, M. P. A. (2000). Connectionist modeling in psychology: A localist

manifesto. Behavioral and Brain Sciences, 23, 443–512.

Pierrehumbert, J. (2001). Exemplar dynamics: Word frequency, lenition,

and contrast. In J. L. Bybee & P. Hopper (Eds.), Frequency and the

emergence of linguistic structure (pp. 137–157). Amsterdam, the Neth-

erlands: John Benjamins.

Plaut, D. C., & McClelland, J. L. (2000). Stipulating versus discovering

representations. Behavioral and Brain Sciences, 23, 489–491.

Plaut, D. C., McClelland, J. L., Seidenberg, M. S., & Patterson, K. (1996).

Understanding normal and impaired word reading: Computational prin-

ciples in quasi-regular domains. Psychological Review, 103, 56–115.

Quian Quiroga, R., Kreiman, G., Koch, C., & Fried, I. (2008). Sparse but

not “Grandmother-cell” coding in the medial temporal lobe, Trends in

Cognitive Sciences, 12, 87–91.

Rogers, T. T., Lambon Ralph, M. A., Garrard, P., Bozeat, S., McClelland,

J. L., Hodges, J. R., & Patterson, K. (2004). The structure and deterio-

ration of semantic memory: A neuropsychological and computational

investigation. Psychological Review, 111, 205–235.

Waydo, S., Kraskov, A., Quian Quiroga, R., Fried, I., & Koch, C. (2006).

Sparse representation in the human medial temporal lobe. Journal of

Neuroscience, 26, 10232–10234.

Young, M. P., & Yamane, S. (1992, May 29). Sparse population coding of

faces in the inferotemporal cortex. Science, 256, 1327–1331.

Received March 1, 2009

Revision received June 11, 2009

Accepted June 12, 2009 �

288 COMMENTS



Postscript: Parallel Distributed Processing in Localist

Models Without Thresholds

David C. Plaut
Carnegie Mellon University and the Center for

the Neural Basis of Cognition

James L. McClelland
Stanford University

Bowers (2010) mischaracterizes the goals of parallel distributed

processing (PDP research)—explaining performance on cognitive

tasks is the primary motivation. More important, his claim that

localist models, such as the interactive activation model, “recog-

nize” their inputs when a threshold is reached runs directly counter

to an essential feature of these models. This undermines his at-

tempt to distinguish between what a neuron responds to and what

it codes for and, indeed, undermines the whole localist argument

he has proposed. Bowers’s (2010) also continues to face difficulty

in specifying what localist units correspond to, and all of the

possible choices face problems. In the paragraphs below we sub-

stantiate these points.

Goals of the PDP Approach

The PDP approach, for us, is grounded in the belief that certain

computational principles of neural systems are fundamental to

explaining human cognitive performance. Although we agree with

Bowers (2010) that part of the attraction of the approach is its

potential to make contact with neural as well as behavioral data,

neural verisimilitude per se has not been our primary goal; rather,

the approach is directed first and foremost at accounting for

performance on cognitive tasks as it occurs in real time, how

performance changes over the course of normal and abnormal

development and in adulthood, as well as addressing individual

differences and the consequences of brain damage.

Graded Interactive Processing Versus Bowers’s

“Recognition Threshold”

In accounting for human behavior, one aspect of PDP models

that is especially critical is their reliance on interactivity and

graded constraint satisfaction to derive an interpretation of an input

or to select an action that is maximally consistent with all of the

system’s knowledge (as encoded in connection weights between

units). In this regard, models with local and distributed represen-

tations can be very similar, and a number of localist models remain

highly useful and influential (e.g., Dell, 1986; McClelland &

Elman, 1986; McClelland & Rumlehart, 1981; McRae, Spivey-

Knowlton, & Tenenhaus, 1998). In fact, given their clear and

extensive reliance on parallel distributed processing, we think it

makes perfect sense to speak of localist PDP models alongside

distributed ones. Some readers may imagine that Bowers’s (2010)

characterization of localist models is consistent with these models.

However, his response to our reply to his target article brings out

a crucial disagreement. Bowers (2010) claims that what makes a

model localist is that there is a threshold associated with the unit

corresponding to an item, such that when that threshold is reached

the item is recognized or identified. However, most of the models

mentioned do not employ a threshold and, moreover, imposing a

threshold would undermine their ability to account for the cogni-

tive phenomena they were designed to address.

The interactive activation model of letter perception, which

Bowers (2009) repeatedly cited as his prime example, is a clear

case in point. Of great interest to McClelland and Rumelhart

(1981) in developing the model was the fact that context facilitates

letter perception not only when the letter occurs within a familiar

word (such as cave) but also when it occurs in an unfamiliar but

wordlike pseudoword (such as mave). A first crucial assumption in

the model was that activations of letter-level units were passed on

to units at the word level in a graded and continuous way, so that

partial and ambiguous activity at the letter level could propagate

forward to the word level. A second crucial assumption was that

partial activation at the word level, potentially spread over many

word-level units, could contribute feedback activation to the letter

level, thereby enhancing the activation of letter-level units for all

of the letters presented—even though, taken together, these letters

did not exactly match, or lead to the recognition of, any particular

word. The power of the model lay precisely in allowing partial

activation of units for many different entities to influence process-

ing, without ever employing the concept of a recognition thresh-

old. Although it is sometimes useful to apply a threshold for the

purpose of measuring response times, two critical points must be

noted: (a) such a threshold is external to the operation of the model

and relevant only to response selection; indeed, a natural extension

of the model in which partial activation over words would mutu-

ally constrain each other in sentence contexts would be precluded

by the imposition of recognition thresholds; and (b) the use of a

threshold for response selection is itself a simplification that can be

useful when downstream processes are not of interest but is prob-

lematic when considering the more generally constructive nature

of response generation (e.g., in reading aloud a novel item like

mave, in which partial activation of many word units is thought to

contribute; Glushko, 1979). The lack of recognition thresholds in

localist models undermines Bowers’s (2009) attempt to distinguish

between units that code for and units that are activated by an input.

It would be highly undesirable for the brain to make such a

distinction, and we see no functional or physiological basis for it

to do so.

What Does a Localist Unit Represent?

Although localist models (without recognition thresholds) have

many useful properties by virtue of engaging in parallel distributed

processing, there are two key reasons we prefer models that

employ distributed representations: (a) it seems impossible to find

a single appropriate granularity for localist representations, making

every choice suspect, and (b) in PDP models trained with any one

of several powerful learning methods, the granularity of the rep-

resentations is determined through the course of learning and need

not be stipulated by the modeler.

A particularly challenging issue facing localist models is how to

capture both the shared and distinctive aspects among a set of

entities—for example, the need for related but somewhat different

knowledge in dealing with the different types of toast (or tulips)
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one might encounter. In his reply, Bowers (2010) failed to address

the core of our concern about this matter. PDP models address this

issue by learning distributed representations in which regions of

overlap among the patterns for different entities capture their

commonalities and regions of nonoverlap capture their idiosyncra-

sies. We pointed out that in the absence of a well-developed

learning theory, localist models face an awkward choice as to

whether to allocate units to instances or to classes of entities. In his

reply, Bowers (2010) reinforced this concern by continuing to

equivocate on this issue. In one place, his units stand for a single

familiar thing (e.g., one’s particular grandmother), “The core claim

of a grandmother theory is that single neurons at the top of a

hierarchy represent one familiar thing, be it an object, face, or

word” (Bowers, 2010, p. 303), while in another place, they stand

for an equivalent class of familiar things, “a grandmother cell

theory is only committed to the claim that single neurons code for

an equivalent class of familiar things” (p. 303)” This of course

raises a host of questions, among which are the basis for deter-

mining equivalence. Apparently, we are to believe that different

grandmothers are not equivalent but that individual tulips are; but

what is the rule for deciding? Bowers’s (2010) attempt to address

these issues is to suggest that the key criterion for allocating a unit

is the level at which an entity can be individuated.

It is only necessary to devote a single unit to a specific tulip on

McClelland’s dining room table if McClelland can identify it (as

opposed to other tulips). Barring this, it is possible that there is a unit

for tulips (in general) at the top of his visual processing hierarchy,

and . . . the perceptual vividness of each tulip might be due to the

specific set of coactive neurons across all the levels of the visual

hierarchy. (Bowers, 2010, p. 303)

By “perceptual vividness” Bowers (2010) presumably means

perceptual distinctness” of different instances, since in our re-

sponse we noted that no two tulips are, in fact, the same. However,

the problem is not just that different tulips are perceptually distinct

but that interacting with different tulips might sometimes require

somewhat different knowledge (these tulips are fresher than those

and so should be placed in the living room, or these tulips bloom

earlier and should be planted to make a nice display with other

early bloomers). In localist models in which a single unit is

responsible for identification, one may allocate a separate unit for

each tulip (or subtype of tulip), but then there is no way to share

knowledge based on the similarities of the different tulips; if one

instead assigns them all to the same unit, there is no way to treat

them differently. One common variant of localist theory addresses

this issue by allocating a localist unit to each separate experience

with each instance of every different type of entity and then

allowing partial activation of each instance to play a role in

determining the output of the system (of course, these instances

then form a kind of distributed representation). To us, this idea

really does not seem biologically plausible, if each localist unit is a

neuron or redundant set of neurons. Fortunately, PDP models make

this type of localist model unnecessary—each experience produces its

own subtle pattern of adjustment to the ensemble of connections

among the participating units, allowing distributed representations to

capture both the general properties of classes of objects and the

specific properties of individual instances (McClelland & Rumel-

hart, 1985).

In conclusion, we are in full agreement that the PDP approach

could be further elaborated to make more direct contact with

neural as well as behavioral data; recent efforts along these lines

(e.g., O’Reilly & Munakata, 2000; Gotts & Plaut, 2002) suggest

that the core computational principles that enable current PDP

models to explain normal and impaired cognitive behavior carry

forward. However, stipulating the use of localist representations

would, in our view, move us away from the goal of developing a

more comprehensive and integrated account of the neural basis of

cognition.
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