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Abstract
Networks that learn to make familiar activity patterns into sta-

ble attractors have proven useful in accounting for many aspects
of normal and impaired cognition. However, their ability to
generalize is questionable, particularly in quasiregular tasks that
involve both regularities and exceptions, such as word reading.
We trained an attractor network to pronounce virtually all of a
large corpus of monosyllabic words, including both regular and
exception words. When tested on the lists of pronounceable
nonwords used in several empirical studies, its accuracy was
closely comparable to that of human subjects. The network gen-
eralizes because the attractors it developed for regular words are
componential—they have substructure that reflects common sub-
lexical correspondences between orthography and phonology.
This componentiality is faciliated by the use of orthographic and
phonological representations that make explicit the structured
relationship between written and spoken words. Furthermore,
the componential attractors for regular words coexist with much
less componential attractors for exception words. These results
demonstrate that attractors can support effective generalization,
challenging “dual-route” assumptions that multiple, independent
mechanisms are required for quasiregular tasks.

Introduction
Many aspects of language processing can be characterized
as quasiregular—the relationship between inputs and out-
puts is systematic but admits many exceptions. An exam-
ple of such a task is pronouncing English words. Most
words are regular (e.g., GAVE, MINT) in that they ad-
here to standard spelling-sound correspondences. In fact,
skilled readers can use knowledge of these correspon-
dences to read pronounceable nonwords (e.g., MAVE,
BINT). However, they can also correctly pronounce ex-
ception words (e.g., HAVE, PINT) that violate these cor-
respondences.
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A central question in cognitive science is how best to
characterize the language system in order to account for
its success at quasiregular tasks. One view (e.g., Pinker,
1991; Pinker & Prince, 1988) is that the language sys-
tem learns and applies an explicit set of rules, augmented
when necessary with a separate enumeration of excep-
tions. An alternative view, coming out of connectionist or
parallel distributed processing research (e.g., Rumelhart &
McClelland, 1986), is that the processing of regular and
exception items can co-exist within a system that learns to
be sensitive to the statistical structure between the inputs
and outputs to which it is exposed.

In the specificcontext of word reading, “dual-route” the-
orists (e.g., Coltheart, 1985) have claimed that pronounc-
ing exception words requires a “lexical look-up” mecha-
nism that is separate from the grapheme-phoneme corre-
spondence rules that apply to regular words and nonwords.
Seidenberg and McClelland (1989, hereafter SM89) have
challenged this claim by developing a connectionist net-
work that successfully pronounces both regular and ex-
ception words. A major advantage of the connection-
ist approach is that it provides a more natural account
of graded effects of spelling-sound consistency among
words (Glushko, 1979) and how this consistency inter-
acts with frequency (Andrews, 1982; Seidenberg, 1985;
Seidenberg et al., 1984; Taraban & McClelland, 1987;
Waters & Seidenberg, 1985). However, the SM89 net-
work is much worse than skilled readers at pronouncing
nonwords (Besner et al., 1990). Since both regular and
exception words could be read solely by a lexical proce-
dure, it has been argued that the network’s poor nonword
reading is consistent with the dual-route claim that skilled
reading requires multiple mechanisms (Coltheart et al., in
press).

An important connectionist principle lacking in the
SM89 simulation (but present in their more general frame-
work for lexical processing) is interactivity. A common
way in which interactivity has been employed in networks
is in forming attractors for particular patterns of activity.
In an attractor network, the connection weights cause units
to interact in such a way that the initial pattern of activ-
ity generated by an input gradually settles to the nearest
attractor pattern. If the state of each unit is represented
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along a separate dimension in a high-dimensional state
space, then each attractor pattern corresponds to a par-
ticular point within this space, and the set of patterns that
settle to it corresponds to a region around it called its basin
of attraction. In order for the network to perform a task
correctly, each input pattern must fall within the attractor
basin for the appropriate interpretation.

Interactivity and attractors have played an central role
in accounting for a wide variety of phenomena in both
normal and impaired word reading (Hinton & Shallice,
1989; McClelland, 1991; McClelland & Rumelhart, 1981;
Mozer, 1991; Mozer & Behrmann, 1990; Plaut & Shal-
lice, in press). However, the nature of attractors would
appear to be at odds with the form of generalization re-
quired for reading nonwords. In an interactive system that
has formed attractors for words, one might expect that the
input for a nonword would often be captured within the
attractor basin for a similar word, resulting in many incor-
rect responses (lexicalizations). If it is true that attractors
cannot support generalization, their applicability in word
reading specifically, and cognitive science more generally,
would be fundamentally limited.

In this paper, we describe a simulation in which an
attractor network learns to pronounce a large corpus of
words, including many exception words,and yet also reads
pronounceable nonwords as well as skilled readers. The
network generalizes because the attractors it develops for
regular words are componential—they have substructure
that reflects common sublexical correspondences between
orthography and phonology that also apply to nonwords.
This componentiality is facilitated by the use of repre-
sentations that make explicit the structured relationship
between written and spoken words. These findings extend
those of Brousse and Smolensky (1989), who found mas-
sive generalization in a feedforward autoencoder network
trained in a combinatorial environment. In our network,
the componential attractors for regular words coexist with
much less componential attractors for exception words.
The results suggest that, rather than being a hindrance,
attractors are a particularly effective style of computation
for quasiregular tasks such as word reading.

Simulation

Task definition

The task involves generating the pronunciations of letter
strings—that is, mapping orthography to phonology. As
a training corpus, we used the 2897 monosyllabic words
of SM89, augmented with 101 words missing from that
corpus but used as word stimuli in various experiments.
This corpus contains almost all monosyllabic words in
English. The success of a network in accomplishing this
task depends critically on how orthographic and phono-

logical information is represented to the network. To the
extent that the representations make explicit the relevant
relationships between input and output, the network will
learn the task more easily and generalize better.

In phonology, the relevant structure of pronunciations
can be described in terms of ordered sets of phonemes. A
simple representation would be to have a separate unit for
each possible phoneme in each possible position within a
pronunciation (e.g., McClelland & Elman, 1986). Unfor-
tunately, this schemeresults in poor generalization because
the knowledge of when to activate a particular phoneme
must be learned separately for each position. At the other
extreme, a representation with only a single unit for each
phoneme regardless of position would lose information of
the relative ordering of phonemes, so that, for instance,
/tip/ and /pit/ would be indistinguishable.

However, it turns out that a scheme that involves only a
small amount of replication is sufficient to uniquely repre-
sent virtually all uninflected monosyllables. By definition,
a monosyllable contains only a single vowel, so only one
set of vowel units is needed. A monosyllable may contain
both an initial and a final consonant cluster, and almost ev-
ery consonant can occur in either cluster, so separate sets
of consonant units are required for the initial and final con-
sonant clusters. The remarkable thing is that this is nearly
all that is necessary. The reason is that, within an ini-
tial or final consonant cluster, there are strong phonotactic
constraints that arise from the structure of the articulatory
system. At both ends of the syllable, each phoneme can
occur only once, and the order of phonemes is strongly
constrained. For example, if the phonemes /s/, /t/ and /r/
all occur in the onset cluster, they must be in that order,
/str/. Given this, all that is required to specify a pronunci-
ation is which phonemes are present in each cluster—the
phonotactic constraints uniquely determine the order in
which these phonemes occur.

There are a small number of cases in which two
phonemes can occur in either order within a consonant
cluster (e.g., /p/ and /s/ in CLASP, LAPSE). To handle
such cases, it is necessary to add units to disambiguate the
order (e.g., /ps/). The convention is that, if /s/ and /p/ are
both active, they are taken in that order unless the /ps/ unit
is active, in which case the order is reversed. To cover
the pronunciations in the SM89 corpus, only three such
units are required: /ps/, /ts/, and /ks/. Interestingly, these
combinations are sometimes treated as single phonemes,
called affricates, and are sometimes written with single
letters (e.g., Greek

�
, English X).

This representational scheme applies almost as well to
orthography as it does to phonology because English is
an alphabetic language (i.e., parts of the written form of a
word correspond to parts of its spoken form). However,
the spelling units that correspond to phonemes, called
graphemes, are not necessarily single letters (e.g., TH,
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Table 1: The orthographic and phonological representations.

Phonology �
onset s b p d t g k f v z T D S Z l r w m n h y
vowel a @ e i o u A E I O U W Y �
coda r l m n N b g d ps ks ts s f v p k t z S Z T D

Orthography
onset Y S P T K Q C B D G F V J Z L M N R W H U CH GH GN GU PH PS QU RH SH TH TS WH
vowel E I O U A Y AI AU AW AY EA EE EI EU EW EY IE OA OE OI OO OU OW OY UE UI UY
coda H R L M N B D G C X F V J S Z P T K BB CH CK DD DG FF GG GH GN GU KS LL NG NN

PH PP PS QU RR SH SL SS TCH TH TS TT ZZ E ES ED
� /a/ in POT, /@/ in CAT, /e/ in BED, /i/ in HIT, /o/ in DOG, /u/ in GOOD, /A/ in MAKE, /E/ in KEEP, /I/ in BIKE, /O/ in
HOPE, /U/ in BOOT, /W/ in NOW, /Y/ in BOY, / � / in CUP, /N/ in RING, /S/ in SHE, /Z/ in BEIGE, /T/ in THIN, /D/ in THIS.

108 grapheme units

57 phoneme units

100 hidden units

Figure 1: The architecture of the network. Arrows represent
complete connectivity between or within layers.

PH). For this reason, the spelling-sound regularities of En-
glish can be captured most effectively if the orthographic
units represent graphemes instead of letters. To be consis-
tent with the treatment of affricates in phonology, when-
ever a multiletter grapheme is present (e.g., TH) we also
activate its components (e.g., T and H).

Table 1 presents the details of the phonological and
orthographic representations used in the simulation. A
total of 108 graphemes and 57 phonemes are required to
represent all of the words in the training corpus.

Network architecture
Figure 1 depicts the architecture of the network. In ad-
dition to the grapheme and phoneme units, the network
contains a single layer of 100 hidden units. These hidden
units are connected to each grapheme unit, each phoneme
unit, and each other. The phoneme units are also fully
connected to each other. All connections are bidirectional,
and the weights are initialized to small random values. In-
cluding bias connections, the network has a total of 23,203
connections. The units are standard sigmoidal units with
real-valued output ranging between 0.0 and 1.0.

Training procedure
The network was trained using a continuous version of
back-propagation through time (Pearlmutter, 1989). An
input string is presented to the network by clamping the
states of the appropriate grapheme units. The network is
given a fixed amount of time to process the input, during

which the units change their states gradually in response
to their net input from other units. The network’s perfor-
mance was measured by the cross-entropy (Hinton, 1989)
of the phoneme units’ activity with their desired activity.
For the purposes of training, the weighting of this error
measure was gradually increased during settling, pressur-
ing the network to be correct as quickly as possible. Also,
the network was halted once it succeeded in activating all
phonemes to within 0.2 of their correct values. The time
to halt was used as a measure of the naming latency of the
network.

In addition to the monosyllabic words, the training cor-
pus included training patterns consisting of each single
grapheme and the corresponding phoneme, because many
children are explicitly taught these correspondences when
learning to read. Rather than present each word with
a probability proportional to its frequency of occurrence
(Kucera & Francis, 1967) and update the weights immedi-
ately, we accumulated the error derivatives for the training
cases, each weighted by its frequency, before changing the
weights. This enabled the learning rates on each connec-
tion to be adapted independently during training (Jacobs,
1988; but see Sutton, 1992, for a recently developed online
version).

Testing procedure

The ordering of phoneme units, shown in Table 1, embod-
ies the relevant phonotactic constraints on the pronuncia-
tion of English monosyllables. Accordingly, the response
of the network to any orthographic input can be read off
simply by scanning the phonemes in left-to-right order
and concatenating all active phonemes (i.e., with activity
above 0.5). Because each pronunciation must contain ex-
actly one vowel, only the most active vowel is included
in the response. If any affricate unit is active, the order of
the corresponding phonemes is reversed.

Results

After 3200 sweeps through the training corpus, the net-
work correctly pronounced all but 10 of the words (99.7%
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correct). The missed words were all low-frequency excep-
tion words (e.g., BEIGE, SIOUX) and many of the incor-
rect responses to these were regularizations (e.g., SIEVE� /sEv/, SPA � /sp@/). Also, the naming latencies of the
network on frequency-matched sets of 48 regular words
and 48 exception words (Taraban & McClelland, 1987)
exhibit the standard effects of frequency (high 1.82 vs.
low 1.93, � 1 � 92=7.18, p � .01), consistency (regular 1.67
vs. exception 2.09, � 1 � 92=95.5, p � .0005), and their inter-
action ( � 1 � 92=3.63, p=.06) observed in human subjects.

However, our main concern is with how well the net-
work generalizes—that is, how well it reads pronounce-
able nonwords. We tested the network on three lists
of nonwords from two experimental studies. The first
two lists come from an experiment by Glushko (1979),
in which he compared subjects’ reading of 43 nonwords
derived from regular words (e.g., HEAN from DEAN)
with their reading of 43 nonwords derived from exception
words (e.g., HEAF from DEAF). The third list of non-
words comes from a study by McCann and Besner (1987),
in which they compared performance on a set of pseu-
dohomophones (e.g., BRANE) with a set of 160 control
nonwords (e.g., FRANE). We used only their control list
in the present investigation because we believe pseudoho-
mophone effects are mediated by aspects of the reading
system that are not implemented in our simulation. For
the purposes of an initial comparison, we considered the
response to a nonword to be correct if it was “regular”, as
defined by adhering to the grapheme-phoneme correspon-
dence rules as outlined by Venezky (1970).

On the Glushko regular nonwords, both the subjects
and the network are near perfect (subjects: 93.8% correct;
network: 97.7% correct). Performance on the McCann
and Besner control nonwords is somewhat worse (sub-
jects: 88.6% correct; network: 88.8% correct). This is
not surprising as the list contains a number of orthograph-
ically unusual nonwords (e.g., JINJE, VAWX) that are
more difficult to pronounce, both for subjects and for the
network.

On the Glushko exception nonwords, both subjects and
the network frequently fail to produce the correct (reg-
ular) pronunciation, with the network being somewhat
worse (subjects: 78.3% correct; network: 69.8% correct).
However, to understand this discrepancy, we must reeval-
uate how a “regular” response is defined. Consider the
nonword GROOK. What counts as regular depends on
whether we consider the context in which the vowel oc-
curs. OO is most frequently pronounced /U/ as in BOOT,
so one possibility is that /grUk/ is the regular pronuncia-
tion for GROOK. However, final OOK is almost always
pronounced /uk/ as in TOOK, so perhaps /gruk/ should be
regular. Thus far, we have considered /grUk/ to be correct
and /gruk/ to be an error. However, subjects are sensitive to
context in which vowels occur, as evidenced by their much

poorer performance on the Glushko exception nonwords
than on the regular nonwords. In fact, Glushko found that
80% of subject’s non-regular responses to exception non-
words were consistent with some other pronunciation of
the nonword’s body that occurs in the Kucera and Francis
(1967) corpus, leaving only 4.1% of the responses as actual
errors. Similarly, in the network, 84.4% of the non-regular
responses to exception nonwords match some other pro-
nunciation in the training corpus for the same body, and
over half of these were the most frequent pronunciation
of the body. Only 4.7% of the network’s responses were
actual errors.

It must be acknowledged that the network’s behavior
does not perfectly match that of subjects. Occasionally,
the network makes a frank mistake that subjects would not
make, such as omitting a phoneme or pronouncing PH as
/p/ instead of /f/. Nonetheless, the network is essentially
perfect at pronouncing words, and generalizes to reading
nonwords about as well as skilled readers. Thus, these
results constitute a direct challenge to dual-route claims
that skilled reading requires multiple, independent mech-
anisms (Coltheart et al., in press).

Network analyses
The network’s success at word reading demonstrates that,
through training, it has developed attractors for the pro-
nunciations of words. How then is it capable of reading
nonwords with novel pronunciations? Why isn’t the in-
put for a nonword (e.g., MAVE) captured by the attractor
for an orthographically similar word (e.g, GAVE, MOVE,
MAKE)? We carried out three analyses of the network
to better understand its ability to read nonwords. Be-
cause nonword reading involves recombining knowledge
derived from word pronunciation, we were primarily con-
cerned with how separate parts of the input contribute to
(1) the correctness of parts of the output, and (2 and 3) the
hidden representation for the word. The analyses involved
stimuli from Taraban and McClelland (1987), all of which
the network reads correctly.

The first analysis involved measuring how sensitive the
activity in each phonological cluster is to changes in the
activity of each orthographic cluster. For each word, the
activity of the grapheme units in a particular orthographic
cluster were gradually reduced until, when the network
was rerun, the phonemes in a particular phonological clus-
ter were no longer correct (i.e., at least one phoneme was
on the wrong side of 0.5). This “boundary” activity level
measures how important input from a particular ortho-
graphic cluster is to the correctness of a particular phono-
logical cluster; a value of 1.0 means that the graphemes
in that cluster must be completely active; a value of 0.0
means that the phonemes are completely insensitive to the
graphemes in that cluster. The boundary level can also be
interpreted as the radius of the word’s attractor basin along
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Table 2: The sensitivity of each phonological cluster to each
orthographic cluster in regular and exception words.

Orth. Phon. Cluster
Cluster onset vowel coda

Regular onset 0.491 0.000 0.000
Words vowel 0.000 0.439 0.023

coda 0.000 0.031 0.570
Exception onset 0.520 0.433 0.019

Words vowel 0.000 0.492 0.044
coda 0.012 0.428 0.503

Note: Words from Taraban and McClelland (1987).

a particular direction in state space.
Table 2 presents the average boundary activity levels

for each combination of orthographic and phonological
clusters in regular and exception words. First consider
the regular words. The diagonal entries are all large, in-
dicating that each phonological cluster is quite sensitive
to activity in the corresponding orthographic cluster. In
contrast, phonological clusters are almost completely in-
sensitive to activity in the remaining clusters, although
there is a slight mutual dependency between the vowel
and coda. Thus, an alternative onset (e.g., in a nonword)
can be substituted without affecting the pronunciation of
the body. Essentially, the attractor basin for a regular
word consists of three separate, orthogonal sub-basins:
one for the onset, one for the vowel, and one for the coda.
When the word is presented, the network settles into the
region in state space where these three sub-basins over-
lap, corresponding to the word’s pronunciation. However,
each sub-basin can apply independently, so that so-called
“spurious” attractor basins for nonwords exist where the
sub-basins for parts of words overlap.

This componentiality arises directly out of the degree
to which the network’s representations make explicit the
structure of the task. By minimizing the extent to which
information is replicated, the representations condense the
regularities between orthography and phonology. Only
small portions of the input and output are relevant to a
particular regularity, allowing it to operate independently
of other regularities.

Returning to Table 2, the attractor basins for exception
words are, by contrast, far less componential than those for
regular words. In particular, achieving the correct vowel
phoneme depends on the entire orthographic input. In
fact, most exception words are not regular precisely be-
cause they contain an unusual vowel pronunciation. Thus,
the network develops noncomponential attractor basins
for words when necessary. In this way, the network can
pronounce exception words and yet still generalize well to
nonwords.

The first analysis establishes the componentiality of the

attractors for regular words behaviorally, but provides lit-
tle insight into how this componentiality is implemented
by the hidden units. One possibility, consistent with dual-
route theories, is that the network has partitioned itself into
two sub-networks, one that reads regular words, and an-
other that reads exception words. If this were the case, we
would expect some hidden units to contribute to exception
words but not to nonwords, while others would contribute
to nonwords but not to exception words. We measured
the contribution a hidden unit makes to pronouncing a
letter string by how much the error in pronouncing the
string increases when the unit is removed from the net-
work. If the network had partitioned itself, there would
be a negative correlation across hidden units between the
number of exception words and the number of nonwords to
which each hidden unit makes a substantial contribution
(greater than 0.025). In fact, there is a moderate posi-
tive correlation between the numbers of exception words
and nonwords to which hidden units contribute (r=.43,
p � .0001). Thus, some units are more important for the
overall task and some are less important, but the network
has not partitioned itself into one system that learns the
rules and another system that learns the exceptions.

The questions remains, then, as to how the network—as
a single mechanism—implements componential attrators
for regular words (and nonwords) and noncomponential
attractors for exception words. The final analysis attempts
to characterize the degree to which hidden representations
for regular vs. exception words reflect the differences in
the componentiality of their attractors. Specifically, we
determined to what extent the contribution that a cluster
makes to the hidden representation depends on the context
in which it occurs—this should be less for words with more
componential representations. The contribution of a clus-
ter in a particular context was measured by the difference
between two hidden representations: the one generated
by the context with the cluster, and a baseline representa-
tion generated by the context alone. For each word, we
computed the correlation of the contribution that each or-
thographic cluster makes in the context of the entire word
with its contribution when presented in isolation.1 A high
correlation indicates that the contribution of a cluster to
the hidden representation is independent of the presence
of other clusters, and hence, reflects a high degree of com-
ponentiality.

For each consonant cluster, the average correlation for
regular words is significantly higher than for exception
words [onset: regular mean 0.776 (sd 0.059) vs. exception
mean 0.731 (sd 0.072), � 1 � 92=10.6, p � .002; coda: regu-
lar mean 0.732 (sd 0.130) vs. exception mean 0.643 (sd
0.210), � 1 � 94=6.25, p � .015]. For vowel clusters, there is
no significant difference [regular mean 0.703 (sd 0.126)

1For a cluster in isolation, the context without the cluster is no input
at all.
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vs. exception mean 0.694 (sd 0.104), �	� 1]. This may be
because all words contain a vowel, so that the word pre-
sented without a vowel may still activate the appropriate
vowel phoneme. Thus, at least with respect to consonant
clusters, the representations of regular words are more
componential than those of exception words. However,
what is surprising is that the average correlations for ex-
ception words, though lower than those of regular words,
are still quite high, and there is considerable overlap be-
tween the distributions. Furthermore, the representations
for regular words are not completely componential, given
that their correlations are significantly less than 1.0.

Apparently, the hidden representations do not strongly
distinguish between regular and exception words. Rather,
these representations seem to retain information about the
local content of individual clusters, while also capturing
some higher-order orthographic structure. The presence
of this higher-order structure is what makes the repre-
sentation of clusters in both regular and exception words
somewhat sensitive to context in which they occur. At the
phonological layer, information from the hidden repre-
sentation about individual clusters supports componential
attractors for regular words, while the higher-order struc-
ture supports less-componential attractors for exceptions.

Conclusion
Interactivity, and its use in implementing attractors, is
an important computational principle in connectionist ac-
counts of a wide range of cognitive phenomena. However,
the tendency of attractors to capture similar patterns would
appear to make them inappropriate for cognitive tasks,
such as word reading, which require novel responses to
novel inputs. The current research shows, to the con-
trary, that using representations that condense regularities
between inputs and outputs leads to the development of
attractors with componential structure that supports effec-
tive generalization. At the same time, the network can also
learn to develop noncomponential attractors for items that
violate the regularities in the task. In this way, attractors
provide an effective means of capturing both the regular-
ities and the exceptions in a quasiregular task. Given this
demonstration, the claim of dual-route theorists that such
tasks require multiple mechanisms appears unfounded.
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