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Abstract

Deep dyslexics are patients with neurological damage who
exhibit a variety of symptoms in oral reading, including
semantic, visual and morphological effects in their errors,
a part-of-speech effect, and better performance on con-
crete than abstract words. Extending work by Hinton &
Shallice (1991), we develop a recurrent connectionist net-
work that pronounces both concrete and abstract words
via their semantics, defined so that abstract words have
fewer semantic features. The behavior of this network
under a variety of “lesions” reproduces the main effects
of abstractness on deep dyslexic reading: better correct
performance for concrete words, a tendency for error re-
sponses to be more concrete than stimuli, and a higher
proportion of visual errors in response to abstract words.
Surprisingly, severe damage within the semantic system
yields better performance on abstract words, reminiscent
of CAV, the single, enigmatic patient with “concrete word
dyslexia.”

Introduction

Extensive work within cognitive neuropsychology sug-
gests that there are (at least) two separable processing
routes for pronouncing a written word: a “semantic” route
that recognizes the word and accesses its pronunciation
from its meaning, and a “phonological” route that obtains
�
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the pronunciation based on spelling-to-sound correspon-
dences. Strong evidence for the separability of these routes
comes from the existence of two complementary sets
of neurological patients (Marshall & Newcombe, 1973).
“Surface” or “semantic” dyslexics (Patterson et al., 1985)
have an impaired semantic route and so must rely pri-
marily on spelling-to-sound correspondences in oral read-
ing. In contrast, “deep” dyslexics (Coltheart et al., 1980)
have lost the ability to derive phonology directly from
print and so can pronounce words only via their meaning.
These latter patients shows a number of characteristics.
Five types of errors typically occur: semantic (e.g. CHEER� “laugh”), visual (SWORD

� “words”), morphological
(GROWN

� “growing”, also called “derivational”), visual-
and-semantic (PAPER

� “page”) and visual-then-semantic
(SYMPATHY

� “orchestra”). In addition, there is a pro-
nounced part-of-speech effect, with the ordering of cor-
rect performance being roughly: nouns � adjectives �
verbs � function words. Furthermore, concrete, highly
imageable words are read much better than abstract, less
imageable words. Finally, pronounceable non-words can-
not be read. Of these effects, the morphological errors
and part-of-speech effects may well be secondary to other
characteristics (see Funnell, 1987), but any account of the
disorder needs to explain all the other apparently indepen-
dent symptoms.

In the conclusion of their review article, “Deep Dyslexia
since 1980,” Coltheart, Patterson & Marshall (1987) ar-
gue that deep dyslexia presents cognitive neuropsychology
with a major challenge. They raise two main issues spe-
cific to the domain of reading. First, they argue that stan-
dard “box-and-arrow” information-processing accounts of
deep dyslexia (e.g. Morton & Patterson, 1980) provide no
explanation for why such a variety of symptoms should
virtually always occur in patients who make semantic er-
rors. Second, they point out that the standard explanations
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for semantic errors and for effects of abstractness involve
different impairments along the semantic route.

The loss of semantic information for abstract words
that explained visual errors in oral reading cannot
readily explain semantic errors in oral reading, since
semantic errors typically occur on moderately con-
crete words.... The deficit in the semantic routine that
gives a pretty account of semantic errors is, rather, an
abnormal sloppiness in the procedure of addressing
a phonological output code from a set of semantic
features. .... Must we now postulate several different
semantic-routine impairments in deep dyslexia, and
if so, why do we not observe patients who have one
but not the other: in particular, patients who make se-
mantic errors but do not have difficulty with abstract
words? [Coltheart et al., 1987, pp. 421-422]

Hinton & Shallice (1991, hereafter H&S) put forward a
connectionist account that addresses the first issue—why
semantic, visual and mixed visual-and-semantic errors co-
occur. Based on previous work by Hinton & Sejnowski
(1986) with Boltzmann Machines, they trained a recurrent
back-propagation network to map from the orthography of
40 three- or four-letter words to a simplified representation
of their semantics, described in terms of 68 predetermined
semantic features. They then systematically lesioned the
network, by removing proportions of units or connections,
or by adding noise to the weights, and found that the dam-
aged network occasionally settled into a pattern of seman-
tic activity that satisfied the response criteria for a word
other than the one presented. These errors were more often
semantically and/or visually similar to presented stimuli
than would be expected by chance. While the network
showed a greater tendency to produce visual errors with
damage near the input layer and semantic errors with dam-
age near the output layer, both types of error occurred for
almost all sites of damage.

H&S explain the co-occurrence of visual and seman-
tic errors in terms of the effects of damage in a network
that builds attractors in mapping between two arbitrarily
related domains (see Figure 1). The network can generate
completely different meanings from visually similar words
(e.g. CAT and COT) by constructing large basins of attrac-
tion around each familiar meaning, such that any initial
semantic pattern within the basin will move to that mean-
ing. Visually similar words are free to generate similar
initial semantic patterns as long as they each fall some-
where within the appropriate basin of attraction. Damage
within the semantic system distorts these basins, occa-
sionally causing the normal initial semantic pattern of a
word to be “captured” within the basin of a visually sim-
ilar word. Essentially, the layout of attractor basins must
be sensitive to both visual and semantic similarity, and so
these metrics are reflected in the types of errors that occur
as a result of damage.

CAT
�
COT
�

BED

"cat"
�

"bed"
�

"cot"
�

CAT "cot"

Orthography
�

Semantics
�

Figure 1: How damage to semantic attractors can cause
visual errors. The solid ovals depict the normal basins of
attraction; the dotted one depicts a basin after semantic
damage.

The nature of attractors in the H&S model addresses the
first challenge raised by Coltheart, Patterson & Marshall—
why various error types virtually always co-occur in deep
dyslexia.The current research investigates whether essen-
tially the same account can be extended to successfully
address the second difficulty they raise, relating to the
abstractness of the stimuli. The next section describes
in more detail the effects of abstractness on the reading
behavior of deep dyslexics. Following this, we define a
semantic representation capable of describing both con-
crete and abstract words, and develop a network that maps
from orthography to phonology via semantics. We then
subject the network to a variety of lesions and compare its
impaired performance with that of deep dyslexics.

Effects of abstractness in deep dyslexia

The effect of the abstractness of the stimulus on deep
dyslexic reading has been investigated in a number of
ways. The most basic is its effect on the probability that a
word will be read correctly. Coltheart et al. (1987) claim
that all patients who make semantic errors find concrete
words easier to read than abstract ones. In many patients
a very large difference is observed: 73% vs. 14% for KF
(Shallice & Warrington, 1980), 67% vs. 13% for PW and
70% vs. 10% for DE (Patterson & Marcel, 1977).

A more subtle effect is the way that the concreteness
of a word can affect the probability of the occurrence of
visual errors. In the three patients in which the relative
concreteness of the stimulus and response for visual er-
rors has been investigated, the response was consistently
more concrete for two of them (88% for GR (Barry &
Richardson, 1988); 73% for KF) and showed a similar
trend in the third (�
	�� 06 for PS (Shallice & Coughlan,
1980)). The same effect is also apparent in the corpora
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of visual errors made by PW and DE (see Coltheart et al.,
1980, Appendix 2) and by FM (Gordon et al., 1987)). In
addition, stimuli with a low concreteness rating produce
more visual errors than stimuli with high concreteness in
the two patients in which it has been examined (KF and
PS). Also, stimuli producing visual errors were less con-
crete than those producing semantic errors for PD (Colt-
heart, 1980) and FM (but not for GR). Thus a semantic
variable—concreteness—clearly influences the nature of
visual errors.

There is a single known exception to the advantage for
concrete words shown by deep dyslexics: patient CAV
with “concrete word dyslexia” (Warrington, 1981). CAV
failed to read words like MILK and TREE but succeeded
on highly abstract words such as APPLAUSE, EVIDENCE,
and INFERIOR. Overall, abstract words were more likely
to be correctly read than concrete (55% vs. 36%). In
complementary fashion, 63% of his visual error responses
were more abstract than the stimulus. However, the inci-
dence of visual errors was approximately equal for words
above and below the median in concreteness. While CAV
made no more semantic errors than might be expected by
chance, he appeared to be relying at least in part on the
semantic route because his performance improved when
given a word’s semantic category. CAV is clearly a very
unusual patient, but any account of the relation between
visual errors and concreteness can hardly ignore him.

A semantic representation for concrete and
abstract words

The type of semantic feature representation used by H&S
is quite similar to that frequently employed in psycho-
logical theorizing on semantic memory (e.g. Smith &
Medin, 1981). More complex, frame-like representations
can be implemented using this approach if units can rep-
resent a conjunction of a role and a property of what fills
it (Hinton, 1981). More critically for the present purpose,
there is a natural extension to the problem of the effects
of imageability. Jones (1985) has argued that words vary
greatly in the ease with which predicates about them can
be generated, and that this measure reflects a psycholog-
ically important property of semantic representation. For
example, more predicates can be generated for basic-level
words than for subordinate or superordinate words (Rosch
et al., 1976). Jones showed that there is a very high cor-
relation (0.88) between a measure of ease-of-predication
and imageability, and that the relative difficulty of parts-
of-speech in deep dyslexia maps perfectly onto their or-
dered mean ease-of-predication scores. He argued that
the effects of both imageability and part-of-speech in deep
dyslexia can be accounted for by assuming that the se-
mantic route is sensitive to ease-of-predication. Within
the present framework, the natural way to realize this dis-

TART TACT GRIN GAIN FLAN PLAN REED NEED

TENT RENT LOCK LACK HIND HINT LOON LOAN

FACE FACT ROPE ROLE WAVE WAGE CASE EASE

DEER DEED HARE HIRE FLEA PLEA FLAG FLAW

COAT COST LASS LOSS STAR STAY POST PAST

Figure 2: The 40 words used in the simulation.

tinction is by representing the semantics of concrete and
abstract words in terms of different numbers of features.

To examine the effect of concreteness on visual errors,
a set of 20 abstract and 20 concrete words were chosen
such that each pair of words differed by a single letter
(see Figure 2). We represented the semantics of each of
these words in terms of 98 semantic features.1 Sixty-
seven of these are taken from the H&S semantic features
for concrete words (e.g. main-shape-3d, found-woods, liv-
ing). The 31 additional features (e.g. has-duration, relates-
location, quality-difficulty) are required to make distinc-
tions among abstract words, but occasionally apply to
concrete words as well. Overall, concrete and abstract
words differ systematically in their semantic representa-
tions: concrete words have an average of 18.2 features
while abstract words have an average of only 4.7 fea-
tures. We do not claim that this type of representation
adequately captures the richness and subtlety of the true
meanings of any of these words. Rather, we claim that it
captures important qualitative distinctions about the rela-
tionships between word meanings—namely, that similar
words (e.g. LACK and LOSS) have similar representations,
and that there is a systematic difference between the se-
mantics of concrete and abstract words reflecting their
relative ease of predication.

Mapping from orthography to phonology via
semantics

A network that maps from orthography to phonology via
semantics was developed incrementally. An “input” net-
work, analogous to the H&S model, was trained to map
from orthography to semantics. A similarly structured
“output” network was trained separately to map from se-
mantics to phonology. These two networks were then
combined into the complete network, shown in Figure 3.

The task of the input network is to generate the seman-
tics of each word from its orthography. Orthography is
represented in terms of 4 groups of 8 features, with a sepa-
rate group for each letter in a word. The set of features was
designed to ensure that visually similar letters (e.g. E and
F) have similar representations, while keeping the number

1See Plaut & Shallice (1991) for precise details of the orthographic,
semantic, and phonological representations of words, as well as for how
the network architecture and training procedure were motivated.
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10 clean-up units 98 semantic units


10 intermediate units

32 orthographic units
�

10 intermediate units

10 clean-up units 61 phonological units

O=>I

I=>S
S=>I

S=>C

C=>S

Figure 3: The network for mapping from orthography to
phonology via semantics. Arrows represent unidirectional
sets of connections between groups of units—sets that will
be lesioned are labeled by the initials of the source and
destination unit groups (e.g. � ��� for orthographic-to-
intermediate connections).

of features to a minimum. The architecture of the input
network is shown in the bottom half of Figure 3. It was
trained with an iterative version of the back-propagation
learning procedure, known as “back-propagation through
time” (Rumelhart et al., 1986), to activate the appropriate
semantic units for a word when presented with the word’s
orthography corrupted by independent gaussian noise with
mean 0.0 and standard deviation ��� 0 � 1. The purpose of
training on noisy input is to encourage the development of
strong semantic attractors by enforcing a particular kind of
generalization: inputs that are near known patterns must
give identical responses. The network was required to ac-
tivate each semantic unit to within 0.1 of its correct state
over the last 3 of 8 iterations to ensure it had developed
stable, accurate fixedpoints for each word. The network
satisfied these criteria reliably after 4700 sweeps through
the training set.

Some procedure is needed for converting the pattern
of semantic activity produced by the input network into
an explicit response. H&S use an external procedure,
comparing the semantic activity produced by the network
with the correct semantics of all known words, select-
ing the closest-matching word as long as the match is
sufficiently good (the proximity criterion) and sufficiently
better than any other match (the gap criterion). However,
H&S provide no evidence that these criteria adequately
approximate the input requirements of a network that can
generate actual phonological output. An even more se-
vere problem is that the criteria are based on the semantic
representations themselves. Any differences found in per-
formance on concrete and abstract words might simply be
due to an inherent bias in the response criteria. However,
by developing an output network that pronounces concrete
and abstract words equally well under normal operation,

any systematic differences observed under damage must
be due to properties of the network itself and not some
external interpretation procedure.

Phonology is represented in terms of 7 “slots,”each con-
sisting of a group of position-specific, mutually-exclusive
phoneme units (including one for the “null” phoneme).
There are three slots for the initial (onset) consonant clus-
ter, one slot for the vowel, and three slots for the final
(coda) consonant cluster. The task of the output network
is to generate the phonological representation of each word
from its semantic representation. The architecture of this
network is shown in the top half of Figure 3. In addi-
tion to the major sets of connections, phoneme units in
the same consonant (or vowel) cluster are fully intercon-
nected. This connectivity allows units within a slot to
develop a “winner-take-all” strategy while still cooperat-
ing with units in other slots within the same cluster. The
clean-up units provide for coordination and competition
between clusters.

The output network was trained in a way that maximizes
the strength of the attractors it develops—no attempt was
made to simulate the development or mode of operation of
the human speechproduction system. Specifically, the “di-
rect” pathway (from semantics to phonology) was trained
to produce the correct phonemes of each word during the
last 2 of 5 iterations when presented with its semantics
corrupted by noise ( ��� 0 � 1). After about 3000 sweeps
through the training set, the activity of each phoneme unit
was accurate to within 0.2 of its correct value for each
word. At this point, intra-phoneme connections and the
clean-up pathway were added and the amount of noise
was increased to 0.2. In this way the clean-up pathway
learned to compensate for the limitations of the direct
pathway when pressed by severely corrupted input. The
network was trained to produce the correct phonemes over
the last 3 of 8 iterations to within 0.1 of their correct values.
The amount of noise prevented the network from achiev-
ing this criterion consistently, and after 18,000 training
sweeps performance had ceased to improve. However,
the network easily satisfied the criterion for every word
given uncorrupted input.

Finally, the output network was attached to the input
network and given about 100 sweeps of additional training
with the weights of the input network held fixed. This
ensured that the output network could generate the correct
pronunciation of each word over the last 3 of 14 iterations
with semantics generated by the input network rather than
being clamped.

The effects of lesions

After training, the complete network successfully derives
the semantics and phonology of each word when presented
with its orthography. We model the neurological damage
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of deep dyslexic patients by removing a proportion of the
connections between groups of units in the network. As in
patients, this damage impairs the ability of the network to
derive the correct pronunciations of words. In order to di-
rectly compare the behavior of the damaged network with
the reading responses of patients, we used the following
procedure to interpret the corrupted output of the network
as an oral response. Given the pattern of activity over
phoneme units produced by the stimulus, we determined
the most likely binary output vector for each slot, interpret-
ing unit states as independent probabilities. If eachof these
vectors had exactly one phoneme active and probability
greater than 0.6, the set of active phonemes constituted
the response of the network (which might be correct or
an error). Otherwise, the network was considered to have
made an omission—in fact, patients frequently produce
no response to a word, or respond, “I don’t know.” This
procedure is closely related to the maximum-likelihood
interpretation of the cross-entropy error function that was
used to train the network (Hinton, 1989). In contrast to the
response criteria that H&S applied to semantics, it does
not rely on any knowledge of what the network has been
trained on—it only considers the form of the output rep-
resentation. In particular, it cannot distinguish concrete
from abstract words.

Each of the 5 main sets of connections in the input net-
work was subjected to “lesions” of a wide range of severity,
in which a proportion of the connections were chosen at
random and removed. Fifty instances of each location and
severity of lesion were carried out, and correct, omission,
and error responses were accumulated. Figure 4 shows the
overall correct performance of the network as a function
of lesion severity. Considering correct responses to con-
crete and abstract words separately, there is a significant
advantage for concrete words (55% correct) over abstract
words (49% correct, ��� 1 � 2205 ��� 489 � 3, ��	�� 001). The
relative difference in correct performance between these
two sets is shown in Figure 5. Two main results are ap-
parent from the figure. The first is that the advantage
for concrete over abstract words arises almost entirely
from lesions to the direct pathway, where the majority
(88%) of errors are produced. The second, unexpected
result is that severe lesions of the clean-up pathway pro-
duce the reverse advantage—abstract words are responded
to more accurately than concrete words ( ��� 1 � 49 ��� 22,
��	�� 001 for each of  ��! (0.5,0.7) and !"�  (0.5,0.7)).
This result is consistent with what is known about the
concrete word dyslexic, CAV (Warrington, 1981). His
reading disorder was quite severe initially, and he also
showed an advantage for abstract words in picture-word
matching tasks and with auditory presentation, suggest-
ing modality-independent impairment at the level of the
semantic system.

Error responses were categorized in terms of their visual
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Figure 4: Correct response rates as a function of severity
of lesions to the 5 main sets of connections in the input
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stimulus.

and semantic similarity to the stimulus. Words were con-
sidered visually similar if they overlapped in two or more
letters, and semantically similar if their semantic repre-
sentations overlapped by at least 84% for concrete words
and 95% for abstract words.2 Figure 6 shows, for concrete
and abstract words separately, the overall error rates and
the proportions of error types for each lesion location (and
for “chance” error responses chosen randomly from the
word set). Overall, the network replicates (on a different
word set) the H&S finding of mixtures of error types for
lesions throughout the network, including purely visual
errors for lesions entirely within the semantic clean-up
system. Interestingly, a number of the unclassified errors
are actually of the visual-then-semantic type found in deep
dyslexia (e.g. PLAN

� (flan) � “tart”). When this type
of error occurs, the semantic activity tends to match the
intermediate word only moderately well.

A comparison of error types for concrete and abstract
words revealed that the proportion of errors which are vi-
sual is higher for abstract words ( �E� 1 � 2205 �F� 92 � 24,
��	G� 001), while the proportion of errors which are se-
mantic is higher for concrete words ( ��� 1 � 2205 �"� 228 � 8,

2The definition of semantic similarity is more complicated because of
the systematic differences between concrete and abstract semantics and
because the semantic representations are not organized into categories
as in the H&S simulations. Note that two typical unrelated words have
roughly 67% overlap if both are concrete and 91% if both are abstract.

�H	I� 001). This effect is most clearly shown in Figure 6
for lesions of the direct pathway (which produce the ma-
jority of errors). As a measure of the “abstractness” of
the errors produced by a lesion, we used the number of
errors to abstract words minus the number of errors to con-
crete words. Applying this measure to visual and semantic
errors separately revealed that visual errors are more ab-
stract (mean 0.1644) than semantic errors (mean -0.1458,
�E� 1 � 2205 �3� 249 � 6, �D	G� 001). Finally, for each pair
of visually similar words of contrasting types (e.g. TART

and TACT), we compared how often each word produced
the other as an error. Overall, abstract words are more
likely to produce the paired visually similar concrete word
as an error than vice versa (Wilcoxon signed-ranks test,J � 900, KL� 3 � 68, �D	M� 001). However, severe le-
sions of the clean-up pathway produce the opposite effect
( J � 80, KN� 1 � 98, �O	�� 025).

These effects can be understood in the following way.
As abstract words have fewer semantic features, they are
less effective than concrete words at engaging the semantic
clean-up mechanism and must rely more heavily on the
direct pathway. Concrete words are read better under
lesions to this pathway because of the stronger semantic
clean-up they receive. Abstract words are more likely to
produce visual errors as the influence of visual similarity is
strongest in the direct pathway. Slight or moderate damage
to the clean-up pathway impairs what little support abstract
words receive from this system, but also impairs concrete
words, producing no relative difference. Under severe
damage to this pathway, the processing of most concrete
words is impaired but many abstract words can be read
solely by the direct pathway, producing an advantage of
abstract over concrete words in correct performance.

Discussion

No architecture which anyone has proposed contains
anything remotely approaching a component damage
to which would produce all the nine symptoms we
are considering. [Coltheart et al., 1987, p. 417]

The symptoms of deep dyslexia that Coltheart, Patterson
& Marshall are referring to are: (1) semantic errors, (2)
visual errors, (3) function word substitutions, (4) mor-
phological/derivational errors, (5) advantage for concrete
over abstract words, (6) advantage for content over func-
tion words, (7) inability to read non-words, (8) inability to
access phonology from print for words or in non-naming
tasks, and (9) impaired writing and spelling. This last
symptom is beyond the scope of the present simulation,
which is concerned solely with reading. Symptoms 7 and
8 are commonly attributed to the loss of a phonological
route employing spelling-to-sound correspondences. The
current research demonstrates how symptoms 1, 2, and 5
can arise from unitary lesions to a network trained to map
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from orthography to phonology via semantics, in which
abstract words have far fewer semantic features. From
the arguments of Jones (1985), Funnell (1987) and others,
it seems likely that the morphological/derivational errors
reduce to a special case of mixed visual-and-semantic er-
rors, and part-of-speech effects can be accounted for in
terms of the ease-of-predication variable on which our
simulation was based. Thus the effects we have demon-
strated may also account for the remaining symptoms (3,4,
6). Most critically, the present simulation provides an ex-
planation for the puzzling cross-domain interactions that
occur between the abstractness of stimuli/responses and
the occurrence of visual errors. The explanation has some
similarities to those previously offered for the interaction
(e.g. Morton & Patterson, 1980; Shallice & Warrington,
1980) but these were essentially ad hoc verbal extrapola-
tions from cascade notions unrelated to other aspects of
the syndrome, without even a principled account of the
abstract/concrete difference. The present account is sup-
ported by a simulation, is linked to explanations of other
aspects of the syndrome, and offers the possibility of also
addressing concrete word dyslexia.

Are the differences obtained for performance on ab-
stract and concrete words simply due to differences we
built in? The answer is yes, but not simply. The way the
contrast was realized—in terms of a difference in num-
ber of features—was independently motivated, and the
effects obtained were complex and not transparent from
the characteristics of the semantic representation. In addi-
tion, we ensured that normal performance on the two types
of words was equivalent, so that the contrast is reflected
only in the performance under damage, over which we
had no direct control. Taken together, the replication of
the diverse set of symptoms of deep dyslexia through uni-
tary lesions of a network that pronounces words via their
meanings strongly suggests that the computational princi-
ples underlying the network’s behavior may shed light on
normal and impaired reading mechanisms in humans.
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