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Statistical learning is often considered to be a means of discovering the units of perception, such as words and
objects, and representing them as explicit “chunks.” However, entities are not undifferentiated wholes but
often contain parts that contribute systematically to their meanings. Studies of incidental auditory or visual
statistical learning suggest that, as participants learn about wholes they become insensitive to parts embedded
within them, but this seems difficult to reconcile with a broad range of findings in which parts and wholes
work together to contribute to behavior. Bayesian approaches provide a principled description of how parts
and wholes can contribute simultaneously to performance, but are generally not intended to model the
computations that actually give rise to this performance. In the current work, we develop an account based on
learning in artificial neural networks in which the representation of parts and wholes is a matter of degree, and
the extent to which they cooperate or compete arises naturally through incidental learning. We show that the
approach accounts for a wide range of findings concerning the relationship between parts and wholes in
auditory and visual statistical learning, including some findings previously thought to be problematic for
neural network approaches.
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Learners of all ages are highly sensitive to the statistical struc-
ture of their experience in the world. Early empirical studies of
statistical learning (Saffran, Aslin, & Newport, 1996) focused on
sensitivity to transitional probabilities within a stream of auditory
syllables. Subsequent work extended this to a broad range of types
of distributional information within the auditory (e.g., Maye,
Werker, & Gerken, 2002; Saffran & Griepentrog, 2001), visual
(e.g., Fiser & Aslin, 2001; Kirkham, Slemmer, & Johnson, 2002),
and even tactile (Conway & Christiansen, 2005) modalities (for
reviews, see Aslin & Newport, 2012; Smith, Suanda, & Yu, 2014;
Thiessen, Kronstein, & Hufnagle, 2013).

Much of this work has been concerned with how learners
discover the relevant units of perception. Thus, in a typical audi-
tory experiment (e.g., Saffran et al., 1996), the syllable stream
might be composed of randomly ordered “words,” each consisting
of two or three syllables that always occur together in a fixed
order. In the visual modality (e.g., Fiser & Aslin, 2001), a display
might consist of one or more “objects,” each composed of a set of
contiguous elements in a fixed spatial arrangement, possibly co-
occurring with distracting elements. Successful learning of the
words or objects is demonstrated by a preference for these struc-
tures (or against them, in the case of an infant novelty bias) when
paired with random combinations of syllables or elements. Indeed,
in each modality, the structures acquired through statistical learn-

ing of this sort have been shown to facilitate subsequent word
learning (Graf Estes, Evans, Alibali, & Saffran, 2007; Hay, Peluc-
chi, Graf Estes, & Saffran, 2011) or object processing (Zhao,
Cosman, Vatterott, Gupta, & Vecera, 2014).

Although early accounts of statistical learning attempted to
distinguish segmentation via clustering versus bracketing (Good-
sitt, Morgan, & Kuhl, 1993; Swingley, 2005), most recent formu-
lations combine multiple cues to segmentation in the service of
chunking (Frank, Goldwater, Griffiths, & Tenenbaum, 2010;
French, Addyman, & Mareschal, 2011; Kibbe & Feigenson, 2016;
Otsuka, Koch, & Saiki, 2016; Perruchet & Pacton, 2006; Perruchet
& Vinter, 1998; Thiessen et al., 2013)—that is, combining multi-
ple smaller scale units (e.g., syllables, visual elements) into an
explicit representation of a larger scale unit (e.g., word, object).
Although the various approaches differ in specifics, they all in-
volve a discrete decision as to whether a given bit of the input in
a given context is or isn’t treated as a chunk.

Certain issues arise with the notion of explicit chunking when
one recognizes that entities such as words and objects are not
undifferentiated wholes, but are commonly composed of parts
which themselves can be treated as wholes in other contexts. Thus,
many words (e.g., UNTEACHABLE) are composed of mor-
phemes (UN- TEACH, -ABLE) that contribute in systematic ways
to their meaning. Similarly, many objects (e.g., a bicycle) are
composed of parts (wheels, seat, handlebars, etc.) that contribute in
systematic ways to their properties or functions. The question is,
how are the parts of complex wholes treated during learning?
When a chunk is formed for the whole, is this chunk added to the
chunks for its parts, or does the larger scale chunk for the whole
replace or supersede the smaller-scale chunks?

Fiser and Aslin (2005) examined this issue in a series of studies
in the visual modality (see also Fiser & Aslin, 2001; Jun & Chong,
2016). In their first experiment, participants were exposed to a
series of visual displays, each of which consisted of a contiguous
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cluster of six distinct visual elements positioned in a 5 � 5 array.
Unbeknownst to participants, clusters were created by combining
two out of four possible “objects,” each of which consisted of a
fixed arrangement of three specific elements. When later tested,
participants preferred each object to random triples of elements.
By contrast, participants showed no preference for element pairs
embedded in objects relative to random element pairs, even though
the embedded pairs occurred as often as the triples, suggesting that
the chunks for wholes supersede those for their parts. The fact that
“not all the embedded features that are parts of a larger whole are
explicitly represented once a representation of the whole has been
consolidated” was referred to by Fiser and Aslin (2005, p. 532) as
the embeddedness constraint of statistical learning, and was
viewed as important for reducing the computational complexity of
deriving efficient perceptual organizations of scenes.

Giroux and Rey (2009) carried out an analogous study in the
auditory modality. Participants were exposed to syllable sequences
composed of randomly ordered tri- and disyllabic “words” (ABC,
DEF, GH, IJ, KL and MN, where letters designate distinct sylla-
bles; none of the stimuli were actual words) for either two or 10
min. They then tested participants’ preference for the disyllabic
words (e.g., GH) and for pairs embedded in the trisyllabic words
(e.g., AB)—which were matched to the disyllabic words on fre-
quency and transition probabilities—relative to “partword” pairs
constructed from the end of one word and the beginning of another
(e.g., HI). After two minutes of exposure, participants showed a
mild and equivalent preference for both the disyllabic words and
for embedded pairs relative to the partword pairs. With extended
exposure, however, only the preference for disyllabic words con-
tinued to strengthen, suggesting that acquisition of the trisyllabic
words prevented further strengthening of pairs embedded in those
words. Giroux and Rey showed that an explicit chunking mecha-
nism in which larger chunks supersede smaller ones (PARSER;
Perruchet & Vinter, 1998) replicated the results. By contrast, a
simple recurrent network (SRN; Elman, 1990) trained on syllable
prediction treated embedded and nonembedded pairs equivalently,
thereby failing to match the empirical findings.

The idea that the representation of a whole inhibits the repre-
sentation of its parts would seem at odds with a broad range of
empirical findings indicating that, in many contexts, parts and
wholes work together in perception (e.g., morphological priming,
Marslen-Wilson, Tyler, Waksler, & Older, 1994; Rastle & Davis,
2008; Schreuder & Baayen, 1995; Taft, 1994; and the word supe-
riority effect, Reicher, 1969; Wheeler, 1970). The question then
becomes, how could an approach in which both parts and wholes
contribute simultaneously to perception explain the above findings
that participants fail to exhibit sensitivity to parts when embedded
in more complex wholes?

In considering their findings, Fiser and Aslin (2005) articulated
a number of key insights that ultimately lead to a more graded,
context-dependent view of segmentation (see also Hoffman &
Singh, 1997). Indeed, some of their later experimental results
revealed a mixture of influences of parts and wholes, consistent
with a more graded account (see also Baker, Olson, & Behrmann,
2004; Turk-Browne, Isola, Scholl, & Treat, 2008). Fiser and Aslin
proposed that the representations of parts within wholes—and of
“features” at every scale more generally—could be a matter of
degree, as a function of their relative predictability (although the
exact nature of a partial representation was not specified). More-

over, this predictability, and hence the resulting organization,
might vary as a function of context (e.g., other parts and wholes in
the scene). Note that, on this view, the implications of embedded-
ness are not so much a constraint on statistical learning as a
consequence of it.

Fiser and Aslin (2005) offered a simple Bayesian formulation of
statistical learning that is consistent with this graded view of segmen-
tation (see also Feldman & Singh, 2006; Frank et al., 2010; Froyen,
Feldman, & Singh, 2015). Orbán, Fiser, Aslin, and Lengyel (2008)
later developed the Bayesian perspective more fully in the form of the
Bayesian chunk learner (BCL). The BCL determines the likelihoods
of all possible chunk inventories given the entire collection of displays
as well as prior probabilities on parameters concerning the number
and sizes of chunks in an inventory. It then calculates the posterior
probabilities of various test displays by marginalizing over the pos-
terior distribution of both inventories and parameters. Thus, all pos-
sible wholes and parts contribute to performance, combined in a way
that depends on the statistical structure to which the system is exposed
and priors concerning what sorts of structure to prefer. Orbán and
colleagues showed that, with an appropriate set of spatially con-
strained priors, the resulting posterior probabilities mirror partici-
pants’ preferences in a wide range of studies (including some from
Fiser & Aslin, 2005).

Despite the clear advance that a Bayesian perspective on segmen-
tation offers relative to all-or-none formulations of chunking, it does
not provide a full, mechanistic account of the performance of partic-
ipants in statistical learning tasks. The BCL does not actually assign
a specific representation to a given scene that could participate in
other cognitive processes. It is not a process model—the computations
it uses to calculate probabilities, which involve iterating over all
displays and all possible chunk inventories, are not thought to be
carried out by participants in any direct or literal sense. Rather, the
BCL can be understood as a means of scoring test displays based on
their consistency with priors and experience, without attempting to
approximate the actual representations, processes, and learning that
give rise to the corresponding choice preferences in participants.
Moreover, concerns about computational complexity are unresolved,
particularly if embeddedness serves only to downweight potential
parts but not eliminate them from consideration entirely.

In the current work, we develop a computationally efficient process
model of statistical learning of parts and wholes. We adopt an ap-
proach, based on learning in neural networks, that is capable of
capturing statistical structure at multiple levels of representation si-
multaneously and yet eschews the notion of explicit chunking.
Through the use of learned distributed representations, there is no
notion of discrete “units” of perception; rather, the extent to which a
particular subset of the input in a particular context is represented in
a coherent manner is a matter of degree, and the extent to which
learned structure at one level of analysis cooperates or competes with
learned structure at other levels is not prespecified but arises naturally
as a consequence of incidental learning in the domain (see Gonner-
man, Seidenberg, & Andersen, 2007; Plaut & Gonnerman, 2000;
Seidenberg & Gonnerman, 2000, for a similar perspective applied to
derivational morphology). Our approach is, of course, closely related
to other efforts to apply neural networks to statistical learning (Chris-
tiansen, Allen, & Seidenberg, 1998; Cleeremans & McClelland, 1991;
Dominey & Ramus, 2000; French et al., 2011; Mirman, Graf-Estes, &
Magnus, 2010; Schapiro, Rogers, Cordova, Turk-Browne, & Botvin-
ick, 2013; Sirois, Buckingham, & Shultz, 2000) although, as we
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discuss at various points, we adopt somewhat different assumptions
about how such networks are applied in this domain.

The current work focuses largely on visual statistical learning,
as issues concerning the representation of parts and wholes have
been explored in the greatest depth in this context. We begin,
though, by modeling Giroux and Rey’s (2009) findings in the
auditory modality, in part to establish the generality of the relevant
computational principles. We then show how an analogous model
of visual processing can account for the findings from Fiser and
Aslin’s (2005) series of studies, along with those of a critical
follow-up study (Orbán et al., 2008), concerning the treatment of
parts and wholes in visual statistical learning. A final simulation
establishes the simultaneous operation of parts and wholes in the
network and serves to generate predictions for future empirical
studies. We conclude by considering relations to other approaches,
limitations of our work, and important directions for future re-
search.

Simulation 1: Giroux and Rey (2009)

As mentioned in the introductory paragraphs, Giroux and Rey
(2009) exposed adult participants to an auditory stream composed
of two trisyllabic “words” (here denoted ABC and DEF) and four
disyllabic words (GH, IJ, KL, and MN), presented in random order
for either two or 10 min (corresponding to 400 or 2,000 syllables
in total) with no pauses or other acoustic cues to word boundaries.
Following this exposure, participants were presented with each of
the disyllabic words and the embedded pairs within the trisyllabic
words, paired with a partword pair which straddled a boundary
between words during exposure. Importantly, the words and em-
bedded pairs were matched on frequency of occurrence, and both
types of pairs had a transitional probability of 1. As shown in
Figure 1a, when asked to select the syllable pair that sounded more
similar to what they had listened to in the exposure period, par-
ticipants showed a small and equivalent preference for the disyl-
labic words and the embedded pairs over partwords. After 10 min
of exposure, however, the preference for the disyllabic words had
further strengthened but the preference for embedded pairs had
not.

Giroux and Rey (2009) also trained an SRN to predict the next
syllable in an equivalent stream of 400 or 2,000 syllable presentations.
They then calculated the network’s prediction error from the first to
second syllable of disyllabic words (e.g., G¡H), embedded pairs
(e.g., A¡B), and partwords (e.g., H¡I), assuming that lower relative
error implies greater preference. Unlike participants, the network’s
preferences for embedded pairs and disyllabic words (relative to
partwords) behaved identically, increasing the same amount from 400
to 2,000 syllable presentations. Thus, the network’s performance
reflected the equivalent frequency and transition probabilities of these
pair types but was insensitive to the larger trisyllabic words in which
the former were embedded.

However, when comparing the performance of participants with
that of the network, it may be that the absence of information is as
important to consider as its presence. That is, the silence that both
precedes and follows test stimuli may be relevant to participants’
judgments. For example, having been exposed to a trisyllabic word
like ABC, the presence of silence (instead of C) after AB, and the
onset of B from silence (instead of from A) for BC, may reduce
participants’ sense of familiarity of these embedded pairs. By
contrast, the presence of silence around disyllabic words is not
disruptive because expectations at their boundaries are far weaker.
The first simulation shows that, when silence precedes each test
stimulus and the familiarity measure includes the prediction of
silence following the stimulus, an SRN’s performance is a much
closer match to that of participants.

Method

An SRN was trained to predict the next syllable in a sequence of
2,000 syllables, constructed exactly as in Giroux and Rey’s (2009)
empirical study and SRN simulation (as just described). The sim-
ulation was run using the Lens neural network simulator developed
by Doug Rhode (http://tedlab.mit.edu/~dr/Lens/). All training and
testing files for this and subsequent simulations are available for
download at http://www.cnbc.cmu.edu/~plaut/PlautVandeVelde/.

The network had 14 input and output units (one for each syllable)
and 30 hidden and context units, with the input and context units fully
connected to the hidden units which, in turn, were fully connected to

Figure 1. (a) Percentage responses to disyllabic words (open bars) and embedded syllable pairs (hashed bars)
made by participants in Giroux and Rey’s (2009) experiment, (b) analogous results from Simulation 1 when
silence is not included during testing, and (c) Simulation 1 results when including silence during testing. Adapted
with permission.
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the output units. (Note that, by using a unique unit for each syllable,
we are assuming that the syllables are equally discriminable to par-
ticipants and that their relative similarities do not influence perfor-
mance.) Hidden and output units also had a bias connection (from a
unit with fixed activation of 1.0) and used a sigmoid activation
function. Initial weights were set to random values sampled uniformly
between �1 except for output unit biases, which were initialized to
–3.0. Results were calculated over 20 samples of random initial
weights. As is standard in an SRN, hidden activations were copied to
the context units prior to the presentation of each input in the se-
quence. Each syllable was presented to the network by setting the
activation of its corresponding unit to 1.0 and all others at that position
to 0.0, and then adding Gaussian noise (SD � 0.3) to these activations.
The network was trained with back-propagation (Rumelhart, Hinton,
& Williams, 1986) using momentum descent in cross-entropy error
(Hinton, 1991), with a learning rate of 0.05, momentum of 0.9, batch
size of 1 (weight updates after each syllable), and a bound of 1.0 on
the magnitude of the premomentum weight step vector.

The network was tested after 400 and 2,000 syllable presenta-
tions. Testing involved presenting a series of two-syllable inputs,
each preceded and followed by silence (i.e., an input of all zeros).
Performance on each test stimulus was measured by summing the
error produced when the first syllable predicted the second and
when the second predicted silence (targets of 0.0 for all output
units). This error was averaged separately over all disyllabic words
(GH, IJ, KL, MN), over all embedded pairs within trisyllabic
words (AB, BC, DE, EF), and over all partwords formed by
combining a word-final syllable (C, F, H, J, L, N) with a word-
initial syllable (A, D, G, I, K, M).1

We assume that participants (and the network) prefer a stimulus
that has a better internal representation, which can be operation-
alized as one which produces lower error. Hence, the network’s
preference for words over partwords was computed as Ep/(Ew �
Ep), where Ep is the mean error on partwords and Ew is the mean
error on words. The preference for embedded words over part-
words was computed analogously.

For comparison purposes, and to replicate Giroux and Rey’s
(2009) simulation results, we carried out the identical simulation
except without including silence before each test stimulus and
without including the prediction of silence at the end.

Results and Discussion

Figure 1b shows the network’s relative preferences for disyl-
labic words and for embedded pairs, compared with partwords,
after 400 and 2,000 syllable presentations, when not including
silence during testing. As Giroux and Rey (2009) found, and
unlike participants, the network becomes increasingly sensitive to
the stronger transition probabilities within both words and embed-
ded pairs irrespective of whether or not the pair occurs within a
larger whole.

Figure 1c shows the equivalent data under the condition in
which testing included silence. Here, as is true of participants
(Figure 1a), the network shows a slight and nearly equivalent
preference for the words and embedded pairs after 400 syllables.
By 2,000 syllable presentations, the preference for words has
grown much stronger, whereas the preference for embedded words
remains unchanged.

The initial increase in preference for words and embedded pairs
is, of course, due to their much higher transition probabilities (1.0)
compared with partwords (0.167). Performance on words contin-
ues to improve as the network becomes increasingly sensitive to
transition probabilities in making predictions. Thus, when testing
disyllabic words, the correct second syllable is activated moder-
ately well (mean 0.417, error 2.04), and most units are relatively
inactive when compared with silence following the second syllable
(mean 0.053, error 0.886), leading to relatively low total error
(M � 2.92). However, as the network’s preference for trisyllabic
words (ABC and DEC) relative to random triples increases—from
58.7% after 400 syllables to 79.7% after 2000 syllables—perfor-
mance on embedded pairs suffers, although this manifests differ-
ently for initial (e.g., AB) versus final (e.g., BC) pairs. For initial
pairs, as in disyllabic words, the second syllable is appropriately
activated (mean 0.405, error 2.08), but the third syllable in the
triple (e.g., C) is strongly but incorrectly activated (mean 0.684,
error 2.23) when compared with silence, leading to high total error
(mean 4.31). For final pairs, the preceding silence disrupts activa-
tion of the second syllable from the first (mean 0.104, error 3.82),
but activation is relatively low when predicting silence (mean
0.070, error 1.11), also resulting in high error (mean 4.93).2 By
comparison, partwords suffer from both of these effects, and have
a mean total error of 6.10. Thus, relative to partwords, the network
shows a much stronger preference for disyllabic words over em-
bedded pairs.

There might be some concern that the results are biased by the
fact that the network was never exposed to silence during training.
To evaluate this possibility, we replicated the simulation but added
silence after 30 randomly selected occurrences of each of the six
words during training (180 occurrences, amounting to 9% of all
syllable presentations)—note that we are assuming that silence
never occurs in the middle of words. That is, 180 partword tran-
sitions in the training corpus, such as C¡D, were replaced by two
transitions, C¡silence and silence¡D, where silence was repre-
sented by inputs or targets of all zeros. When tested in the same
way as above (including silence), the network’s preference for
disyllabic words increased substantially, from 56.5% (SE � 0.45)
after 400 syllables, to 77.9% (SE � 1.41) after 2,000 syllables. By
contrast, the networks preference for embedded pairs held nearly
constant, from 56.0% (SE � 0.56) to 58.9% (SE � 1.32). Thus, the
network replicated the original findings. Because silence is rela-
tively rare and unpredictable, its inclusion during training has little
impact on the network’s preferences.

In summary, Giroux and Rey (2009) found empirically that
learning trisyllabic words prevented the learning of the two-
syllable pairs embedded within them. They interpreted these find-
ings as inconsistent with an SRN-based account, and instead took
them to implicate an explicit chunking mechanism, such as the one
implemented in PARSER (Perruchet & Vinter, 1998), in which
learning a larger chunk blocks learning of smaller ones. Our
modeling results show that Giroux and Rey (2009) were premature

1 Giroux and Rey (2009) evaluated words and embedded pairs against
particular sets of partwords, but we used all of them to provide a more
reliable estimate of error.

2 The specific choice of error function influences the exact numeric
relationship between error on initial versus final embedded pairs, but not
the fact that each produces more error than disyllabic words.
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in rejecting SRNs as capable of providing an account of their
findings and, moreover, that the findings do not implicate an
explicit chunking mechanism in which the representations of
wholes (trisyllabic words) supersede the representations of their
parts (embedded syllable pairs).

Simulation 2: Fiser and Aslin (2005) Experiment 1

Although Giroux and Rey’s (2009) results can be explained by
a standard SRN trained on syllable prediction, this shouldn’t be
taken to imply that such a model is the most appropriate way to
account for language learning more generally. SRNs are often
viewed as a specific type of neural network that is distinct from
other types that have been applied to developmental data (see
Yermolayeva & Rakison, 2014), and some researchers consider
the application of SRNs to tasks other than prediction to be “a
fundamental change in the way in which SRNs are conceptual-
ized” (French et al., 2011, p. 621). We think these views are too
narrow. Rather, an SRN is more appropriately understood as a
convenient simplification of a fully recurrent network with poten-
tially unrestricted connectivity, and, as such, can be applied to the
full range of cognitive tasks involving information about the past
(maintenance), present (reconstruction), and future (prediction).

Similarly, autoencoders—networks that copy inputs to outputs
via one or more layers of learned, internal representations (Ackley,
Hinton, & Sejnowski, 1985; Mareschal, French, & Quinn, 2000)—
are also sometimes considered to be a distinct class of network, but
again are better thought of as a computational simplification of a
fully recurrent network in which hidden units both receive input
from, and reconstruct input over, the same lower level represen-
tation (see LeCun, Bengio, & Hinton, 2015). Thus, although we
adopt a different network architecture in shifting from auditory
statistical learning (SRN) to visual statistical learning (autoen-
coder), we view these as two approximations of the same under-
lying computational approach. Indeed, we could have used an SRN
version of our autoencoder by including context layers for each of
its hidden layers, but doing so would be irrelevant in the current
context as the training environments we consider have no temporal
dependencies for the network to learn.

In their first experiment, Fiser and Aslin (2005) carried out what
is in many ways the visual analog of Giroux and Rey’s (2009)
auditory experiment. As summarized in the in the introductory
paragraphs, Fiser and Aslin constructed four objects (termed base-
triplets in Figure 2), each consisting of a fixed, contiguous spatial
arrangement of three elements. They then created 112 six-element
visual displays by combining pairs of these objects into contiguous
arrangements at various positions within a 5 � 5 grid, an example
of which is shown in the center of Figure 2 (see Barenholtz & Tarr,
2011, for evidence of the importance of contiguity). Participants
viewed an 11 min movie in which each of these displays was
presented twice, in random order, for 2 s with a 1-s interstimulus
interval.

In the testing phase, participants were presented with a sequence
of two displays containing either single elements, pairs, triples, or
quadruples presented in the center of each grid, and asked which
of the two seemed more familiar based on the earlier exposure
phase. There were two critical comparisons: (a) the base objects
were compared against random contiguous triples of elements that
had never appeared in that spatial configuration in the exposure

phase, and (b) contiguous pairs of elements that were embedded in
the base triples were compared against random contiguous pairs
that also had never previously appeared in that spatial configura-
tion. The results of these comparisons are shown in Figure 3a.
Following exposure, participants showed a clear preference for the
base triples over random triples, but showed no reliable preference
for element pairs embedded in those triples over random pairs,
even though the embedded pairs occurred as often as the base
triples and with the same conditional probabilities among their
elements (1.0). These results, like those of Giroux and Rey (2009),
suggest that learning larger scale structures somehow impedes the
learning of smaller-scale structures within them. The current sim-
ulation tests whether a network trained in an analogous manner
shows the same pattern of effects.

Method

The network architecture, parameters, and training procedure
used in the current simulation were also used in all of the remain-
ing simulations reported in this article, with the exception of
details of stimulus construction and testing procedures that are
specific to each experiment.

The network was a feedforward autoencoder with 300 input
units (12 elements at each position in a 5 � 5 array) that were fully
connected to a first layer of 80 hidden units, which in turn were
fully connected to a second layer of 40 hidden units, which were
fully connected to 300 output units.3 All hidden and output units
also had bias connections. Weights were initialized to small ran-
dom values (sampled uniformly between �0.5) except for the
biases of output units, which were initialized to –3.0. Results were
calculated over 20 instances of random initial weights. An element
was presented at a particular position by setting the activation of its
corresponding unit to 1.0 and all others at that position to 0.0, and
then adding Gaussian noise (SD � 0.15) to these activations.
Empty positions had all activations set to 0.0. The network was
trained with back-propagation using momentum descent in cross-
entropy error, with a learning rate of 1.0, momentum of 0.9, batch
size equal to the number of examples, and a bound of 1.0 on the
magnitude of the pre-momentum weight step vector.

3 Analogous to the auditory simulation, by using a unique unit for each
shape element at each position, we are assuming that each element can be
easily discriminated from all the others at each position, and that the
relative similarities among their retinotopic visual representations are not
relevant to accounting for participants’ performance.

Figure 2. Base objects and an example display from Fiser and Aslin’s
(2005) Experiment 1. Adapted with permission.
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For the current simulation, the network was trained on stimuli
analogous to the visual displays used in Experiment 1 of Fiser and
Aslin (2005). An issue immediately arises, however, with regard to
how to handle positional variation. Participants come to the ex-
periment with a visual system that is largely invariant with respect
to the retinal position of stimuli, at least within the range of central
vision used in the experiment. The network, by contrast, comes
with no such invariance—to the network, shifting a configuration
by a single position in any direction generates an entirely nonover-
lapping input (apart from effects of noise).

One way of rectifying this discrepancy is to structure and
pretrain the network such that it exhibits the requisite positional
invariance prior to undergoing experimental training. For instance,
convolutional neural networks (CNNs; Fukushima, 1980; LeCun
et al., 1989; Riesenhuber & Poggio, 1999) employ multiple banks
of units in each layer, such that all of the units within each bank
detect the same feature (i.e., have the same incoming weights) but
at different spatial positions. Typically, a “pooling” layer follows
each convolutional layer in which a given unit is active if any of
the equivalent feature units over a range of positions is active.
Such networks are typically applied to recognition tasks known to
be invariant to absolute image position.

We chose not to use a CNN in the current work for a number of
reasons. First, for an autoencoder, the increasing positional invari-
ance across successive layers in the network makes it problematic
to reconstruct the position-specific aspects of the input. Second,
CNNs achieve positional invariance by having identical receptive
fields tiled across the input (and across each successive topo-
graphic layer), but the specified size of these receptive fields
introduces a bias favoring structure at the corresponding spatial
scale (relative to larger or smaller scales). And finally, a CNN
would require extensive pretraining to achieve pre-experimental
positional invariance, it is difficult to formulate a pretraining
environment that does not incidentally bias the network toward
learning certain types of structure in the experimental stimuli at the
expense of other types.

Instead, we adopted an approach that yields positionally invari-
ant performance and requires training only on the experimental
stimuli, but that sacrifices an exact correspondence between the
nature of exposure for participants and for the network. Specifi-

cally, during training, whenever a particular configuration is pre-
sented to the network, it is presented at each of the 25 positions,
wrapping horizontally and/or vertically when necessary in order to
avoid edge effects. Edge effects are problematic because they give
rise to unbalanced frequencies with which certain embedded com-
binations occur across positions, and it is not possible to construct
a training regime that is unbiased with respect to all relevant
position-specific frequencies. Wrapping allows every subset of
every configuration to occur at every spatial position equally often,
thereby avoiding any possibility of positional biases in the results.
We think of the training regime as an integration of pre-
experimental visual experience that induces position invariance
and experimental experience with particular types of statistical
structure. Pretraining with non-experimental stimuli would, as just
discussed, inappropriately bias the network toward learning some
types of structure over others.4

During testing, we present each configuration at a single, central
position, as was true for participants. Because of this, most
wrapped presentations during training are not directly relevant as
those positions are never involved in testing. Even so, they are
included to ensure that no positional biases were introduced during
training. We will evaluate a version of the simulation in which
stimuli are not wrapped during training to determine the degree to
which the results depend on wrapping per se.

As was true for participants, display configurations during initial
exposure consisted of spatial configurations of two of the four base

4 An alternative approach would be to assume participants make multi-
ple fixations of each display, and to approximate this by positioning each
configuration such that each of its elements falls in the center of the
display. We explored this approach but ultimately decided against it. It
leads to the same general patterns of performance as found in the current
work (and empirically), but the effects are much weaker. The reason is that
the limited fixations give rise to too much idiosyncrasy in how the relevant
configurations are positioned during training, and this waters down the
extent to which the network learns their (sub)structure. Note that this is not
an issue of bias in positioning during testing, as all potential components
(with the same shape) are positioned equivalently during both training and
testing. Rather, representations need to be largely positionally invariant in
order to give rise to the observed effects, and fixated training of the
experimental stimuli is, by itself, insufficient to induce this.

Figure 3. (a) Response preferences of participants in Fiser and Aslin’s (2005) Experiment 1 for embedded
versus random pairs (“pairs”) and for base objects versus random triples (“triplets”); (b) analogous response
preferences in Simulation 2. Adapted with permission.
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objects in which at least two pairs of elements are adjacent hori-
zontally (n � 28; see Fiser & Aslin, 2005, for details). The
network was trained for 100 epochs in which each of the 28
possible configurations was presented at each spatial position.5

Although this amounts to much greater exposure to each config-
uration than participants received, the training also serves as a
proxy for pre-experimental visual experience, and much of it is
only indirectly relevant as it involves positions that are not in-
volved in testing. Even so, we recognize that the lack of intrinsic
spatial invariance in the network means that we cannot draw close
comparisons between the amount of training for the network and
for participants. We will, at least, hold the amount of training (100
epochs) constant across simulations, as the amount of exposure
given to participants across experiments was approximately equal.

Participants were tested for forced-choice preferences among
singletons, pairs, triples, and quadruples in order not to draw their
attention to a particular level of structure. As that is not an issue for
the network, we restrict testing of the network to just the two
critical experimental comparisons: base triples against random
triples, and embedded pairs within base triples against random
pairs (where random triples and pairs were constructed in the same
way as in Fiser & Aslin, 2005, Experiment 1). Choice preferences
in each of these comparisons were calculated as in Simulation 1,
that is on the basis of the relative mean reconstruction error for the
different stimulus types.

Results and Discussion

Figure 3b shows the network’s preference for base objects
(“Triplets”) over random triples, and for embedded pairs (“Pairs”)
over random pairs. Like participants, the network shows a very
strong preference for the base objects over random element triples,
but virtually no preference for element pairs embedded in those
objects over random pairs. The latter result is, technically, reliably
different from chance, but this is because the error bars reflect
variability (due to initial random weights) in a real-valued measure
of choice probability, whereas participants’ performance has much
greater variability because, on our account, it reflects using this
measure to make probabilistic choices on a trial-by-trial basis.

The explanation for the lack of a preference for embedded pairs
is in some ways similar to that for the Giroux and Rey (2009)
findings. When presented with an embedded pair, the network
generates an internal representation that is similar to the one
generated by the full triple, and thus the network generates error by
incorrectly activating the missing element. The magnitude of this
error is comparable to that produced for a random pair where each
element weakly activates both of the elements with which it
typically co-occurs.

As mentioned, we also trained a version of the network without
any wrapping during training, which limits the range of positions
in which each configuration can be presented. To determine the
degree to which performance was affected by position-specific
biases, we tested the trained network with components centered at
each spatial position separately (centering toward the top or left of
components with even width or height). In all other respects, the
training and testing procedures were identical to those of the main
simulation.

Table 1 shows the response preference of the network for pairs
and triples as a function of spatial position. Data for some positions

are lacking because not all components could be centered at all
positions without wrapping. Overall, the network shows a strong
preference for triples but not for pairs, replicating the main result.
There is, however, a fair amount of variability across testing
position, particular for pairs. This variability is caused by the fact
that, without wrapping, the position-specific frequencies of partic-
ular pairs and triples vary, and these impact the network’s perfor-
mance. This issue is exacerbated for the simulations to follow, as
many of them involve larger components. As the size of the
relevant configurations increases—and, hence, the available pre-
sentation positions become more constrained—the variability in
the position-specific frequencies of potential parts increases as
well. To avoid these biases, we will continue to employ wrapping
of configurations during training for the remainder of the simula-
tions reported in this article.

Simulation 3: Fiser and Aslin (2005) Experiment 3

Fiser and Aslin’s (2005) second experiment simply confirmed
that participants can learn disyllabic words when displays are
composed of combinations of them instead of triples. Experiment
3 went further by confirming that participants can learn structures
at multiple scales simultaneously—that is, both two- and three-
element objects through the same exposure. If this were not the
case, the lack of learning of embedded pairs within triples would
have nothing to do embedding per se.

A series of six-element displays were composed from either two
three-element objects or three two-element objects, in various
spatial arrangements that preserved the property that at least two
pairs of elements were adjacent horizontally. The configurations
were constructed in such a way that their outlines were identical to
those of configurations in their first experiment. Exposure and
testing procedures were analogous to that experiment as well. As
show in Figure 4a, participants reliably preferred both two-element
objects (“Pairs”) relative to random element pairs, and three-
element objects (“Triplets”) relative to random triples of elements.

When the network from Simulation 2—with exactly the same
parameters, training, and training procedures—is trained on the
analogous stimuli, it also shows clear preferences for both pairs

5 Fiser and Aslin (2005, p. 525) were not explicit about the distribution
of configurations of their stimuli, stating only that scenes were generated
by “randomly positioning” pairs of triples so that the constraint was
satisfied. We chose to present all 28 configurations to ensure all relevant
statistics were balanced.

Table 1
Response Preferences for Pairs/Triples Presented at Each
Spatial Position for the Network Trained Without Wrapping

1 2 3 4 5

1 .55/— .52/— .54/— .52/— .58/—
2 .60/— .55/.87 .55/.92 .58/.91 .60/.91
3 .58/.93 .49/.91 .49/.92 .54/.91 .62/.94
4 .56/.91 .54/.90 .52/.91 .57/.90 .54/.92
5 .49/— .51/— .51/— .51/— —/—

Note. Column and row headings indicate x and y coordinates, respec-
tively, of spatial positions within the display. Dashes indicate there were no
data available at that position.
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and triples relative to the corresponding random configurations
(see Figure 4b), although the effect is stronger for triples than for
pairs, which is not true of participants. We think this latter dis-
crepancy arises because the network, unlike participants, was
trained solely on the experimental stimuli, and this induces a bias
favoring the specific larger-scale structure that occurs in the ex-
periment. In other words, the network’s representations are some-
what more tailored to the idiosyncrasies of the experimental stim-
uli than are those of participants.

Simulation 4: Fiser and Aslin (2005) Experiment 4

To this point, the network, like participants, shows sensitivity to
both pairs and triples when they each behave independently, but
not when the pairs are embedded in the triples. Experiment 4 of
Fiser and Aslin (2005) provided two additional relevant findings to
understanding the treatment of parts and wholes in visual statistical
learning. The first is to extend the nature of learned structure to
four-element objects (quadruples) and their embedded pairs; the
second is to provide at least a limited measure of the timecourse of
learning, by reporting forced-choice preferences in the middle of
the exposure period as well as the end.

In this experiment, displays were composed of one of two
quadruples and one of two pairs (see Figure 5). Figure 6a shows
the results for participants after being exposed to 120 displays in a
6 min movie (“1st round”), and then again after the same amount
of exposure (“2nd round”). Participants learned both the two- and
four-element objects, with only a slight (but not reliable) numeric
increase in preferences from the 1st round to the 2nd round. By
contrast, and replicating their Experiment 1, participants did not
prefer pairs that were embedded within the four-element object
(compared with random pairs), despite having the same frequency
and conditional probabilities as the two-element objects.

The same network and procedures that were used in Simulations
2 and 3 was trained on displays analogous to those used in
Experiment 4 by Fiser and Aslin (2005). Because each round of
exposure to participants was about half of that used in the other
experiments, we tested the network after 50 and 100 epochs of
training. As shown in Figure 6b, the network replicates the find-
ings from participants of strong preferences for two- and four-
element objects (compared with random versions) at both points in

training, but no preference for embedded pairs (compared with
random pairs). From 50 to 100 epochs, the network does show a
distinct increase in its preference for nonembedded pairs and, to a
lesser extent, for quadruples, whereas these effects are only trends
in the empirical data. Moreover, the network’s preference for
quadruples is stronger than it is for pairs, which is not true of
participants, echoing the discrepancy between triples and pairs in
Simulation 3 (and likely due to the same bias favoring larger-scale
structure). In other respects, though, the network’s pattern of
performance provides a reasonable match to that of participants.

Simulation 5: Fiser and Aslin (2005) Experiment 5

Fiser and Aslin’s (2005) empirical results establish that partic-
ipants can discover “objects” (pairs, triples, quadruples) consisting
of a fixed spatial arrangement of elements with conditional prob-
abilities of 1.0, in displays in which they co-occur with a variety of
other such objects. However, subsets of these objects, such as pairs
within triples or quadruples—despite having equal frequencies
and elementwise conditional probabilities—do not appear to be
represented as independent entities at all, insofar as participants do
not consider them to be more familiar than random pairs when
presented in isolation. That is, to this point, participants (and the
network) are behaving in accordance with a strict, all-or-none
version of the embeddedness constraint.

Figure 4. (a) Response preferences of participants in Fiser and Aslin’s (2005) Experiment 3 for two-element
objects versus random pairs (“pairs”) and for three-element objects versus random triples (“triplets”); (b)
Analogous response preferences in Simulation 3. Adapted with permission.

Figure 5. Two- and four-element objects used to construct displays in
Experiment 4 of Fiser and Aslin (2005), and an example display. Adapted
with permission.
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It is in this context that Experiment 5 of Fiser and Aslin (2005)
is particularly informative. Fiser and Aslin constructed displays
containing seven elements, six of which were one of two base
sextuplets (see Figure 7). The seventh element—positioned any-
where adjacent to the sextuple—was selected from among two
variable or “noise” elements from the other sextuple (shown in
gray). This manipulation created two kinds of embedded pairs that
were matched in frequency: strong pairs with no noise element
and, hence, conditional probabilities of 1; and weak pairs that
contain a noise element and, thus, have lower conditional proba-
bilities but higher element frequencies (as the noise element also
occurs in half of the displays containing the other sextuple).

Figure 8a shows participants’ preferences for four types of
comparisons following exposure. First, participants showed a mild
but reliable preference for single elements with higher frequency
(i.e., the noise elements) relative to other elements. Second, they
showed a strong preference for strong pairs over random pairs.
Third, although participants did prefer weak pairs over random
pairs, this preference was significantly weaker than that for the
strong pairs, indicating that they were sensitive to elementwise
conditional probabilities. Also, this preference holds despite the
fact that the weak pairs had higher mean element frequencies than
the strong pairs, and that participants were sensitive to these
frequencies (in the first comparison). Finally, participants also
showed a strong preference for embedded over random quadruples

(even though the majority of these contained at least one noise
element). Figure 8b shows that the network, when trained in an
analogous fashion, shows the same pattern of results.

These results provide clear evidence that a more graded inter-
pretation of the embedded constraint is needed. Although it was
not tested, it seems safe to assume that participants would have
shown a strong preference for the base sextuples against random
sextuples. In fact, if the network is tested on this comparison using
random sextuples with the same overall outline, its preference for
the base sextuples is 92.1% (SE � 0.102). If something similar
held for participants, then all of their preferences in this experi-
ment reflected learned sensitivity to structure embedded within
larger wholes.

As suggested by Fiser and Aslin (2005), these findings can be
understood within a framework that retains explicit representa-
tions of wholes and parts, but in which these vary in strength
depending on their relative predictiveness. The network pro-
vides a similar account, but without the need to posit explicit
chunks of any sort. In a situation in which larger-scale wholes
are somewhat less coherent (due to the noise elements), the
network still learns representations that capture their structure
but now also captures their substructure to a greater extent. In
this way, the network treats something as both a whole and as
parts when doing so better captures the underlying statistical
structure in the domain.

Figure 6. (a) Response preferences of participants in Fiser and Aslin’s (2005) Experiment 4 for four-element
objects versus random quadruples (“quadruples”), for 2-element objects versus random pairs (“nonembedded
pairs”), and for embedded pairs within quadruples versus random pairs (“embedded pairs”), after being exposed
to a 6 min video of 120 displays (“1st round”) and then after an equivalent amount of additional exposure (“2nd
round”); (b) analogous response preferences in Simulation 4 (after 50 and 100 epochs of training). Adapted with
permission.

Figure 7. Design of stimuli used in Experiment 5 of Fiser and Aslin (2005). An example seven-element display
consisted of one of two base sextuples and one of two variable elements (shown in gray) from the other base
sextuple. “Strong pairs” are adjacent elements within a sextuple that only occur as part of that sextuple; “weak
pairs” are also are adjacent elements within a sextuple but contain a noise element that occurs with the other
sextuple. Adapted with permission.
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Simulation 6: Orbán, Fiser, Aslin, and Lengyel (2008)

As discussed in the Introduction, Orbán et al.’s (2008) BCL is
an elaboration of the idea that wholes and parts are not treated as
mutually exclusive alternatives, but that both make graded contri-
butions to performance. Orbán and colleagues were primarily
concerned with evaluating the BCL against simpler learning mech-
anisms, including an associative learner (AL) that adopted the
same general structure as the BCL but used Hebbian learning of
pairwise correlations between elements without an explicit notion
of chunks. Both the BCL and AL were capable of replicating the
results of two studies from Fiser and Aslin (2001) as well as those
of Experiments 1 and 4 from Fiser and Aslin (2005), although the
AL’s match to the latter was somewhat poor. To distinguish
between the two accounts, Orbán and colleagues carried out an
experiment in which two types of triples were matched in terms of
elementwise and pairwise statistics and yet varied in their higher-
order structure (to which only the BCL should be sensitive).

Each display contained six elements constructed from the
components shown in Figure 9, such that each individual com-
ponent occurred on the proportion of trials listed for its type.
This was accomplished by randomly picking a triple, pair, and

singleton on two thirds of trials, and randomly picking a pair to
be presented with the quadruple on the remaining one third of
trials. Note that the true triples on the left are constructed from
four elements in a fixed spatial arrangement, although this
quadruple is never presented to participants. The so-called false
triples are similar in that they consist of three of the four
elements of a quadruple, but in this case the quadruple itself
was presented but not the triples (except as part of the quadru-
ple, of course). True and false triples are matched on first- and
second-order statistics; the difference is that false triples never
occurred as triples per se—they always occurred embedded in
the quadruple, and their elements could also occur indepen-
dently as singletons. During testing, these two types of triples
were compared against each other and against mixed triples
composed of elements belonging to different components.

Figure 10a shows the performance of participants, and of the
BCL and AL, on these comparisons. Participants preferred true
triples to both mixed and false triples, but showed no preference
between false and mixed triples (essentially exhibiting a type of
embeddedness constraint). The BCL performed similarly. Unlike
participants, however, the AL learned false triples nearly as

Figure 8. (a) Response preferences of participants in Fiser and Aslin’s (2005) Experiment 5 for noise elements
(with elevated frequencies) relative to other elements (“singles”), embedded pairs with no noise elements relative
to random pairs (“strong pairs”), embedded pairs containing a noise element relative to random pairs (“weak
pairs”), contiguous quadruples embedded in the base sextuples relative to random quadruples (“quadruples”); (b)
analogous response preferences in Simulation 5. Adapted with permission.

Figure 9. Design of stimuli used by Orbán et al. (2008). On the left are the components used to construct
display—triples, pairs, singletons, and a quadruple—and, for each type, the proportions of all trials in which each
individual component occurs; on the right are example displays. Triples on the left are termed “true”; triples
formed from three of four elements of the quadruple are termed “false” (relative to random triples, termed
“mixed”). Adapted with permission.
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strongly as true ones, showing no preference between them, and
also preferred false triples to mixed ones.

In applying the network from the previous simulations to the
current study, we decided to reduce the learning rate to 0.05
because there are many more examples per epoch compared with
the previous experiments. In all other respects, the same parame-
ters and procedures were applied. Figure 10b shows the perfor-
mance of the network when trained and tested on stimuli analo-
gous to those used in the Orbán et al. (2008) study. Like the BCL
and unlike the AL, the network shows the same overall pattern as
participants, with the exception that it shows a slight dispreference
for false compared with mixed triples—in part because it has
learned the lone quadruple somewhat more strongly than partici-
pants and therefore predicts the missing element when presented
with a false triple (although this dispreference would not be
reliable with equivalent variance as participants). Critically, the
network treats true and false triples as entirely different, even
though they are matched on low-order statistics. Thus, despite
being trained in something like an “associative” way, the network
learns hierarchical structure in a way that is fundamentally differ-
ent from the assumptions built into the AL—that is, simple pair-
wise correlations between elements—and more in line with par-
ticipants.

Simulation 7: Simultaneous Representation of Parts
and Wholes

Our theory of visual statistical learning is based on the idea that
the visual system learns structure at multiple levels simultane-
ously, and that whether or not a given level influences performance
depends on the details of the statistical structure to which partic-
ipants are exposed (see also Turk-Browne et al., 2008). We have
shown that a neural network that learns internal representations
that capture the structure in a set of displays—as evidenced by its
ability to reconstruct those displays—provides a good match to a
range of empirical findings on the relationship between objects of
different sizes (wholes) and the structure embedded within those
objects (parts). To this point, though, none of the results have
directly established that the network simultaneously represents a
given subset of the input both as a whole and as a collection of
parts, and that its behavior is influenced by both of these levels of
structure simultaneously. Accordingly, we thought it worthwhile

to carry out a final simulation that establishes this property of the
network directly. The results also serve as predictions of the
pattern of performance that participants would exhibit in an anal-
ogous study.

Our starting point was Simulation 4, which involved both qua-
druples and pairs as objects. The basic idea of the simulation is that
embedded pairs within one of the quadruples, labeled “Parts” in
Figure 11, will be trained as independent two-element objects and
thus come to be treated as parts of that quadruple. We will then
compare how well the network represents a configuration that is
both a whole and parts (the first quadruple) to those that are either
only a whole (the second quadruple) or only parts (combinations of
the base pairs).

The difficulty is that, by adding additional training of parts of
one of the quadruples, its elementwise and pairwise frequencies
are increased relative to the other quadruple and the base pairs, and
thus it would be uninteresting if it showed an advantage. Accord-
ingly, we constructed displays in such a way that the elementwise
and pairwise frequencies are matched across the various compar-
isons (as reflected in the factors shown in parentheses in Figure
11). To accomplish this, it was necessary to add displays consist-
ing of both base pairs and one of the parts (in addition to displays
in which a quadruple occurs with a base pair or part). Specifically,
the first (part-based) quadruple co-occurred with each of its own
parts with a frequency of 1, and with each of the base pairs with
a frequency of 2. The frequencies for the second (non-part-based)
quadruple were double these. In addition, the two base pairs
co-occurred with each of the parts with a frequency of 3. Eight
configurations of each display type were created that satisfied
Fiser and Aslin’s (2005) criterion that at least two horizontally
adjacent pairs of elements were present in each display. Because of
the number of displays involved, the learning rate in the network
was reduced to 0.2, but all other parameters and procedures from
the previous simulations were the same.

Although this design matches on lower-order statistics, it does
not match the frequencies of the two quadruples, nor the frequen-
cies of the base pairs and parts—indeed, this cannot be done
without disrupting the conditional probabilities of these compo-
nents by presenting their constituent elements in other contexts.
Thus, in interpreting the results, one must keep in mind that the
part-based quadruple has only half the frequency of the non-part-

Figure 10. (a) Percentage of trials in which participants in Orbán et al.’s (2008) study, the Associative Learner
(AL), and the Bayesian chunk learner (BCL) preferred true triples (shown as triples during exposure) over mixed
triples (with elements drawn from different components), false triples (shown only embedded in a quadruple)
over mixed triples, and true over false triples; (b) analogous response preferences in Simulation 6. Adapted with
permission.
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based one, and only half the pairwise frequencies of configurations
of the two base pairs.

Figure 12 shows the networks preference for the part-based
quadruple (“Whole�Parts”), for the non-part-based quadruple
(“Whole only”) and for configurations composed of both base-
pairs together in a pseudoobject (“Parts only”), each compared
against random quadruples. After 100 epochs of training, the
network’s preference for the part-based quadruple is only slightly
below that for the non-part-based quadruple, despite the latter’s
greater frequency. To avoid possible ceiling effects, we also pre-
sented data from earlier in training (70 epochs), where preferences
are weaker but the same basic pattern holds. Thus, a part-based
representation of the former provides nearly as much benefit as
having twice the whole-object frequency. Moreover, although both
quadruples have elevated pairwise frequencies, this alone cannot
explain the results because the network’s preference for four-
element configurations matched in pairwise frequency (“Parts
only”) is much lower. The contrast between the “Whole�Parts”

and “Parts only” conditions establishes a substantial benefit from
having a whole-based representation, and the similarity of the
“Whole�Parts” and “Whole only” conditions (in the face of a
difference in whole-object frequency) establishes a substantial
benefit from having a part-based representation. Thus, the network
shows evidence of simultaneously benefiting from whole and
part-based representations and, in this way, is very different from
theoretical frameworks in which wholes and parts are alternative
interpretations of a given input.

General Discussion

Learning about entities such as spoken words and visual objects
is not simply a matter of segregating them out of the input stream
and then mapping them to their meanings as undifferentiated
wholes, but must include learning their internal structure and how
this structure contributes to their meanings. Among the multiple
cues to discovering and representing words, objects, and their
parts, the statistical distribution of their occurrence and co-
occurrence makes a critical contribution (Conway & Christiansen,
2005; Fiser & Aslin, 2001; Kirkham et al., 2002; Saffran et al.,
1996; Smith et al., 2014; Swingley, 2005).

Empirical studies that have directly examined the relation-
ship between wholes and their parts in statistical learning (Fiser
& Aslin, 2005; Giroux & Rey, 2009) have generally found that
learning larger-scale structure tends to inhibit learning smaller-
scale structure embedded within it (see also Zhao, Ngo, McK-
endrick, & Turk-Browne, 2011). Fiser and Aslin (2005) pro-
posed that such an embeddedness constraint helps avoid the
combinatorial explosion of having to consider all combinations
of lower level components when representing higher order
structure. As they put it,

[I]f there is a reliable mechanism that is biased to represent the largest
chunks in the input in a minimally sufficient manner, rather than using
a full representation of all possible features, this constraint can elim-
inate the curse of dimensionality. (Fiser & Aslin, 2005, p. 532)

They recognized, though, that this constraint had to be graded
rather than all-or-none in order to be consistent with the full range
of relevant findings.

Orbán et al. (2008) elaborated on this graded view by develop-
ing a Bayesian formulation of visual statistical learning. The

Figure 11. Components used in constructing displays in Simulation 7. Factors in parentheses are the relative
frequencies of each component. Components labeled “Parts” are the only new components compared with
Simulation 4 and are taken from the first quadruple.

Figure 12. Response preferences of Simulation 7 for the quadruple
composed of parts (“Whole�Parts”), for the quadruple not composed of
parts (“Whole only [2x]”) and for configurations combining the two base
pairs (“Pairs only”), each compared against random quadruples, after 70
and 100 epochs of training. The “(2x)” indicates that the whole-object
frequency in that condition is twice the whole-object frequency in the first
condition.
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Bayesian chunk learner (BCL) combines all possible inventories of
parts and wholes, as a function of their likelihoods given priors and
the experimental exposure, to provide a measure of the relatively
likelihoods of test displays. To be clear, though, there is no a priori
embeddedness constraint in operation, and rather than trying to
avoid the curse of dimensionality, if anything the approach fully
embraces it.6 Of course, the computations employed by the BCL to
calculate probabilities are not intended to be interpreted as being
carried out by participants in any literal sense. Rather, the system
provides an elegant but abstract characterization of how statistical
information at different scales can be combined to account for
human performance. It does leave open the question, though, of
how a system can learn to be sensitive to the appropriate statistical
structure in a computationally efficient and plausible manner.

The current work attempts to address this question. We propose an
account based on learning internal distributed representations in arti-
ficial neural networks. This type of learning doesn’t suffer a combi-
natorial explosion because it doesn’t consider all possible subsets as
explicit, discrete representations (Bengio & Bengio, 2000). Rather,
representations are shaped by capturing the information in the input in
an efficient manner and, where applicable, by activating relevant
downstream representations in the service of supporting effective
behavior. The learned representations are potentially sensitive to all
combinations at all levels of structure simultaneously, but are pres-
sured to be efficient due to limited representational resources (e.g.,
numbers of hidden units). The result is that the network develops
graded representations of multilevel structure that are largely insen-
sitive to embedded structure when it is completely redundant with
larger-scale structure, but which capture both levels of structure when
they make somewhat separable contributions to the distribution of
inputs. The fact that participants behave similarly across a range of
studies suggests that their perceptual systems may operate according
to similar principles.

Relation to Other Approaches

Our work continues a broad, extensive effort to apply neural
networks to model human learning and performance across a wide
range of domains (see Rogers & McClelland, 2014), including
auditory statistical learning (e.g., Christiansen et al., 1998; French
et al., 2011; Mirman et al., 2010; Sirois et al., 2000). There have
been many applications of neural networks to learning visual
object representations (e.g., Cadieu et al., 2014; Hinton &
Salakhutdinov, 2006; Khaligh-Razavi & Kriegeskorte, 2014; Mel,
1997; O’Reilly, Wyatte, Herd, Mingus, & Jilk, 2013) but none that
we know of directed specifically at modeling empirical data on
visual statistical learning. In this section, we clarify the relation-
ship of the current work to a neural network model of auditory
statistical learning: the Truncated Recursive Autoassociative
Chunk Extractor (TRACX; French et al., 2011). We also discuss
the relationship of our approach to Bayesian approaches more
generally, and to what is often termed “associative” learning.

TRACX. TRACX (French et al., 2011) is a particular type of
autoencoder neural network known as a Recursive Auto-Associative
Memory (RAAM; Pollack, 1990). The input and output layers are
composed of two slots of units, where each slot is the same size as the
intervening hidden layer. The network is trained to reconstruct pairs of
elements (e.g., A�B, one in each slot). When the network has learned
to reconstruct a pair effectively, its hidden representation, [A�B], can

then be used as an input in one of the slots in order to form larger
groupings (e.g., [A�B]�C) which in turn, when learned, can enter
into still larger groupings (e.g., [[A�B]�C]�D), and so on. TRACX
consists of an RAAM applied to auditory statistical learning, in which
a sequence of syllables is streamed across the two input slots from
right to left, such that the left input is replaced with the hidden
representation of the previous pair whenever that pair’s reconstruction
error falls below a specified criterion. French et al. (2011) showed that
TRACX accounts for a number of challenging phenomena in auditory
statistical learning, including the results of Giroux and Rey (2009)
(although see the following text).

As a neural network that learns distributed representations of
multilevel structure, TRACX clearly shares many properties with
the current approach. Within both, the strength with which a
particular pair, triple, and so forth, is learned is a matter of degree,
and thus different groupings at the same scale can vary in strength
of encoding in a way that lines up with human performance. There
are, however, some important differences. The architecture and
machinery of TRACX is structured specifically to apply to pairs of
inputs, and an explicit criterion determines whether a given pairing
is or isn’t treated as a chunk—which, in turn, determines how its
subsequent training experience is organized. Neither of these con-
straints apply to our approach. Indeed, it’s not clear how TRACX
could even be applied to visual statistical learning of the sort
studied by Fiser and Aslin (2005).

When applied to sequential learning, the TRACX architecture leads
to the primacy of pairwise structure over other scales, as well as a
preference for leading substructure ([A�B]�C]) over trailing sub-
structure (A�[B�C]). This has problematic implications for its treat-
ment of Giroux and Rey’s (2009) findings. French et al. (2011) report
that, as TRACX learns the quadruple KLMN as [[K�L]�M]�N, its
error on embedded pairs LM and MN increases—consistent with an
embeddedness constraint. Unfortunately, however, performance on
embedded pair KL was not reported. In fact, because it continues to
be treated as a separate chunk (as shown in the organization for
KLMN), its error would continue to decrease. The same is true for the
initial triple KLM. Thus, TRACX is inconsistent with an embedded-
ness constraint for leading embeddings. Giroux and Rey (2009) did
not report performance separately for leading and trailing embed-
dings, but there is no reason to think they didn’t both show the effect.
As reported for Simulation 1, our network’s preference for leading
embedded pairs (58.6%) is slightly greater than for trailing embedded
pairs (55.3%), although both are much weaker than its preference for
disyllabic words (67.6%).

Among the results that TRACX did model successfully was
participants’ ability to learn to segment a syllable stream based
solely on backward transition probabilities (Perruchet & Desaulty,
2008)—that is, when certain elements reliably precede (rather than
follow) other elements. French and colleagues showed that an SRN
trained on syllable prediction, like Simulation 1, fails to show the
same behavior. To be clear, this has nothing to do with failing to
predict final silence at test. Rather, it is due to training solely on

6 Orbán et al. (2008) use approximations to make the probability calcu-
lations more tractable, and they point out in their supplementary material
(in a footnote, p. 1) that “the posterior over inventories was overwhelm-
ingly dominated by the marginal likelihood of a single inventory,” so the
practical computational demands of their formulation are not as severe as
they might be in principle.
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prediction. If an SRN is trained not just on prediction, but also on
maintenance and reconstruction, it is also sensitive to backward
transition probabilities.

To demonstrate this, we applied a modified version of Simulation
1 to the backward grammar used by Perruchet and Desaulty (2008).
This grammar uses 12 syllables to create nine disyllabic “words”:
three high-frequency words (XA, YD, and ZG) which were trained
three times more often than six low-frequency words (XB, XC, YE,
YF, ZH, and ZI). When these words are ordered randomly in a stream,
the resulting partwords (AY, AZ, DX, DZ, GX, and GY) occur as
often as the low-frequency words, but the latter have backward
transition probabilities of 1 (B and C are always preceded by X, E,
and F are always preceded by Y, and H and I are always preceded by
Z). The only difference from Simulation 1 was that the network was
trained not only to predict the next syllable, but also to reconstruct the
current syllable and to recall the previous syllable. We think of all
three of these tasks as proxies for the need to remember, represent,
and predict information in the course of language processing. Testing
also involved all three tasks (except for recall of the previous syllable
on presentation of the first syllable) and included final silence.

After 2100 syllable presentations—the same as Perruchet and
Desaulty’s (2008) participants—with the same learning parameters
as in Simulation 1, the network showed a reliable preference for
the low-frequency words compared with the partwords (M �
62.4%, SE � 1.13, over 20 samples of initial random weights).
Thus, contrary to French et al.’s (2011) claims, sensitivity to
backward transition probabilities is not problematic for the appli-
cation of SRNs to statistical learning, and provides no differential
support for their account over ours.

Bayesian approaches. Although neural network and Bayes-
ian approaches are often compared (Griffiths, Chater, Kemp, Per-
fors, & Tenenbaum, 2010; McClelland et al., 2010), they typically
have different goals and address different questions. Neural net-
works attempt to approximate the underlying computational mech-
anisms that learn, represent, and process information in real time.
In contrast, Bayesian approaches attempt to understand the struc-
ture of a problem, formulate an optimal solution to it, and then
examine how the cognitive system might approximate this solution
(see Griffiths, Vul, & Sanborn, 2012; Rogers & McClelland, 2014,
for further discussion). Even so, the approaches are not incompat-
ible: learning and processing in neural networks—both real (e.g.,
Fiser, Berkes, Orbán, & Lengyel, 2010; Orbán, Berkes, Fiser, &
Lengyel, 2016; Pouget, Beck, Ma, & Latham, 2013) and artificial
(e.g., Hinton & Sejnowski, 1983; McClelland, 2013; Rumelhart,
Durbin, Golden, & Chauvin, 1995)—can be understood in terms
of Bayesian statistical inference. Moreover, some computational
approaches—particularly those positing structured, symbolic rep-
resentations—are also committed to modeling underlying compu-
tational mechanisms of performance, and use Bayesian inference
to learn over such representations in a principled manner (e.g.,
Kemp, 2012; Kemp & Tenenbaum, 2009).

The two approaches do typically adopt somewhat different stances
with regards to the nature and use of priors. For neural networks, the
computational formalism itself incorporates certain commitments—
ultimately inspired by basic principles of neural computation—that
give rise to specific biases about what kinds of things are easier versus
harder to learn, and how performance generalizes to novel items. In
particular, the use of multiple layers of units which each pass a linear
combination of inputs through a limited (e.g., monotonic) nonlinearity

causes networks to be better at learning mappings which preserve (vs.
violate) similarity, which depend on lower order (vs. high-order)
relationships among inputs, and which involve local (vs. long-
distance) dependencies in time and/or space. A given model augments
these intrinsic biases with domain-specific ones, expressed largely in
terms of the training environment to which the network is exposed, as
well as some aspects of the architecture of the network (e.g.,
receptive-field sharing in a CNN). As a result, some aspects of the
behavior of a model are more-or-less unavoidable. For instance, the
current simulations of visual statistical learning employ a very generic
network architecture—a fully connected, feedforward autoencoder—
and involve training only on the experimental stimuli themselves. The
resulting behaviors thus reflect the intrinsic biases of the formalism
itself and there is very little that could be done to alter these effects.
If, for example, participants in Fiser and Aslin’s (2005) Experiment 1
had shown a strong preference for embedded over random pairs, the
network would be unable to account for this finding.

On a Bayesian approach, biases on performance derive from how
the statistical structure of the environment relates to specified priors
regarding what types of structure should be preferred. These priors
thus play the same role as network architecture and intrinsic formal-
ism properties within the neural network approach. The difference,
though, is that the origin of priors, and the constraints on their
properties, are not always made explicit or derived from more basic
theoretical principles (Jones & Love, 2011). For example, some
parameters in the BCL bias the size of the chunks to be formed. It is
impressive that Orbán et al. (2008) could fit the results of multiple
studies with a single set of priors on the parameters, but it is unclear,
apart from fitting the data, why the system should have those priors
and not others. Indeed, it would be informative to compare the
system’s preferences to those of participants when a broader range
of chunk sizes are relevant. It is unfortunate, in this regard, that the
BCL was not applied to Experiment 5 of Fiser and Aslin (2005),
which involved sextuples, quadruples, pairs and singletons. Not
only do these chunks span a broad range of spatial scales, but the
results indicate that participants did not adhere to a strict form of
the embeddedness constraint as they had in most of the studies fit
by the BCL.7

Given a particular ensemble of displays, the specified priors in
the BCL give rise to preferences for certain chunk inventories over
others. Other priors would yield other preferences. Without an
understanding of why the system has a particular set of priors and
not others, the fact that those priors lead to preferences that are
similar to those of participants does little to explain why partici-
pants behave the way they do. In general, Bayesian accounts—and
all other modeling efforts, for that matter—are most informative
when the sources of their biases can be independently justified
(see, e.g., Geisler, 2008; Griffiths & Tenenbaum, 2006).

“Associative” learning. Some researchers think of neural net-
works as a type of associative learning mechanism, perhaps be-

7 There is one result reported by Orbán et al. (2008) that violates the
embeddedness constraint but which the BCL (and the associative learner)
nonetheless successfully modeled: participants’ preference for triples em-
bedded in quadruples, relative to random triples (see Panel D of Figure 2,
p. 2747 of their article). The data appear to come from Experiment 4 of
Fiser and Aslin (2005), but as that article does not report the performance
on triples in that experiment, the exact status of these data is somewhat
unclear.
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cause they are often trained to “associate” each input with a
particular output. Unfortunately, this perspective conflates the
structure of the task with the structure of the learning mechanism
itself.

Orbán et al. (2008) contrasted the BCL with an AL, which failed
to behave like participants when elementwise and pairwise statis-
tics were controlled. Our neural network simulation behaved like
the BCL and participants, and unlike the AL. That is, although the
network was performing an associative task—mapping inputs to
outputs—it was not equivalent to an associative learner.

The critical property that doomed the AL is that its learning was
based on direct relationships (correlations) among surface ele-
ments; the system had no means of learning new representations
with an altered organization or similarity structure. Neural network
without hidden units are similarly limited (Minsky & Papert,
1969), but those with hidden units, like our network, can learn to
rerepresent the input in a nonlinear way, thereby emphasizing
some relationships (e.g., “chunk-like” configurations) and ignoring
others (e.g., some types of embedded structure). Thus, in evaluat-
ing proposals concerning associative learning, it is critical to
examine the detailed properties of the underlying learning mech-
anisms—particularly with regard to their ability to learn new
representations—and not simply assume that all systems that per-
form an associative task have equivalent properties and limitations.

Limitations and Future Directions

Although the networks examined in the current work are largely
successful in accounting for the relevant behavioral findings, like
all models they suffer from limitations in their scope and adequacy
which are important to understand, and which provide opportuni-
ties for improvement in subsequent work.

Positional invariance. The most obvious limitation of the
current work concerns our treatment of positional invariance.
Participants come to the experiment with an extensive—although
not complete (Kravitz, Kriegeskorte, & Baker, 2010)—ability to
generalize their visual knowledge across retinotopic position.
While the basis for this degree of positional invariance is not fully
understood, it presumably results from a combination of patterns
of eye movements, the integration of visual information across
successive retinotopic representations in the visual system, and
learning from extensive visual experience across retinotopic posi-
tions (see Kravitz, Vinson, & Baker, 2008, for discussion). Our
simulations of visual statistical learning incorporated only the last
of these factors, and only for the experimental stimuli directly.
Specifically, whereas participants viewed each display at most a
couple of times during the exposure phase of each visual statistical
learning experiment, we trained the network on each display at
every possible position, wrapping the displays vertically and hor-
izontally to avoid edge effects. Although this was intended to
capture the impact of both pre- and within-experimental experi-
ence, and we illustrated (for Simulation 1) that wrapping was not
necessary to account for the relevant effects, the training procedure
is clearly a poor approximation to participants’ experience. More-
over, it fails to account for conditions in which participants do
show sensitivity to absolute spatial position (see, e.g., Fiser &
Aslin, 2001).

We believe that the principles that govern the treatment of parts
and wholes in visual statistical learning can be studied and under-

stood without a fully adequate treatment of positional invariance in
visual perception, and our training regime simply allowed us to do
this in a way that avoids positional biases entirely. Even so, a full
account of visual statistical learning must ultimately be framed
within a more general theory of the visual system which accounts
for positional invariance along with a host of other properties, and
we view this as an important direction for future work.

Learning procedure. Even setting aside the additional posi-
tional training, our visual simulations received a greater number of
presentations of each configuration compared with participants.
This was due largely to the fact that the network had no preex-
perimental experience of any sort, in order to avoid possible biases
from the structure of such experience. It is possible that, by
implementing a better theory of positional variation and by pre-
training the network with experience comparable to that of partic-
ipants, the simulations could have matched not just the outcome of
learning but also its timecourse on a trial by trial basis. We suspect,
though, that a further discrepancy between participants and the
simulations would also need to be addressed—namely, the specific
use of back-propagation as the learning procedure in the simula-
tions. Back-propagation is essentially using the chain-rule from
calculus to calculate the derivative of performance error with
respect to each connection weight in the network; these derivatives
are then used to change the weights to improve performance.
Although a literal implementation of back-propagation itself is not
biologically plausible (Crick, 1989), it is one of a class of error-
correcting procedures which have very similar characteristics,
some of which are more plausible (e.g., Hinton, Osindero, & Teh,
2006; O’Reilly, 1996).

These procedures differ in their efficiency, however, and so match-
ing the speed of human learning will probably require the application
of a learning procedure which is a closer match to the one actually
employed by participants. It is interesting to note, though, that despite
its implausibility, back-propagation can give rise to hidden represen-
tations whose similarity structure is closely related to that of the
corresponding neural representations (e.g., object representation in the
ventral visual pathway; Khaligh-Razavi & Kriegeskorte, 2014;
Kriegeskorte, 2015; Yamins et al., 2014), suggesting that the proper-
ties of the underlying representations may depend more on the func-
tional demands placed on them than on the specific details of the
learning procedure.

Relation to the neural basis of statistical learning. Part of
the attraction of neural networks, at least for some researchers, is
that they can approximate principles of neural computation, both
by employing neuron-like processing units and by having the units
organized into groups that correspond to specific cortical regions
(O’Reilly & Munakata, 2000). The current work has taken very
little advantage of this, using highly simplified units and generic
network architectures that, at best, could be interpreted as corre-
sponding to cortical regions that support modality-specific percep-
tual processing. At a very general level, this stance is consistent
with the widespread view that statistical learning reflects domain-
general principles that operate throughout neocortex (Frost, Arm-
strong, Siegelman, & Christiansen, 2015). However, recent results
suggest that medial temporal lobe structures may play an unex-
pectedly important role in the relatively rapid statistical learning
that occurs in many experimental paradigms, particularly with
regard to temporal structure (Davachi & DuBrow, 2015; Schapiro,
Gregory, Landau, McCloskey, & Turk-Browne, 2014; Schapiro,
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Turk-Browne, Norman, & Botvinick, 2016; Turk-Browne, Scholl,
Chun, & Johnson, 2009). While it may be possible to understand
these results as reflecting a mixture of implicit and explicit pro-
cessing (Bertels, Franco, & Destrebecqz, 2012; Dale, Duran, &
Morehead, 2012), a full account of statistical learning perfor-
mance, both in the laboratory and in more natural settings, will no
doubt require consideration of complex interactions between neo-
cortical and subcortical structures (McClelland, McNaughton, &
O’Reilly, 1995) as well as between the two hemispheres (Roser,
Fiser, Aslin, & Gazzaniga, 2011).

Integration with recognition and comprehension. The cur-
rent work applies a form of unsupervised learning—sometimes
called self-supervised because the input is used both as input and
output—as the empirical studies involve incidental learning with-
out feedback. Visual representations do not develop solely in the
service of reconstructing the input, however, but must also support
the recognition and comprehension of words, objects, and other
entities. Thus, a full account of the role of statistical learning in
language and vision must be developed within a broader theory of
learning, representing, and processing words, objects, and their
meanings (Emberson & Rubinstein, 2016; Graf Estes et al., 2007;
Hay et al., 2011; Koehne & Crocker, 2015; Smith et al., 2014).

Our simulations of auditory statistical learning are particularly
impoverished in this regard. We do not really think that word
learning is based on explicit training on syllable prediction, recon-
struction and recollection. Rather, the demands of language pro-
cessing in general involve learning to represent and maintain
information so it can be integrated properly with upcoming infor-
mation, and this integration will be aided to the extent that the
upcoming information can be anticipated (Federmeier, 2007; Ku-
perberg & Jaeger, 2016). These properties of the language learning
system then manifest in a variety of experimental contexts, includ-
ing auditory statistical learning. Thus, we need to move from
models of statistical learning to models of language (and visual)
learning that exhibit the appropriate patterns of performance when
faced with statistical learning paradigms (as well as many others).

Conclusions

Statistical learning is often cast as a solution to the problem of
how people discover the “units” of perception, but true perceptual
organization is far more complicated than finding a simple parse of
the input to pass on to recognition and comprehension processes.
Entities such as words and objects have rich internal structure that
contribute in important ways to their interpretation, and any pro-
cess that purports to use statistical structure to aid in recognition
must be capable of discovering and representing both wholes and
parts. Interestingly, empirical studies that have examined the re-
lationship between wholes and parts in auditory (Giroux & Rey,
2009) and visual (Fiser & Aslin, 2005) statistical learning have
found many cases in which discovery of the structure of the whole
seems to inhibit discovery of substructure of that whole, which
seems difficult to reconcile with a variety of empirical findings in
which wholes and parts work together to support behavior. Bayes-
ian formulations (Orbán et al., 2008) provide a natural means of
expressing how the the integration of parts and wholes manifests in
performance, but do not attempt to approximate the mechanisms
that actually govern learning and processing in participants.

The current work presents a series of computational simulations
in which artificial neural networks that learn internal representa-
tions in the service of representing auditory or visual input exhibit
the same patterns of performance as participants, despite not
forming discrete “chunks” for wholes and/or parts. Importantly,
both participants and the networks behave somewhat differently
when the large-scale structure is somewhat less reliable relative to
the smaller-scale structure. This argues for a more graded “em-
beddedness constraint” on statistical learning (Fiser & Aslin, 2005)
and suggests, in agreement with Bayesian formulations, that the
degree to which structure at the whole- and part-levels contribute
to behavior depends on their relative informativeness. An impor-
tant direction for future work is to incorporate the same learning
and representational principles into more general models of audi-
tory and visual recognition and comprehension processes.
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