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‘ Abstract |

As children gain experience with the world, the organization of
their conceptual knowledge becomes increasingly complex, as
reflected by the successive emergence of sensitivity to different
types of similarity over the course of development. Though this
phenomenon has been well-studied, it is often explained by refer-
ence to innate, domain-specific mechanisms that are stipulated to
come on-line at specific ages. We present a Parallel Distributed
Processing (PDP) model that learns from the structure of its envi-
ronment and exhibits transitions in the relative salience of percep-
tual, thematic, and taxonomic similarity, as observed empirically,
without any built-in knowledge or changes to the learning mecha-
nism.

‘ Background |

The Role of Similarity: Empirical Evidence

Things can be similar in different ways. Sensitivity to these dif-
ferent types of similarity varies with age, reflecting underlying
conceptual change. Three types of similarity are important:

Type Depends on Age range Studies

perceptual | surface-level features infants to 3-years | [4] [11]

thematic | co-occurrence and com-| 2-to 5-years [3] [16]
plementary features

taxonomic | shared/inherited abstract, 5-years to adult | [16] [9]
features

Theoretical Accounts

e Knowledge-based: The traditional perspective is that percep-
tual information alone is not sufficient to develop adult-like cat-
egories, and that some knowledge must be innate [1] [5] [6].

e Similarity-based: A family of alternatives to knowledge-based
theories. The central claim is that perceptual input is rich, and
a learning mechanism sensitive to statistical regularities can
learn higher order, taxonomic structure [10] [13] [19]. PDP
models are mechanistic descriptions belonging to this family.

Limitations of Existing PDP Models

e Autoencoders have been used [12], but they cannot learn struc-
ture beyond that present in the input

e More advanced models usually train on explicit semantic fea-
tures, which is not how children learn in most cases [8] [13]

e These and related models usually focus on one aspect of the
problem, usually either ignoring the role of perceptual features
[14] [8] or of thematic co-occurrence [12] [13]

Present Work

We offer an extension of previous models that is similar in struc-
ture to an autoencoder network, but that is capable of abstraction
beyond input similarity. With such a model, is perceptual infor-
mation alone enough to account for the observed developmental
pattern without the need for built-in knowledge?
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‘ Methods |

Artificial Environment

e Building event structure: The goal was to train the model on
perceptual representations of events. Each event consisted of
two objects bearing some relation, and the whole event could
be both viewed and described with auditory labels.

— Objects: Thirty nouns were chosen from a feature norms
database [7]. Features were narrowed down to those tagged
as “visual” in [7]. Thematic and taxonomic categories were
chosen by the experimenter (see Figure 1).
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— Relations: Five relations (“drives”, “wears”, “pets”, “eats”, and
“Is inside of”) were chosen to bind objects thematically and
taxonomically. Each relation was given a visual represen-
tation by pseudo-randomly generating a 20-dimensional bit
vector.

— Labels: Each object and relation was assigned a label by
pseudo-randomly generating a 20-dimensional bit vector.
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Figure 1: (a) Objects sorted by taxonomic category. (b) Objects
sorted into thematic groups.

Network Architecture

The model was a simple recurrent network [2]
e /Input/Output:
— Input and output layers both divided into visual and auditory
subsets.
— Modality-specific processing constraints
x Visual “scene” spatially organized
+ Auditory “sentence” temporally organized
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Figure 2: Network diagram. Input and output layers are divided
by modality; here, visual units are shown in light blue, and audl-
tory units in lavender.

Training Procedure

Error was accumulated over the entire training set before adjust-
ing the weights via back-propagation. Each pass through the
training set constituted one epoch.

e /ask: The network had to reconstruct the full event for each
trial, given only partial perceptual input.

e [rial types:

—Unimodal visual: One object missing, relation missing, or
both.
— Unimodal auditory: Last word of the input missing
— Bimodal: The union of the unimodal conditions.
e Active/Passive: The network was trained on each event in both

active and passive forms. The “primary object” slot always
matched the first object label.

e Distortion:

— Objects: Gaussian noise added to each unit (mean=0,
sd=0.05)

— Relations and labels: Prior to each epoch, a new exemplar
close to the original prototype was chosen by changing fea-
tures with p=0.05.

Testing Procedure

The network was tested after every 10 epochs by presenting each
visual object pattern in the “primary object” slot for a single tick.
Activation values for all hidden and output units were recorded in
response to each object.

‘ Results & Discussion |

Network Performance
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Figure 3: Cross-entropy error over time, summed over the entire
training set.

Average Representational Similarity Over Time
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Figure 4: Pairwise correlations between object representations
(concatenated hidden and output vectors) over the course of train-
ing. Color indicates taxonomic similarity (red means similar). Line
type indicates visual similarity (solid means similar). The left plot
shows within-theme correlation, while the right shows across-
theme.
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Figure 5: Correlations with significant interactions shown for
early, middle, and late training, o = 0.05. Error bars display 95%

confidence intervals.

This network replicates some findings from empirical studies with
infants and children.

e Perceptually similar objects start out with more similar repre-
sentations. Since within-category perceptual similarity tends to
be higher than between-category similarity, taxonomic cluster-
Ing depends largely on perceptual similarity.

e Later, representations for visually dissimilar, taxonomically re-
lated objects get an “associative boost” from thematic co-
occurrence.

¢ Finally, the network becomes able to represent pure taxonomic
relations as similar, benefiting from bootstrapping of perceptual
and thematic relations.

Conclusions

e With the appropriate pressure, a simple network can abstract
higher-order structure, such as taxonomic relatedness, from
low-level input

e No innate knowledge structures or explicit category represen-
tations are required to account for developmental data.
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