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A B S T R A C T   

Categories are often structured by the similarities of instances within the category defined across dimensions or 
features. Researchers typically assume that there is a direct, linear relationship between the physical input di
mensions across which category exemplars are defined and the psychological representation of these dimensions. 
However, this assumption is not always warranted. Through a set of simulations, we demonstrate that the 
psychological representations of input dimensions developed through long-term prior experience can place very 
strong constraints on category learning. We compare the model's behavior to auditory, visual, and cross-modal 
human category learning and make conclusions regarding the nature of the psychological representations of the 
dimensions in those studies. These simulations support the conclusion that the nature of psychological repre
sentations of input dimensions is a critical aspect to understanding the mechanisms underlying category learning.   

1. Introduction 

Categorization is thought to be at the heart of many complex pro
cesses, such as object recognition (Richler & Palmeri, 2014) and speech 
perception (Holt & Lotto, 2010), and appears to be dependent on 
distributional regularities across exemplars that define a category. For 
instance, infants form sound and object categories based on the statis
tical distributions they experience in the input (Eimas, 1975; Maye, 
Werker, & Gerken, 2002; Smith, Jayaraman, Clerkin, & Yu, 2018; 
Werker, Yeung, & Yoshida, 2012). Adults are also sensitive to statistical 
structure of novel categories (Folstein, Gauthier, & Palmeri, 2010; 
Goudbeek, Cutler, & Smits, 2008; Pierrehumbert, 2003). Learners can 
approximate category distributions even from complex, non-Gaussian 
distributions (Gifford, Cohen, & Stocker, 2014) and are sensitive to 
statistical structure both within- and between-categories (Gureckis & 
Goldstone, 2008). The statistical structure in the sensory world is re
flected in psychological and neural representations (Drucker, Kerr, & 
Aguirre, 2009; Lewicki, 2002; Schwartz & Simoncelli, 2001; Tijsseling & 
Gluck, 2002). 

Learners' sensitivity to category-specific regularities has led re
searchers to investigate the importance of distributional regularities on 
category learning (e.g., Ashby, Alfonso-Reese, Turken, & Waldron, 

1998; Aslin & Newport, 2014; Carvalho, Chen, & Yu, 2021). One 
influential theory of category learning that suggests that the neural and 
computational mechanisms supporting category learning are deter
mined by the distributional regularities of those categories (Ashby et al., 
1998). Specifically, Ashby and colleagues suggest that optimal learning 
of rule-based (RB) categories, which requires selective attention to in
dividual dimensions and can be learned via hypothesis testing, relies on 
an explicit categorization system, supported by prefrontal cortex and the 
head of the caudate nucleus in the striatum (Ashby & Ell, 2001; Ashby & 
Waldron, 2000). In contrast, optimal learning of information-integration 
(II) categories, which requires pre-decisional integration across multiple 
dimensions learned via procedural learning mechanisms, relies on an 
implicit categorization system, supported by the putamen and body and 
tail of the caudate nucleus in the striatum (Ashby & Waldron, 1999, 
2000). Thus, the relationship of the categories to the component di
mensions is thought to be fundamental to the mechanisms of category 
learning. Consistent with this view, proponents of dual systems theory 
have generally demonstrated that RB categories requiring selective 
attention to relatively simple visual dimensions (e.g., orientation and 
spatial frequency in Gabor patches) are learned better and faster than II 
categories requiring integration over the same dimensions (see Ashby & 
Maddox, 2011 for a review). 
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From a mechanistic point of view, it is the distribution of stimuli 
within internal perceptual representations that influences category 
learning. Critically, the dimensions of this perceptual space may not 
necessarily be aligned with the input dimensions that are explicitly 
manipulated by experimenters. Previous investigations of the effect of 
category distributions on learning are driven by the – often implicit – 
assumption that exemplar distributions defined across input dimensions 
are linearly mapped to perceptual dimensions (Ashby & Soto, 2015; 
Johannesson, 2001). As such, experimental design and interpretation 
rely on the assumption of congruence between input and learners' in
ternal perceptual dimensions. For some of the most well-studied di
mensions in the visual domain, such as line length and orientation or 
spatial frequency and orientation of lines in a Gabor patch, the 
assumption of alignment between input dimensions and perceptual di
mensions is likely valid, as representations of simple visual input di
mensions are known to be orthogonal (Everson et al., 1998). However, 
for more complex visual objects, representations may reflect more ab
stract, latent dimensions, rather than veridical representations of the 
physical dimensions (Fleming & Storrs, 2019). 

Recent applications of the dual systems theory in the auditory 
domain make clear that the experimenter assumption of alignment be
tween input and perceptual dimensions may be problematic (Roark & 
Holt, 2019; Scharinger, Henry, & Obleser, 2013). In the auditory 
domain, it is likely that the representations of many dimensions are not 
independent (Garner, 1974), reflected in interdependent coding of even 
basic acoustic dimensions (Wang, 2007). When input dimensions 
defining categories are perceptually interdependent, statistically 
equivalent category input distributions can lead to very different 
learning challenges depending on whether the input distributions align 
(or misalign) with perceptual representations (Roark & Holt, 2019). 
Further, real-world auditory categories are often defined by many input 
dimensions, making the nature of perceptual representations of those 
dimensions difficult to determine. For example, there are at least 16 
dimensions contributing to consonant voicing distinctions in speech 
(Lisker, 1986) and 20 contributing to perception of fricatives (McMurray 
& Jongman, 2011). 

The nature of dimensions is important to consider because it affects 
what learners are able to do with those dimensions. For interdependent, 
integral dimensions, processing stimuli in a holistic manner is easy and 
selectively attending to individual dimensions is difficult (Foard & 
Kemler Nelson, 1984; Garner, 1974, 1976; Kemler Nelson, 1993). These 
kinds of constraints on processing can persist even with expertise-level 
training—for instance, even color experts are not able to optimally 
selectively attend to the integral visual dimensions of brightness and 
saturation (Burns & Shepp, 1988). 

Yet, how the perceptual representation of information influences 
category learning is not well understood. Some researchers have directly 
addressed the correspondence between physical and psychological di
mensions. One approach to ensure that experimenter assumptions are 
aligned with psychological reality is to approximate perceptual space 
using multidimensional similarity (MDS) models prior to category 
learning (Nosofsky, 1992; Shepard, 1980). While this approach avoids 
making the explicit assumption about the alignment between input and 
psychological representations, it makes the concept of ‘dimensions’ 
more difficult to define and, as a result, the nature of the psychological 
representations is not well understood. Others have more explicitly 
addressed the assumption of the alignment between physical and psy
chological dimensions, either by determining that the assumption is not 
problematic if the relationship between the input and perceptual di
mensions is monotonic (Ashby & Gott, 1988) or by directly estimating 
the mapping between input and perceptual dimensions (Crossley & 
Ashby, 2015). While these approaches avoid the explicit assumption by 
computationally estimating the dimensions, it is not clear that this is 
applicable to all combinations of dimensions, as these researchers 

focused on relatively straightforward visual dimensions (e.g., orienta
tion and width of a bar; line length and orientation). 

Here, we test the influence of the alignment between input di
mensions and psychological dimensions in an abstract dimensional 
space that could reflect multiple combinations of dimensions without 
the need to approximate the representation beforehand. We specifically 
capitalize on a dual systems approach to category learning, using dis
tinctions between RB and II categories as a testbed for modeling the 
influence of perceptual representations on category learning. Because 
there is often an implicit assumption that the specific properties of 
experimenter-manipulated dimensions align with perceptual represen
tations, there is the possibility that what are transparently ‘rule-based’ 
or ‘information integration’ distributions in input space may not be best 
described this way in terms of the underlying perceptual space. There
fore, understanding the nature of the categorization problem requires 
understanding perceptual representations. 

We emphasize that the alignment between input dimensions and 
perceptual dimensions is likely to have a broad influence on category 
learning, in no way specific to the theoretical commitments of this dual 
systems theory (Ashby et al., 1998) or challenges to it (e.g., Kalish, 
Newell, & Dunn, 2017; Lewandowsky, Yang, Newell, & Kalish, 2012; 
Newell, Dunn, & Kalish, 2011). Our examination of this issue in the 
context of RB and II category learning from the dual systems perspective 
is a choice of convenience for the sake of its ease of exposition in our 
modeling efforts. 

In the current investigation, we present a neural network model that 
demonstrates that so-called ‘rule-based’ and ‘information-integration’ 
categories in input space may not be reflected as such in perceptual 
space, and that this has dramatic consequences for category learning. 
We gave the model extensive, long-term experience with five kinds of 
structured regularities in a theoretical sensory environment, which it 
learned to reflect in its stable, ‘adult-like’ internal perceptual repre
sentations. We then examined how differences in the regularities the 
model experienced during this training phase influenced how the model 
learned identically structured ‘rule-based’ and ‘information-integration’ 
categories as defined in the input space. Our results demonstrate that the 
underlying perceptual representations developed across long-term 
experience place strong constraints on novel category learning. We 
also compare the model's behavior to human behavior from prior 
perceptual category learning studies across different sensory modalities. 

2. Methods 

Our approach involved two training phases. First, during the repre
sentation learning phase, we trained the model on a particular rela
tionship within a two-dimensional space using an autoencoder. This 
training phase is meant to simulate a learners' lifetime of experience 
with a pair of sensory dimensions. Second, during the category learning 
phase, the model was subjected to a category learning experiment where 
this trained dimensional space was mapped to discrete category outputs. 
These two stages enable examination of how long-term experience 
shapes representations and, subsequently, how those representations 
influence category learning. 

2.1. Model architecture 

There are two components to the model architecture (Fig. 1): the 
lower level supports representation learning, in which perceptual rep
resentations are gradually shaped through extensive pre-experimental, 
task-independent experience that models long-term experience in the 
sensory world; the higher level supports category learning, in which the 
evoked representations of different stimuli are relatively rapidly asso
ciated with particular behavioral responses within an experimental 
context. 
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2.2. Representation learning 

Our core assumption is that perceptual representations are tuned to 
capture the statistical structure of the ensemble of long-term perceptual 
experience, such that common features and feature combinations are 
coded in more detail than less common features and combinations. 
Although there are many ways of implementing this type of statistical 
learning, we adopted the approach of an autoencoder (Hinton, 1989), in 
which a neural network learns to reconstruct its inputs via one or more 
smaller, “bottleneck” layers of hidden units, because this allowed the 
same computational principles to apply to both representation and 
category learning. 

Thus, in the model, representation learning over two physical input 
dimensions x and y was implemented by an autoencoder that received 
structured sensory input that it learned to recreate over an equal-sized 
output layer via a smaller single hidden layer (Fig. 1). Specifically, a 
20 unit ‘sensory input’ layer was connected to a ten-unit ‘perceptual 
representation’ hidden layer which was connected to a 20 unit 
‘autoencoder output’ layer. Ten of these 20 units reflected the physical 
x-dimension value and ten reflected the physical y-dimension value. For 
each dimension, a particular value was represented as a normalized 
Gaussian distribution centered on that value; the activation of the 10 
units sampled this distribution uniformly over the full range of the 

dimension (such that their activations always summed to 1). This 
encoding allows for graded input, which reflects population encoding of 
information in sensory cortex. Activations in the sensory input layer also 
had a small amount of uniform noise (range = 0.1) to reflect a small 
amount of noise in the perceptual encoding of a stimulus. The goal of the 
network at this stage was to recreate the non-noisy input in the output 
layer. This training experience thus formed the perceptual representa
tions of the network in the hidden layer. The number of input/output 
units and units in the hidden layer was determined based on our prior 
experience with these kinds of models. This was the only number of units 
that we implemented. 

We trained the model on five separate training environments, 
reflective of different statistical relationships that might exist in the 
sensory world (Fig. 2): 1) no correlation or other relationship between 
two dimensions (Independent), 2) a positive relationship between two 
dimensions (Positive), 3) a negative relationship (Negative), 4) the x- 
dimension is represented in more detail than the y-dimension (X- 
Dimension), and 5) the y-dimension is represented in more detail than 
the x-dimension (Y-Dimension). To ensure that, in each condition, the 
model had experience within the entire space, the model also experi
enced inputs drawn from a uniform distribution (Fig. 2, gray points). 
The input of the model during training was biased such that 90% of the 
stimuli were drawn from the biased representation distribution (Inde
pendent, Positive, Negative, X-Dimension, Y-Dimension) and 10% were 
drawn from the uniform distribution. Table 1 shows the means, vari
ance, and covariance of the representation training and uniform 
distributions. 

These environments are not meant to capture any specific natural 

Fig. 1. Model architecture.  

Fig. 2. Stimulus distributions for representation learning. 
Note. Each biased distribution (colored points) also has the same uniform distribution (gray points). 

Table 1 
Representation learning distribution information.  

Distribution Type M (x, y) σ2 (x, y) Covariance 

Independent 0.5, 0.5 0.023, 0.023 0 
Positive 0.5, 0.5 0.029, 0.029 0.028 
Negative 0.5, 0.5 0.029, 0.029 − 0.028 
X-Dimension 0.5, 0.5 0.057, 0.00032 0 
Y-Dimension 0.5, 0.5 0.00032, 0.057 0 
Uniform 0.5, 0.5 0.10, 0.10 0  

C.L. Roark et al.                                                                                                                                                                                                                                



Cognition 222 (2022) 104997

4

signal statistics, but rather reflect clear alternative scenarios to 
demonstrate how these simple relationships might be encoded in the 
perceptual system and ultimately affect category learning. The repre
sentation training phase is meant to reflect long-term experience with 
statistical regularities in perceptual environments that amount to a 
lifetime of experience. 

To simulate the gradual encoding of long-term statistical regularities 
into adult-like stable representations, we trained the network for 50,000 
epochs of batch learning (i.e., all exemplars presented once before the 
model updates its weights) across the 624 stimuli within each training 
distribution (625 for Independent distribution), using back-propagation 
to minimize reconstruction error, with a learning rate of 0.0001, no 
momentum, and a bound of 1.0 on the length of the weight change 
vector. The hidden and output units in all parts of the network used a 
sigmoid activation function. These learning parameters are intentionally 
conservative and were chosen solely to ensure that representation 
learning was stable and effective. 

2.3. Category learning 

To simulate short-term training of novel category distinctions in an 
experimental context, in the category learning phase, the model weights 
from the sensory input layer to the hidden layer were frozen, reflecting a 
long-term consistency in experience and the resulting development of 
robust psychological representations (e.g., adult-like representations). 
To measure the network's categorization decision, a two-unit decision 
output layer was connected to the perceptual representation hidden 
layer (Fig. 1). The activation within these units reflects the model's 
choice between the two categories. 

2.3.1. Category distributions 
For each of the five representation environments, the model was 

separately trained on four category learning problems (Fig. 3A). The 
category distributions were created by sampling a bivariate Gaussian 
distribution using the mvnorm function in the MASS package in R 
(Venables & Ripley, 2002). We sampled for a single category using 
normalized coordinates (0–1) and then manipulated and rotated that 
distribution to create all other categories. Each of the category learning 
problems was identical in terms of statistical structure (category vari
ance and overlap between categories; Table 2). The key difference is the 
rotation of the categories in physical input space, such that the category 
distinction requires different reliance on the physical input dimensions. 
These category environments were designed to reflect two rule-based 
(RB) problems that can be learned using a single input dimension (RB- 
X dimension, RB-Y dimension) and two information-integration (II) 
problems that require integration across the two dimensions (II-Positive 
and II-Negative). The naming scheme of the categories reflects the di
mensions across which the categories can be distinguished (X-Dimen
sion, Y-Dimension, Positive axis or Negative axis). For instance, learning 
RB-X categories requires learning that the categories can be distin
guished based on the x-dimension and that the y-dimension is not 
informative of category membership. Critically, as a consequence of the 
representation learning phase, the input dimensions (i.e., the 
experimenter-defined dimensions) do not necessarily align with the 
model's internal perceptual representations. 

Test stimuli were created using an identical procedure, sampling 
only 50 exemplars per category (Fig. 3B, Table 2). Due to the probabi
listic nature of the sampling, the means and variances vary slightly but 
are very similar to the training distributions. The dimensions that are 
relevant for category identity are identical in the training and test 
environments. 

2.3.2. Training procedure 
We trained the category learning network with back-propagation 

using two distinct training paradigms. The first training paradigm – 
batch learning – like the representation learning paradigm, is 

conservative and stable in order to most clearly illustrate effects of 
representation on learning. This learning paradigm is meant to be a 
more abstracted version of the model's behavior to better understand the 
constraints of existing representations on the learnability of categories. 
This model is not meant to perfectly reflect human behavior or the way 
in which humans update their representations during learning. The 
second paradigm – online learning – is a closer approximation to expe
rience in actual human category learning experiments, as the network 
updates its weights after each stimulus presentation. During category 
learning, weights in the representation network were held fixed, on the 
assumption that most experiments are too brief to substantially affect 
underlying perceptual representations. For all four category types (II- 
Negative, II-Positive, RB-X, and RB-Y), exemplars were presented 
randomly without replacement in training and test. Models were trained 
on all 200 stimuli from each category learning environment (100 stimuli 
per category) and tested on a separate set of 100 stimuli from each 
category environment (50 stimuli per category). We trained and tested 
10 simulated subjects on each of the combinations of training paradigm 
(batch, online), representation distribution (Independent, Positive, 
Negative, X-Dimension, Y-Dimension), and category problem (RB-X, RB- 
Y, II-Positive, II-Negative) to get a sense of the variability in the behavior 
of the model. For both paradigms, after training, the model was tested on 
the 100 test stimuli while keeping the weights fixed (i.e., providing no 
feedback to the model). The hidden and output units in all parts of the 
network used a sigmoid activation function. 

2.3.3. Training paradigm 1: batch learning 
We trained the category learning network using a batch learning 

paradigm to understand the learnability of the categories with repeated 
exposures. All 200 category stimuli were presented to the model and 
then the model updated its connection weights using a learning rate of 
0.01 and no momentum. For each simulated subject, the model was 
tested after each weight update (called an epoch). 

2.3.4. Training paradigm 2: online learning 
In separate runs, we trained the category learning network using an 

online learning paradigm to approximate human behavior during cate
gory learning, as the network updated its weights after each stimulus 
presentation. During online learning, the network was trained using a 
learning rate of 0.5 and no momentum. For each simulated subject, the 
model was tested after a single sweep through all 200 exemplars. 

3. Results 

3.1. Categorization accuracy 

We present the results from batch and online learning together. We 
determined the categorization accuracy of the model by examining the 
percent of category exemplars for which each output activation was 
within 0.45 of its correct (target) activation of 0 or 1, assessed after each 
epoch of batch learning (Fig. 4A) and after presentation of all exemplars 
in online learning (Fig. 5A).1 The results were similar across the two 
training methods (Table 3). There were specific patterns of accuracy for 
the different category problems that largely depended on the nature of 
the representation distribution. The data are available through the Open 
Science Framework repository at osf.io/w64nu (Roark, Plaut, & Holt, 
2020). 

1 We used an activation criterion of 0.45 (rather than 0.5) to minimize 
spurious responding caused when activations are very close to 0.5. This pro
vides a more conservative estimation of the model's category knowledge as 
accuracy would be near zero if the model was guessing. In general, performance 
below 50% indicates that the model failed to reliably learn the categories and 
performance can be reliably below 50% if activations of both category units for 
some stimuli fall within the range 0.45–0.55. 
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For the Independent distribution, all four category types were 
learned quickly to a high degree of accuracy. During batch learning, the 
model demonstrated slightly higher accuracy for the RB categories than 
the II categories. In the final epoch of batch learning, accuracies were 
the following: II-Negative 82.3%, II-Positive 81.9%, RB-X 91.9%, and 
RB-Y 86.8%. The results were very similar after online learning with 
highest accuracy for the two RB categories (RB-X 94.5%, RB-Y 92.4%) 
and slightly lower accuracy for the two II categories (II-Negative 83.8%, 
II-Positive 88.7%). 

For Positive and Negative distributions, the model learned one of the 
II categories very well and failed to learn the other. When the model was 
trained to represent a Negative relationship across the input dimensions, 
the II-Negative categories were learned very well (83.1% batch, 83.8% 
online), the RB-X and RB-Y categories were learned at an intermediate 
level (RB-X: 58.9% batch, 74.6% online; RB-Y: 58.2% batch, 72.6% 
online), and the II-Positive categories were learned very poorly (0% 
batch, 49.5% online). When the model was trained to represent a Posi
tive relationship across the input dimensions, this pattern was reversed; 
the II-Positive categories were learned very well (83.1% batch, 92.7% 
online), the RB-X and RB-Y categories were learned at an intermediate 
level (RB-X: 61.3% batch, 70.7% online; RB-Y: 58.1% batch, 70.7% 
online), and the II-Negative categories were learned very poorly (0% 

batch, 41.6% online). 
When the model was trained to represent the x-dimension or y- 

dimension in more detail, the patterns were similar. For X-Dimension 
representations, the RB-X categories were learned the best (88.3% 
batch, 90.9% online), the two II categories had intermediate accuracies 
(II-Negative: 61.1% batch, 62.3% online; II-Positive: 57.8% batch, 
69.0% online), and the RB-Y categories were learned the worst (0% 
batch, 43.8% online). The pattern was reversed for the Y-Dimension 
representations. For the Y-Dimension representations, the RB-Y cate
gories were learned the best (87.5% batch, 91.2% online), the two II 
categories had intermediate accuracies (II-Negative: 55.9% batch, 
72.5% online; II-Positive: 60.6% batch, 67.2% online), and the RB-X 
categories were learned the worst (0% batch, 49.0% online). 

In summary, for all distribution types, the category that was aligned 
with the long-term regularity experienced in the representation training 
phase was learned the best, the category that was misaligned with the 
long-term regularity was learned the worst, and the two other category 
types were learned at intermediate levels. 

3.2. Real-valued error (Loss) 

When examining the patterns of real-valued error produced by the 
model – sometimes termed loss – for different representation types and 
categories, the error patterns mirror the accuracy patterns, with higher 
accuracy reflected as low error (Figs. 4B, 5B). Overall, the model had 
lower error with more training. 

For both batch and online training of the Independent distribution, 
the error was lower for the RB categories than the II categories. For 
Negative distribution, the II-Positive categories are difficult for the 
model and have the highest error, whereas the II-Negative categories 
have the lowest error. For the Positive distribution, the II-Negative 
categories are difficult for the model and have the highest error, 
whereas the II-Positive categories have the lowest error. For X-Dimen
sion, RB-Y categories have the highest error rate and RB-X categories 
have the lowest. For Y-Dimension, RB-X categories have the highest 
error rate and RB-Y categories have the lowest. 

3.3. Analysis of representations 

To understand why the model was successful or failed at learning, it 
is useful to probe further into its behavior. We assessed the model's 
representations by examining the pattern of error in the uniform dis
tribution from the representation learning phase and the categorization 

Fig. 3. Category input distributions. 
Note. A. Training distributions. B. Test distributions. Individual points reflect members of different categories (black is Category A, gray is category B). 

Table 2 
Category distribution information.   

M (x, y) σ2 (x, y) Covariance 

Training 
II-Negative: Category A (0.57, 0.45) (0.0059, 0.0053) 0.0030 
II-Negative: Category B (0.45, 0.57) (0.0053, 0.0059) 0.0030 
II-Positive: Category A (0.55, 0.57) (0.0053, 0.0059) − 0.0030 
II-Positive: Category B (0.43, 0.45) (0.0059, 0.0053) − 0.0030 
RB-X: Category A (0.58, 0.51) (0.0026, 0.0086) 0.00028 
RB-X: Category B (0.42, 0.51) (0.0026, 0.0086) − 0.00028 
RB-Y: Category A (0.49, 0.58) (0.0086, 0.0026) − 0.00028 
RB-Y: Category B (0.49, 0.42) (0.0086, 0.0026) 0.00028  

Test 
II-Negative: Category A (0.59, 0.44) (0.0046, 0.0047) 0.0020 
II-Negative: Category B (0.44, 0.59) (0.0047, 0.0046) 0.0020 
II-Positive: Category A (0.56, 0.59) (0.0047, 0.0046) − 0.0020 
II-Positive: Category B (0.41, 0.44) (0.0046, 0.0047) − 0.0020 
RB-X: Category A (0.62, 0.52) (0.0026, 0.0066) 0 
RB-X: Category B (0.39, 0.52) (0.0026, 0.0066) 0 
RB-Y: Category A (0.48, 0.61) (0.0066, 0.0026) 0 
RB-Y: Category B (0.48, 0.39) (0.0066, 0.0026) 0  
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response behavior for different stimuli. 

3.3.1. Representation learning 
First, it is useful to confirm that the model learned the distributions 

over its long-term experience (e.g., 50,000 epochs) during the repre
sentation learning phase. We tested the model on all training stimuli and 
plotted the pattern of reconstruction error for all stimuli from the uni
form distribution that accompanied each of the representation distri
butions (Fig. 6). These patterns demonstrate that the network clearly 
learned the distribution with which it had most experience, having the 
lowest error in areas that it had the most experience and higher error 
elsewhere. Critically, the error patterns are specific to the nature of the 
bias in the representation distribution. 

3.3.2. Category learning 
Next, we asked more specifically about what the model learned 

about the stimulus space during category learning. As specified in the 
methods section, we tested the model after all 200 stimuli were pre
sented in online learning. Here, we examine the stimulus-specific 
response patterns for each different representation distribution (Inde
pendent, Positive, Negative, X-Dimension, Y-Dimension) and category 
type (II-Positive, II-Negative, RB-X, RB-Y). 

The patterns of responses across stimuli after online learning 
demonstrate that the long-term experience of the model influenced the 
way that it learned the categorization tasks (Fig. 7). For the Independent 
distribution, the model learned to separate the categories quite well, 
especially when the stimuli were far from the boundary between 

categories. The model was especially confused for these boundary 
stimuli for the II-Negative and II-Positive categories (responding with 
proportion of category A responses near 0.5, indicating that the model 
made an equal number A and B responses). 

For the rest of the distributions, as discussed in the category learning 
results section, there was a clear benefit for the category distinction that 
aligns with the representation distribution (Negative + II-Negative, 
Positive + II-Positive, X-Dimension + RB-X, Y-Dimension + RB-Y). 
The categories that were extremely difficult for the model to learn 
were orthogonal to the representation distribution (Negative + II- 
Positive, Positive + II-Negative, X-Dimension + RB-Y, Y-Dimension +
RB-X). 

Interestingly, the bias created by a specific representation training 
distribution was also evident in the response pattern in the categories 
that were neither aligned nor orthogonal to that distribution. Take the X- 
Dimension distribution, for instance. The model separated the RB-X 
categories along the x-dimension, as would be expected if the model 
was responding optimally. The model also demonstrated this same x- 
dimension bias in responding for the II-Negative and II-Positive cate
gories. That is, even though these categories require separation along 
both dimensions (minor or major axes), the model responded with an x- 
dimension bias. This led to intermediate accuracy for these categories 
because this strategy, while suboptimal, sometimes aligns with feedback 
leading to an intermediate level of category learning. In direct contrast, 
the orthogonal category (RB-Y) is learned very poorly because the prior 
experience results in perceptual representations that largely collapse 
this dimension, and thus, it cannot be used to separate the categories. 

Fig. 4. Batch learning model accuracy and error (loss). 
Note. A. Model accuracy and B. Model error (loss) across 
epochs for batch training for the five distribution types 
and four category learning environments. Individual runs 
of the model are shown as colored points, the mean per
formance is shown as a black point, and the error bars 
reflect SEM. Note that performance can be reliably below 
50% if activations of both category units for some stimuli 
fall within the range 0.45–0.55.   
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There are several relevant patterns in these results. First, categories 
that are orthogonal with the distributional representations show at- 
chance performance (Fig. 7, values near 0.50 shown in white). Sec
ond, when trained on the II categories with X-Dimension or Y-Dimension 
representations, the model separates the categories based on a single 
dimension, instead of two. For example, the II-Negative/X-Dimension 
panel demonstrates that the categories are separated based on the x- 
dimension. Similarly, when trained on the RB categories with Positive or 
Negative representations, the model separates the categories based on 

two dimensions, instead of one. For example, the RB-X/Negative panel 
demonstrates that the categories are separated based on both x and y 
dimensions across the negative axis. These results demonstrate that the 
model does not struggle to learn in the same way across different types of 
categories. Instead, the reason that the model struggles is directly 
related to how the representation distribution relates to the categories 
being learned. The model is struggling because it is applying its repre
sentational bias during category learning and this bias cannot be over
come based on the feedback received during category learning. 

Fig. 5. Online learning model accuracy and error (loss). 
Note. A. Model accuracy and B. Model error (loss) after 
the single pass through all 200 category exemplars for 
online learning for the four distribution types and four 
category learning environments. Individual runs of the 
model are shown as colored points, the mean performance 
is shown as a black point, and the error bars reflect SEM.   

Table 3 
Accuracy results across training methods  

Representation distribution II-Negative II-Positive RB-X RB-Y 

Batch Learning 
Independent 82.3 [81.3, 83.3] 81.9 [80.3, 83.5] 91.9 [90.9, 92.9] 86.8 [85.5, 88.1] 
Negative 83.1 [81.8, 84.5] 0 [n/a, n/a] 58.9 [57.5, 60.3] 58.2 [56.5, 59.9] 
Positive 0 [n/a, n/a] 83.1 [81.0, 85.2] 61.3 [59.5, 63.1] 58.1 [56.7, 59.5] 
X-Dimension 61.1 [59.2, 63.0] 57.8 [56.0, 59.6] 88.3 [87.0, 89.6] 0 [n/a, n/a] 
Y-Dimension 55.9 [54.7, 57.1] 60.6 [58.3, 62.9] 0 [n/a, n/a] 87.5 [86.0, 89.0]  

Online Learning 
Independent 83.8 [78.0, 89.6] 88.7 [84.4, 93.0] 94.5 [91.9, 97.1] 92.4 [89.2, 95.6] 
Negative 80.4 [70.9, 90.0] 49.5 [48.6, 50.4] 74.6 [68.1, 81.0] 72.6 [66.7, 78.5] 
Positive 41.6 [29.1, 54.1] 92.7 [90.6, 94.8] 70.7 [60.9, 80.5] 70.7 [62.8, 78.6] 
X-Dimension 62.3 [53.4, 71.2] 69.0 [59.8, 78.2] 90.9 [84.0, 97.8] 43.8 [34.6, 53.0] 
Y-Dimension 72.5 [63.0, 82.0] 67.2 [59.2, 75.2] 49.0 [46.7, 51.3] 91.2 [84.2, 98.2] 

Note. Mean accuracy with 95% confidence intervals across ten simulated subjects for batch learning (after final epoch) and online learning. 
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3.4. Summary and interpretation of results 

We investigated the impact of long-term experience with different 
statistical regularities that result in different perceptual representations 
on category learning. We observed specific patterns of results depending 
on the type of category being learned and the nature of learned 
perceptual representations. 

These results support a theoretical framework (Fig. 8) that demon
strates that perceptual representations and category distribution struc
ture interact to affect learning outcomes. Specifically, long-term 
experience with some statistical regularity (e.g., a negative or positive 

correlation, Fig. 8A) results in enhanced representation along the axis of 
high variability in experience and reduced representation along the 
orthogonal axis (Fig. 8B). As a result of this experience, categories that 
are statistically identical in input space (Fig. 8C) are not identical in 
perceptual space (Fig. 8D). Categories that align with perceptual repre
sentations (here, negative correlation, Fig. 8 top) are easier to learn than 
categories that conflict with perceptual representations (here, positive 
correlation, Fig. 8 bottom). 

Our results support this framework. When two input dimensions 
were Independent, the model learned to accurately represent the value 
on each dimension regardless of the value on the other – that is, 

Fig. 6. Error in reconstructing the uniform distribution after representation learning.  

Fig. 7. Model category responses in test after online learning. 
Note. The values reflect the proportion of category A responses for each stimulus. The Optimal row reflects the ground-truth category identities for reference. 
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independently – potentially by devoting separate hidden units to each 
dimension. As a result, we found that the model demonstrated a bias for 
learning RB over II categories because, for the former, category learning 
can easily learn the relevant weights from only the relevant subset of 
hidden units, analogous to “selective attention” to that dimension. By 
contrast, II category learning requires sensitivity the precise relationship 
between the two dimensions, which was more difficult to learn. This 
pattern is consistent with previous findings that generally demonstrate 
an advantage for RB over II categories for simple visual dimensions 
(Ashby & Maddox, 2011). 

When the two sensory dimensions are interdependent (Positive or 
Negative distributions), the learnability of categories depended on the 
alignment with the representations. Categories were easier to learn 
when they required a distinction along the axis that was more strongly 
reflected in learned representations (i.e., the axis of high variance). For 
example, because the model experienced high variability along the 
Negative axis for the Negative training distribution, the model was 
better at learning categories that can be distinguished along this axis, 
leading to better performance for II-Negative categories than II-Positive 
categories. We found the reverse pattern for the Positive representation 
distribution. In both cases, the RB categories were learned at interme
diate levels. 

Finally, when the representation training distributions reflected 
enhanced encoding of one dimension relative to the other (X-Dimension 
and Y-Dimension distributions), we found differences in how well the RB 
categories were learned. As with the other training environments, we 
found that when the model has experience with higher variance along 
one dimension, it more faithfully represented this dimension in the 
perceptual representation hidden layer. As a result, we found that after 
training with high variability on the X-Dimension, RB-X categories were 
easier for the model to learn than RB-Y categories, with performance for 
the II categories at intermediate levels. We observed the opposite 
pattern for the Y-Dimension representations. 

Further, examining the pattern of responses to the category stimuli 
revealed that the reason the model succeeded or struggled to learn was 
because it applied its representational bias during category learning. For 
example, when the model was trained on the X-Dimension distribution, 
the pattern of responses for the RB-X category and the two II categories 
demonstrated that the model was using the x-dimension to separate the 
categories. The model failed to learn the categories that were completely 
orthogonal to their representation (e.g., RB-Y categories for the X- 
Dimension distribution). 

In sum, these results demonstrate the potential for existing percep
tual representations to impact category learning, especially when the 
physical dimensions or experimenter-defined dimensions do not align 
with the dimensions of representations. In general, having extensive 
experience with variation along a dimension makes it easier to distin
guish categories that vary along that dimension and more difficult to 

distinguish categories orthogonal to that dimension. 

4. Comparison with human behavior 

While the model's behavior can be explained by the theoretical 
framework, it is not yet clear how this relates to human behavior. In this 
section, we compare the model's behavior and human behavior across 
prior studies of category learning in multiple sensory modalities. When 
we can observe the pattern of accuracy in humans across several cate
gory learning types in the same sensory space, we are able to draw 
conclusions about the nature of human perceptual representations 
across particular dimension pairs. This kind of comparison is especially 
useful in cases in which the underlying cognitive or neural representa
tions of dimensions are not well understood, as with complex auditory 
dimensions. 

We searched the literature for category learning experiments that 
examine these four kinds of category distributions – unidimensional RB 
along both dimensions and II distributions with categories distinguished 
along the positive axis and the negative axis. Very few studies make a 
complete comparison of these four category types. It is more typical for 
experimenters to choose one RB distribution and one II distribution to 
compare. However, several studies have trained participants on all four 
types – one experiment with auditory dimensions (Roark & Holt, 2019), 
one experiment with visual dimensions (Ell, Ashby, & Hutchinson, 
2012), and two experiments using cross-modal stimuli with auditory and 
visual dimensions (Smith et al., 2014). We will compare the model's 
behavior to the human behavior in each of these experiments. We should 
note at the outset, though, that quantitative aspects of the input distri
butions to which the model was exposed were designed to illustrate the 
impact of these distributions and are unlikely to match the relationships 
among actual real-world dimensions precisely. 

4.1. Roark and Holt (2019): Auditory dimensions 

In Roark and Holt (2019), participants learned categories based on 
the auditory dimensions of center frequency (CF) and modulation fre
quency (MF) of nonspeech tones. As in the simulations, they trained 
participants on four category problems – RB-CF, RB-MF, II-Positive, or 
II-Negative with feedback (four blocks of 96 trials each).2 

Fig. 8. Theoretical framework. 
Note. A. The theoretical framework is demonstrated 
with the example of long-term experience with a 
negative (top) or positive (bottom) correlation be
tween two dimensions. B. This experience stretches 
perceptual representations along the axis of experi
ence and shrinks representation along the orthogonal 
axis. C-D. As a result, categories that are statistically 
identical in input space are no longer identical in 
perceptual space. When the category distinction is 
aligned with experience (negative axis, top), cate
gories are easily distinguishable. When the distinction 
conflicts with experience (positive axis, bottom), 
categories are more difficult to distinguish.   

2 The terminology of II-Positive and II-Negative in the current manuscript 
reflects the axis that is important for distinguishing the categories. Terminology 
of the previous studies discussed here (Ell et al., 2012; Roark & Holt, 2019; 
Smith et al., 2014) are all based on the axis of an optimal decision boundary 
that separates the categories. As such, we have relabeled the II-Positive and II- 
Negative categories when discussing these three studies to match the termi
nology of the current manuscript. 
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Roark and Holt (2019) found that the category problems with the 
highest accuracy were the II-Negative and RB-MF, with RB-CF learned at 
more moderate levels, and II-Positive learned at the lowest levels 
(Fig. 9A). This overall pattern most closely aligns with the model's 
behavior for the Negative distribution, indicating that these acoustic 
dimensions may have a representation that reflects a long-term negative 
relationship between CF and MF. Further, the model's response behavior 
for the Negative distribution is similar to human performance (Fig. 9B). 
The model and human participants excel at separating the II-Negative 
categories, fail to separate the II-Positive categories reliably, and 
demonstrate a bias to separate the RB-X and RB-Y categories in a way 
that reflects usage of both dimensions, rather than just one. This pattern 
of human learning was not predicted by an existing literature that has 
focused more on whether categories require one or multiple dimensions 
and could be classified as ‘RB’ or ‘II’ categories. The pattern of human 
categorization accuracy is consistent with the model's behavior and il
lustrates that the nature of perceptual representations influences 
learning outcomes. 

4.2. Ell et al. (2012): Visual dimensions 

In Ell et al. (2012) Experiment 2, participants learned categories 
based on the visual dimensions of saturation and brightness, two of the 
defining features of color perception. As in our simulations, they trained 
participants on four category problems – RB-Saturation, RB-Brightness, 
II-Positive, or II-Negative with feedback (nine blocks of 80 trials each). 

By the end of training, participants performed similarly on all four 
category learning problems. However, there were differences in early 
learning which may give clues about which category distinctions are 
better in alignment with the way humans represent the visual di
mensions. In the first block, RB-Brightness had higher accuracy than RB- 
Saturation and II-Positive but was not significantly different from II- 
Negative. None of the other comparisons were statistically different, 
but there were few subjects in each condition, and this was not the main 
comparison of interest to these authors. However, the general pattern in 
which one RB category is learned better than another aligns with the 
model's behavior for the X-Dimension or Y-Dimension distributions. 
Therefore, this may reflect a situation where brightness may have a 
more veridical or detailed representation relative to saturation. 
Although examination of the visualization of the data from Ell et al. 
(2012) indicates that there may be some differences among the four 
category problems, the statistical analyses do not indicate a difference. It 
would be necessary to examine this same kind of category learning with 
a larger sample to truly understand the nature of the representation of 

these dimensions. 
Additionally, whereas in the current set of simulations, the perfor

mance for the worst-performing category problem is around chance 
levels, participants in Ell et al. (2012) were able to learn all four category 
problems to a similar extent by the end of 720 trials. As mentioned, the 
current model simulations used fairly extreme training distributions to 
demonstrate a first-pass confirmation that the nature of the represen
tations can have a strong impact on learning outcomes. However, it is 
likely the case that to match human behavior and representations more 
closely, the training distributions would need to be less extreme. 

4.3. Smith et al. (2014): Cross-modal dimensions 

In Smith et al. (2014) Experiments 1 and 2, participants learned 
categories with one visual and one auditory dimension. The dimensions 
varied across the two experiments, but the results are very similar, so we 
discuss them together. The auditory dimension was duration of three 
100 Hz tones in Experiment 1 and frequency of a pure tone in Experi
ment 2. The visual dimension was pixel density in both experiments. 

Because the purpose of these experiments was not to compare ac
curacy of the two RB and two II tasks, Smith et al. (2014) did not 
compare accuracy across the four tasks. Instead, their goal was to 
contrast RB and II category learning and so they compared the average 
accuracies for the two RB tasks to the average accuracies for the two II 
tasks. This comparison stems from their investigation into the differ
ences between RB and II category learning but distorts our ability to 
compare the statistical outcomes to the current set of model simulations. 

However, we can observe the pattern in the reported means from 
their experiments to assess the descriptive pattern of results within the 
four category learning problems. These descriptive results indicate that 
for Experiment 1, the two RB problems are learned better than the two II 
problems (RB-Auditory: 91.1%, RB-Visual: 94.5%, II-Negative: 74.6%, 
II-Positive: 74.3%), which aligns with the model's behavior with the 
Independent distribution, reflecting a situation where the two sensory 
dimensions are encoded independently. This pattern may be expected 
because it is likely that cross-modal dimensions are encoded in distinct 
and separate sensory representations. 

In contrast, in Experiment 2, there was slightly higher accuracy for 
the RB-Auditory problem compared to the RB-Visual problem (88.5% 
accuracy compared to 77.8%). However, performance on each was 
better than for the two II problems (II-Negative: 68.2%, II-Positive: 
70.0%). This exact pattern is not represented directly in the model's 
behavior. However, it is still mostly aligned with a version of Indepen
dent representations in which one dimension might be represented 

Fig. 9. Comparison of human and model behavior. 
Note. A. Human categorization performance in the generalization test in Roark and Holt (2019) compared with model performance after extensive training with the 
Negative distribution. Individual points reflect individual subjects or simulation runs with the means in black. Error bars reflect SEM. B. Heat map of proportion of 
category A responses for each category distribution from Roark and Holt (2019) participants (top) and the corresponding test distributions for the model after 
training with the Negative distribution (bottom). 
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slightly more faithfully than the other dimension or perhaps a hybrid 
between Independent and X- or Y-Dimension representations. Though 
there are some limitations in our ability to compare the effects to the 
model behavior directly, it seems reasonable that one of these di
mensions may be more salient than the other, which may have influ
enced learning outcomes. 

5. Discussion 

The current set of simulations demonstrates that the nature of long- 
term experience in a sensory environment can shape the representations 
of input dimensions in a way that, in turn, drastically impacts category 
learning behavior. Depending on the nature of the representations that 
are shaped by experience, some category learning problems are easily 
learnable, whereas others are more difficult. The simulation results 
demonstrate that it is critical to consider the constraints that the 
perceptual system and existing representations place on learning to 
understand the mechanisms of perceptual category learning. The nature 
of the learning problem may differ substantially depending on the 
perceptual representations across the very same input dimensions. 

As with all models, the current model incorporates specific as
sumptions. We address our assumptions about the input training space 
and training paradigm and discuss potential implications for the inter
pretation of the results. First, our model used relatively simple and 
somewhat extreme training spaces that are clearly highly abstract 
relative to the way sensory information is distributed in the real world. 
While there was a small amount of noise in the input to the model to 
reflect modest perceptual noise in the encoding process, there was no 
noise in the actual distributions. Future elaboration of this model should 
include a simulation of the kind of variability and noise that exists in 
real-world sensory environments. Additionally, the model was applied 
to a two-dimensional input space. The world beyond simple experiments 
has many more dimensions, some of which are relevant whereas others 
are irrelevant for category distinctions. A future version of this model 
should seek to understand how multiple dimensions may be represented 
independently and, in conjunction, what the effects on higher-level 
cognition might be. 

Our approach also involved freezing the hidden layer weights during 
category learning such that no changes could be made to the weights due 
to category learning. This design reflects a situation where the repre
sentations of sensory dimensions are not changed with additional short- 
term experience during category learning. It is possible that represen
tations could continue to change as a result of category learning. Prior 
work has demonstrated that categorization training can affect repre
sentations in many ways, including by creating new dimensions (Gold
stone, Lippa, & Shiffrin, 2001), increasing discriminability across 
category-relevant dimensions (Feldman, 2021; Schyns, Goldstone, & 
Thibaut, 1998), decreasing discriminability of within-category distinc
tions (Goldstone, 1998), and affecting neural representations of di
mensions at early levels of processing (Ester, Sprague, & Serences, 
2019). Other work suggests that in the presence of long-term perceptual 
biases, like those created in the representation learning phase, short- 
term experience may not substantially affect existing representations 
(Roark & Holt, 2020). It is important to acknowledge that experience is a 
continuous cycle and that a lifetime or a single experiment may influ
ence our representations of the sensory world. Future work should focus 
on the interaction of long-term and short-term regularities and clarify 
how and when representations change with experience. 

Finally, the current model used an autoencoder and trained repre
sentations to reflect sensory regularities based on the distributional 
statistics alone (i.e., without feedback). Such an approach does not fully 
reflect the complexities of human learning or sensory experience. Future 

work might expand the model to compare representation training 
methods. We suspect that representation training with feedback may 
impact subsequent category learning behavior even more strongly than 
with the self-supervised autoencoder paradigm used here. 

Indeed, the relative importance of unsupervised versus supervised 
learning in human category learning is an area of active debate. Some 
have suggested that sensory regularities experienced across the long- 
term may be learned via unsupervised learning mechanisms, as 
modeled in the representation learning phase (Frost, Armstrong, & 
Christiansen, 2019; Saffran & Kirkham, 2018), and that speech 
perception and speech category learning can be modeled with similar 
unsupervised approaches as those used here (i.e., autoencoder; Elman & 
Zipser, 1988; Nixon & Tomaschek, 2021; Getz, Nordeen, Vrabic, & 
Toscano, 2017; Toscano & McMurray, 2010). However, others have 
suggested that learning complex categories (e.g., speech categories) may 
necessarily involve feedback of some sort and may not be possible with 
passive exposure to statistical distributions alone (Feldman, Griffiths, 
Goldwater, & Morgan, 2013; Lim, Fiez, & Holt, 2019; Nixon, 2020). 
Recent work has also examined how individuals learn about category 
structures through a combination of unsupervised and supervised 
training within the same experimental session (Bröker, Love, & Dayan, 
2021). The results of these combination studies support our current 
framework and demonstrate that understanding the challenge presented 
to the learner (whether unsupervised or supervised) requires under
standing of the alignment of underlying representations and the task 
defined by the experimenter. 

Here, the extensive representation training (50,000 epochs) was 
designed to approximate a lifetime of human experience that may or 
may not align with the requirements of a short-term environment. The 
influence of existing representations on learning is a major focus of the 
speech and language learning fields (Best, 1995; Iverson & Kuhl, 1995; 
Scharinger et al., 2013). Specifically, theories demonstrate that the 
extent of conflict between one's native language categories and novel 
second language categories determine how difficult those categories are 
to learn (Best, 1995). When there is little or no conflict (e.g., Zulu click 
categories for native English listeners), learning proceeds quickly and 
effortlessly (Best, McRoberts, & Sithole, 1988). When there is high 
conflict (e.g., English /r/− /l/ categories for native Japanese listeners), 
learning is difficult (Lotto, Sato, & Diehl, 2004). The current framework 
provides insight about why this difference exists – long-term experience 
with a native language enhances representation of dimensions that are 
relevant to that experience and diminishes representation of dimensions 
that are irrelevant. The resulting effect is that input categories that align 
with learners' existing representations, maximizing distinctions that 
need to be made, are readily learned and input categories that are 
orthogonal to those representations are difficult to learn. 

The influence of the psychological representations of dimensions on 
perception and learning was also a focus of earlier work (Garner, 1974; 
Kemler Nelson, 1993; Kemler & Smith, 1979; Melara & Marks, 1990). 
While some dimensions are represented independently leading to 
enhanced selective attention to those dimensions (i.e., separable di
mensions), others have interdependent representations making selective 
attention more difficult (i.e., integral dimensions). Because of these 
underlying differences, learning categories that require selective atten
tion to the underlying dimensions proceeds easily with separable di
mensions and is more difficult with integral dimensions, whereas 
learning categories that require integration across dimensions proceeds 
easily with integral, but not separable dimensions (Ell et al., 2012; 
Garner, 1976; Maddox & Dodd, 2003; Roark & Holt, 2019). This prior 
work demonstrates the utility of the current framework in understand
ing how long-term sensory experience may support specific psycholog
ical representations that reflect that experience and subsequently 
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influence category learning based on the physical input dimensions. 
Despite its limitations, the current investigation provides valuable 

insight into the influence of learned perceptual representations on 
category learning and provides proof-of-concept evidence that the 
category structure in input space (i.e., rule-based or information- 
integration) may not be the key determiner in understanding categori
zation. Instead, these results demonstrate that it is imperative to un
derstand the nature of the perceptual representations of the dimensions 
involved to understand the problem for the learner. While much of the 
research on human perceptual category learning has used simple, ver
balizable dimensions that are likely represented independently both 
neurally and in cognitive representations, it is a much more difficult 
problem to understand what happens when perception is not so 
straightforward. 

Our framework challenges a typical assumption made by experi
menters testing theories of category learning – that experimenter- 
defined dimensions are aligned with participants' psychological repre
sentations. If there is a misalignment between these concepts of di
mensions, then what may appear to the experimenter to be a ‘rule-based’ 
problem may not actually be ‘rule-based’ for the perceptual system. Our 
intention is not to explain or differentiate rule-based and information- 
integration learning problems or to directly contribute to the vast 
literature that attempts to explain how categories with different struc
tures may be learned by a single system or separate systems (e.g., Ashby 
& Maddox, 2011; Newell et al., 2011). Instead, we argue that defining 
the categorization problem based on experimenter-defined dimensions 
does not capture the true complexity of the problem for the human 
perceptual system. As such, this framework has implications for un
derstanding category learning more generally, beyond the distinction 
between rule-based and information-integration categories. The nature 
of psychological representations of dimensions developed across long- 
term experience has implications for a wide variety of theories of cate
gory learning. Understanding the nature of psychological dimensions 
has implications for interpreting which dimensions are attentionally 
weighted in exemplar models of categorization (e.g., Francis & Nus
baum, 2002; Nosofsky, 1986) or interpreting similarity in representa
tions in clustering models of learning (e.g., Love, Medin, & Gureckis, 
2004). It is important to note that other models like SUSTAIN (Love 
et al., 2004) capture the statistical structure of the input through other 
methods of recoding (e.g., cluster representations compared to contin
uous representations in the current model). 

In general, the perceptual component of perceptual category 
learning has drifted out of focus of current theories of learning. The 
current set of simulations demonstrates that psychological representa
tions of the sensory world, shaped by long-term experience, can strongly 
influence the nature of the problem for the learner. 
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Appendix B. Supplementary data 

The data are available through the Open Science Framework re
pository at https://osf.io/w64nu/ (Roark et al., 2020). This archive in
cludes the raw data (error and accuracy) for both batch and online 
learning for all distribution types (Independent, Negative, Positive, X- 
Dimension, Y-Dimension) and categories (II-Negative, II-Positive, RB-X, 
RB-Y). The archive also contains the error data for the uniform repre
sentation training distribution (Fig. 6) and the proportion category A 

response data for category learning (Fig. 7). Supplementary data to this 
article can be found online at [https://doi.org/10.1016/j.cognition.20 
21.104997]. 
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