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Traditional approaches to language processing have been based on explicit, discrete represen-
tations which are difficult to learn from a reasonable linguistic environment—hence, it has
come to be accepted that much of our linguistic representations and knowledge is innate. With
its focus on learning based upon graded, malleable, distributed representations, connectionist
modeling has reopened the question of what could be learned from the environment in the ab-
sence of detailed innate knowledge. This paper provides an overview of connectionist models
of language processing, at both the lexical and sentence levels.

Although connectionist models have been applied to the full
range of perceptual, cognitive, and motor domains (see Mc-
Clelland, Rumelhart, & PDP Research Group, 1986; Quin-
lan, 1991; McLeod, Plunkett, & Rolls, 1998), it is in their
application to language that they have evoked the most in-
terest and controversy (e.g., Pinker & Mehler, 1988). This
is perhaps not surprising in light of the special role that lan-
guage plays in human cognition and culture. It also stems in
part from the considerable difference in goals and methods
between linguistic and psychological approaches to the study
of language. This rift goes deeper than a simple dichotomy
of emphasizing competence versus performance (Chomsky,
1957)—it cuts to the heart of the question of what it means
to know and use a language (Seidenberg, 1997).

Traditional approaches to language processing have been
based on explicit, discrete representations which are difficult
or impossible to learn from a reasonable linguistic environ-
ment (Gold, 1967). Therefore, it has come to be accepted
that much of our linguistic representations and knowledge
is innate. With its focus on learning based upon graded,
malleable, distributed representations, connectionist model-
ing has reopened the question of what could be learned from
the environment in the absence of detailed innate knowledge.
Although the need to learn internal representations poten-
tially gives connectionist networks great power and flexibil-
ity, it also introduces limitations. These limitations are im-
portant and, ideally, will reflect limitations observed in hu-
man language processing.

From a connectionist perspective, performance is not an
imperfect reflection of some abstract competence, but rather
the behavioral manifestation of the internal representations
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and processes of actual language users: Language is as lan-
guage does. In this regard, errors in performance (e.g., “slips
of the tongue”; Dell, Schwartz, Martin, Saffran, & Gagnon,
1997) are no less valid than skilled language use as a measure
of the underlying nature of language processing. The goal is
not to abstract away from performance but to articulate com-
putational principles that account for it.

A major attraction of the connectionist approach to lan-
guage, apart from its natural relation to neural computation,
is that the very same processing mechanisms apply across
the full range of linguistic structure. This paper provides an
overview of connectionist models of language processing, at
both the lexical and sentence levels.

Lexical Processing

Phonological development

Although the use of language seems straightforward to
adult native speakers, an infant must solve numerous diffi-
cult computational problems in learning to understand and
produce speech, stemming from the fact that speech is ex-
tended in time, highly variable and, at a morphemic level,
has no systematic relation to its underlying meaning. More-
over, infants must learn to produce comprehensible speech
without any direct articulatory instruction or feedback.

Plaut and Kello (1999) proposed a framework for phono-
logical development in which phonology mediates among
acoustic, articulatory, and semantic representations in the
service of both comprehension and production. A critical
aspect of the approach is that, given the absence of direct ar-
ticulatory feedback, learning to produce speech is driven by
indirect feedback derived from the comprehension system—
that is, from the acoustic, phonological, and semantic con-
sequences of the system’s own articulations (Locke, 1983;
Menn & Stoel-Gammon, 1995; Studdert-Kennedy, 1993).
This is accomplished by learning an internal forward model
of the physical processes that relate articulation to acoustics
(Jordan & Rumelhart, 1992). Such a model is learned by
executing a variety of articulations, predicting how they will
sound, and then adapting the model based on the discrepancy
between this prediction and the actual resulting acoustics. In
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the infant, the forward model is assumed to develop primarily
as a result of reduplicated and variegated babbling in the sec-
ond half of the first year (Vihman, 1996). Once developed,
the forward model can be used to convert acoustic feedback
(i.e, whether an utterance sounded right) into the articula-
tory feedback necessary to train speech production (Perkell,
Matthies, Svirsky, & Jordan, 1995). An implementation of
the framework, in the form of a simple recurrent network
(Elman, 1991a), learned to comprehend, imitate, and inten-
tionally name a corpus of 400 monosyllabic words, and its
speech errors in development were similar to those of young
children.

Morphology

Most linguistic domains are quasi-regular in that there is
considerable systematicity between inputs and outputs but
also numerous exceptions. A standard assumption is that
systematic linguistic knowledge takes the form of explicit
rules and that items which violate the rules are handled by a
separate associative mechanism (see Pinker, 1999). Connec-
tionist modeling provides an alternative view, in which all
items coexist within a single system whose representations
and processing reflect the relative degree of consistency in
the mappings for different items.

A key battleground in the debate between these two views
of the language system has been the relatively constrained
domain of English inflectional morphology—specifically,
forming the past-tense of verbs. Rumelhart and Mc-
Clelland (1986) attempted to reformulate the issue away
from a sharp dichotomy between explicit rules (add –ed;
e.g., WALK/WALKED) and exceptions (e.g., SING/SANG,
DRINK/DRANK, GO/WENT), and toward a view that empha-
sizes the graded structure relating verbs and their inflections.
They developed a connectionist model that learned a direct
association between the phonology of all types of verb stems
and the phonology of their past-tense forms. Although this
initial model had numerous limitations (Pinker & Prince,
1988), many of these have been addressed in subsequent
simulation work (Cottrell & Plunkett, 1995; MacWhinney
& Leinbach, 1991; Marchman, 1993; Plunkett & Marchman,
1991, 1993, 1996). Moreover, applications of connection-
ist models to aspects of language disorders (Joanisse & Sei-
denberg, 1999; Hoeffner & McClelland, 1993; Marchman,
1993) and language change (Hare & Elman, 1995) demon-
strate the ongoing extension of the approach to account for a
wider range of language phenomena.

Derivational morphology has also been a context in which
connectionist models have contrasted with more symbolic,
rule-based accounts. On a distributed connectionist ap-
proach, derivational morphology reflects a learned sensitivity
to the systematic relationships among the surface forms of
words and their meanings. Consistent with this perspective,
Gonnerman, Andersen, and Seidenberg (submitted; Seiden-
berg & Gonnerman, 2000) have demonstrated graded effects
of both semantic and formal similarity in cross-modal mor-
phological priming. By the same token, however, findings
of non-semantic morphological priming in morphologically

rich languages like Hebrew (e.g., Frost, Deutsch, & Forster,
2000) are typically interpreted as being problematic for the
connectionist account. To evaluate whether this interpreta-
tion is valid, Plaut and Gonnerman (2000) carried out simu-
lations in which a set of morphologically related words vary-
ing in semantic transparency were embedded in either a mor-
phologically rich or impoverished artificial language. They
found that morphological priming increased with degree of
semantic transparency in both languages. Critically, priming
extended to semantically opaque items in the morphologi-
cally rich language (consistent with findings in Hebrew) but
not in the impoverished language (consistent with findings in
English). Such priming arises because the processing of all
items, including opaque forms, is influenced by the degree
of morphological organization of the entire system. These
findings suggest that, rather than being challenged by the
occurrence of non-semantic morphological effects in mor-
phologically rich languages, the connectionist approach may
provide an explanation for the cross-linguistic differences in
the occurrence of these effects.

Word reading

Many of the issues concerning quasi-regularity in mor-
phological processing also arise in the context of word read-
ing. As in morphology, the spelling-sound correspondences
of English are highly systematic but admit many excep-
tions (e.g., HAVE, PINT, YACHT) and, as in morphology, re-
searchers have proposed separate mechanisms for processing
regular and exception items (Coltheart, Rastle, Perry, Lang-
don, & Ziegler, 2001).

Plaut, Seidenberg, McClelland, and Patterson (1996) de-
veloped a series of connectionist simulations in support of an
alternative conception of language knowledge and process-
ing in which all items coexist within a single system whose
representations and processing reflect the relative degree of
consistency in the mappings for different items. Different
types of information about a word—orthographic, phonolog-
ical, and semantic—are represented as distributed patterns
over separate groups of units. In performing a task like read-
ing aloud, orthographic information influences phonological
output via two pathways: a phonological pathway that maps
orthography to phonology directly (via hidden units), and
a semantic pathway that maps first to meaning and then to
phonology.

An early connectionist simulation of the phonological
pathway (Seidenberg & McClelland, 1989) provided a good
account of word reading but was poor at pronouncing word-
like nonwords (e.g., MAVE). Plaut et al. (1996) showed
that the limitations of this preliminary model stemmed not
from any general failing of connectionist networks in quasi-
regular domains, but from its use of poorly structured ortho-
graphic and phonological representations. When represen-
tations were used that condense the regularities between or-
thography and phonology by incorporating graphotactic and
phonotactic constraints, networks were able to learn to pro-
nounce both regular and exception words, and yet also pro-
nounce nonwords as well as skilled readers.
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Although implementations of the phonological pathway
alone can learn to pronounce words and nonwords effec-
tively, skilled reading requires the combined support of both
the semantic and phonological pathways. This consideration
has important implications for understanding acquired sur-
face dyslexia, which typically arises from a semantic impair-
ment. Surface dyslexic patients often misread low-frequency
exception words by producing a more “regular” pronuncia-
tion (e.g., reading SEW as “sue”). Plaut et al. (1996) demon-
strated that that surface dyslexia can arise as a result of the
natural limitations of an intact phonological pathway that
had learned to rely on semantic support, when semantics is
impaired by brain damage. In closely related work, Harm
and Seidenberg (2001) demonstrated how the complemen-
tary disorder of phonological dyslexia—in which nonword
reading is impaired relative to word reading—can arise as a
result of phonological rather than semantic damage.

Finally, Harm and Seidenberg (1999) showed how the
same framework can account for both normal and disordered
reading acquisition. Four issues were examined: the acqui-
sition of phonological knowledge prior to reading, how this
knowledge facilitates learning to read, phonological and non-
phonological bases of dyslexia, and effects of literacy on
phonological representation. Compared with simple feed-
forward networks, representing phonological knowledge in
an attractor network yielded improved learning and gener-
alization. Phonological and surface forms of developmental
dyslexia, which are usually attributed to impairments in dis-
tinct lexical and nonlexical processing “routes,” were derived
from different types of damage to the network.

In summary, connectionist models of lexical processing
have demonstrated that phenomena that appear to require
explicit, stipulated representations, or multiple processing
mechanisms, can instead by captured in a natural fashion by
the basic computational properties of distributed networks
learning in quasi-regular domains. Indeed, many of these
properties also provide leverage in understanding language
performance at the sentence level.

Sentence Processing

Most sentence processing models have been designed to
address one of four major language tasks: parsing, word
prediction, comprehension, or production. The models have
been organized here by the primary task for which they were
designed, rather than in chronological order.

Parsing

Parsing, or producing a syntactic, structural description of
a sentence from its surface form, is the one sentence pro-
cessing task that has received the most attention from the
symbolic community. Thus, it should not be surprising that
many of the connectionist parsing systems found in the lit-
erature are essentially symbolic models implemented trans-
parently in connectionist hardware. Learning has not played
a major role in most of these parsing models for two main
reasons. First, most connectionist parsing models have been
localist, meaning that each unit represents an explicit state

or bit of information. This architecture lends itself to hand-
designed weight structures but not to the easy design of effec-
tive learning environments. More critically, teaching a model
to produce an explicit parse of a sentence requires, for most
systems, training data labeled with correct parsing informa-
tion. Few believe that such information is actually available
to the child, so models which rely on it are of questionable
relevance to human learning.

Localist parsing models.
Unlike some of the later, more transparently symbolic ap-

proaches, the first significant proposal for a connectionist
model of parsing, Small, Cottrell, and Shastri (1982), which
was based on the ideas of McClelland and Rumelhart (1981),
stresses the importance of interaction between syntactic in-
formation and semantics over more standard parsing theories
that stress compartmentalism and serial processing (Frazier,
1979; Fodor, 1983). This model, implemented in later work
(Cottrell, 1985b), is not actually a full parser but is designed
for word-sense disambiguation. It uses localist units to rep-
resent lexical items, individual word senses, and case roles,
and these units excite or inhibit one another through a set
of hand-designed connections. Because of this, the model
is not easily expandable to larger vocabularies or complex
linguistic structures.

Cottrell (1985a) extended the earlier work with the addi-
tion of a full-fledged syntactic parsing network, which can
be generated automatically given a grammar. Concepts are
associated with case roles by means of localist binder units.
There is a unit for each concept/role pair and these units
mutually inhibit one another. Units in the syntactic por-
tion of the network represent the non-terminal symbols of
the context-free grammar, and their interconnections reflect
the possible productions in the grammar. The model is in-
teresting in that it is able to process sentences presented in
a temporal sequence and makes use of interacting top-down
and bottom-up information. However, it has a number of
limitations. As is a common problem with other models that
make use of case-roles, the model does not appear capable
of handling sentences with multiple verbs. It can also handle
only fixed-length sentences and requires constituent recog-
nizers with duplicated and possibly non-connectionist con-
trol structures.

Several other localist parsing models were produced at
the same time, and are primarily instantiations of symbolic
parsers in the hardware of simple, interacting units. All
of these models have difficulty handling recursive, context-
free structure and the potentially long sentences that can re-
sult from it. One solution, adopted by Waltz and Pollack
(1985) and Howells (1988), is to produce a customized net-
work architecture on the basis of the grammar and the ac-
tual sentence being parsed. This network then settles into
a structural interpretation of the sentence. Although the
implemented model was purely localist, Waltz and Pollack
proposed that concepts should not be represented by single
nodes but by distributed patterns of “microfeatures,” a sug-
gestion that would be adopted in later connectionist mod-
eling. The model of Nakagawa and Mori (1988) also in-
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volved generation of the network on-the-fly, but it did so in
the course of parsing, essentially implementing a left-corner
parser. Although on-the-fly generation of networks is a neat
trick, this seems rather implausible as a model of the human
parsing mechanism.

An alternative approach to parsing in localist networks
is to construct a single large network that is able to parse
all sentences, but only up to a fixed length. Aiming to
produce a network that is deterministic, fast, and guar-
anteed to work, Fanty devised a way to implement the
CYK dynamic-programming, context-free parsing algorithm
(Younger, 1967) in a localist network. It essentially contains
a unit for every pairing of a non-terminal with a sub-sequence
of the sentence. The network operates in two passes: a
bottom-up phase in which units for increasingly longer sub-
sequences become active if their non-terminal could have
produced that sequence and a top-down phase in which units
that do not fit within a coherent parse are silenced. Aside
from the fact that it has an upper bound on sentence length,
a major drawback of this model is that it is unable to resolve
global parsing ambiguities. Another questionable property is
its extensive redundancy. A model capable of parsing sen-
tences up to length N would require roughly N2/2 units for
every non-terminal in the grammar. That is, there is a dif-
ferent NP unit for every place an NP might occur in a sen-
tence. Although the model is not able to learn entire gram-
mars, Fanty discussed how small errors could be corrected
through learning and Rager (1992) described a localist model
based on Fanty’s but designed to handle “extragrammatical,”
or slightly incorrect, sentences.

Selman and Hirst (1985, 1994) presented a model that dif-
fers from other early connectionist parsers in that it uses a
variation on the Boltzmann machine (Fahlman, Hinton, &
Sejnowski, 1983). The rules of a context-free grammar are
implemented in the network by means of syntactic binder
units that inhibit one another and excite other units represent-
ing symbols that participate together in a production. The use
of simulated annealing, while very slow, allows the network
to gradually settle into the correct parse with high probabil-
ity. But this model, too, requires sentences to be bounded in
length and it relies on redundant structure. Due to the pro-
liferation of binder units, the size of the network may grow
intractably with more complex grammars. Furthermore, al-
though the authors suggested it as a next step, this model
does not incorporate semantic information and it is not clear
how it would deal with syntactic ambiguity.

Charniak and Santos (1987) described another localist
parsing model that differs from the others in its use of a slid-
ing input window. This allows the network theoretically to
handle sentences of unbounded length but hinders the ability
of the model to process long-distance dependencies, such as
those surrounding center-embeddings. Although the model
was successfully implemented for a very simple grammar, it
is not clear that its parsing heuristics would be sufficient to
handle more complex grammars. The model also uses parts
of speech rather than lexical inputs and is thus clearly unable
to incorporate semantics or resolve syntactic ambiguities.

Because they lack the representational capacity of either a

true symbolic system or a network with distributed represen-
tations, localist networks are severely impaired as language
processors. The standard solution is to place a hard limit
on sentence length and rely on extensive redundant struc-
ture, and an alternative is to generate the network on the
basis of sentence length, which circumvents the problem of
length but renders the model implausible biologically. Lo-
calist models are also heavily dependent on human design or
predefined grammars, with little capability to learn. With a
few exceptions, these models do not process sentences se-
quentially, as humans seem to do. Furthermore, they do not
easily permit the inclusion of semantic or contextual con-
straints which are important sources of information in pars-
ing ambiguous sentences (McClelland, St. John, & Taraban,
1989).

Hybrid and distributed parsing models.
While the last decade has seen a number of hybrid con-

nectionist/symbolist parsing models, only a few will be men-
tioned here. One trend in such models is the replacement
of sub-components within a modular symbolic system with
trained networks. The CDP model of Kwasny and Faisal
(1990) is a modification of the PARSIFAL deterministic
parser (Marcus, 1980). Several of the components of this
rule-based parser were removed and replaced with a connec-
tionist network, which was trained to suggest actions to be
taken by the symbolic components of the model given the
parsing context. Although the model was reportedly able to
process ungrammatical and lexically ambiguous sentences in
an appropriate way, it is not clear what effect the network
component played in the behavior of the model. A similar
approach was taken by Tepper, Powell, and Palmer-Brown
(2001) in designing a shift-reduce parser with connectionist
modules but symbolic control.

Wermter and Weber (1994, 1997) and Weber and Wermter
(1996) were interested in creating a system that was robust
to extragrammatical sentences. Their SCREEN model is a
complex, highly modular, system with most of the modules
consisting of trained networks. Rather than producing full
parse trees, the SCREEN model generates a flat syntactic and
semantic parse. The model was trained and tested on spon-
taneous spoken utterances and appears to work quite well.
While the overall modular structure of the network is a sym-
bolic design, the use of trainable, distributed networks allows
for a certain level of generalization and fault tolerance. How-
ever, the flat parse lacks much of the information necessary
to construct a full parse tree and does not confront some of
the problems posed by ambiguities.

The Jain and Waibel (1990) model is essentially a local-
ist, slot-based network, but it does incorporate learning and
distributed representations at the word level. It consists of
a series of layers representing words, phrases, clauses, and
inter-clausal relationships. These layers are trained indepen-
dently with specified targets and therefore involve only lim-
ited learned, distributed representations. The model is inter-
esting in its ability to process inputs over time, producing ex-
pectations of sentence structure and dynamically revising hy-
potheses. However, it only has a fixed number of phrase and
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clause blocks and uses weight sharing to generalize learning
across phrase blocks. This appears to cause a difficult trade-
off between proper generalization and over-generalization.

Another model to note is Stevenson’s more recent parsing
model (Stevenson, 1994; Stevenson & Merlo, 1997), which
is based on X theory and is largely symbolic, but relies on
activation-based competition mechanisms, as in localist net-
work models, to resolve structural ambiguities. The XERIC
model of Berg (1992) is also based on X theory but relies pri-
marily on learned, distributed representations. XERIC com-
bines a simple-recurrent network (SRN) (Elman, 1990) with
a RAAM (Pollack, 1990) and is able to take words over time
and produce a representation that can be decomposed into
an X parse tree. This model has the advantage over localist
methods that it can process unbounded sentences with only
gradual degradation in performance. Although it was trained
on a fairly simple grammar, the model is able to parse sen-
tences with rather deep structure. Semantic information was
not included in the original work, but it could theoretically
be introduced into this model by using a micro-featural en-
coding for words at the input. Despite its successes, XERIC
might not be considered an adequate cognitive model be-
cause its hierarchical training procedure, like that for the
RAAM, requires considerable memory and symbolic con-
trol.

Henderson (1994a, 1994b, 1996) described a localist, non-
learning connectionist parser based on temporal synchrony
variable binding (TSVB) and inspired by symbolic parsing
theories. The main idea behind TSVB is that variable bind-
ings, such as the bindings of constituents to thematic roles,
can be represented by synchronous firing of constituent and
role representations. The use of temporal synchrony, rather
than something like binding units, reduces the need for du-
plicate structure and permits greater generalization. Hender-
son argued that the overall architecture is biologically well-
motivated. The model does not itself construct an entire parse
tree, but a sequence of tree fragments with sufficient infor-
mation to enable their recombination into a complete tree.
Because it is a deterministic parser, never backtracking on its
commitments, and because it is unable to represent disjunc-
tions of interpretations, it is likely that this model would have
great difficulty with ambiguous sentences and suffer from an
overly strong garden-path effect. The main drawback of the
model is that it is primarily a connectionist implementation
of a symbolic algorithm and lacks many of the advantages
of connectionist networks, including the ability to learn and
make use of multiple weak constraints.

Henderson and Lane (1998) and Lane and Henderson
(1998) described an extension of the TSVB approach, known
as a simple synchrony network, that can learn to parse sen-
tences pre-encoded as parts-of-speech. The network takes
the part of speech tags for the sentence constituents as in-
put and is trained to produce the parse tree fragment of any
constituent seen so far when that constituent is queried. The
network was able to learn to parse a corpus of written English
to a reasonable degree of proficiency. It is worth noting that
TSVB may be identical in practice to the query mechanisms
used in St. John and McClelland (1992) and Rohde (2002).

Finally, Harm, Thornton, and MacDonald (2000) were in-
terested in how semantic and statistical regularities affect the
parsing process. To begin to address this, they focused on the
parsing of ambiguous N N or N V phrases such as “the desert
trains.” Harm et al. trained a fully recurrent network (Pearl-
mutter, 1989) to process potentially ambiguous three-word
phrases. As each word was presented, the network mapped
from a distributed representation of the word’s form to a dis-
tributed representation of its meaning. Also present in the
output was an indication of whether the phrase was an NP
or an NP followed by a verb. Although this model is quite
limited in its scope, it succeeded in demonstrating the de-
sired sensitivity to a variety of factors, including structural
constraints, pragmatic constraints, and lexical frequency and
semantic biases.

Aside from the fact that they provide no account of lan-
guage acquisition, symbolic, localist, and hybrid parsing
models that cannot learn are not readily adapted to new or
more complex languages and are generally insensitive to se-
mantic constraints and other important sources of informa-
tion in parsing. On the hand, parsing models that involve
learned, distributed representations generally require teach-
ing signals in the form of explicit parses, which are not
thought to be available to language learners.

Word prediction

An alternative to parsing is the more basic, but nonetheless
quite difficult, task of word prediction. Word prediction is a
surprisingly useful ability. It can be the foundation for a lan-
guage model, which predicts the likelihood that a particular
utterance will occur in the language and which is a principal
component of most speech recognition systems. The ability
to predict accurately is sufficient to generate the language,
and it thus indicates “weak” knowledge of the grammar un-
derlying the language. Some of the most well-known and
successful connectionist models of sentence processing are
those that perform word prediction.

Elman (1990, 1991b, 1993) pioneered the use of simple-
recurrent networks (SRNs), also called Elman networks for
character and word prediction. Elman (1990) applied an
SRN to letter prediction in a concatenated sequence of words,
demonstrating that the network could potentially learn to de-
tect word boundaries by identifying locations of high en-
tropy, where the prediction is difficult. This work suggests
that prediction might be a primary mechanism used by in-
fants to learn word segmentation. Elman then extended the
model to word prediction in a language of simple sentences.
Representations of words that developed at the network’s
hidden layer could be clustered to produce a reasonable clas-
sification of words syntactically and semantically. This indi-
cates that much of the basic knowledge required for parsing
and comprehension could be extracted from the child’s input
by a prediction mechanism.

Elman (1991b) further extended the model to process sen-
tences that potentially involve multiple embedded clauses.
The main goal of this work was to demonstrate that net-
works are capable of learning to represent complex, hierar-
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chical structure. As Elman put it, “The important result of
the. . . work is to suggest that the sensitivity to context which
is characteristic of many connectionist models, and which is
built-in to the architecture of [SRNs], does not preclude the
ability to capture generalizations which are at a high level of
abstraction” (p. 220).

A second major outcome of the work was the finding that
the networks were only able to learn corpora of mostly com-
plex sentences if they first began training on simple sen-
tences before gradually advancing to a higher proportion of
complex ones. This was developed further in Elman (1993),
where it was shown that the networks could also learn well
if their memory spans were initially hindered and then grad-
ually allowed to improve. This finding was thought to be
particularly important as it accorded with Newport’s “less-
is-more” hypothesis: that a child’s limited cognitive abilities
may actually be a critical factor in enabling her to, ultimately,
learn a first or second language to a greater degree of fluency
than can an adult (Newport, 1990; Goldowsky & Newport,
1993).

Although these findings were influential and appeared to
have important implications for human language learning,
we re-examined them and discovered that manipulating the
training environment or memory span of the networks does
not always facilitate learning and can, in fact, be harmful
(Rohde & Plaut, 1997, 1999). These studies used a similar
network to Elman’s but a range of languages that differed
in their statistical, but not syntactic, properties. The pri-
mary finding was that using initially simplified inputs was, in
most cases, a significant hindrance to the networks. This was
particularly true as the languages were made more natural
through the introduction of semantic constraints. Memory
impairments of the sort used by Elman, on the other hand,
actually seem to have little effect on the learning of the net-
work.

Our explanation for this was based on the fact that recur-
rent networks naturally begin with poor memory which they
must gradually learn to use as they are exposed to the en-
vironment. The network therefore tends to learn simple re-
lationships first because it does not yet have the representa-
tional capacity to handle more complex ones. Thus, Elman’s
staged memory impairments tend to have little effect because
they simply mirror the natural development of memory. As
argued in Rohde and Plaut (in press), “We believe that the
cognitive limitations of children are only advantageous for
language acquisition to the extent that they are symptomatic
of a system that is unorganized and inexperienced but pos-
sesses great flexibility and potential for future adaptation,
growth and specialization.”

Weckerly and Elman (1992) used a similar SRN model
and focused specifically on the difficulty of right-branching
versus center-embedded sentences. They found that, in ac-
cordance with behavioral data, the SRN showed a prefer-
ence for sentences involving double right-branching, subject-
extracted relative clauses over those with double center-
embedded, object-extracted clauses. Furthermore, the net-
work was able to make use of semantic constraints to facili-
tate word prediction in center-embedded sentences.

Christiansen (1994) extended the language used by El-
man (1991b) to include prepositional phrases, left recur-
sive genitives, conjunction of noun phrases, and senten-
tial complements. One version of the grammar could pro-
duce center-embedded sentences and a second version cross-
dependencies. In general, the networks performed rather
well on these languages and exhibited behaviors that largely
reflect human comprehension performance on similar sen-
tences. Christiansen and Chater (1999) further extended
these results and provided more detailed comparisons with
human performance.

Finally, Tabor, Juliano, and Tanenhaus (1997) (see also
Tabor and Tanenhaus (1999)) performed a number of ex-
periments comparing human and network reading times on
sentences involving structural ambiguities. Reading times
were elicited from an SRN using a novel “dynamical system”
analysis. Essentially, the hidden representations that appear
in the network at various stages in processing sentences are
plotted in a high-dimensional space. These points are treated
as masses that exhibit a gravitational force. To determine the
reading time of the network on a particular word, the net-
work’s hidden representation for that word is plotted in the
high-dimensional space and then allowed to gravitate among
the attractors until a stable state is reached, with the settling
time taken as an indicator of reading time. Although this
test-mass settling process was intended to be a proxy for a
true dynamical system that actually settles into a stable state,
no experiments were performed to demonstrate that this is a
reasonable simplification of such a model.

Comprehension

Comprehension models are those that go beyond parsing
to producing a representation of the meaning of a sentence,
given its surface form. There are, in fact, relatively few com-
prehension models in the literature. This may be due largely
to the difficulty of representing and processing semantic in-
formation. Concept and phrase meanings involve subtle as-
pects that cannot easily be captured in a symbolic or localist
system and do not interact in a cleanly combinatorial fashion.
Furthermore, systems able to manipulate such information
do not lend themselves to top-down design and are better
constructed with learning methods. Therefore, comprehen-
sion has largely been the domain of distributed, connectionist
models.

Hinton (1981) discussed one way in which semantic in-
formation and associations could be stored and recalled us-
ing distributed representations, and he pointed out some of
the advantages this has over traditional localist semantic net-
works and over static distributed representations. A princi-
pal advantage is that associations formed between items may
automatically generalize to semantically similar items. This
work may have influenced, directly or indirectly, many sub-
sequent connectionist models of semantics.

One such effort is the well-known model of McClelland
and Kawamoto (1986). While it does not derive fully struc-
tured representations of sentence meaning, this model pro-
duces thematic case role assignments, which are thought to
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be an important step in comprehension. The proper assign-
ment of case roles does not simply depend on word order but
also involves considerations of word meaning, inflectional
morphology, and context. The model uses stochastic units
and a single layer of weights that is trained using the percep-
tron convergence rule and learns to map from the semantic
features of the three or four main constituents of the sentence
to the semantic representations for the fillers of up to four
thematic roles: agent, patient, instrument, and modifier. The
model is able to resolve lexical and structural ambiguities,
handle shades of meaning, and generalize to novel words.
However, as the authors acknowledged, this was just a first
step which greatly simplified the problem of sentence com-
prehension. The use of static input representations does not
allow the network to process words over time and results in
a hard limit on the complexity of sentences that can be han-
dled. In particular, this model would be unable to represent
multi-clause sentences without substantial changes.

Perhaps the best known model of sentence comprehension
is the later work of McClelland, St. John, and Taraban (1989)
and St. John and McClelland (1992). These papers described
a model that shares many of the goals of the McClelland and
Kawamoto (1986) work but extends the framework to pro-
duce a changing interpretation as each constituent is received
and to allow the learning of distributed hidden representa-
tions of phrase and sentence meaning. The input half of the
model is an SRN that learns to use a sequence of phrase com-
ponents to compile a single message representation, known
as the sentence gestalt, in the form of a trainable hidden layer.
The output half of the model was trained to answer questions
about the sentence in the form of a probe. When probed with
a constituent, the network must respond with the thematic
role played by that constituent, or when probed with a role,
the network produces the constituent that fills that role. Dur-
ing training, the error that derives from the answers to these
probes is backpropagated through the network to influence
the formation of the sentence gestalt.

The St. John and McClelland model successfully exhib-
ited many interesting behaviors including the ability to make
use of both syntactic and semantic clues to sentence mean-
ing, revise its interpretations online, infer missing or vague
constituents, use variable argument structure frames in both
active and passive forms, and generalize its abilities to novel
sentences. However, a major limitation of the model is that
it, too, is not able to process multi-clause sentences, which
are of considerable interest in the study of language. Nev-
ertheless, the St. John and McClelland model remains a key
inspiration for the work discussed in this paper.

One hindrance to the development of sentence compre-
hension models has been the difficulty of specifying adequate
meaning representations of concepts and sentences. One so-
lution adopted by Allen (1988), St. John (1992) and Noelle
and Cottrell (1995) is to avoid specifying meanings by fo-
cusing on language learning in the service of a task. By
grounding language in this way, the model can be trained
to respond to linguistic inputs by performing an appropri-
ate action. For example, St. John (1992) trained a simple-
recurrent network to take a description of a scene and a sen-

tence describing a particular object in the scene and identify
the object to which the sentence refers. The model is able to
handle fairly complex inputs including relative clauses and
prepositional phrases and can even handle human-produced
sentences moderately well, but is otherwise severely limited
in its scope.

Miikkulainen and Dyer (1989) trained a backpropagation
network on the same sentences used in the McClelland and
Kawamoto (1986) study. The network learned to map from
a static representation of the words in the sentence to a rep-
resentation of the case role assignments. The principal dif-
ference between this and the earlier study is that McClelland
and Kawamoto hand-designed feature-based distributed rep-
resentations for words while the Miikkulainen and Dyer net-
work learned the word representations using a representation
updating, storage and retrieval mechanism. The method was
later extended to a simple-recurrent network which accepts
the same sentences encoded sequentially (Miikkulainen &
Dyer, 1990).

Miikkulainen (1990) applied a modular architecture
to comprehending and producing sentences with relative
clauses. The sentences were composed of noun-verb or
noun-verb-noun clauses, separated by commas. The first
module maps from a sequence of words drawn from a sin-
gle clause, or part of a clause if it contains an embedding,
to a slot-based representation of the meaning. A second net-
work maps from a sequence of clause frames to a static rep-
resentation of all the frames in the sentence. Two other net-
works perform the inverse mappings. The system was able
to successfully encode and reproduce sentences constructed
from a very limited vocabulary. The use of a slot-filler rep-
resentation for sentence meaning places a hard constraint on
the complexity of sentences that could be represented by this
system. Another limitation is that it relies on markers to dis-
tinguish clause boundaries, thus preventing it from handling
reduced-relative constructions, which lack relative pronouns.
Nevertheless this appears to have been the first connectionist
comprehension model able to process complex sentences.

Production

Sentence production is a mapping from an intended mean-
ing to a sequence of words or sounds. Production involves
such issues as choosing words to convey the appropriate mes-
sage, selecting the correct morphemes to obey syntactic and
agreement constraints, and modeling the listener’s knowl-
edge to allow the speaker to avoid redundancy, provide an
appropriate level of information, and produce syntactic forms
and prosodic cues that emphasize important parts of the utter-
ance and avoid ambiguity. Sentence production has received
much less attention than parsing in the symbolist commu-
nity. Producing the appropriate phrasing depends on sensi-
tivity to nuances of meaning that are difficult to capture in a
symbolic system (Ward, 1991). Thus, some researchers have
begun turning to connectionist approaches to modeling pro-
duction. However, most connectionist language production
models have so far been restricted to the word level, deal-
ing with lexical access and phoneme production, rather than
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sentence-level phenomena (Dell, 1986; O’Seaghdha, Dell,
Peterson, & Juliano, 1992; Harley, 1993; Dell, Juliano, &
Govindjee, 1993). This section considers the most notable
sentence production networks.

There have been at least three major localist sentence pro-
duction networks. Kalita and Shastri (1987, 1994) focused
on the problem of producing the words in a sentence given
the thematic role fillers and indications of the desired voice
and tense. Their model, which is a rather complex localist
network, is able to produce simple SVO sentences in active
or passive voice and in several tenses. In order to ensure that
constituents are produced in the proper order, the model uses
sequencer units to inhibit nodes once they have performed
their duty. It is unlikely that this model could easily be ex-
tended to more complex sentences, particularly those with
recursively nested structures.

Gasser (1988) (see also Gasser & Dyer, 1988) described
a significantly more ambitious localist model that pro-
duces sentences using elaborate event schemas. The model,
known as the Connectionist Lexical Memory, is based on
interactive-activation principles. Bindings to syntactic roles
are encoded with synchronized firing, as in TSVB (Hender-
son, 1994a). Sequencing is accomplished using start and end
nodes for each phrase structure, which are somewhat similar
to the sequencer units in Kalita and Shastri’s model. Gasser’s
model is designed to account for a wide range of phenomena,
including priming effects, speech errors, robustness given
incomplete input or linguistic knowledge, flexibility in se-
quencing, and transfer of knowledge to a second language.
However, the model was only applied to simple clauses and
noun phrases and does not produce recursive structures in-
volving long-distance dependencies. Again, it is not clear
whether such a localist model could be scaled up to handle
more complex sentences.

The third localist production model, by Ward (1991), was
intended to be “more connectionist” than the previous at-
tempts, relying on a truly interactive settling process and
avoiding the need for binder units. One major limitation of
the model, which may apply to the others as well, is that the
network structures used to represent the intended meaning
of the utterance are built on a sentence-by-sentence basis.
Although the model is apparently able to produce a broader
range of sentences, it is still unable to handle agreement,
anaphor, and relative clauses. Ward acknowledged that a pri-
mary drawback of the model is the difficulty of extending it
in all but the most trivial ways, and he recognized the need
for a learning mechanism.

The localist models of sentence production, like their
parsing cousins, suffer from an inability to learn or to handle
complex structure without relying on redundancy or replica-
tion mechanisms. However, work on distributed connection-
ist models of production has been rather limited. We have
already discussed the comprehension and production model
of Miikkulainen (1990), which was trained to produce multi-
clause sentences based on a slot-filler representation of its
clauses. So far this work has been restricted to fairly simple
domains. The nature of the representations used appears to
limit the ability of the system to be scaled up to more natural

languages. In earlier work, Kukich (1987) was interested in
the ability of a network to learn to produce stock market re-
ports given the day’s activity. He trained one network to asso-
ciate units of meaning, or sememes, with morphemes and an-
other network to re-order morphemes. The output of the first
network was an unordered set of word stems and suffixes,
which could be produced accurately 75% of the time. The
morpheme-ordering network did not actually produce mor-
phemes sequentially but used a slot-based encoding of order.
The results of these simulations left considerable room for
improvement but were encouraging given the early state of
connectionism.

More recently, Dell, Chang, and Griffin (1999) were
specifically interested in the phenomenon of structural prim-
ing, which leads speakers to preferentially produce sentences
of a particular form, such as passive rather than active voice,
if they have recently heard or produced sentences of similar
form. Dell et al. hypothesized that the mechanism that re-
sults in structural priming is the same procedure used to learn
production. Their model takes a representation of the sen-
tence’s propositional content and produces the words in the
sentence sequentially. Propositional content is encoded using
a slot-based representation of the clause constituents, and the
model was thus able to produce only simple sentences.

The model was trained to produce either active or pas-
sive sentences based on whether the agent or patient received
greater emphasis. It was also able to convey recipients us-
ing a prepositional phrase or a dative. The model learned to
produce sentences with 94% of the words, or about 75% of
sentences, being correct, and thus was not as accurate as one
might hope. However, the model was able to match human
structural priming data quite well. The main limitations of
this model are that it was applied only to simple sentences
and did not learn distributed context representations.

The CSCP model

Other than prediction networks, which avoid the issue of
meaning entirely, no connectionist sentence processing mod-
els discussed thus far have exhibited all of the main proper-
ties necessary to provide a plausible account of natural lan-
guage acquisition. These include the ability to learn a gram-
mar, to process a sentence sequentially, to represent com-
plex, multi-clause sentences, and to be naturally extendable
to languages outside of the domain originally addressed by
the designer. The Connectionist Sentence Comprehension
and Production (CSCP) model of Rohde (2002) was devel-
oped to address these limitations.

The CSCP model is essentially a large-scale simple-
recurrent network able to perform both comprehension and
production of complex, multi-clausal sentences using a sub-
set of English constrained to match English in terms of
its distributional properties. This language involves such
complexities as multiple verb tenses and voices, adverbs
and adjectives, prepositional phrase, relative and subordinate
clauses, and sentential complements. Sentence meanings are
composed of a set of propositions encoded using distributed,
featural representations. One portion of the network, the se-
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mantic system, learns to compress a sequence of these propo-
sitions into a single, static representation of the meaning of
the sentence under the pressure to answer fill-in-the-blank
questions about the stored propositions as in the St. John and
McClelland (1992) model.

The actual comprehension portion of the system then
learns to receive a sequence of words, encoded in a dis-
tributed phonological representation, and output a represen-
tation of the sentence meaning that can be decoded by the se-
mantic system. Although the model is provided with knowl-
edge about sentence meanings and word segmentation, it
must learn to induce the syntax of the language. Building
on the work of Elman (1991b), the comprehension system is
simultaneously trained to predict the next word in the sen-
tence. At times, the meaning of the sentence is provided to
the model in advance, enabling it to generate much more ac-
curate predictions. This, ultimately, serves as the basis for
the model’s sentence production. In order to produce a sen-
tence, the message layer is clamped to the correct meaning
and the model predicts the first word in the sentence. The
most strongly predicted word is selected and fed back into
the model’s comprehension input and it proceeds to produce
the next word, and so on.

Therefore, the model’s comprehension and production
mechanisms are tightly integrated and rely on many of the
same processes. An intrinsic claim is that language produc-
tion is learned primarily through formulating implicit pre-
dictions while listening and attempting to comprehend sen-
tences in one’s language. The CSCP model has been ex-
tensively tested on a variety of tasks, including the process-
ing of lexical and structural ambiguities, and a range of un-
ambiguous sentence types. It is able to replicate many key
aspects of human sentence processing, including sensitivity
to structural frequency, verb argument structure preferences,
inflectional morphology, locality effects, and semantic plau-
sibility. In production, it also demonstrates structural prim-
ing and number agreement attraction. The model’s sensitiv-
ity to particular statistical factors, and the representations on
which this depends, arise naturally from the constraints of its
connectionist architecture as it learns to perform the tasks of
comprehension and production as best it can.
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