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Abstract
SpielerandBalota(1997)show thatconnectionistmodelsof readingaccountfor relatively little item-specificvariance.
In assessingthisfindingit is importantto recognizetwo factorsthatlimit how muchvariancesuchmodelscanpossibly
explain.First,itemmeansareaffectingby severalfactorsthatarenotaddressedin existingmodels,includingprocesses
involvedin recognizinglettersandproducingarticulatoryoutput.Theselimitationspoint to importantareasfor future
researchbut have little bearingon existing theoreticalclaims. Second,the item dataincludea substantialamount
of errorvariancethatwould beinappropriateto model. Issuesconcerningcomparisonsbetweensimulationdataand
humanperformancearediscussedwith anemphasison the importanceof evaluatingmodelsat a level of specificity
(“grain”) appropriateto thetheoreticalissuesbeingaddressed.

SpielerandBalota(this issue,hereafterSB) correlatedthe meanRTs of 31 subjectsnaming2820words
with performancemeasuresfor the samewordsderived from two connectionistmodelsof word reading:
thefeedforwardnetwork developedby Seidenberg andMcClelland(1989,hereafterSM89)andtheattractor
network developedby Plaut,McClelland,Seidenberg, andPatterson(1996,hereafterPMSP).They found
thatneithermodelaccountedfor muchof thevarianceassociatedwith individual items.This is perhapssur-
prising insofar assuchmodelshave beeninfluentialpartly becausethey closelysimulateempiricaleffects
observed in numerousstudies,suchasthe frequency-by-consistency interaction(e.g.,Taraban& McClel-
land,1987).SB’sdataraisequestionsaboutwhetherthemodelsgobeyondmoretraditionalmeasuressuch
asword frequency, neighborhooddensity, andorthographiclengthin contributing to understandingword
readingphenomena.

In this brief response,we discussseveral issuesthatmustbeaddressedin assessingtheperformanceof
ourmodelsin particularandconnectionistmodelsin general.Ourmainpoint is thattheability of ourmod-
elsto accountfor item-level datais limited by factorsrelatedto boththemodelsandthedata.With regard
to themodels,humanperformanceis affectedby several factorsbeyondthescopeof currentimplementa-
tions,includingprocessesinvolved in recognizinglettersandproducingarticulatoryoutput,andindividual
differencesamongsubjects.Thesefactorsare importantto understandbut have little bearingon our ac-



countof the phenomenawe have alreadyaddressed,which largely concernfrequency andconsistency of
spelling-soundcorrespondences.As discussedbelow, it is clearthatour modelscouldbeextendedin these
additionaldirectionsutilizing existingprinciples.With regardto thedata,therearelimits on therobustness
of theestimatesof humanperformanceprovidedby all experimentsincludingSB’s. In fact,thereis a large
amountof errorassociatedwith theitemmeanswhichwewouldnotexpectnorwantthemodelsto capture.
Finally, evenwithin thelimits of theimplementedmodelsandthebehavioral data,thereareimportantissues
abouthow to relatethetwo. ThesimplecorrelationsthatSB reportmaynot provide anadequatebasisfor
assessingthemodels.Questionsaboutthelinking assumptionsthatrelatemodelanddataarisein assessing
everysimulationmodelandneedto beconsideredcarefully.

Relationships Among the Measures

SB’smainfocusis onthepredictivevalueof traditional,theory-independent measuressuchaslog frequency,
ColtheartN (a measureof neighborhooddensity),and length, comparedto measuresderived from our
models.They reporttwo critical findings: first, the traditionalmeasurestogetheraccountfor moreof the
variancein meannaminglatenciesfor 2820wordsthandoeitherof themeasuresderivedfrom ourmodels;
andsecond,the modelmeasuresaccountfor little additionaluniquevariance(alsoseeBesner, in press;
Besner& Bourassa,1995,for similar regressionanalysesbasedon30subjectsnaming300words).

The measuresfrom the models(the phonologicalerror scorein the SM89 model;settlingtime in the
PMSPmodel) reflect how effectively the modelsgeneratephonologicalcodesfor wordsand nonwords.
They areomnibusmeasuresthatthey reflecttheaggregateeffectsof all of thefactorsthat influenceperfor-
mance.Unlike the traditionalmeasures,the modelmeasuresderive directly from a theoryof how words
arerepresentedandprocessed.The settingsof the weightsin themodelsaredeterminedby propertiesof
the trainingset,including the frequenciesof wordsandstructuralrelationshipsamongthem(e.g.,theex-
tentto which they sharesubword patternsthatarepronouncedsimilarly or differently). Themodelsshould
thereforecapturetheeffectsof factorssuchaslog frequency andColtheartN. Lengthis morecomplicated
becauseit affectsseveralaspectsof wordreading,suchastheencodingof visualdisplayandtheproduction
of articulatoryoutput,thatareoutsidethescopeof currentmodels.

We recomputedthe regressionsagainstSB’s item means1, enteringmeasuresderived from themodels
first andthendeterminedhow muchresidualvariancewasexplainedby the traditionalmeasures.We also
carriedout equivalentanalyseswith a similar datasetacquiredby Seidenberg andWaters(1989,hereafter
SW).In thelatterstudy(usingthesamemethodsasSB),30McGill Universityundergraduatesnamedaloud
the2900wordsfrom theSM89corpusplussomeadditionalitems. Theresultsof bothanalysesaregiven
in Table1 (seeTreiman,Mullennix, Bijeljac-Babic,& Richmond-Welty, 1995, for additionalregression
analysesinvolving asubsetof thesedata).

ConsideringtheSM89modelfirst, thephonologicalerrorscoresaccountfor mostof thevarianceassoci-
atedwith log frequency, andthecombinationof errorscoreandlengthleavesvery little varianceaccounted
for by log frequency andColtheartN. This is particularlyclearfor the SW dataset,wherefrequency and
ColtheartN do not accountfor significantvarianceoncetheSM89errorscoreandorthographiclengthare
takeninto account.ThePMSPsettlingtimesexhibit asimilarpatternalthough,asSBpointout,they account
for substantiallylessvariance(seediscussionbelow).

It shouldbeclearwhy themodelsdo not accountfor very muchvariancebeyond what is attributable
to the traditionalfactors. The performanceof the modelsshouldnot be independentof log frequency or
ColtheartN; rather, we expectmeasuresderived from the modelsto subsumetheseeffects. The models
do accountfor a small amountof uniquevariance,presumablyrelatedat leastin part to spelling-sound
consistency, which noneof the othermeasurescaptures.Effectsof this factorarelikely to be small: our

1WethankDanSpielerandDavid Balotafor providing uswith their individual itemandsubjectdata.
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Table1
Item-LevelVarianceAccountedfor byVariousFactors

SpielerandBalota(1997)data(n=2820)
After After After After

Factor Total SM89 SM89+Length PMSP PMSP+Length
Log Frequency .0732 .0223 .0164 .0558 .0484
ColtheartN .1279 .0790 .0051 .1106 .0128
OrthographicLength .1439 .1108 .1253
SM89ErrorScore .1007
PMSPSettlingTime .0333

Seidenberg andWaters(1989)data(n=2813)
After After After After

Factor Total SM89 SM89+Length PMSP PMSP+Length
Log Frequency .0083 .0005

�
.0000

�
.0044 .0025

ColtheartN .0373 .0214 .0007
�

.0304 .0022
OrthographicLength .0478 .0350 .0399
SM89ErrorScore .0291
PMSPSettlingTime .0143
Note: Columnsheadedby “After” indicateamountof varianceaccountedfor by eachother factor after
partialling out the effects of the namedfactor(s),where“SM89” refersto the SM89 PhonologicalError
Score,“PMSP” refersto thePMSPSettlingTime,and“Length” refersto OrthographicLength.�
Not reliableatp=.05.

theorysuggeststhatsucheffectswill belimited to relatively low-frequency words;for high-frequency items,
little mattersotherthanfrequency, length,andarticulatoryfactors.Thus,spelling-soundconsistency will
accountfor small amountsof variancecalculatedover the entire corpus(seeTreimanet al., 1995)and,
in fact, the effects of this factor in behavioral experimentsare alsoquite small (on the order of tensof
milliseconds).Thefactthatthemodelsaccuratelycapturesucheffectsandtheinteractionbetweenfrequency
andconsistency despitetheirsmallsizeis thereforeimportant.

In summary, themodelmeasuresdonot fully accountfor lengtheffects,but whencombinedwith length
they largely accountfor the effectsof factorssuchas frequency andColtheartN. More importantly, the
modelmeasuresderive from a theoryof how frequency andothereffectsarisewithin the lexical system.
Theresidualeffectsof lengthremindus that thereareaspectsof word recognitionandpronunciationthat
arebeyondthescopeof theimplementedmodels,andtheremainingunexplainedvariance(in theSBdataset)
indicatesthattheremaybeadditionalfactorsto consider, someof whichwediscussbelow.

How Much Variance Is There To Account For?

Onestriking aspectof theSB datais how muchvarianceis unexplainedby any known factor. Enteringall
measuresinto amultiple regression,includingonesrelatedto propertiesof theinitial phonemes,leavesless
thanhalf of the varianceexplained(alsoseeTreimanet al., 1995). This fact raisesquestionsabouthow
muchvarianceany modelshouldexplain given thereliability of the latency dataandtherobustnessof the
estimatesof theitemmeans.

For the2791itemsin commonbetweentheSBandSWstudies,thecorrelationbetweentheitemmeans
is a surprisinglylow .54. Inspectionof thedatafrom thetwo studiesshows thatoverall meanandstandard
deviation weremuchsmallerin theSB study(468,21.6)thanin theSW study(570,45.4).Thedifferences
betweenstudiesare illustratedin Figure1, which presentsdataconcerningthe benchmarksetof words
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Figure 1. Meanperformanceon TarabanandMcClelland’s (1987)high- andlow-frequency regular and
exceptionwords, for (a) TarabanandMcClelland’s (1987)subjects,(b) SpielerandBalota’s (this issue)
subjects,and(c) Seidenberg andWaters’s (1989)subjects.

usedby TarabanandMcClelland(1987,hereafterTM). WhereastheSW datareplicatethe frequency-by-
consistency interaction,the SB datado not, consistentwith earlierfindingsindicatingthat frequency and
consistency effectsarelargerfor slower subjects(Seidenberg, 1985).

Thesedifferencesbetweenexperimentsmustbedueto factorsotherthanstimuluscharacteristicsthatSB
emphasized.Eachmodelrepresentsa singlesubjectandthereforecannotaccountfor between-subjectand
between-experimentvariance.SB’s analysesinvolve correlatingdatafrom eachmodelandmeansderived
from 31subjects.In fact,if theRTs for eachof SB’s individual subjectsarecorrelatedwith theitemmeans
for theremainingsubjects,thecorrelationsrangefrom ���������� to .222. Thus,theSM89modelcorrelates
morehighly with the item means(.317)thanall of SB’s subjects;the PMSPsettlingtimesyield a higher
correlation(.182)thanall but 6 of SB’ssubjects.2

Althoughindividual differencescannotbecapturedby a singleinstantiationof a model,it is clearthat
they canbeaddressedwithin our framework. Consider, for example,the reductionof frequency andcon-
sistency effects for fastersubjects,evident in Figure1. The theorybehindthe SM89 andPMSPmodels
providesan explanationfor theseresultsunderthe assumptionthat fastersubjectshave morereadingex-
perience;within the SM89 andPMSPmodels,RTs get fasterandeffect sizesget smallerwith increased
training. Effectsdueto speed-accuracy tradeoffs could alsobe explainedwithin the existing framework.
Subjectswho emphasizespeedbegin articulatingtheir responsesearlierthansubjectswho emphasizeac-
curacy. This could be capturedby differencesin how long an attractornetwork is allowed to settle(see
Kawamoto& Zemblige,1992). Thus,althoughthemodelmeasuresthatSB focusedon do not themselves
accountfor theseeffects,they arecompatiblewith thebroadertheorythatthemodelsapproximate.

PMSPalsodiscussindividual differencesin namingthatarerelatedto variationin thedivision of labor
betweenpathways within the lexical system. Subjectsmay vary in the extent to which they rely on the

2Onepossibility is that themeanperformanceof multplenetworkswould acountfor muchmorevariancethanany individual
network. To testthis,we trained31 differentversionsof a feedforwardversionof thePMSPnetwork (PMSPSimulation2, trained
for 400epochsusinga square-rootfrequency compression),eachstartingwith differentinitial randomweights.After training,the
errorscoresfor eachnetwork accountedfor anaverageof .0527of thevariancein theSBRTs(range.0450–.0791).Theaverageof
theirerrorscoresaccountedfor only slightly morevariance:.0854.This is because,unlike thesubjects,theperformancemeasures
acrossnetworksarehighly correlated(mean.847,range.800–.881).Thus,initial randomweightsappearsto beaninsufficientbasis
for capturingindividualdifferencesamongsubjects.
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orthography-semantics-phonology computationin naming;thestrengthof input from this pathway affects
thebehavior of theorthography-phonology computation.Differencesin divisionof labormayalsounderlie
thevariability amongsubjectsin studiessuchasSB’s.

Fitting Models to Data

The final issueto considerconcernsthe assumptionsthat link statisticsderived from our modelsandbe-
havioral data. TheSM89modelyieldeda phonologicalerrorscorethatcapturedeffectsof frequency and
consistency estimatedby averagingacrossthe multiple itemsandsubjectsemployed in individual exper-
iments. Although therewasan explicit theoryrelatingerror scoreto latency, the modeldid not literally
modelreactiontimes.PMSPbegantheexplorationof a moredirectapproach,usingthesettlingtimesin a
recurrent,attractornetwork to modelreactiontimes(alsoseeKawamoto& Zemblige,1992).Settlingtime
in thePMSPattractornetwork wasmeasuredby theprocessingtimerequiredfor phonologicalactivationto
fully stabilize.Usingthismeasureasananalogueof naminglatency is problematic,however, asit assumes
that thatsubjectsdo not begin to initiate their responsesuntil they have completedthecomputationof the
stimulus’ phonologicalcode. This is almostcertainly false;underspeedednaminginstructionssubjects
maybegin to initiate their responsesbeforethe entirepatternhasbeencomputed.Thus,whereasnaming
latency measuresthetimeto initiate articulation,settlingtimereflectsthefinishingtimefor thecomputation
of phonology. This may be why this measurehassomewhat lesspredictive power than the error scores
from theSM89model.Attemptsto modeltime-varyingarticulatorymechanismsmoredirectlyarecurrently
underway (Plaut& Kello, in press).

Clearlythereareissuesrelatedto themodelingof reactiontimesthatneedto beconsideredfurther. For
example,recentempiricalfindings(Kawamoto,Kello, Jones,& Bame,in press)suggestthatsubjectsmay
usea responsecriterionbasedprimarily on initial phoneme.Somepreliminarymodelingwork (Harm &
Seidenberg, 1997)suggeststhatapplyingsucha responsecriterionto thephonemicfeaturerepresentations
of aspelling-soundattractornetwork accountsfor moreitem-level variance(.139for theSBdata,.194for the
SWdata)comparedwith thePMSPattractornetwork (.033and.014,respectively). Althoughtheseanalyses
arenotdefinitive,they clearlyindicatethatbetterfits to itemwisedatacanbeachievedusingexistingmodels
if thatis thegoal.

Conclusions

Our approachto understandingcognitive processessuchasword readingis to attemptto articulategeneral
computationalprinciplesthat, when instantiatedin specificdomains,give rise to observed performance.
Muchof thepowerof theapproachderivesfrom theeffectivenessof theseprinciplesacrossdomains.Better,
detailedfits to particulardatasetscouldcertainlybeobtainedby adoptingmoreadhocanddomain-specific
assumptionsandmechanisms,but not without a lossof explanatorypower. Of course,our ultimategoal is
to develop theoriesthat areboth theoreticallycoherentacrossdomainsandquantitatively accuratewithin
domains.In themeantime,it is importantto maintainanappropriatematchbetweenthescopeof thetheory
andcharacteristicsof the behavioral datato beexplained. Every computationalmodelis limited in scope
andcanbe falsifiedmerelyby consideringphenomenathat have not yet beenaddressed.In this respect,
researchonwordrecognitionis following anormalscientificprogressionin whichthelimitationsof current
modelsprovidetheimpetusfor thenext generationof research.At thesametime,identifyingthelimitations
of our modelsanddirectionsfor futureresearchalsorequiresrecognizinglimits imposedby thequality of
thedatain orderto avoid fitting error. Empiricalchallengeslike thoseof SB provide animportantimpetus
for advancesin research,but do not constitutethe solebasison which the adequacy of modelsshouldbe
judged.
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