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Abstract

Sibley, Kello, Plaut, and Elman (2008) proposed the sequence encoder as a model that learns

fixed-width distributed representations of variable-length sequences. In doing so, the sequence enco-

der overcomes problems that have restricted models of word reading and recognition to processing

only monosyllabic words. Bowers and Davis (2009) recently claimed that the sequence encoder does

not actually overcome the relevant problems, and hence it is not a useful component of large-scale

word-reading models. In this reply, it is noted that the sequence encoder has facilitated the creation

of large-scale word-reading models. The reasons for this success are explained and stand as counter-

arguments to claims made by Bowers and Davis.
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We recently presented a connectionist architecture termed the ‘‘sequence encoder’’ that

learns orthographic and phonological representations of words (Sibley, Kello, Plaut, &

Elman, 2008). These models extend simple recurrent networks to learn distributed codes

that represent elements of a sequence and their positions. Our goal in developing the

sequence encoder was to learn representations shaped by graphotactic and phonotactic struc-

ture in large-scale wordform lexicons. We reported simulations that learned representations

for over 70,000 English wordforms, ranging from 1 to 18 letters or phonemes in length, and

1 to 5 syllables in length. These sequence encoders accurately encoded untrained strings of

letters and phonemes (i.e., pseudowords) that coincide with the graphotactics or phono-

tactics of the trained language. They also accounted for participants’ judgments about the

conformity of pseudowords to graphotactic regularities.
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Until recently, nearly all models of word reading were restricted to monosyllabic words.

This has often been attributed to the alignment and dispersion problems (Davis, 1999; Plaut,

McClelland, Seidenberg, & Patterson, 1996): The alignment of letters or phonemes is

ambiguous across wordforms of different lengths, and information about letters and pho-

nemes is dispersed across position-specific units. These problems arise because previous

models of word reading used slot-based representations, so that elements in different posi-

tions of a word were treated largely independently. The sequence encoder enables large-

scale models of naming by converting variable-length sequences of letter or phonemes into

distributed representations. Rueckl, Fang, Begosh, Rimzhim, and Tobin (2008) proposed a

conceptually similar approach, while Ans, Carbonnel, and Valdois (1998) suggest a

different solution.

Bowers and Davis (2009) criticized the sequence encoder in two respects. First, they

argued that a system for representing wordforms must distinguishing words from nonwords,

while the sequence encoder only distinguishes well-formed from ill-formed strings of letters

or phonemes. Second, they argue that the sequence encoder does not resolve the dispersion

and alignment problems because learned representations of letters and phonemes are not

identical across positions and wordforms of different lengths. In this reply, we explain that

Bowers and Davis’ criticisms stem from a miscommunication of scope and a difference in

goals.

The sequence encoder was not designed to distinguish words from nonwords. Bowers

and Davis appear to have a different interpretation of the model’s scope, possibly because

of confusion with the term ‘‘wordform,’’ and also because of one sentence in which we

wrote that ‘‘the sequence encoder is a model of lexical performance in its own right’’

(p. 752). Lexical performance in this context referred to behavioral measures of wordform

processing predicted by the model (i.e., ratings of wordform well-formedness), not an ability

to distinguish words from nonwords.

As for ‘‘wordform,’’ our use of the term is analogous to the well-known ‘‘visual word-

form area’’ (VWA). The VWA is most active in response to words, less responsive to

pseudowords, and still less responsive to nonwords (like consonant strings; Binder, Medler,

Westbury, Liebenthal, & Buchanan, 2006; Dehaene, Cohen, Sigman, & Vinckier, 2005).

The sequence encoder shows the same ordering in terms of encoding accuracy because it

learns about graphotactics or phonotactics, not because it learns a lexicon. Just as the VWA

is hypothesized to provide orthographic wordform representations (word or nonword) to the

reading system, a sequence encoder may provide wordform representations to large-scale

models of word reading. This goal was explicitly stated in our original paper, and we have

used sequence encoders in models of word reading and recognition (Kello, 2006; Sibley,

2008; Sibley, Kello, & Seidenberg, in press).

The goal of large-scale modeling is also relevant to Bowers and Davis’ second criticism

that the sequence encoder does not resolve the dispersion and alignment problems. This crit-

icism arises from a difference in goals. Bowers and Davis argue that resolving the dispersion

and alignment problems requires that a model be able to recognize substrings within word-

forms (i.e., CAT in TOMCAT) and represent substrings equivalently across positions

(i.e., total position independence).
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It is certainly true that readers can recognize substrings within wordforms, and tasks can

likely be designed to elicit position-independent behaviors with substrings. We agree that

the alignment and dispersion problems have limited the development of models that explain

such tasks and behaviors. This motivated our efforts to develop a system for learning ortho-

graphic and phonological representations that facilitate simulations of word-reading perfor-

mance for large-scale corpora of mono- and multisyllabic words and nonwords. Therefore,

for our purposes, these problems are resolved if sequence encoders enable simulations of

word-reading performance for large-scale corpora.

Kello (2006) and Sibley (2008) reported models of word naming and lexical decision that

mapped orthographic wordforms, learned via sequence encoding, onto their phonological

counterparts for tens of thousands of monosyllabic and multisyllabic English words. In

Simulation 2 of Sibley (2008) lexical decision and naming accuracies for words were 91.4%

and 94.3% correct, respectively, which is consistent with participants’ responses to these

same items in the English Lexicon Project (Balota et al., 2007). This simulation accounted

for 41.6% and 35.4% of the variance in lexical decision and naming latencies for roughly

28,000 mono- and multisyllabic English words, respectively. Pseudoword naming accuracy

was only 50.9% correct, but in an updated model, naming accuracies reached 86.8% and

65% for mono- and bisyllabic pseudowords, respectively (Sibley et al., in press). Further

these models correctly predict adult readers’ sensitivity to variables that impact naming

latencies, like frequency, length, orthographic neighborhood, phonological neighborhood,

consistency, syllabic length, stress typicality, and several of these variables interactions. In

sum, these simulation results stand as clear evidence that the dispersion and alignment prob-

lems were resolved, for our purposes.

As we explained in our original manuscript, large-scale modeling is enabled because

sequence encoder representations exhibit a graded similarity for letters or phonemes occur-

ring in different positions, rather than position independence. Bowers and Davis argue that

the lack of position-independent coding means that the sequence encoder does not solve the

alignment problem. We concede that according to their definition, the sequence encoder

does not solve the alignment problem. However, our simulations stand as evidence that the

alignment problem, as defined by Bowers and Davis, is not a problem that needs to be

solved in order to account for a large amount of mono- and multisyllabic naming data.

In fact, position independence is not desirable for our purposes because reading perfor-

mance is affected by positional dependencies. For example, long vowels are more common

in the initial versus final syllables of English wordforms because initial syllables are more

commonly stressed. It is by learning such dependencies that the sequence encoder is able to

distinguish well-formed from ill-formed wordforms.

Bowers and Davis argue that, despite graded similarity, sequence elements are not

represented with enough similarity across positions. They base their argument on principal

component analyses we reported to illuminate how sequence encoders normalize variable-

length sequences. However, our analyses were not intended for this purpose, and it is

misleading to use them as such. The problem is that principal components were extracted

for individual elements, not entire wordform representations, and that our analysis was

applied to the artificial corpus of Simulation 1, not the learned English orthography of
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Simulation 2. The latter point is important because representations will differ when trained

on corpora of random letter strings compared with English wordforms.

Here we provide an analysis that more directly addresses the graded nature of repre-

sentations as a function of position. Graded similarity is expressed by anticipation errors

(e.g., anticipating the T in SPAT to produce STAT) and perseveration errors (e.g., per-

severating the P in SPAT to produce SAP) that cross intervening positions. Such errors

are common in tasks like word naming and lexical decision, and they cannot occur

above chance in the sequence encoder unless letters and phonemes are represented simi-

larly across positions. We analyzed errors made by the orthographic sequence encoder

reported as Simulation 2 (11% error rate for words and 24% for pseudowords) and found

that 76% of them contained one or more anticipation or perseveration errors. Of these

errors, 35.8% crossed one position, 32.3% crossed two, 13.7% crossed three, 7.6%

crossed four, 4.6% crossed five, and 2.9% crossed six (when positional distance was

ambiguous, as in BALL to LALL, the shorter distance was counted). By comparison, the

mean chance rate of making each error was 5.4% based on single-letter frequencies in

the models’ training corpus, and the average length of a word in which an error occurred

was 10.1 letters.

In summary, we view the graded similarity of letters or phonemes across positions, and

graded levels of accuracy in processing well-formed words versus pseudowords versus

ill-formed nonwords, as positive attributes of the sequence encoder rather than as problems.
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