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Abstract 
Attachment theory is a prominent social psychological 
framework for understanding patterns of thinking about 
relationships.  According to this theory, individuals gradually 
develop mental models of relationships, and these models 
influence subsequent information processing.  Different 
experiences in relationships are posited to lead to differences 
in accessibility of particular mental models.  The current work 
proposes that experience leads instead to knowledge about 
general tendencies in relationships, and that this knowledge is 
sufficient to explain outcomes thought to be associated with 
differences in accessibility of particular mental models.  
Specifically, we advance a connectionist account of the 
acquisition of attachment knowledge. 
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Background 
   Attachment theory describes the emergence of patterns of 
interpersonal cognition, behavior, and emotional tendencies, 
particularly during times of stress or adversity (e.g., 
Bowlby, 1969/1982).  According to this theory, individuals 
learn what to expect from other people, given their 
particular history of interacting with their caregivers.  
Individuals’ whose caregivers have generally been available 
during times of need and who have provided sensitive care 
are expected to develop generalized beliefs that others are 
typically the types of people who are reliable, dependable, 
and sensitively responsive. Other individuals may 
experience caregivers as unavailable, insensitive, 
unresponsive, or critical during times of need.  These 
individuals are then expected to develop generalized beliefs 
about other people that correspond to these experiences.  
These generalized beliefs, referred to as “working models of 
attachment,” are thought to be internal representations of 
relationships.  They are often referred to as experience-
dependent prototypes or schema, and are thought to guide 
future information processing outcomes (e.g., perception of 
and memory for stressful and/or relationship events, 
expectations of others’ responses) and emotional responses 
to distressing situations (e.g., Collins & Read, 1994) .  

Considerable empirical evidence suggests that individuals 
do process relationship information in an attachment 
schema-consistent manner: attachment biases are observed 
in selective attention, perception, memory (recall and 
reconstruction), and attributions during relationship and 

stressful events (e.g., reviewed in Collins, Ford, Guichard, 
Ford, & Feeney, 2004).   

Attachment researchers have recently posited that 
different experiences in relationships could lead not just to 
differences in content of relationship knowledge, but to 
differences in the accessibility of more positive or more 
negative working models of attachment (Collins et al., 
2004).  In other words, individuals may not differ in the 
type of information they possess regarding relationships, but 
the ease with which positive or negative beliefs or 
expectations could differ, given individual differences in 
attachment experiences.  Consistent with this theoretical 
proposition, Mikulincer and colleagues (e.g., Mikulincer & 
Shaver, 2001; Mikulincer et al., 2001; Mikulincer et al., 
2003) demonstrated that priming individuals with positive 
working models of attachment (e.g., by asking participants 
to recall positive personal attachment experiences, by 
having participants watch pictorial representations or read 
stories of supportive others, or by subliminally presenting 
participants with words characteristic of positive attachment 
experiences) resulted in a variety of favorable cognitive and 
behavioral outcomes.   

The proposition that individuals differ in the ease with 
which particular types of mental models are accessible is 
limited in the sense that it is not accompanied by a 
mechanistic account of what it means to “access” a mental 
model, and how the process of accessing knowledge 
influences online processing.  The goal of the current work 
is to provide a connectionist simulation of the acquisition of 
attachment knowledge.  Specifically, we posit that a system 
which learns statistical similarities of its experiences in 
relationships, but does not actually store representations of 
relationships, will produce information processing biases 
that are consistent with empirical observations.  We further 
suggest that a connectionist formulation of attachment 
learning can contribute novel perspectives on the two 
unresolved emergent issues in attachment described above. 

 
Contributions of Connectionist Modeling to 
Attachment Theory  

Connectionist models simulate cognition via the 
collective operation of relatively simple, biologically-
inspired processing units.  (e.g., Rummelhart & McClelland, 
1985; McLeod, Plunkett, & Rolls, 1998).  Each processing 



unit has a scalar activation value, analogous to the firing rate 
of a neuron, and positively- or negatively-weighted 
connections to and from other units, analogous to the 
collection of synapses among neurons.  The activation of a 
particular unit is determined by the integration of excitatory 
or inhibitory inputs from other processing units to which it 
is connected.  Information is represented as a pattern of 
activation across processing units.  Processing occurs when 
input to the system (as a pattern of activation across input 
units) is eventually transformed into a response (a pattern of 
activation across output units).  Over the course of training, 
the network adjusts connections among processing units so 
that appropriate responses to input are produced.  This 
adjustment in connection weights occurs as a function of the 
degree to which the response produced by the network to a 
particular input differs from the specified target response.  
As a result of cumulative training, the network develops a 
system of connection weights which facilitates processing 
of a collection of patterns similar to those with which the 
network has experience.  Thus, connectionist networks learn 
to extract statistical similarities among and across their 
experiences. 

Connectionist modeling is especially relevant in the 
current context because it can be used to derive specific 
predictions regarding what it means for knowledge to be 
“accessible.”  Structure and function are intimately related 
in connectionist models: that is, the functioning of working 
models of attachment, including accessibility effects, is 
determined by the structure of the system that processes 
attachment information.  Accessibility of working models of 
attachment can be thought of as the likelihood that a 
particular representation will emerge from particular input, 
and this likelihood is determined by the set of connection 
weights in a network.   

To ask whether individuals differ in the extent to which a 
particular working model of attachment is accessible 
translates to asking whether a particular property of an 
attachment experience (e.g., “in distress”) is more strongly 
connected to a particular type of responsiveness (e.g., 
sensitive responsiveness, as coded by features such as 
“approving look,” “supportive touch,” etc.) for one 
individual than for another.  A connectionist perspective on 
this question might be that the association of different 
possible features of attachment experiences depends on 
unique individual history: the extent to which the experience 
of being in distress is related to the experience of receiving 
sensitive care depends on how consistently these events 
were experienced simultaneously.  It follows that the 
accessibility of a sensitive working model of attachment 
would increase in response to increasing the number of 
features of an input pattern that are associated with sensitive 
responsiveness.  For individuals who have generally 
experienced sensitively responsive caregivers, little or no 
additional information would likely be needed in order to 
facilitate the emergence of a representation of a relationship 
partner as sensitively responsive.  Individuals with less 
positive attachment histories, however, may require 

additional information (e.g., specific positive behaviors of a 
relationship partner) in order for a sensitive representation 
of a relationship partner to emerge. 

 
Simulation 
Network Architecture The task of the network was to learn 
general tendencies among and across attachment 
experiences.  The network was trained with approximations 
of attachment experiences, and allowed to discover 
relationships among features of the environment (i.e. 
whether the situation is attachment-relevant), features of the 
self (i.e. one’s present emotional state as well as one’s 
future emotional state), and features of others (i.e. who is 
present and the type of response that can be expected).  An 
autoencoder network, in which the task of the network is to 
learn to reproduce input patterns over an output layer, was, 
therefore, chosen in order to model the process of learning 
to represent attachment information. 
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Figure 1: Network Architecture 

 
The network has five groups of units in the input layer 

(Context, Emotion-Pre, Partner, Response, and Emotion-
Post), one group of 10 hidden units, and five groups in the 
output layer, each corresponding to an input group (Context-
out, Emotion-Pre-out, Partner-out, Response-out, and 
Emotion-Post-out).  The Context groups are comprised of 3 
units, the Emotion groups of 5 subgroups of 10 units each 
(50 total units), the Partner groups of 16 units, and the 
Response groups of 12 units.  The hidden units receive input 
from each of the 5 input groups, and are unidirectionally 
connected to each of the 5 output groups.  In addition, each 
hidden and output unit receives an additional “bias” 
connection, which can be thought of as coming from an 
additional unit whose activation is fixed at 1.0.  Including 
the bias connections, the total number of connections within 
the network is 2,158.   

Input is presented to the network by fixing the states of 
the input units to specified values (either 0 or 1).  The 
activations of the hidden units are computed based on these 
input activations, and then the activation of the output units 
are computed from the hidden activations.  Specifically,  the 



activations of the hidden and output units range between 0.0 
and 1.0 and are computed according to following equations: 
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the weight on the connection from unit i to unit j, and exp(·) 
is the exponential function. 
Representations  The network was trained with four 
different sets of input and target output to simulate four 
different attachment histories.  The training sets provided as 
input to the network indicate (a) the environmental context 
an individual might be in (Context); (b) emotion associated 
with that context (Emotion-Pre); (c) the identity of a 
relationship partner, if present (Partner); (d) the relationship 
partner’s responsiveness (Response); and (e) emotion 
associated with the relationship partner’s response 
(Emotion-Post).  Distinct features of each type of 
information were coded by the activity of individual units; 
although these units clearly do not capture the complexity of 
the corresponding real-world information, their pattern of 
co-occurrences within and across training patterns were 
designed to reflect plausible alternative attachment histories.  
The three different attachment histories used in the 
simulation differed in the proportions of different types of 
training patterns, as discussed in the section Training and 
Testing Procedures. 

Eight training patterns were created to represent eight 
pairs of Context and Emotion-Pre input patterns (see Table 
1).  The Context units correspond to situations that are 
“novel” (vs. familiar), “alarming” (vs. non-alarming), and 
“whereabouts of attachment figures (AF) unknown” (vs. 
known).  The units of both sets of emotion groups 
correspond to: “calm,”, “happy,” “sick,”  “anxious,” 
“angry,” “afraid,” “curious,” “proud,” “disappointed,” and 
“sad”.  Training patterns for the Emotion-Pre group were 
matched to patterns in the Context group, and the proportion 
of training patterns with each context/emotion-pre pair are 
presented in Table 1.   

Ten training patterns for the Partner group correspond to 
ten specific individuals.  The 18 units in the Partner group 
correspond to observable characteristics of these 
individuals.  The specific patterns for each relationship 
partner are presented in Table 1.  For all six sets of training 
patterns, 40% of the patterns in which a relationship partner 
was present (third context unit = 0) used the representation 
for “mother”; 25% used the representation for “father”; 5% 
used the representation for each of “grandmother”, 
“grandfather”, “teacher 1”, “teacher 2”, “friend 1”, and 
“friend 2”; and 2.5% used the representation for each of 
“aunt” and “uncle”. 

Each Context and Emotion-Pre pair could be combined 
with one of three Response training patterns from the 

Table 1: Context, Emotion-Pre, and Partner Training 
Patterns 

 

 
 

relationship partner: sensitive, hostile, or indifferent.  The 
patterns for these responses for each Context/Emotion-Pre 
pair are presented in Table 2.  Training sets for the Emotion-
Post group then depended on the Response pattern.  When a 
sensitive response was received, the Emotion-Post was 
either an activation of “happy” and “calm” (contexts 000 
and 010); “happy”, “curious”, and “proud” (context 100); or 
“happy” and “curious” (context 110).  When a hostile 
response was received, the Emotion-Post was an activation 
of “anger”, “disappointment”, and any negative emotions 
that were active in the Emotion-Pre pattern.  When an 
indifferent response was received, the Emotion-Post was an 
activation of “disappointment” and any negative emotions 
that were active in the Emotion-Pre pattern.   

 
Training and Testing Procedures The patterns described 
above were used to train the network to anticipate outcomes 
of attachment situations.  The network was provided with a 
series of patterns, each of which represented a specific 
attachment experience.  Although variability could exist 
within a set of patterns (i.e., although individuals may 
experience others as sensitively responsive in one pattern, 
but hostilely responsive in another pattern), the cumulative 
effect of providing this series of patterns was such that the 
network was able to extract general tendencies regarding 
how features of attachment experiences were typically 
related.  The network was tested by providing it with a 
pattern of input, and then observing the produced response 
across the output layer.  Four different sets of training 



patterns were used in order to simulate differences in 
attachment history.  

The current project explored cognitive sequalae of 
individual differences in attachment experiences.  Although  
it is likely that individuals with more positive interpersonal 
experiences during times of adversity also experience 
qualitatively different interactions with attachment figures 
during less aversive conditions, the four training patterns 
during these less aversive conditions did not differ.  This 
was intended to isolate and explore the effects of the context 
of attachment-relevant situations.  In order to avoid adding 
unnecessary complexity to the current model, each of the 
four training sets included the same patterns for experiences 
that were not attachment-relevant.  In each set, 90% of the 
responses received to positive emotion (contexts 000 and 
100) were sensitive; 5% were hostile; and 5% were 
indifferent.  The responsiveness from different relationship 
partners did not differ in these contexts.   

In order to explore consequences of individual differences 
in attachment-relevant experiences, the networks did, 
however, differ in experiences with relationship partners 
(and Emotion-Post) in response to negative Emotion-Pre 
input (contexts 010 and 110).  Training patterns varied in 
terms of: (a) percent of sensitive vs. hostile responses 
received, (b) continuity of sensitive vs. hostile responses 
over time, and (c) similarity of responses received from 
different relationship partners.   

Training: Individual Differences in Attachment 
History To explore contributions of connectionist modeling 
to understanding accessibility of attachment knowledge, 
three sets of training patterns were used.  The first network, 
the sensitive network, simulated an attachment history in 
which attachment figures had generally been available to 
provide sensitive care in response to attachment needs.  This 
network consistently received 90% sensitive responses (and 

5% hostile responses and 5% indifferent responses) to 
negative Emotion-Pre input from each relationship partner.  
The hostile network simulated an attachment history in 
which attachment figures were primarily hostilely 
responsive to and rejecting of attachment needs throughout 
development.  The hostile network was trained with 90% 
hostile responses (and 5% sensitive and 5% indifferent 
responses) to negative Emotion-Pre input. The exception 
network simulated an attachment history in which the 
relationship partner with whom the network had the most 
experience (mother; 40% of total relationship partner inputs) 
responded to distress in a way that differed from responses 
of the other nine relationship partners.  This exception 
partner responded sensitively to experiences of distress, 
while all other relationship partners responded hostilely to 
experiences of distress.  Each network was trained for 1,000 
trials. 
Testing Procedure Following training, each network was 
provided with increasing amounts of input information, and 
expectations of sensitive responsiveness were assessed.  In 
this way, we examined the type and amount of input 
necessary in order to elicit expectations of maximal 
sensitive responsiveness from others and associated 
emotion.  Networks were initially given (1) no input; (2) 
“alarming” Context input and “afraid” Emotion-Pre input; 
(3) “alarming” Context input, “afraid” Emotion-Pre input, 
and “mother” Partner input; (4) “alarming” Context input, 
“afraid” Emotion-Pre input, “mother” Partner input, and 
“sensitive” Response input; and (5) “alarming” Context 
input, “afraid” Emotion-Pre input, “mother” Partner input, 
and “hostile” Response input. 
   Expectations of sensitive responsiveness were 
operationalized as the similarity between the response 
produced by the network across Response and Emotion-
Post-Out groups and the prototypical sensitive response to 

 
Table 2: Sensitive and Hostile Response and Emotion-Post Patterns 

 



 
  “afraid” input (see Table 2).  Similarity was calculated 
using the following equation: 
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where S represents the similarity between the produced 
output and the prototypic sensitive pattern of activation; Pi 
represents the prototypic activation value of the ith unit in 
the sequence of n Response and Emotion-Post units; and Oi 
represents the activation value of the ith unit in the sequence 
of n corresponding Response-Out and Emotion-Post-Out 
units.  In the current calculations of similarity, n = 62 
because a total of 62 Response and Emotion-Post output 
units were included in the model.   

Prior to training, connection weights are very small, 
random values, so that testing the network produces little 
change in activation in output units.  Thus, the baseline 
activation in each output unit (Oi) is approximately 0.5.  
Because the value for Pi is always 0 or 1, (Pi – Oi)2 ≈ 0.25.  
The approximate baseline sensitivity and hostile similarity 
scores can be calculated as follows: 
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Results 

The sensitive similarity score produced by the sensitive 
network did not vary substantially based on input to the 
network (see Figure 2).  When no input was provided, the 
sensitive similarity score of the sensitive network was .816; 
in each of the instances of receiving input, the sensitive 
similarity score was slightly greater, and ranged between 
.87-.89.  This network’s hostile similarity score was .671 
when no input was provided, and ranged between .71-.72 in 
each of the input conditions. 

The hostile network showed slightly more variability in 
response to different input patterns.  Sensitive similarity in 
the absence of input (.748) was the lowest in this network, 
relative to the other two networks.  Sensitive similarity was 
lowest when the hostile network received “alarming” and  
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Figure 2:Accessibility of Expectations of Sensitive Care  

“afraid” input (.637), and highest (.795) when the network 
received only “mother” input.  The “alarming” and “afraid” 
input appeared to be particularly influential: even when the 
network additionally received “sensitive” Response input, 
the sensitive similarity score was still relatively low, .727 – 
lower than the sensitive similarity score when no input was 
provided and when only “mother” input was provided.  
Finally, the impact of providing “hostile” Response input, in  
addition to “alarming,” “afraid,” and “mother” input, was 
relatively small.  The sensitive similarity score in the former 
input condition was .699, only slightly lower than the 
sensitive similarity score of the latter, .713.   
   The high-frequency exception network produced high 
sensitive similarity scores in response to no input (.816), 
“mother” Partner input (.903), and the combination of 
“alarming” Context “afraid” Emotion-Pre, “mother” Partner, 
and “sensitive” Response input (.902).  The sensitive 
similarity scores were substantially lower in response to 
“alarming” Context and “afraid” Emotion pre input (.677), 
and “alarming” Context, “afraid” Emotion-Pre, and 
“mother” Partner input (.668).  The sensitive similarity to 
the Context, Emotion-Pre, and Partner input (.539).  score 
was lowest when “hostile” Response input was added 

 
Discussion 

The results of the current simulation suggest that 
individuals with different attachment experiences could be 
expected to differ in terms of the accessibility of 
expectations of types of responses to attachment situations 
and emotional outcomes.  The sensitive network, which had 
experienced very few negative outcomes of attachment 
experiences, learned that sensitive responses are generally 
likely, especially when these responses are needed (i.e., 
“alarming” and “afraid” input), and that “mother” is 
generally a sensitive partner, and does provide sensitive care 
during attachment experiences.  Interestingly, even when 
her responses were hostile (i.e., “alarming,” “afraid,” 
“mother,” and “hostile response” input), the sensitive 
network nonetheless perceived the care to be sensitive, and 
produced expectations of favorable emotional outcomes.  
Thus, to the extent that predicting and perceiving 
positive/not negative attachment outcomes is indicative of 
the accessibility of positive working models of attachment, 
the sensitive network’s positive working models of 
attachment were highly accessible in each input situation.     

The hostile network, however, received sensitive 
responses and experienced positive emotional outcomes 
virtually exclusively when contexts and associated initial 
emotion were not attachment-relevant.  In other words, in 
attachment-relevant contexts when the hostile network 
initially experienced negative emotion (30% of its total 
experience), the outcomes were predominantly negative.  
This network learned that although sensitive responses were 
generally likely (in the absence of input indicating 
attachment-relevant situations; 70% of its experiences), 
alarming contexts in which fear was experienced were 



incompatible with sensitive responses from others and 
favorable emotional outcomes.  The presence of the mother, 
represented as someone likely to respond sensitively (and 
not necessarily hostilely), diminished the negative impact of 
the attachment context to some extent.  The actual response 
of the mother, however, did not substantially impact the 
expectations generated by the network: when “mother” 
input was combined with “alarming” and “afraid” input, the 
network expected her to respond less sensitively and more 
hostilely, regardless of whether her response was 
objectively sensitive or hostile.  In this network’s 
experience, the presence of a relationship partner during an 
attachment situation was sufficient to generate negative 
expectations.  Because the expectation that attachment-
relevant situations generally result in negative outcomes was 
largely accurate in this network’s experience, the network 
did not need to further differentiate knowledge regarding 
types of responses. 

The current account suggests that the concept of 
“accessibility” of a (stored) representation is something of a 
misnomer.  The networks did not have stored 
representations of relationships or particular experiences or 
prototypes available to them.  Instead, the networks stored 
knowledge of tendencies of features of attachment 
experiences to be related with each other and to predict 
positive/negative responses and outcomes.  Thus, rather than 
calling to mind a particular model, the networks generated 
predictions of attachment outcomes de novo, based on 
currently available information and knowledge of how this 
information tends to be related.  What is thought of as high 
accessibility of a particular model is, in our formulation, a 
description of the overall or default likelihood of generating 
expectations consistent with a positive/negative “model.”  
The same knowledge structure, or network, however was 
used to process all information. 

The current work can be extended to generate novel 
predictions regarding individual differences in accessibility 
of attachment knowledge and resultant behavior.  For 
example, individuals who have experienced others as 
primarily sensitively responsive should consistently 
perceive others positively across a variety of different 
contexts, and should behave in ways that are consistent with 
these perceptions (e.g., seek support when support is 
needed).  Conversely, individuals who have experienced 
caregivers positively only when they are not distressed, and 
individuals whose caregivers have responded inconsistently, 
should learn any number of contingencies that bias their 
perceptions of others, depending on the particular situation.  
Thus, these individuals should also behave consistently with 
their expectations and perceptions (e.g., seek support only 
under certain conditions, approach others only when not 
distressed).   

Despite the important theoretical advances and novel 
implications of the current simulations, the current work has 
several significant limitations.  First, the modeling of 
extremely complex human cognition is currently 
unfortunately, but necessarily, oversimplified.  Real 

individuals interact much more extensively with a greater 
number of relationship partners and to experience more 
varied instances and outcomes of adversity than could be 
modeled.  Furthermore, the features that constituted 
attachment experiences in the current simulations were 
already relatively high-level concepts.  A more complicated 
model could have allowed a network to discover 
relationships among more elemental features of experience, 
but our goal was to demonstrate relatively simply how the 
principles of connectionist modeling can contribute to 
understanding the structure of attachment knowledge.   

The current model, therefore, simulates attachment 
processes and provides a foundation upon which to generate 
more specific predictions regarding important emerging 
themes in attachment research.   
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